clang  10.0.0git
ItaniumMangle.cpp
Go to the documentation of this file.
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements C++ name mangling according to the Itanium C++ ABI,
10 // which is used in GCC 3.2 and newer (and many compilers that are
11 // ABI-compatible with GCC):
12 //
13 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14 //
15 //===----------------------------------------------------------------------===//
16 #include "clang/AST/Mangle.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclOpenMP.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprConcepts.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/TypeLoc.h"
29 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 
36 using namespace clang;
37 
38 namespace {
39 
40 /// Retrieve the declaration context that should be used when mangling the given
41 /// declaration.
42 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
43  // The ABI assumes that lambda closure types that occur within
44  // default arguments live in the context of the function. However, due to
45  // the way in which Clang parses and creates function declarations, this is
46  // not the case: the lambda closure type ends up living in the context
47  // where the function itself resides, because the function declaration itself
48  // had not yet been created. Fix the context here.
49  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
50  if (RD->isLambda())
51  if (ParmVarDecl *ContextParam
52  = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
53  return ContextParam->getDeclContext();
54  }
55 
56  // Perform the same check for block literals.
57  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
58  if (ParmVarDecl *ContextParam
59  = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
60  return ContextParam->getDeclContext();
61  }
62 
63  const DeclContext *DC = D->getDeclContext();
64  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
65  isa<OMPDeclareMapperDecl>(DC)) {
66  return getEffectiveDeclContext(cast<Decl>(DC));
67  }
68 
69  if (const auto *VD = dyn_cast<VarDecl>(D))
70  if (VD->isExternC())
71  return VD->getASTContext().getTranslationUnitDecl();
72 
73  if (const auto *FD = dyn_cast<FunctionDecl>(D))
74  if (FD->isExternC())
75  return FD->getASTContext().getTranslationUnitDecl();
76 
77  return DC->getRedeclContext();
78 }
79 
80 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
81  return getEffectiveDeclContext(cast<Decl>(DC));
82 }
83 
84 static bool isLocalContainerContext(const DeclContext *DC) {
85  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
86 }
87 
88 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
89  const DeclContext *DC = getEffectiveDeclContext(D);
90  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
91  if (isLocalContainerContext(DC))
92  return dyn_cast<RecordDecl>(D);
93  D = cast<Decl>(DC);
94  DC = getEffectiveDeclContext(D);
95  }
96  return nullptr;
97 }
98 
99 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
100  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
101  return ftd->getTemplatedDecl();
102 
103  return fn;
104 }
105 
106 static const NamedDecl *getStructor(const NamedDecl *decl) {
107  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
108  return (fn ? getStructor(fn) : decl);
109 }
110 
111 static bool isLambda(const NamedDecl *ND) {
112  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
113  if (!Record)
114  return false;
115 
116  return Record->isLambda();
117 }
118 
119 static const unsigned UnknownArity = ~0U;
120 
121 class ItaniumMangleContextImpl : public ItaniumMangleContext {
122  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
123  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
124  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
125 
126 public:
127  explicit ItaniumMangleContextImpl(ASTContext &Context,
128  DiagnosticsEngine &Diags)
129  : ItaniumMangleContext(Context, Diags) {}
130 
131  /// @name Mangler Entry Points
132  /// @{
133 
134  bool shouldMangleCXXName(const NamedDecl *D) override;
135  bool shouldMangleStringLiteral(const StringLiteral *) override {
136  return false;
137  }
138  void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
139  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
140  raw_ostream &) override;
141  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
143  raw_ostream &) override;
144  void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
145  raw_ostream &) override;
146  void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
147  void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
148  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
149  const CXXRecordDecl *Type, raw_ostream &) override;
150  void mangleCXXRTTI(QualType T, raw_ostream &) override;
151  void mangleCXXRTTIName(QualType T, raw_ostream &) override;
152  void mangleTypeName(QualType T, raw_ostream &) override;
153  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
154  raw_ostream &) override;
155  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
156  raw_ostream &) override;
157 
158  void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
159  void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
160  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
161  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
162  void mangleDynamicAtExitDestructor(const VarDecl *D,
163  raw_ostream &Out) override;
164  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
165  raw_ostream &Out) override;
166  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
167  raw_ostream &Out) override;
168  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
169  void mangleItaniumThreadLocalWrapper(const VarDecl *D,
170  raw_ostream &) override;
171 
172  void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
173 
174  void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
175 
176  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
177  // Lambda closure types are already numbered.
178  if (isLambda(ND))
179  return false;
180 
181  // Anonymous tags are already numbered.
182  if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
183  if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
184  return false;
185  }
186 
187  // Use the canonical number for externally visible decls.
188  if (ND->isExternallyVisible()) {
189  unsigned discriminator = getASTContext().getManglingNumber(ND);
190  if (discriminator == 1)
191  return false;
192  disc = discriminator - 2;
193  return true;
194  }
195 
196  // Make up a reasonable number for internal decls.
197  unsigned &discriminator = Uniquifier[ND];
198  if (!discriminator) {
199  const DeclContext *DC = getEffectiveDeclContext(ND);
200  discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
201  }
202  if (discriminator == 1)
203  return false;
204  disc = discriminator-2;
205  return true;
206  }
207  /// @}
208 };
209 
210 /// Manage the mangling of a single name.
211 class CXXNameMangler {
212  ItaniumMangleContextImpl &Context;
213  raw_ostream &Out;
214  bool NullOut = false;
215  /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
216  /// This mode is used when mangler creates another mangler recursively to
217  /// calculate ABI tags for the function return value or the variable type.
218  /// Also it is required to avoid infinite recursion in some cases.
219  bool DisableDerivedAbiTags = false;
220 
221  /// The "structor" is the top-level declaration being mangled, if
222  /// that's not a template specialization; otherwise it's the pattern
223  /// for that specialization.
224  const NamedDecl *Structor;
225  unsigned StructorType;
226 
227  /// The next substitution sequence number.
228  unsigned SeqID;
229 
230  class FunctionTypeDepthState {
231  unsigned Bits;
232 
233  enum { InResultTypeMask = 1 };
234 
235  public:
236  FunctionTypeDepthState() : Bits(0) {}
237 
238  /// The number of function types we're inside.
239  unsigned getDepth() const {
240  return Bits >> 1;
241  }
242 
243  /// True if we're in the return type of the innermost function type.
244  bool isInResultType() const {
245  return Bits & InResultTypeMask;
246  }
247 
248  FunctionTypeDepthState push() {
249  FunctionTypeDepthState tmp = *this;
250  Bits = (Bits & ~InResultTypeMask) + 2;
251  return tmp;
252  }
253 
254  void enterResultType() {
255  Bits |= InResultTypeMask;
256  }
257 
258  void leaveResultType() {
259  Bits &= ~InResultTypeMask;
260  }
261 
262  void pop(FunctionTypeDepthState saved) {
263  assert(getDepth() == saved.getDepth() + 1);
264  Bits = saved.Bits;
265  }
266 
267  } FunctionTypeDepth;
268 
269  // abi_tag is a gcc attribute, taking one or more strings called "tags".
270  // The goal is to annotate against which version of a library an object was
271  // built and to be able to provide backwards compatibility ("dual abi").
272  // For more information see docs/ItaniumMangleAbiTags.rst.
273  typedef SmallVector<StringRef, 4> AbiTagList;
274 
275  // State to gather all implicit and explicit tags used in a mangled name.
276  // Must always have an instance of this while emitting any name to keep
277  // track.
278  class AbiTagState final {
279  public:
280  explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
281  Parent = LinkHead;
282  LinkHead = this;
283  }
284 
285  // No copy, no move.
286  AbiTagState(const AbiTagState &) = delete;
287  AbiTagState &operator=(const AbiTagState &) = delete;
288 
289  ~AbiTagState() { pop(); }
290 
291  void write(raw_ostream &Out, const NamedDecl *ND,
292  const AbiTagList *AdditionalAbiTags) {
293  ND = cast<NamedDecl>(ND->getCanonicalDecl());
294  if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
295  assert(
296  !AdditionalAbiTags &&
297  "only function and variables need a list of additional abi tags");
298  if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
299  if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
300  UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
301  AbiTag->tags().end());
302  }
303  // Don't emit abi tags for namespaces.
304  return;
305  }
306  }
307 
308  AbiTagList TagList;
309  if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
310  UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
311  AbiTag->tags().end());
312  TagList.insert(TagList.end(), AbiTag->tags().begin(),
313  AbiTag->tags().end());
314  }
315 
316  if (AdditionalAbiTags) {
317  UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
318  AdditionalAbiTags->end());
319  TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
320  AdditionalAbiTags->end());
321  }
322 
323  llvm::sort(TagList);
324  TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
325 
326  writeSortedUniqueAbiTags(Out, TagList);
327  }
328 
329  const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
330  void setUsedAbiTags(const AbiTagList &AbiTags) {
331  UsedAbiTags = AbiTags;
332  }
333 
334  const AbiTagList &getEmittedAbiTags() const {
335  return EmittedAbiTags;
336  }
337 
338  const AbiTagList &getSortedUniqueUsedAbiTags() {
339  llvm::sort(UsedAbiTags);
340  UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
341  UsedAbiTags.end());
342  return UsedAbiTags;
343  }
344 
345  private:
346  //! All abi tags used implicitly or explicitly.
347  AbiTagList UsedAbiTags;
348  //! All explicit abi tags (i.e. not from namespace).
349  AbiTagList EmittedAbiTags;
350 
351  AbiTagState *&LinkHead;
352  AbiTagState *Parent = nullptr;
353 
354  void pop() {
355  assert(LinkHead == this &&
356  "abi tag link head must point to us on destruction");
357  if (Parent) {
358  Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
359  UsedAbiTags.begin(), UsedAbiTags.end());
360  Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
361  EmittedAbiTags.begin(),
362  EmittedAbiTags.end());
363  }
364  LinkHead = Parent;
365  }
366 
367  void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
368  for (const auto &Tag : AbiTags) {
369  EmittedAbiTags.push_back(Tag);
370  Out << "B";
371  Out << Tag.size();
372  Out << Tag;
373  }
374  }
375  };
376 
377  AbiTagState *AbiTags = nullptr;
378  AbiTagState AbiTagsRoot;
379 
380  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
381  llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
382 
383  ASTContext &getASTContext() const { return Context.getASTContext(); }
384 
385 public:
386  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
387  const NamedDecl *D = nullptr, bool NullOut_ = false)
388  : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)),
389  StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
390  // These can't be mangled without a ctor type or dtor type.
391  assert(!D || (!isa<CXXDestructorDecl>(D) &&
392  !isa<CXXConstructorDecl>(D)));
393  }
394  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
396  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
397  SeqID(0), AbiTagsRoot(AbiTags) { }
398  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
400  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
401  SeqID(0), AbiTagsRoot(AbiTags) { }
402 
403  CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
404  : Context(Outer.Context), Out(Out_), NullOut(false),
405  Structor(Outer.Structor), StructorType(Outer.StructorType),
406  SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
407  AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
408 
409  CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
410  : Context(Outer.Context), Out(Out_), NullOut(true),
411  Structor(Outer.Structor), StructorType(Outer.StructorType),
412  SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
413  AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
414 
415  raw_ostream &getStream() { return Out; }
416 
417  void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
418  static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
419 
420  void mangle(const NamedDecl *D);
421  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
422  void mangleNumber(const llvm::APSInt &I);
423  void mangleNumber(int64_t Number);
424  void mangleFloat(const llvm::APFloat &F);
425  void mangleFunctionEncoding(const FunctionDecl *FD);
426  void mangleSeqID(unsigned SeqID);
427  void mangleName(const NamedDecl *ND);
428  void mangleType(QualType T);
429  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
430  void mangleLambdaSig(const CXXRecordDecl *Lambda);
431 
432 private:
433 
434  bool mangleSubstitution(const NamedDecl *ND);
435  bool mangleSubstitution(QualType T);
436  bool mangleSubstitution(TemplateName Template);
437  bool mangleSubstitution(uintptr_t Ptr);
438 
439  void mangleExistingSubstitution(TemplateName name);
440 
441  bool mangleStandardSubstitution(const NamedDecl *ND);
442 
443  void addSubstitution(const NamedDecl *ND) {
444  ND = cast<NamedDecl>(ND->getCanonicalDecl());
445 
446  addSubstitution(reinterpret_cast<uintptr_t>(ND));
447  }
448  void addSubstitution(QualType T);
449  void addSubstitution(TemplateName Template);
450  void addSubstitution(uintptr_t Ptr);
451  // Destructive copy substitutions from other mangler.
452  void extendSubstitutions(CXXNameMangler* Other);
453 
454  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
455  bool recursive = false);
456  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
458  const TemplateArgumentLoc *TemplateArgs,
459  unsigned NumTemplateArgs,
460  unsigned KnownArity = UnknownArity);
461 
462  void mangleFunctionEncodingBareType(const FunctionDecl *FD);
463 
464  void mangleNameWithAbiTags(const NamedDecl *ND,
465  const AbiTagList *AdditionalAbiTags);
466  void mangleModuleName(const Module *M);
467  void mangleModuleNamePrefix(StringRef Name);
468  void mangleTemplateName(const TemplateDecl *TD,
469  const TemplateArgument *TemplateArgs,
470  unsigned NumTemplateArgs);
471  void mangleUnqualifiedName(const NamedDecl *ND,
472  const AbiTagList *AdditionalAbiTags) {
473  mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity,
474  AdditionalAbiTags);
475  }
476  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
477  unsigned KnownArity,
478  const AbiTagList *AdditionalAbiTags);
479  void mangleUnscopedName(const NamedDecl *ND,
480  const AbiTagList *AdditionalAbiTags);
481  void mangleUnscopedTemplateName(const TemplateDecl *ND,
482  const AbiTagList *AdditionalAbiTags);
483  void mangleUnscopedTemplateName(TemplateName,
484  const AbiTagList *AdditionalAbiTags);
485  void mangleSourceName(const IdentifierInfo *II);
486  void mangleRegCallName(const IdentifierInfo *II);
487  void mangleSourceNameWithAbiTags(
488  const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
489  void mangleLocalName(const Decl *D,
490  const AbiTagList *AdditionalAbiTags);
491  void mangleBlockForPrefix(const BlockDecl *Block);
492  void mangleUnqualifiedBlock(const BlockDecl *Block);
493  void mangleTemplateParamDecl(const NamedDecl *Decl);
494  void mangleLambda(const CXXRecordDecl *Lambda);
495  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
496  const AbiTagList *AdditionalAbiTags,
497  bool NoFunction=false);
498  void mangleNestedName(const TemplateDecl *TD,
499  const TemplateArgument *TemplateArgs,
500  unsigned NumTemplateArgs);
501  void manglePrefix(NestedNameSpecifier *qualifier);
502  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
503  void manglePrefix(QualType type);
504  void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
505  void mangleTemplatePrefix(TemplateName Template);
506  bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
507  StringRef Prefix = "");
508  void mangleOperatorName(DeclarationName Name, unsigned Arity);
509  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
510  void mangleVendorQualifier(StringRef qualifier);
511  void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
512  void mangleRefQualifier(RefQualifierKind RefQualifier);
513 
514  void mangleObjCMethodName(const ObjCMethodDecl *MD);
515 
516  // Declare manglers for every type class.
517 #define ABSTRACT_TYPE(CLASS, PARENT)
518 #define NON_CANONICAL_TYPE(CLASS, PARENT)
519 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
520 #include "clang/AST/TypeNodes.inc"
521 
522  void mangleType(const TagType*);
523  void mangleType(TemplateName);
524  static StringRef getCallingConvQualifierName(CallingConv CC);
525  void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
526  void mangleExtFunctionInfo(const FunctionType *T);
527  void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
528  const FunctionDecl *FD = nullptr);
529  void mangleNeonVectorType(const VectorType *T);
530  void mangleNeonVectorType(const DependentVectorType *T);
531  void mangleAArch64NeonVectorType(const VectorType *T);
532  void mangleAArch64NeonVectorType(const DependentVectorType *T);
533 
534  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
535  void mangleMemberExprBase(const Expr *base, bool isArrow);
536  void mangleMemberExpr(const Expr *base, bool isArrow,
537  NestedNameSpecifier *qualifier,
538  NamedDecl *firstQualifierLookup,
540  const TemplateArgumentLoc *TemplateArgs,
541  unsigned NumTemplateArgs,
542  unsigned knownArity);
543  void mangleCastExpression(const Expr *E, StringRef CastEncoding);
544  void mangleInitListElements(const InitListExpr *InitList);
545  void mangleDeclRefExpr(const NamedDecl *D);
546  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
547  void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
548  void mangleCXXDtorType(CXXDtorType T);
549 
550  void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
551  unsigned NumTemplateArgs);
552  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
553  unsigned NumTemplateArgs);
554  void mangleTemplateArgs(const TemplateArgumentList &AL);
555  void mangleTemplateArg(TemplateArgument A);
556 
557  void mangleTemplateParameter(unsigned Depth, unsigned Index);
558 
559  void mangleFunctionParam(const ParmVarDecl *parm);
560 
561  void writeAbiTags(const NamedDecl *ND,
562  const AbiTagList *AdditionalAbiTags);
563 
564  // Returns sorted unique list of ABI tags.
565  AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
566  // Returns sorted unique list of ABI tags.
567  AbiTagList makeVariableTypeTags(const VarDecl *VD);
568 };
569 
570 }
571 
572 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
573  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
574  if (FD) {
576  // Overloadable functions need mangling.
577  if (FD->hasAttr<OverloadableAttr>())
578  return true;
579 
580  // "main" is not mangled.
581  if (FD->isMain())
582  return false;
583 
584  // The Windows ABI expects that we would never mangle "typical"
585  // user-defined entry points regardless of visibility or freestanding-ness.
586  //
587  // N.B. This is distinct from asking about "main". "main" has a lot of
588  // special rules associated with it in the standard while these
589  // user-defined entry points are outside of the purview of the standard.
590  // For example, there can be only one definition for "main" in a standards
591  // compliant program; however nothing forbids the existence of wmain and
592  // WinMain in the same translation unit.
593  if (FD->isMSVCRTEntryPoint())
594  return false;
595 
596  // C++ functions and those whose names are not a simple identifier need
597  // mangling.
598  if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
599  return true;
600 
601  // C functions are not mangled.
602  if (L == CLanguageLinkage)
603  return false;
604  }
605 
606  // Otherwise, no mangling is done outside C++ mode.
607  if (!getASTContext().getLangOpts().CPlusPlus)
608  return false;
609 
610  const VarDecl *VD = dyn_cast<VarDecl>(D);
611  if (VD && !isa<DecompositionDecl>(D)) {
612  // C variables are not mangled.
613  if (VD->isExternC())
614  return false;
615 
616  // Variables at global scope with non-internal linkage are not mangled
617  const DeclContext *DC = getEffectiveDeclContext(D);
618  // Check for extern variable declared locally.
619  if (DC->isFunctionOrMethod() && D->hasLinkage())
620  while (!DC->isNamespace() && !DC->isTranslationUnit())
621  DC = getEffectiveParentContext(DC);
622  if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
623  !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
624  !isa<VarTemplateSpecializationDecl>(D))
625  return false;
626  }
627 
628  return true;
629 }
630 
631 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
632  const AbiTagList *AdditionalAbiTags) {
633  assert(AbiTags && "require AbiTagState");
634  AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
635 }
636 
637 void CXXNameMangler::mangleSourceNameWithAbiTags(
638  const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
639  mangleSourceName(ND->getIdentifier());
640  writeAbiTags(ND, AdditionalAbiTags);
641 }
642 
643 void CXXNameMangler::mangle(const NamedDecl *D) {
644  // <mangled-name> ::= _Z <encoding>
645  // ::= <data name>
646  // ::= <special-name>
647  Out << "_Z";
648  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
649  mangleFunctionEncoding(FD);
650  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
651  mangleName(VD);
652  else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
653  mangleName(IFD->getAnonField());
654  else
655  mangleName(cast<FieldDecl>(D));
656 }
657 
658 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
659  // <encoding> ::= <function name> <bare-function-type>
660 
661  // Don't mangle in the type if this isn't a decl we should typically mangle.
662  if (!Context.shouldMangleDeclName(FD)) {
663  mangleName(FD);
664  return;
665  }
666 
667  AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
668  if (ReturnTypeAbiTags.empty()) {
669  // There are no tags for return type, the simplest case.
670  mangleName(FD);
671  mangleFunctionEncodingBareType(FD);
672  return;
673  }
674 
675  // Mangle function name and encoding to temporary buffer.
676  // We have to output name and encoding to the same mangler to get the same
677  // substitution as it will be in final mangling.
678  SmallString<256> FunctionEncodingBuf;
679  llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
680  CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
681  // Output name of the function.
682  FunctionEncodingMangler.disableDerivedAbiTags();
683  FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
684 
685  // Remember length of the function name in the buffer.
686  size_t EncodingPositionStart = FunctionEncodingStream.str().size();
687  FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
688 
689  // Get tags from return type that are not present in function name or
690  // encoding.
691  const AbiTagList &UsedAbiTags =
692  FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
693  AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
694  AdditionalAbiTags.erase(
695  std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
696  UsedAbiTags.begin(), UsedAbiTags.end(),
697  AdditionalAbiTags.begin()),
698  AdditionalAbiTags.end());
699 
700  // Output name with implicit tags and function encoding from temporary buffer.
701  mangleNameWithAbiTags(FD, &AdditionalAbiTags);
702  Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
703 
704  // Function encoding could create new substitutions so we have to add
705  // temp mangled substitutions to main mangler.
706  extendSubstitutions(&FunctionEncodingMangler);
707 }
708 
709 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
710  if (FD->hasAttr<EnableIfAttr>()) {
711  FunctionTypeDepthState Saved = FunctionTypeDepth.push();
712  Out << "Ua9enable_ifI";
713  for (AttrVec::const_iterator I = FD->getAttrs().begin(),
714  E = FD->getAttrs().end();
715  I != E; ++I) {
716  EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
717  if (!EIA)
718  continue;
719  Out << 'X';
720  mangleExpression(EIA->getCond());
721  Out << 'E';
722  }
723  Out << 'E';
724  FunctionTypeDepth.pop(Saved);
725  }
726 
727  // When mangling an inheriting constructor, the bare function type used is
728  // that of the inherited constructor.
729  if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
730  if (auto Inherited = CD->getInheritedConstructor())
731  FD = Inherited.getConstructor();
732 
733  // Whether the mangling of a function type includes the return type depends on
734  // the context and the nature of the function. The rules for deciding whether
735  // the return type is included are:
736  //
737  // 1. Template functions (names or types) have return types encoded, with
738  // the exceptions listed below.
739  // 2. Function types not appearing as part of a function name mangling,
740  // e.g. parameters, pointer types, etc., have return type encoded, with the
741  // exceptions listed below.
742  // 3. Non-template function names do not have return types encoded.
743  //
744  // The exceptions mentioned in (1) and (2) above, for which the return type is
745  // never included, are
746  // 1. Constructors.
747  // 2. Destructors.
748  // 3. Conversion operator functions, e.g. operator int.
749  bool MangleReturnType = false;
750  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
751  if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
752  isa<CXXConversionDecl>(FD)))
753  MangleReturnType = true;
754 
755  // Mangle the type of the primary template.
756  FD = PrimaryTemplate->getTemplatedDecl();
757  }
758 
759  mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
760  MangleReturnType, FD);
761 }
762 
764  while (isa<LinkageSpecDecl>(DC)) {
765  DC = getEffectiveParentContext(DC);
766  }
767 
768  return DC;
769 }
770 
771 /// Return whether a given namespace is the 'std' namespace.
772 static bool isStd(const NamespaceDecl *NS) {
773  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
774  ->isTranslationUnit())
775  return false;
776 
778  return II && II->isStr("std");
779 }
780 
781 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
782 // namespace.
783 static bool isStdNamespace(const DeclContext *DC) {
784  if (!DC->isNamespace())
785  return false;
786 
787  return isStd(cast<NamespaceDecl>(DC));
788 }
789 
790 static const TemplateDecl *
791 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
792  // Check if we have a function template.
793  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
794  if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
795  TemplateArgs = FD->getTemplateSpecializationArgs();
796  return TD;
797  }
798  }
799 
800  // Check if we have a class template.
801  if (const ClassTemplateSpecializationDecl *Spec =
802  dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
803  TemplateArgs = &Spec->getTemplateArgs();
804  return Spec->getSpecializedTemplate();
805  }
806 
807  // Check if we have a variable template.
808  if (const VarTemplateSpecializationDecl *Spec =
809  dyn_cast<VarTemplateSpecializationDecl>(ND)) {
810  TemplateArgs = &Spec->getTemplateArgs();
811  return Spec->getSpecializedTemplate();
812  }
813 
814  return nullptr;
815 }
816 
817 void CXXNameMangler::mangleName(const NamedDecl *ND) {
818  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
819  // Variables should have implicit tags from its type.
820  AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
821  if (VariableTypeAbiTags.empty()) {
822  // Simple case no variable type tags.
823  mangleNameWithAbiTags(VD, nullptr);
824  return;
825  }
826 
827  // Mangle variable name to null stream to collect tags.
828  llvm::raw_null_ostream NullOutStream;
829  CXXNameMangler VariableNameMangler(*this, NullOutStream);
830  VariableNameMangler.disableDerivedAbiTags();
831  VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
832 
833  // Get tags from variable type that are not present in its name.
834  const AbiTagList &UsedAbiTags =
835  VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
836  AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
837  AdditionalAbiTags.erase(
838  std::set_difference(VariableTypeAbiTags.begin(),
839  VariableTypeAbiTags.end(), UsedAbiTags.begin(),
840  UsedAbiTags.end(), AdditionalAbiTags.begin()),
841  AdditionalAbiTags.end());
842 
843  // Output name with implicit tags.
844  mangleNameWithAbiTags(VD, &AdditionalAbiTags);
845  } else {
846  mangleNameWithAbiTags(ND, nullptr);
847  }
848 }
849 
850 void CXXNameMangler::mangleNameWithAbiTags(const NamedDecl *ND,
851  const AbiTagList *AdditionalAbiTags) {
852  // <name> ::= [<module-name>] <nested-name>
853  // ::= [<module-name>] <unscoped-name>
854  // ::= [<module-name>] <unscoped-template-name> <template-args>
855  // ::= <local-name>
856  //
857  const DeclContext *DC = getEffectiveDeclContext(ND);
858 
859  // If this is an extern variable declared locally, the relevant DeclContext
860  // is that of the containing namespace, or the translation unit.
861  // FIXME: This is a hack; extern variables declared locally should have
862  // a proper semantic declaration context!
863  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
864  while (!DC->isNamespace() && !DC->isTranslationUnit())
865  DC = getEffectiveParentContext(DC);
866  else if (GetLocalClassDecl(ND)) {
867  mangleLocalName(ND, AdditionalAbiTags);
868  return;
869  }
870 
871  DC = IgnoreLinkageSpecDecls(DC);
872 
873  if (isLocalContainerContext(DC)) {
874  mangleLocalName(ND, AdditionalAbiTags);
875  return;
876  }
877 
878  // Do not mangle the owning module for an external linkage declaration.
879  // This enables backwards-compatibility with non-modular code, and is
880  // a valid choice since conflicts are not permitted by C++ Modules TS
881  // [basic.def.odr]/6.2.
882  if (!ND->hasExternalFormalLinkage())
883  if (Module *M = ND->getOwningModuleForLinkage())
884  mangleModuleName(M);
885 
886  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
887  // Check if we have a template.
888  const TemplateArgumentList *TemplateArgs = nullptr;
889  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
890  mangleUnscopedTemplateName(TD, AdditionalAbiTags);
891  mangleTemplateArgs(*TemplateArgs);
892  return;
893  }
894 
895  mangleUnscopedName(ND, AdditionalAbiTags);
896  return;
897  }
898 
899  mangleNestedName(ND, DC, AdditionalAbiTags);
900 }
901 
902 void CXXNameMangler::mangleModuleName(const Module *M) {
903  // Implement the C++ Modules TS name mangling proposal; see
904  // https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
905  //
906  // <module-name> ::= W <unscoped-name>+ E
907  // ::= W <module-subst> <unscoped-name>* E
908  Out << 'W';
909  mangleModuleNamePrefix(M->Name);
910  Out << 'E';
911 }
912 
913 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
914  // <module-subst> ::= _ <seq-id> # 0 < seq-id < 10
915  // ::= W <seq-id - 10> _ # otherwise
916  auto It = ModuleSubstitutions.find(Name);
917  if (It != ModuleSubstitutions.end()) {
918  if (It->second < 10)
919  Out << '_' << static_cast<char>('0' + It->second);
920  else
921  Out << 'W' << (It->second - 10) << '_';
922  return;
923  }
924 
925  // FIXME: Preserve hierarchy in module names rather than flattening
926  // them to strings; use Module*s as substitution keys.
927  auto Parts = Name.rsplit('.');
928  if (Parts.second.empty())
929  Parts.second = Parts.first;
930  else
931  mangleModuleNamePrefix(Parts.first);
932 
933  Out << Parts.second.size() << Parts.second;
934  ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
935 }
936 
937 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
938  const TemplateArgument *TemplateArgs,
939  unsigned NumTemplateArgs) {
940  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
941 
942  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
943  mangleUnscopedTemplateName(TD, nullptr);
944  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
945  } else {
946  mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
947  }
948 }
949 
950 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND,
951  const AbiTagList *AdditionalAbiTags) {
952  // <unscoped-name> ::= <unqualified-name>
953  // ::= St <unqualified-name> # ::std::
954 
955  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
956  Out << "St";
957 
958  mangleUnqualifiedName(ND, AdditionalAbiTags);
959 }
960 
961 void CXXNameMangler::mangleUnscopedTemplateName(
962  const TemplateDecl *ND, const AbiTagList *AdditionalAbiTags) {
963  // <unscoped-template-name> ::= <unscoped-name>
964  // ::= <substitution>
965  if (mangleSubstitution(ND))
966  return;
967 
968  // <template-template-param> ::= <template-param>
969  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
970  assert(!AdditionalAbiTags &&
971  "template template param cannot have abi tags");
972  mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
973  } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
974  mangleUnscopedName(ND, AdditionalAbiTags);
975  } else {
976  mangleUnscopedName(ND->getTemplatedDecl(), AdditionalAbiTags);
977  }
978 
979  addSubstitution(ND);
980 }
981 
982 void CXXNameMangler::mangleUnscopedTemplateName(
983  TemplateName Template, const AbiTagList *AdditionalAbiTags) {
984  // <unscoped-template-name> ::= <unscoped-name>
985  // ::= <substitution>
986  if (TemplateDecl *TD = Template.getAsTemplateDecl())
987  return mangleUnscopedTemplateName(TD, AdditionalAbiTags);
988 
989  if (mangleSubstitution(Template))
990  return;
991 
992  assert(!AdditionalAbiTags &&
993  "dependent template name cannot have abi tags");
994 
995  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
996  assert(Dependent && "Not a dependent template name?");
997  if (const IdentifierInfo *Id = Dependent->getIdentifier())
998  mangleSourceName(Id);
999  else
1000  mangleOperatorName(Dependent->getOperator(), UnknownArity);
1001 
1002  addSubstitution(Template);
1003 }
1004 
1005 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1006  // ABI:
1007  // Floating-point literals are encoded using a fixed-length
1008  // lowercase hexadecimal string corresponding to the internal
1009  // representation (IEEE on Itanium), high-order bytes first,
1010  // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1011  // on Itanium.
1012  // The 'without leading zeroes' thing seems to be an editorial
1013  // mistake; see the discussion on cxx-abi-dev beginning on
1014  // 2012-01-16.
1015 
1016  // Our requirements here are just barely weird enough to justify
1017  // using a custom algorithm instead of post-processing APInt::toString().
1018 
1019  llvm::APInt valueBits = f.bitcastToAPInt();
1020  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1021  assert(numCharacters != 0);
1022 
1023  // Allocate a buffer of the right number of characters.
1024  SmallVector<char, 20> buffer(numCharacters);
1025 
1026  // Fill the buffer left-to-right.
1027  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1028  // The bit-index of the next hex digit.
1029  unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1030 
1031  // Project out 4 bits starting at 'digitIndex'.
1032  uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1033  hexDigit >>= (digitBitIndex % 64);
1034  hexDigit &= 0xF;
1035 
1036  // Map that over to a lowercase hex digit.
1037  static const char charForHex[16] = {
1038  '0', '1', '2', '3', '4', '5', '6', '7',
1039  '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1040  };
1041  buffer[stringIndex] = charForHex[hexDigit];
1042  }
1043 
1044  Out.write(buffer.data(), numCharacters);
1045 }
1046 
1047 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1048  if (Value.isSigned() && Value.isNegative()) {
1049  Out << 'n';
1050  Value.abs().print(Out, /*signed*/ false);
1051  } else {
1052  Value.print(Out, /*signed*/ false);
1053  }
1054 }
1055 
1056 void CXXNameMangler::mangleNumber(int64_t Number) {
1057  // <number> ::= [n] <non-negative decimal integer>
1058  if (Number < 0) {
1059  Out << 'n';
1060  Number = -Number;
1061  }
1062 
1063  Out << Number;
1064 }
1065 
1066 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1067  // <call-offset> ::= h <nv-offset> _
1068  // ::= v <v-offset> _
1069  // <nv-offset> ::= <offset number> # non-virtual base override
1070  // <v-offset> ::= <offset number> _ <virtual offset number>
1071  // # virtual base override, with vcall offset
1072  if (!Virtual) {
1073  Out << 'h';
1074  mangleNumber(NonVirtual);
1075  Out << '_';
1076  return;
1077  }
1078 
1079  Out << 'v';
1080  mangleNumber(NonVirtual);
1081  Out << '_';
1082  mangleNumber(Virtual);
1083  Out << '_';
1084 }
1085 
1086 void CXXNameMangler::manglePrefix(QualType type) {
1087  if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1088  if (!mangleSubstitution(QualType(TST, 0))) {
1089  mangleTemplatePrefix(TST->getTemplateName());
1090 
1091  // FIXME: GCC does not appear to mangle the template arguments when
1092  // the template in question is a dependent template name. Should we
1093  // emulate that badness?
1094  mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1095  addSubstitution(QualType(TST, 0));
1096  }
1097  } else if (const auto *DTST =
1099  if (!mangleSubstitution(QualType(DTST, 0))) {
1100  TemplateName Template = getASTContext().getDependentTemplateName(
1101  DTST->getQualifier(), DTST->getIdentifier());
1102  mangleTemplatePrefix(Template);
1103 
1104  // FIXME: GCC does not appear to mangle the template arguments when
1105  // the template in question is a dependent template name. Should we
1106  // emulate that badness?
1107  mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1108  addSubstitution(QualType(DTST, 0));
1109  }
1110  } else {
1111  // We use the QualType mangle type variant here because it handles
1112  // substitutions.
1113  mangleType(type);
1114  }
1115 }
1116 
1117 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1118 ///
1119 /// \param recursive - true if this is being called recursively,
1120 /// i.e. if there is more prefix "to the right".
1121 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1122  bool recursive) {
1123 
1124  // x, ::x
1125  // <unresolved-name> ::= [gs] <base-unresolved-name>
1126 
1127  // T::x / decltype(p)::x
1128  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1129 
1130  // T::N::x /decltype(p)::N::x
1131  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1132  // <base-unresolved-name>
1133 
1134  // A::x, N::y, A<T>::z; "gs" means leading "::"
1135  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1136  // <base-unresolved-name>
1137 
1138  switch (qualifier->getKind()) {
1140  Out << "gs";
1141 
1142  // We want an 'sr' unless this is the entire NNS.
1143  if (recursive)
1144  Out << "sr";
1145 
1146  // We never want an 'E' here.
1147  return;
1148 
1150  llvm_unreachable("Can't mangle __super specifier");
1151 
1153  if (qualifier->getPrefix())
1154  mangleUnresolvedPrefix(qualifier->getPrefix(),
1155  /*recursive*/ true);
1156  else
1157  Out << "sr";
1158  mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1159  break;
1161  if (qualifier->getPrefix())
1162  mangleUnresolvedPrefix(qualifier->getPrefix(),
1163  /*recursive*/ true);
1164  else
1165  Out << "sr";
1166  mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1167  break;
1168 
1171  const Type *type = qualifier->getAsType();
1172 
1173  // We only want to use an unresolved-type encoding if this is one of:
1174  // - a decltype
1175  // - a template type parameter
1176  // - a template template parameter with arguments
1177  // In all of these cases, we should have no prefix.
1178  if (qualifier->getPrefix()) {
1179  mangleUnresolvedPrefix(qualifier->getPrefix(),
1180  /*recursive*/ true);
1181  } else {
1182  // Otherwise, all the cases want this.
1183  Out << "sr";
1184  }
1185 
1186  if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1187  return;
1188 
1189  break;
1190  }
1191 
1193  // Member expressions can have these without prefixes.
1194  if (qualifier->getPrefix())
1195  mangleUnresolvedPrefix(qualifier->getPrefix(),
1196  /*recursive*/ true);
1197  else
1198  Out << "sr";
1199 
1200  mangleSourceName(qualifier->getAsIdentifier());
1201  // An Identifier has no type information, so we can't emit abi tags for it.
1202  break;
1203  }
1204 
1205  // If this was the innermost part of the NNS, and we fell out to
1206  // here, append an 'E'.
1207  if (!recursive)
1208  Out << 'E';
1209 }
1210 
1211 /// Mangle an unresolved-name, which is generally used for names which
1212 /// weren't resolved to specific entities.
1213 void CXXNameMangler::mangleUnresolvedName(
1215  const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1216  unsigned knownArity) {
1217  if (qualifier) mangleUnresolvedPrefix(qualifier);
1218  switch (name.getNameKind()) {
1219  // <base-unresolved-name> ::= <simple-id>
1221  mangleSourceName(name.getAsIdentifierInfo());
1222  break;
1223  // <base-unresolved-name> ::= dn <destructor-name>
1225  Out << "dn";
1226  mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1227  break;
1228  // <base-unresolved-name> ::= on <operator-name>
1232  Out << "on";
1233  mangleOperatorName(name, knownArity);
1234  break;
1236  llvm_unreachable("Can't mangle a constructor name!");
1238  llvm_unreachable("Can't mangle a using directive name!");
1240  llvm_unreachable("Can't mangle a deduction guide name!");
1244  llvm_unreachable("Can't mangle Objective-C selector names here!");
1245  }
1246 
1247  // The <simple-id> and on <operator-name> productions end in an optional
1248  // <template-args>.
1249  if (TemplateArgs)
1250  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1251 }
1252 
1253 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1254  DeclarationName Name,
1255  unsigned KnownArity,
1256  const AbiTagList *AdditionalAbiTags) {
1257  unsigned Arity = KnownArity;
1258  // <unqualified-name> ::= <operator-name>
1259  // ::= <ctor-dtor-name>
1260  // ::= <source-name>
1261  switch (Name.getNameKind()) {
1263  const IdentifierInfo *II = Name.getAsIdentifierInfo();
1264 
1265  // We mangle decomposition declarations as the names of their bindings.
1266  if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1267  // FIXME: Non-standard mangling for decomposition declarations:
1268  //
1269  // <unqualified-name> ::= DC <source-name>* E
1270  //
1271  // These can never be referenced across translation units, so we do
1272  // not need a cross-vendor mangling for anything other than demanglers.
1273  // Proposed on cxx-abi-dev on 2016-08-12
1274  Out << "DC";
1275  for (auto *BD : DD->bindings())
1276  mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1277  Out << 'E';
1278  writeAbiTags(ND, AdditionalAbiTags);
1279  break;
1280  }
1281 
1282  if (II) {
1283  // Match GCC's naming convention for internal linkage symbols, for
1284  // symbols that are not actually visible outside of this TU. GCC
1285  // distinguishes between internal and external linkage symbols in
1286  // its mangling, to support cases like this that were valid C++ prior
1287  // to DR426:
1288  //
1289  // void test() { extern void foo(); }
1290  // static void foo();
1291  //
1292  // Don't bother with the L marker for names in anonymous namespaces; the
1293  // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1294  // matches GCC anyway, because GCC does not treat anonymous namespaces as
1295  // implying internal linkage.
1296  if (ND && ND->getFormalLinkage() == InternalLinkage &&
1297  !ND->isExternallyVisible() &&
1298  getEffectiveDeclContext(ND)->isFileContext() &&
1299  !ND->isInAnonymousNamespace())
1300  Out << 'L';
1301 
1302  auto *FD = dyn_cast<FunctionDecl>(ND);
1303  bool IsRegCall = FD &&
1304  FD->getType()->castAs<FunctionType>()->getCallConv() ==
1306  if (IsRegCall)
1307  mangleRegCallName(II);
1308  else
1309  mangleSourceName(II);
1310 
1311  writeAbiTags(ND, AdditionalAbiTags);
1312  break;
1313  }
1314 
1315  // Otherwise, an anonymous entity. We must have a declaration.
1316  assert(ND && "mangling empty name without declaration");
1317 
1318  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1319  if (NS->isAnonymousNamespace()) {
1320  // This is how gcc mangles these names.
1321  Out << "12_GLOBAL__N_1";
1322  break;
1323  }
1324  }
1325 
1326  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1327  // We must have an anonymous union or struct declaration.
1328  const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
1329 
1330  // Itanium C++ ABI 5.1.2:
1331  //
1332  // For the purposes of mangling, the name of an anonymous union is
1333  // considered to be the name of the first named data member found by a
1334  // pre-order, depth-first, declaration-order walk of the data members of
1335  // the anonymous union. If there is no such data member (i.e., if all of
1336  // the data members in the union are unnamed), then there is no way for
1337  // a program to refer to the anonymous union, and there is therefore no
1338  // need to mangle its name.
1339  assert(RD->isAnonymousStructOrUnion()
1340  && "Expected anonymous struct or union!");
1341  const FieldDecl *FD = RD->findFirstNamedDataMember();
1342 
1343  // It's actually possible for various reasons for us to get here
1344  // with an empty anonymous struct / union. Fortunately, it
1345  // doesn't really matter what name we generate.
1346  if (!FD) break;
1347  assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1348 
1349  mangleSourceName(FD->getIdentifier());
1350  // Not emitting abi tags: internal name anyway.
1351  break;
1352  }
1353 
1354  // Class extensions have no name as a category, and it's possible
1355  // for them to be the semantic parent of certain declarations
1356  // (primarily, tag decls defined within declarations). Such
1357  // declarations will always have internal linkage, so the name
1358  // doesn't really matter, but we shouldn't crash on them. For
1359  // safety, just handle all ObjC containers here.
1360  if (isa<ObjCContainerDecl>(ND))
1361  break;
1362 
1363  // We must have an anonymous struct.
1364  const TagDecl *TD = cast<TagDecl>(ND);
1365  if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1366  assert(TD->getDeclContext() == D->getDeclContext() &&
1367  "Typedef should not be in another decl context!");
1368  assert(D->getDeclName().getAsIdentifierInfo() &&
1369  "Typedef was not named!");
1370  mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1371  assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1372  // Explicit abi tags are still possible; take from underlying type, not
1373  // from typedef.
1374  writeAbiTags(TD, nullptr);
1375  break;
1376  }
1377 
1378  // <unnamed-type-name> ::= <closure-type-name>
1379  //
1380  // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1381  // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1382  // # Parameter types or 'v' for 'void'.
1383  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1384  if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1385  assert(!AdditionalAbiTags &&
1386  "Lambda type cannot have additional abi tags");
1387  mangleLambda(Record);
1388  break;
1389  }
1390  }
1391 
1392  if (TD->isExternallyVisible()) {
1393  unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1394  Out << "Ut";
1395  if (UnnamedMangle > 1)
1396  Out << UnnamedMangle - 2;
1397  Out << '_';
1398  writeAbiTags(TD, AdditionalAbiTags);
1399  break;
1400  }
1401 
1402  // Get a unique id for the anonymous struct. If it is not a real output
1403  // ID doesn't matter so use fake one.
1404  unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1405 
1406  // Mangle it as a source name in the form
1407  // [n] $_<id>
1408  // where n is the length of the string.
1409  SmallString<8> Str;
1410  Str += "$_";
1411  Str += llvm::utostr(AnonStructId);
1412 
1413  Out << Str.size();
1414  Out << Str;
1415  break;
1416  }
1417 
1421  llvm_unreachable("Can't mangle Objective-C selector names here!");
1422 
1424  const CXXRecordDecl *InheritedFrom = nullptr;
1425  const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1426  if (auto Inherited =
1427  cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1428  InheritedFrom = Inherited.getConstructor()->getParent();
1429  InheritedTemplateArgs =
1430  Inherited.getConstructor()->getTemplateSpecializationArgs();
1431  }
1432 
1433  if (ND == Structor)
1434  // If the named decl is the C++ constructor we're mangling, use the type
1435  // we were given.
1436  mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1437  else
1438  // Otherwise, use the complete constructor name. This is relevant if a
1439  // class with a constructor is declared within a constructor.
1440  mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1441 
1442  // FIXME: The template arguments are part of the enclosing prefix or
1443  // nested-name, but it's more convenient to mangle them here.
1444  if (InheritedTemplateArgs)
1445  mangleTemplateArgs(*InheritedTemplateArgs);
1446 
1447  writeAbiTags(ND, AdditionalAbiTags);
1448  break;
1449  }
1450 
1452  if (ND == Structor)
1453  // If the named decl is the C++ destructor we're mangling, use the type we
1454  // were given.
1455  mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1456  else
1457  // Otherwise, use the complete destructor name. This is relevant if a
1458  // class with a destructor is declared within a destructor.
1459  mangleCXXDtorType(Dtor_Complete);
1460  writeAbiTags(ND, AdditionalAbiTags);
1461  break;
1462 
1464  if (ND && Arity == UnknownArity) {
1465  Arity = cast<FunctionDecl>(ND)->getNumParams();
1466 
1467  // If we have a member function, we need to include the 'this' pointer.
1468  if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1469  if (!MD->isStatic())
1470  Arity++;
1471  }
1472  LLVM_FALLTHROUGH;
1475  mangleOperatorName(Name, Arity);
1476  writeAbiTags(ND, AdditionalAbiTags);
1477  break;
1478 
1480  llvm_unreachable("Can't mangle a deduction guide name!");
1481 
1483  llvm_unreachable("Can't mangle a using directive name!");
1484  }
1485 }
1486 
1487 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1488  // <source-name> ::= <positive length number> __regcall3__ <identifier>
1489  // <number> ::= [n] <non-negative decimal integer>
1490  // <identifier> ::= <unqualified source code identifier>
1491  Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1492  << II->getName();
1493 }
1494 
1495 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1496  // <source-name> ::= <positive length number> <identifier>
1497  // <number> ::= [n] <non-negative decimal integer>
1498  // <identifier> ::= <unqualified source code identifier>
1499  Out << II->getLength() << II->getName();
1500 }
1501 
1502 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1503  const DeclContext *DC,
1504  const AbiTagList *AdditionalAbiTags,
1505  bool NoFunction) {
1506  // <nested-name>
1507  // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1508  // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1509  // <template-args> E
1510 
1511  Out << 'N';
1512  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1513  Qualifiers MethodQuals = Method->getMethodQualifiers();
1514  // We do not consider restrict a distinguishing attribute for overloading
1515  // purposes so we must not mangle it.
1516  MethodQuals.removeRestrict();
1517  mangleQualifiers(MethodQuals);
1518  mangleRefQualifier(Method->getRefQualifier());
1519  }
1520 
1521  // Check if we have a template.
1522  const TemplateArgumentList *TemplateArgs = nullptr;
1523  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1524  mangleTemplatePrefix(TD, NoFunction);
1525  mangleTemplateArgs(*TemplateArgs);
1526  }
1527  else {
1528  manglePrefix(DC, NoFunction);
1529  mangleUnqualifiedName(ND, AdditionalAbiTags);
1530  }
1531 
1532  Out << 'E';
1533 }
1534 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1535  const TemplateArgument *TemplateArgs,
1536  unsigned NumTemplateArgs) {
1537  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1538 
1539  Out << 'N';
1540 
1541  mangleTemplatePrefix(TD);
1542  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1543 
1544  Out << 'E';
1545 }
1546 
1547 void CXXNameMangler::mangleLocalName(const Decl *D,
1548  const AbiTagList *AdditionalAbiTags) {
1549  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1550  // := Z <function encoding> E s [<discriminator>]
1551  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1552  // _ <entity name>
1553  // <discriminator> := _ <non-negative number>
1554  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1555  const RecordDecl *RD = GetLocalClassDecl(D);
1556  const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1557 
1558  Out << 'Z';
1559 
1560  {
1561  AbiTagState LocalAbiTags(AbiTags);
1562 
1563  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1564  mangleObjCMethodName(MD);
1565  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1566  mangleBlockForPrefix(BD);
1567  else
1568  mangleFunctionEncoding(cast<FunctionDecl>(DC));
1569 
1570  // Implicit ABI tags (from namespace) are not available in the following
1571  // entity; reset to actually emitted tags, which are available.
1572  LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1573  }
1574 
1575  Out << 'E';
1576 
1577  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1578  // be a bug that is fixed in trunk.
1579 
1580  if (RD) {
1581  // The parameter number is omitted for the last parameter, 0 for the
1582  // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1583  // <entity name> will of course contain a <closure-type-name>: Its
1584  // numbering will be local to the particular argument in which it appears
1585  // -- other default arguments do not affect its encoding.
1586  const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1587  if (CXXRD && CXXRD->isLambda()) {
1588  if (const ParmVarDecl *Parm
1589  = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1590  if (const FunctionDecl *Func
1591  = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1592  Out << 'd';
1593  unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1594  if (Num > 1)
1595  mangleNumber(Num - 2);
1596  Out << '_';
1597  }
1598  }
1599  }
1600 
1601  // Mangle the name relative to the closest enclosing function.
1602  // equality ok because RD derived from ND above
1603  if (D == RD) {
1604  mangleUnqualifiedName(RD, AdditionalAbiTags);
1605  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1606  manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1607  assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1608  mangleUnqualifiedBlock(BD);
1609  } else {
1610  const NamedDecl *ND = cast<NamedDecl>(D);
1611  mangleNestedName(ND, getEffectiveDeclContext(ND), AdditionalAbiTags,
1612  true /*NoFunction*/);
1613  }
1614  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1615  // Mangle a block in a default parameter; see above explanation for
1616  // lambdas.
1617  if (const ParmVarDecl *Parm
1618  = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1619  if (const FunctionDecl *Func
1620  = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1621  Out << 'd';
1622  unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1623  if (Num > 1)
1624  mangleNumber(Num - 2);
1625  Out << '_';
1626  }
1627  }
1628 
1629  assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1630  mangleUnqualifiedBlock(BD);
1631  } else {
1632  mangleUnqualifiedName(cast<NamedDecl>(D), AdditionalAbiTags);
1633  }
1634 
1635  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1636  unsigned disc;
1637  if (Context.getNextDiscriminator(ND, disc)) {
1638  if (disc < 10)
1639  Out << '_' << disc;
1640  else
1641  Out << "__" << disc << '_';
1642  }
1643  }
1644 }
1645 
1646 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1647  if (GetLocalClassDecl(Block)) {
1648  mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1649  return;
1650  }
1651  const DeclContext *DC = getEffectiveDeclContext(Block);
1652  if (isLocalContainerContext(DC)) {
1653  mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1654  return;
1655  }
1656  manglePrefix(getEffectiveDeclContext(Block));
1657  mangleUnqualifiedBlock(Block);
1658 }
1659 
1660 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1661  if (Decl *Context = Block->getBlockManglingContextDecl()) {
1662  if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1663  Context->getDeclContext()->isRecord()) {
1664  const auto *ND = cast<NamedDecl>(Context);
1665  if (ND->getIdentifier()) {
1666  mangleSourceNameWithAbiTags(ND);
1667  Out << 'M';
1668  }
1669  }
1670  }
1671 
1672  // If we have a block mangling number, use it.
1673  unsigned Number = Block->getBlockManglingNumber();
1674  // Otherwise, just make up a number. It doesn't matter what it is because
1675  // the symbol in question isn't externally visible.
1676  if (!Number)
1677  Number = Context.getBlockId(Block, false);
1678  else {
1679  // Stored mangling numbers are 1-based.
1680  --Number;
1681  }
1682  Out << "Ub";
1683  if (Number > 0)
1684  Out << Number - 1;
1685  Out << '_';
1686 }
1687 
1688 // <template-param-decl>
1689 // ::= Ty # template type parameter
1690 // ::= Tn <type> # template non-type parameter
1691 // ::= Tt <template-param-decl>* E # template template parameter
1692 // ::= Tp <template-param-decl> # template parameter pack
1693 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
1694  if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
1695  if (Ty->isParameterPack())
1696  Out << "Tp";
1697  Out << "Ty";
1698  } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
1699  if (Tn->isExpandedParameterPack()) {
1700  for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
1701  Out << "Tn";
1702  mangleType(Tn->getExpansionType(I));
1703  }
1704  } else {
1705  QualType T = Tn->getType();
1706  if (Tn->isParameterPack()) {
1707  Out << "Tp";
1708  if (auto *PackExpansion = T->getAs<PackExpansionType>())
1709  T = PackExpansion->getPattern();
1710  }
1711  Out << "Tn";
1712  mangleType(T);
1713  }
1714  } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
1715  if (Tt->isExpandedParameterPack()) {
1716  for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
1717  ++I) {
1718  Out << "Tt";
1719  for (auto *Param : *Tt->getExpansionTemplateParameters(I))
1720  mangleTemplateParamDecl(Param);
1721  Out << "E";
1722  }
1723  } else {
1724  if (Tt->isParameterPack())
1725  Out << "Tp";
1726  Out << "Tt";
1727  for (auto *Param : *Tt->getTemplateParameters())
1728  mangleTemplateParamDecl(Param);
1729  Out << "E";
1730  }
1731  }
1732 }
1733 
1734 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1735  // If the context of a closure type is an initializer for a class member
1736  // (static or nonstatic), it is encoded in a qualified name with a final
1737  // <prefix> of the form:
1738  //
1739  // <data-member-prefix> := <member source-name> M
1740  //
1741  // Technically, the data-member-prefix is part of the <prefix>. However,
1742  // since a closure type will always be mangled with a prefix, it's easier
1743  // to emit that last part of the prefix here.
1744  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1745  if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1746  !isa<ParmVarDecl>(Context)) {
1747  // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
1748  // reasonable mangling here.
1749  if (const IdentifierInfo *Name
1750  = cast<NamedDecl>(Context)->getIdentifier()) {
1751  mangleSourceName(Name);
1752  const TemplateArgumentList *TemplateArgs = nullptr;
1753  if (isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1754  mangleTemplateArgs(*TemplateArgs);
1755  Out << 'M';
1756  }
1757  }
1758  }
1759 
1760  Out << "Ul";
1761  mangleLambdaSig(Lambda);
1762  Out << "E";
1763 
1764  // The number is omitted for the first closure type with a given
1765  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1766  // (in lexical order) with that same <lambda-sig> and context.
1767  //
1768  // The AST keeps track of the number for us.
1769  unsigned Number = Lambda->getLambdaManglingNumber();
1770  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1771  if (Number > 1)
1772  mangleNumber(Number - 2);
1773  Out << '_';
1774 }
1775 
1776 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
1777  for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
1778  mangleTemplateParamDecl(D);
1779  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1780  getAs<FunctionProtoType>();
1781  mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1782  Lambda->getLambdaStaticInvoker());
1783 }
1784 
1785 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1786  switch (qualifier->getKind()) {
1788  // nothing
1789  return;
1790 
1792  llvm_unreachable("Can't mangle __super specifier");
1793 
1795  mangleName(qualifier->getAsNamespace());
1796  return;
1797 
1799  mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1800  return;
1801 
1804  manglePrefix(QualType(qualifier->getAsType(), 0));
1805  return;
1806 
1808  // Member expressions can have these without prefixes, but that
1809  // should end up in mangleUnresolvedPrefix instead.
1810  assert(qualifier->getPrefix());
1811  manglePrefix(qualifier->getPrefix());
1812 
1813  mangleSourceName(qualifier->getAsIdentifier());
1814  return;
1815  }
1816 
1817  llvm_unreachable("unexpected nested name specifier");
1818 }
1819 
1820 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1821  // <prefix> ::= <prefix> <unqualified-name>
1822  // ::= <template-prefix> <template-args>
1823  // ::= <template-param>
1824  // ::= # empty
1825  // ::= <substitution>
1826 
1827  DC = IgnoreLinkageSpecDecls(DC);
1828 
1829  if (DC->isTranslationUnit())
1830  return;
1831 
1832  if (NoFunction && isLocalContainerContext(DC))
1833  return;
1834 
1835  assert(!isLocalContainerContext(DC));
1836 
1837  const NamedDecl *ND = cast<NamedDecl>(DC);
1838  if (mangleSubstitution(ND))
1839  return;
1840 
1841  // Check if we have a template.
1842  const TemplateArgumentList *TemplateArgs = nullptr;
1843  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1844  mangleTemplatePrefix(TD);
1845  mangleTemplateArgs(*TemplateArgs);
1846  } else {
1847  manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1848  mangleUnqualifiedName(ND, nullptr);
1849  }
1850 
1851  addSubstitution(ND);
1852 }
1853 
1854 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1855  // <template-prefix> ::= <prefix> <template unqualified-name>
1856  // ::= <template-param>
1857  // ::= <substitution>
1858  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1859  return mangleTemplatePrefix(TD);
1860 
1861  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1862  manglePrefix(Qualified->getQualifier());
1863 
1864  if (OverloadedTemplateStorage *Overloaded
1865  = Template.getAsOverloadedTemplate()) {
1866  mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1867  UnknownArity, nullptr);
1868  return;
1869  }
1870 
1871  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1872  assert(Dependent && "Unknown template name kind?");
1873  if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1874  manglePrefix(Qualifier);
1875  mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr);
1876 }
1877 
1878 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1879  bool NoFunction) {
1880  // <template-prefix> ::= <prefix> <template unqualified-name>
1881  // ::= <template-param>
1882  // ::= <substitution>
1883  // <template-template-param> ::= <template-param>
1884  // <substitution>
1885 
1886  if (mangleSubstitution(ND))
1887  return;
1888 
1889  // <template-template-param> ::= <template-param>
1890  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1891  mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1892  } else {
1893  manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1894  if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
1895  mangleUnqualifiedName(ND, nullptr);
1896  else
1897  mangleUnqualifiedName(ND->getTemplatedDecl(), nullptr);
1898  }
1899 
1900  addSubstitution(ND);
1901 }
1902 
1903 /// Mangles a template name under the production <type>. Required for
1904 /// template template arguments.
1905 /// <type> ::= <class-enum-type>
1906 /// ::= <template-param>
1907 /// ::= <substitution>
1908 void CXXNameMangler::mangleType(TemplateName TN) {
1909  if (mangleSubstitution(TN))
1910  return;
1911 
1912  TemplateDecl *TD = nullptr;
1913 
1914  switch (TN.getKind()) {
1917  goto HaveDecl;
1918 
1920  TD = TN.getAsTemplateDecl();
1921  goto HaveDecl;
1922 
1923  HaveDecl:
1924  if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
1925  mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1926  else
1927  mangleName(TD);
1928  break;
1929 
1932  llvm_unreachable("can't mangle an overloaded template name as a <type>");
1933 
1935  const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1936  assert(Dependent->isIdentifier());
1937 
1938  // <class-enum-type> ::= <name>
1939  // <name> ::= <nested-name>
1940  mangleUnresolvedPrefix(Dependent->getQualifier());
1941  mangleSourceName(Dependent->getIdentifier());
1942  break;
1943  }
1944 
1946  // Substituted template parameters are mangled as the substituted
1947  // template. This will check for the substitution twice, which is
1948  // fine, but we have to return early so that we don't try to *add*
1949  // the substitution twice.
1952  mangleType(subst->getReplacement());
1953  return;
1954  }
1955 
1957  // FIXME: not clear how to mangle this!
1958  // template <template <class> class T...> class A {
1959  // template <template <class> class U...> void foo(B<T,U> x...);
1960  // };
1961  Out << "_SUBSTPACK_";
1962  break;
1963  }
1964  }
1965 
1966  addSubstitution(TN);
1967 }
1968 
1969 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
1970  StringRef Prefix) {
1971  // Only certain other types are valid as prefixes; enumerate them.
1972  switch (Ty->getTypeClass()) {
1973  case Type::Builtin:
1974  case Type::Complex:
1975  case Type::Adjusted:
1976  case Type::Decayed:
1977  case Type::Pointer:
1978  case Type::BlockPointer:
1979  case Type::LValueReference:
1980  case Type::RValueReference:
1981  case Type::MemberPointer:
1982  case Type::ConstantArray:
1983  case Type::IncompleteArray:
1984  case Type::VariableArray:
1985  case Type::DependentSizedArray:
1986  case Type::DependentAddressSpace:
1987  case Type::DependentVector:
1988  case Type::DependentSizedExtVector:
1989  case Type::Vector:
1990  case Type::ExtVector:
1991  case Type::FunctionProto:
1992  case Type::FunctionNoProto:
1993  case Type::Paren:
1994  case Type::Attributed:
1995  case Type::Auto:
1996  case Type::DeducedTemplateSpecialization:
1997  case Type::PackExpansion:
1998  case Type::ObjCObject:
1999  case Type::ObjCInterface:
2000  case Type::ObjCObjectPointer:
2001  case Type::ObjCTypeParam:
2002  case Type::Atomic:
2003  case Type::Pipe:
2004  case Type::MacroQualified:
2005  llvm_unreachable("type is illegal as a nested name specifier");
2006 
2007  case Type::SubstTemplateTypeParmPack:
2008  // FIXME: not clear how to mangle this!
2009  // template <class T...> class A {
2010  // template <class U...> void foo(decltype(T::foo(U())) x...);
2011  // };
2012  Out << "_SUBSTPACK_";
2013  break;
2014 
2015  // <unresolved-type> ::= <template-param>
2016  // ::= <decltype>
2017  // ::= <template-template-param> <template-args>
2018  // (this last is not official yet)
2019  case Type::TypeOfExpr:
2020  case Type::TypeOf:
2021  case Type::Decltype:
2022  case Type::TemplateTypeParm:
2023  case Type::UnaryTransform:
2024  case Type::SubstTemplateTypeParm:
2025  unresolvedType:
2026  // Some callers want a prefix before the mangled type.
2027  Out << Prefix;
2028 
2029  // This seems to do everything we want. It's not really
2030  // sanctioned for a substituted template parameter, though.
2031  mangleType(Ty);
2032 
2033  // We never want to print 'E' directly after an unresolved-type,
2034  // so we return directly.
2035  return true;
2036 
2037  case Type::Typedef:
2038  mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2039  break;
2040 
2041  case Type::UnresolvedUsing:
2042  mangleSourceNameWithAbiTags(
2043  cast<UnresolvedUsingType>(Ty)->getDecl());
2044  break;
2045 
2046  case Type::Enum:
2047  case Type::Record:
2048  mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2049  break;
2050 
2051  case Type::TemplateSpecialization: {
2052  const TemplateSpecializationType *TST =
2053  cast<TemplateSpecializationType>(Ty);
2054  TemplateName TN = TST->getTemplateName();
2055  switch (TN.getKind()) {
2058  TemplateDecl *TD = TN.getAsTemplateDecl();
2059 
2060  // If the base is a template template parameter, this is an
2061  // unresolved type.
2062  assert(TD && "no template for template specialization type");
2063  if (isa<TemplateTemplateParmDecl>(TD))
2064  goto unresolvedType;
2065 
2066  mangleSourceNameWithAbiTags(TD);
2067  break;
2068  }
2069 
2073  llvm_unreachable("invalid base for a template specialization type");
2074 
2078  mangleExistingSubstitution(subst->getReplacement());
2079  break;
2080  }
2081 
2083  // FIXME: not clear how to mangle this!
2084  // template <template <class U> class T...> class A {
2085  // template <class U...> void foo(decltype(T<U>::foo) x...);
2086  // };
2087  Out << "_SUBSTPACK_";
2088  break;
2089  }
2090  }
2091 
2092  mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
2093  break;
2094  }
2095 
2096  case Type::InjectedClassName:
2097  mangleSourceNameWithAbiTags(
2098  cast<InjectedClassNameType>(Ty)->getDecl());
2099  break;
2100 
2101  case Type::DependentName:
2102  mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2103  break;
2104 
2105  case Type::DependentTemplateSpecialization: {
2107  cast<DependentTemplateSpecializationType>(Ty);
2108  mangleSourceName(DTST->getIdentifier());
2109  mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
2110  break;
2111  }
2112 
2113  case Type::Elaborated:
2114  return mangleUnresolvedTypeOrSimpleId(
2115  cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2116  }
2117 
2118  return false;
2119 }
2120 
2121 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2122  switch (Name.getNameKind()) {
2131  llvm_unreachable("Not an operator name");
2132 
2134  // <operator-name> ::= cv <type> # (cast)
2135  Out << "cv";
2136  mangleType(Name.getCXXNameType());
2137  break;
2138 
2140  Out << "li";
2141  mangleSourceName(Name.getCXXLiteralIdentifier());
2142  return;
2143 
2145  mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2146  break;
2147  }
2148 }
2149 
2150 void
2151 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2152  switch (OO) {
2153  // <operator-name> ::= nw # new
2154  case OO_New: Out << "nw"; break;
2155  // ::= na # new[]
2156  case OO_Array_New: Out << "na"; break;
2157  // ::= dl # delete
2158  case OO_Delete: Out << "dl"; break;
2159  // ::= da # delete[]
2160  case OO_Array_Delete: Out << "da"; break;
2161  // ::= ps # + (unary)
2162  // ::= pl # + (binary or unknown)
2163  case OO_Plus:
2164  Out << (Arity == 1? "ps" : "pl"); break;
2165  // ::= ng # - (unary)
2166  // ::= mi # - (binary or unknown)
2167  case OO_Minus:
2168  Out << (Arity == 1? "ng" : "mi"); break;
2169  // ::= ad # & (unary)
2170  // ::= an # & (binary or unknown)
2171  case OO_Amp:
2172  Out << (Arity == 1? "ad" : "an"); break;
2173  // ::= de # * (unary)
2174  // ::= ml # * (binary or unknown)
2175  case OO_Star:
2176  // Use binary when unknown.
2177  Out << (Arity == 1? "de" : "ml"); break;
2178  // ::= co # ~
2179  case OO_Tilde: Out << "co"; break;
2180  // ::= dv # /
2181  case OO_Slash: Out << "dv"; break;
2182  // ::= rm # %
2183  case OO_Percent: Out << "rm"; break;
2184  // ::= or # |
2185  case OO_Pipe: Out << "or"; break;
2186  // ::= eo # ^
2187  case OO_Caret: Out << "eo"; break;
2188  // ::= aS # =
2189  case OO_Equal: Out << "aS"; break;
2190  // ::= pL # +=
2191  case OO_PlusEqual: Out << "pL"; break;
2192  // ::= mI # -=
2193  case OO_MinusEqual: Out << "mI"; break;
2194  // ::= mL # *=
2195  case OO_StarEqual: Out << "mL"; break;
2196  // ::= dV # /=
2197  case OO_SlashEqual: Out << "dV"; break;
2198  // ::= rM # %=
2199  case OO_PercentEqual: Out << "rM"; break;
2200  // ::= aN # &=
2201  case OO_AmpEqual: Out << "aN"; break;
2202  // ::= oR # |=
2203  case OO_PipeEqual: Out << "oR"; break;
2204  // ::= eO # ^=
2205  case OO_CaretEqual: Out << "eO"; break;
2206  // ::= ls # <<
2207  case OO_LessLess: Out << "ls"; break;
2208  // ::= rs # >>
2209  case OO_GreaterGreater: Out << "rs"; break;
2210  // ::= lS # <<=
2211  case OO_LessLessEqual: Out << "lS"; break;
2212  // ::= rS # >>=
2213  case OO_GreaterGreaterEqual: Out << "rS"; break;
2214  // ::= eq # ==
2215  case OO_EqualEqual: Out << "eq"; break;
2216  // ::= ne # !=
2217  case OO_ExclaimEqual: Out << "ne"; break;
2218  // ::= lt # <
2219  case OO_Less: Out << "lt"; break;
2220  // ::= gt # >
2221  case OO_Greater: Out << "gt"; break;
2222  // ::= le # <=
2223  case OO_LessEqual: Out << "le"; break;
2224  // ::= ge # >=
2225  case OO_GreaterEqual: Out << "ge"; break;
2226  // ::= nt # !
2227  case OO_Exclaim: Out << "nt"; break;
2228  // ::= aa # &&
2229  case OO_AmpAmp: Out << "aa"; break;
2230  // ::= oo # ||
2231  case OO_PipePipe: Out << "oo"; break;
2232  // ::= pp # ++
2233  case OO_PlusPlus: Out << "pp"; break;
2234  // ::= mm # --
2235  case OO_MinusMinus: Out << "mm"; break;
2236  // ::= cm # ,
2237  case OO_Comma: Out << "cm"; break;
2238  // ::= pm # ->*
2239  case OO_ArrowStar: Out << "pm"; break;
2240  // ::= pt # ->
2241  case OO_Arrow: Out << "pt"; break;
2242  // ::= cl # ()
2243  case OO_Call: Out << "cl"; break;
2244  // ::= ix # []
2245  case OO_Subscript: Out << "ix"; break;
2246 
2247  // ::= qu # ?
2248  // The conditional operator can't be overloaded, but we still handle it when
2249  // mangling expressions.
2250  case OO_Conditional: Out << "qu"; break;
2251  // Proposal on cxx-abi-dev, 2015-10-21.
2252  // ::= aw # co_await
2253  case OO_Coawait: Out << "aw"; break;
2254  // Proposed in cxx-abi github issue 43.
2255  // ::= ss # <=>
2256  case OO_Spaceship: Out << "ss"; break;
2257 
2258  case OO_None:
2260  llvm_unreachable("Not an overloaded operator");
2261  }
2262 }
2263 
2264 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2265  // Vendor qualifiers come first and if they are order-insensitive they must
2266  // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2267 
2268  // <type> ::= U <addrspace-expr>
2269  if (DAST) {
2270  Out << "U2ASI";
2271  mangleExpression(DAST->getAddrSpaceExpr());
2272  Out << "E";
2273  }
2274 
2275  // Address space qualifiers start with an ordinary letter.
2276  if (Quals.hasAddressSpace()) {
2277  // Address space extension:
2278  //
2279  // <type> ::= U <target-addrspace>
2280  // <type> ::= U <OpenCL-addrspace>
2281  // <type> ::= U <CUDA-addrspace>
2282 
2283  SmallString<64> ASString;
2284  LangAS AS = Quals.getAddressSpace();
2285 
2286  if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2287  // <target-addrspace> ::= "AS" <address-space-number>
2288  unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2289  if (TargetAS != 0)
2290  ASString = "AS" + llvm::utostr(TargetAS);
2291  } else {
2292  switch (AS) {
2293  default: llvm_unreachable("Not a language specific address space");
2294  // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2295  // "private"| "generic" ]
2296  case LangAS::opencl_global: ASString = "CLglobal"; break;
2297  case LangAS::opencl_local: ASString = "CLlocal"; break;
2298  case LangAS::opencl_constant: ASString = "CLconstant"; break;
2299  case LangAS::opencl_private: ASString = "CLprivate"; break;
2300  case LangAS::opencl_generic: ASString = "CLgeneric"; break;
2301  // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2302  case LangAS::cuda_device: ASString = "CUdevice"; break;
2303  case LangAS::cuda_constant: ASString = "CUconstant"; break;
2304  case LangAS::cuda_shared: ASString = "CUshared"; break;
2305  // <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
2306  case LangAS::ptr32_sptr:
2307  ASString = "ptr32_sptr";
2308  break;
2309  case LangAS::ptr32_uptr:
2310  ASString = "ptr32_uptr";
2311  break;
2312  case LangAS::ptr64:
2313  ASString = "ptr64";
2314  break;
2315  }
2316  }
2317  if (!ASString.empty())
2318  mangleVendorQualifier(ASString);
2319  }
2320 
2321  // The ARC ownership qualifiers start with underscores.
2322  // Objective-C ARC Extension:
2323  //
2324  // <type> ::= U "__strong"
2325  // <type> ::= U "__weak"
2326  // <type> ::= U "__autoreleasing"
2327  //
2328  // Note: we emit __weak first to preserve the order as
2329  // required by the Itanium ABI.
2330  if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2331  mangleVendorQualifier("__weak");
2332 
2333  // __unaligned (from -fms-extensions)
2334  if (Quals.hasUnaligned())
2335  mangleVendorQualifier("__unaligned");
2336 
2337  // Remaining ARC ownership qualifiers.
2338  switch (Quals.getObjCLifetime()) {
2339  case Qualifiers::OCL_None:
2340  break;
2341 
2342  case Qualifiers::OCL_Weak:
2343  // Do nothing as we already handled this case above.
2344  break;
2345 
2347  mangleVendorQualifier("__strong");
2348  break;
2349 
2351  mangleVendorQualifier("__autoreleasing");
2352  break;
2353 
2355  // The __unsafe_unretained qualifier is *not* mangled, so that
2356  // __unsafe_unretained types in ARC produce the same manglings as the
2357  // equivalent (but, naturally, unqualified) types in non-ARC, providing
2358  // better ABI compatibility.
2359  //
2360  // It's safe to do this because unqualified 'id' won't show up
2361  // in any type signatures that need to be mangled.
2362  break;
2363  }
2364 
2365  // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
2366  if (Quals.hasRestrict())
2367  Out << 'r';
2368  if (Quals.hasVolatile())
2369  Out << 'V';
2370  if (Quals.hasConst())
2371  Out << 'K';
2372 }
2373 
2374 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2375  Out << 'U' << name.size() << name;
2376 }
2377 
2378 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2379  // <ref-qualifier> ::= R # lvalue reference
2380  // ::= O # rvalue-reference
2381  switch (RefQualifier) {
2382  case RQ_None:
2383  break;
2384 
2385  case RQ_LValue:
2386  Out << 'R';
2387  break;
2388 
2389  case RQ_RValue:
2390  Out << 'O';
2391  break;
2392  }
2393 }
2394 
2395 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2396  Context.mangleObjCMethodName(MD, Out);
2397 }
2398 
2399 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2400  ASTContext &Ctx) {
2401  if (Quals)
2402  return true;
2403  if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2404  return true;
2405  if (Ty->isOpenCLSpecificType())
2406  return true;
2407  if (Ty->isBuiltinType())
2408  return false;
2409  // Through to Clang 6.0, we accidentally treated undeduced auto types as
2410  // substitution candidates.
2411  if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2412  isa<AutoType>(Ty))
2413  return false;
2414  return true;
2415 }
2416 
2417 void CXXNameMangler::mangleType(QualType T) {
2418  // If our type is instantiation-dependent but not dependent, we mangle
2419  // it as it was written in the source, removing any top-level sugar.
2420  // Otherwise, use the canonical type.
2421  //
2422  // FIXME: This is an approximation of the instantiation-dependent name
2423  // mangling rules, since we should really be using the type as written and
2424  // augmented via semantic analysis (i.e., with implicit conversions and
2425  // default template arguments) for any instantiation-dependent type.
2426  // Unfortunately, that requires several changes to our AST:
2427  // - Instantiation-dependent TemplateSpecializationTypes will need to be
2428  // uniqued, so that we can handle substitutions properly
2429  // - Default template arguments will need to be represented in the
2430  // TemplateSpecializationType, since they need to be mangled even though
2431  // they aren't written.
2432  // - Conversions on non-type template arguments need to be expressed, since
2433  // they can affect the mangling of sizeof/alignof.
2434  //
2435  // FIXME: This is wrong when mapping to the canonical type for a dependent
2436  // type discards instantiation-dependent portions of the type, such as for:
2437  //
2438  // template<typename T, int N> void f(T (&)[sizeof(N)]);
2439  // template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2440  //
2441  // It's also wrong in the opposite direction when instantiation-dependent,
2442  // canonically-equivalent types differ in some irrelevant portion of inner
2443  // type sugar. In such cases, we fail to form correct substitutions, eg:
2444  //
2445  // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2446  //
2447  // We should instead canonicalize the non-instantiation-dependent parts,
2448  // regardless of whether the type as a whole is dependent or instantiation
2449  // dependent.
2451  T = T.getCanonicalType();
2452  else {
2453  // Desugar any types that are purely sugar.
2454  do {
2455  // Don't desugar through template specialization types that aren't
2456  // type aliases. We need to mangle the template arguments as written.
2457  if (const TemplateSpecializationType *TST
2458  = dyn_cast<TemplateSpecializationType>(T))
2459  if (!TST->isTypeAlias())
2460  break;
2461 
2462  QualType Desugared
2463  = T.getSingleStepDesugaredType(Context.getASTContext());
2464  if (Desugared == T)
2465  break;
2466 
2467  T = Desugared;
2468  } while (true);
2469  }
2470  SplitQualType split = T.split();
2471  Qualifiers quals = split.Quals;
2472  const Type *ty = split.Ty;
2473 
2474  bool isSubstitutable =
2475  isTypeSubstitutable(quals, ty, Context.getASTContext());
2476  if (isSubstitutable && mangleSubstitution(T))
2477  return;
2478 
2479  // If we're mangling a qualified array type, push the qualifiers to
2480  // the element type.
2481  if (quals && isa<ArrayType>(T)) {
2482  ty = Context.getASTContext().getAsArrayType(T);
2483  quals = Qualifiers();
2484 
2485  // Note that we don't update T: we want to add the
2486  // substitution at the original type.
2487  }
2488 
2489  if (quals || ty->isDependentAddressSpaceType()) {
2490  if (const DependentAddressSpaceType *DAST =
2491  dyn_cast<DependentAddressSpaceType>(ty)) {
2492  SplitQualType splitDAST = DAST->getPointeeType().split();
2493  mangleQualifiers(splitDAST.Quals, DAST);
2494  mangleType(QualType(splitDAST.Ty, 0));
2495  } else {
2496  mangleQualifiers(quals);
2497 
2498  // Recurse: even if the qualified type isn't yet substitutable,
2499  // the unqualified type might be.
2500  mangleType(QualType(ty, 0));
2501  }
2502  } else {
2503  switch (ty->getTypeClass()) {
2504 #define ABSTRACT_TYPE(CLASS, PARENT)
2505 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2506  case Type::CLASS: \
2507  llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2508  return;
2509 #define TYPE(CLASS, PARENT) \
2510  case Type::CLASS: \
2511  mangleType(static_cast<const CLASS##Type*>(ty)); \
2512  break;
2513 #include "clang/AST/TypeNodes.inc"
2514  }
2515  }
2516 
2517  // Add the substitution.
2518  if (isSubstitutable)
2519  addSubstitution(T);
2520 }
2521 
2522 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2523  if (!mangleStandardSubstitution(ND))
2524  mangleName(ND);
2525 }
2526 
2527 void CXXNameMangler::mangleType(const BuiltinType *T) {
2528  // <type> ::= <builtin-type>
2529  // <builtin-type> ::= v # void
2530  // ::= w # wchar_t
2531  // ::= b # bool
2532  // ::= c # char
2533  // ::= a # signed char
2534  // ::= h # unsigned char
2535  // ::= s # short
2536  // ::= t # unsigned short
2537  // ::= i # int
2538  // ::= j # unsigned int
2539  // ::= l # long
2540  // ::= m # unsigned long
2541  // ::= x # long long, __int64
2542  // ::= y # unsigned long long, __int64
2543  // ::= n # __int128
2544  // ::= o # unsigned __int128
2545  // ::= f # float
2546  // ::= d # double
2547  // ::= e # long double, __float80
2548  // ::= g # __float128
2549  // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
2550  // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
2551  // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
2552  // ::= Dh # IEEE 754r half-precision floating point (16 bits)
2553  // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2554  // ::= Di # char32_t
2555  // ::= Ds # char16_t
2556  // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2557  // ::= u <source-name> # vendor extended type
2558  std::string type_name;
2559  switch (T->getKind()) {
2560  case BuiltinType::Void:
2561  Out << 'v';
2562  break;
2563  case BuiltinType::Bool:
2564  Out << 'b';
2565  break;
2566  case BuiltinType::Char_U:
2567  case BuiltinType::Char_S:
2568  Out << 'c';
2569  break;
2570  case BuiltinType::UChar:
2571  Out << 'h';
2572  break;
2573  case BuiltinType::UShort:
2574  Out << 't';
2575  break;
2576  case BuiltinType::UInt:
2577  Out << 'j';
2578  break;
2579  case BuiltinType::ULong:
2580  Out << 'm';
2581  break;
2582  case BuiltinType::ULongLong:
2583  Out << 'y';
2584  break;
2585  case BuiltinType::UInt128:
2586  Out << 'o';
2587  break;
2588  case BuiltinType::SChar:
2589  Out << 'a';
2590  break;
2591  case BuiltinType::WChar_S:
2592  case BuiltinType::WChar_U:
2593  Out << 'w';
2594  break;
2595  case BuiltinType::Char8:
2596  Out << "Du";
2597  break;
2598  case BuiltinType::Char16:
2599  Out << "Ds";
2600  break;
2601  case BuiltinType::Char32:
2602  Out << "Di";
2603  break;
2604  case BuiltinType::Short:
2605  Out << 's';
2606  break;
2607  case BuiltinType::Int:
2608  Out << 'i';
2609  break;
2610  case BuiltinType::Long:
2611  Out << 'l';
2612  break;
2613  case BuiltinType::LongLong:
2614  Out << 'x';
2615  break;
2616  case BuiltinType::Int128:
2617  Out << 'n';
2618  break;
2619  case BuiltinType::Float16:
2620  Out << "DF16_";
2621  break;
2622  case BuiltinType::ShortAccum:
2623  case BuiltinType::Accum:
2624  case BuiltinType::LongAccum:
2625  case BuiltinType::UShortAccum:
2626  case BuiltinType::UAccum:
2627  case BuiltinType::ULongAccum:
2628  case BuiltinType::ShortFract:
2629  case BuiltinType::Fract:
2630  case BuiltinType::LongFract:
2631  case BuiltinType::UShortFract:
2632  case BuiltinType::UFract:
2633  case BuiltinType::ULongFract:
2634  case BuiltinType::SatShortAccum:
2635  case BuiltinType::SatAccum:
2636  case BuiltinType::SatLongAccum:
2637  case BuiltinType::SatUShortAccum:
2638  case BuiltinType::SatUAccum:
2639  case BuiltinType::SatULongAccum:
2640  case BuiltinType::SatShortFract:
2641  case BuiltinType::SatFract:
2642  case BuiltinType::SatLongFract:
2643  case BuiltinType::SatUShortFract:
2644  case BuiltinType::SatUFract:
2645  case BuiltinType::SatULongFract:
2646  llvm_unreachable("Fixed point types are disabled for c++");
2647  case BuiltinType::Half:
2648  Out << "Dh";
2649  break;
2650  case BuiltinType::Float:
2651  Out << 'f';
2652  break;
2653  case BuiltinType::Double:
2654  Out << 'd';
2655  break;
2656  case BuiltinType::LongDouble: {
2657  const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2658  getASTContext().getLangOpts().OpenMPIsDevice
2659  ? getASTContext().getAuxTargetInfo()
2660  : &getASTContext().getTargetInfo();
2661  Out << TI->getLongDoubleMangling();
2662  break;
2663  }
2664  case BuiltinType::Float128: {
2665  const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2666  getASTContext().getLangOpts().OpenMPIsDevice
2667  ? getASTContext().getAuxTargetInfo()
2668  : &getASTContext().getTargetInfo();
2669  Out << TI->getFloat128Mangling();
2670  break;
2671  }
2672  case BuiltinType::NullPtr:
2673  Out << "Dn";
2674  break;
2675 
2676 #define BUILTIN_TYPE(Id, SingletonId)
2677 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2678  case BuiltinType::Id:
2679 #include "clang/AST/BuiltinTypes.def"
2680  case BuiltinType::Dependent:
2681  if (!NullOut)
2682  llvm_unreachable("mangling a placeholder type");
2683  break;
2684  case BuiltinType::ObjCId:
2685  Out << "11objc_object";
2686  break;
2687  case BuiltinType::ObjCClass:
2688  Out << "10objc_class";
2689  break;
2690  case BuiltinType::ObjCSel:
2691  Out << "13objc_selector";
2692  break;
2693 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2694  case BuiltinType::Id: \
2695  type_name = "ocl_" #ImgType "_" #Suffix; \
2696  Out << type_name.size() << type_name; \
2697  break;
2698 #include "clang/Basic/OpenCLImageTypes.def"
2699  case BuiltinType::OCLSampler:
2700  Out << "11ocl_sampler";
2701  break;
2702  case BuiltinType::OCLEvent:
2703  Out << "9ocl_event";
2704  break;
2705  case BuiltinType::OCLClkEvent:
2706  Out << "12ocl_clkevent";
2707  break;
2708  case BuiltinType::OCLQueue:
2709  Out << "9ocl_queue";
2710  break;
2711  case BuiltinType::OCLReserveID:
2712  Out << "13ocl_reserveid";
2713  break;
2714 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2715  case BuiltinType::Id: \
2716  type_name = "ocl_" #ExtType; \
2717  Out << type_name.size() << type_name; \
2718  break;
2719 #include "clang/Basic/OpenCLExtensionTypes.def"
2720  // The SVE types are effectively target-specific. The mangling scheme
2721  // is defined in the appendices to the Procedure Call Standard for the
2722  // Arm Architecture.
2723 #define SVE_TYPE(Name, Id, SingletonId) \
2724  case BuiltinType::Id: \
2725  type_name = Name; \
2726  Out << 'u' << type_name.size() << type_name; \
2727  break;
2728 #include "clang/Basic/AArch64SVEACLETypes.def"
2729  }
2730 }
2731 
2732 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
2733  switch (CC) {
2734  case CC_C:
2735  return "";
2736 
2737  case CC_X86VectorCall:
2738  case CC_X86Pascal:
2739  case CC_X86RegCall:
2740  case CC_AAPCS:
2741  case CC_AAPCS_VFP:
2742  case CC_AArch64VectorCall:
2743  case CC_IntelOclBicc:
2744  case CC_SpirFunction:
2745  case CC_OpenCLKernel:
2746  case CC_PreserveMost:
2747  case CC_PreserveAll:
2748  // FIXME: we should be mangling all of the above.
2749  return "";
2750 
2751  case CC_X86ThisCall:
2752  // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
2753  // used explicitly. At this point, we don't have that much information in
2754  // the AST, since clang tends to bake the convention into the canonical
2755  // function type. thiscall only rarely used explicitly, so don't mangle it
2756  // for now.
2757  return "";
2758 
2759  case CC_X86StdCall:
2760  return "stdcall";
2761  case CC_X86FastCall:
2762  return "fastcall";
2763  case CC_X86_64SysV:
2764  return "sysv_abi";
2765  case CC_Win64:
2766  return "ms_abi";
2767  case CC_Swift:
2768  return "swiftcall";
2769  }
2770  llvm_unreachable("bad calling convention");
2771 }
2772 
2773 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
2774  // Fast path.
2775  if (T->getExtInfo() == FunctionType::ExtInfo())
2776  return;
2777 
2778  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2779  // This will get more complicated in the future if we mangle other
2780  // things here; but for now, since we mangle ns_returns_retained as
2781  // a qualifier on the result type, we can get away with this:
2782  StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
2783  if (!CCQualifier.empty())
2784  mangleVendorQualifier(CCQualifier);
2785 
2786  // FIXME: regparm
2787  // FIXME: noreturn
2788 }
2789 
2790 void
2791 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
2792  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2793 
2794  // Note that these are *not* substitution candidates. Demanglers might
2795  // have trouble with this if the parameter type is fully substituted.
2796 
2797  switch (PI.getABI()) {
2799  break;
2800 
2801  // All of these start with "swift", so they come before "ns_consumed".
2805  mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
2806  break;
2807  }
2808 
2809  if (PI.isConsumed())
2810  mangleVendorQualifier("ns_consumed");
2811 
2812  if (PI.isNoEscape())
2813  mangleVendorQualifier("noescape");
2814 }
2815 
2816 // <type> ::= <function-type>
2817 // <function-type> ::= [<CV-qualifiers>] F [Y]
2818 // <bare-function-type> [<ref-qualifier>] E
2819 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2820  mangleExtFunctionInfo(T);
2821 
2822  // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
2823  // e.g. "const" in "int (A::*)() const".
2824  mangleQualifiers(T->getMethodQuals());
2825 
2826  // Mangle instantiation-dependent exception-specification, if present,
2827  // per cxx-abi-dev proposal on 2016-10-11.
2830  Out << "DO";
2831  mangleExpression(T->getNoexceptExpr());
2832  Out << "E";
2833  } else {
2834  assert(T->getExceptionSpecType() == EST_Dynamic);
2835  Out << "Dw";
2836  for (auto ExceptTy : T->exceptions())
2837  mangleType(ExceptTy);
2838  Out << "E";
2839  }
2840  } else if (T->isNothrow()) {
2841  Out << "Do";
2842  }
2843 
2844  Out << 'F';
2845 
2846  // FIXME: We don't have enough information in the AST to produce the 'Y'
2847  // encoding for extern "C" function types.
2848  mangleBareFunctionType(T, /*MangleReturnType=*/true);
2849 
2850  // Mangle the ref-qualifier, if present.
2851  mangleRefQualifier(T->getRefQualifier());
2852 
2853  Out << 'E';
2854 }
2855 
2856 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2857  // Function types without prototypes can arise when mangling a function type
2858  // within an overloadable function in C. We mangle these as the absence of any
2859  // parameter types (not even an empty parameter list).
2860  Out << 'F';
2861 
2862  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2863 
2864  FunctionTypeDepth.enterResultType();
2865  mangleType(T->getReturnType());
2866  FunctionTypeDepth.leaveResultType();
2867 
2868  FunctionTypeDepth.pop(saved);
2869  Out << 'E';
2870 }
2871 
2872 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
2873  bool MangleReturnType,
2874  const FunctionDecl *FD) {
2875  // Record that we're in a function type. See mangleFunctionParam
2876  // for details on what we're trying to achieve here.
2877  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2878 
2879  // <bare-function-type> ::= <signature type>+
2880  if (MangleReturnType) {
2881  FunctionTypeDepth.enterResultType();
2882 
2883  // Mangle ns_returns_retained as an order-sensitive qualifier here.
2884  if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
2885  mangleVendorQualifier("ns_returns_retained");
2886 
2887  // Mangle the return type without any direct ARC ownership qualifiers.
2888  QualType ReturnTy = Proto->getReturnType();
2889  if (ReturnTy.getObjCLifetime()) {
2890  auto SplitReturnTy = ReturnTy.split();
2891  SplitReturnTy.Quals.removeObjCLifetime();
2892  ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
2893  }
2894  mangleType(ReturnTy);
2895 
2896  FunctionTypeDepth.leaveResultType();
2897  }
2898 
2899  if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2900  // <builtin-type> ::= v # void
2901  Out << 'v';
2902 
2903  FunctionTypeDepth.pop(saved);
2904  return;
2905  }
2906 
2907  assert(!FD || FD->getNumParams() == Proto->getNumParams());
2908  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2909  // Mangle extended parameter info as order-sensitive qualifiers here.
2910  if (Proto->hasExtParameterInfos() && FD == nullptr) {
2911  mangleExtParameterInfo(Proto->getExtParameterInfo(I));
2912  }
2913 
2914  // Mangle the type.
2915  QualType ParamTy = Proto->getParamType(I);
2916  mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
2917 
2918  if (FD) {
2919  if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
2920  // Attr can only take 1 character, so we can hardcode the length below.
2921  assert(Attr->getType() <= 9 && Attr->getType() >= 0);
2922  if (Attr->isDynamic())
2923  Out << "U25pass_dynamic_object_size" << Attr->getType();
2924  else
2925  Out << "U17pass_object_size" << Attr->getType();
2926  }
2927  }
2928  }
2929 
2930  FunctionTypeDepth.pop(saved);
2931 
2932  // <builtin-type> ::= z # ellipsis
2933  if (Proto->isVariadic())
2934  Out << 'z';
2935 }
2936 
2937 // <type> ::= <class-enum-type>
2938 // <class-enum-type> ::= <name>
2939 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2940  mangleName(T->getDecl());
2941 }
2942 
2943 // <type> ::= <class-enum-type>
2944 // <class-enum-type> ::= <name>
2945 void CXXNameMangler::mangleType(const EnumType *T) {
2946  mangleType(static_cast<const TagType*>(T));
2947 }
2948 void CXXNameMangler::mangleType(const RecordType *T) {
2949  mangleType(static_cast<const TagType*>(T));
2950 }
2951 void CXXNameMangler::mangleType(const TagType *T) {
2952  mangleName(T->getDecl());
2953 }
2954 
2955 // <type> ::= <array-type>
2956 // <array-type> ::= A <positive dimension number> _ <element type>
2957 // ::= A [<dimension expression>] _ <element type>
2958 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2959  Out << 'A' << T->getSize() << '_';
2960  mangleType(T->getElementType());
2961 }
2962 void CXXNameMangler::mangleType(const VariableArrayType *T) {
2963  Out << 'A';
2964  // decayed vla types (size 0) will just be skipped.
2965  if (T->getSizeExpr())
2966  mangleExpression(T->getSizeExpr());
2967  Out << '_';
2968  mangleType(T->getElementType());
2969 }
2970 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2971  Out << 'A';
2972  mangleExpression(T->getSizeExpr());
2973  Out << '_';
2974  mangleType(T->getElementType());
2975 }
2976 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2977  Out << "A_";
2978  mangleType(T->getElementType());
2979 }
2980 
2981 // <type> ::= <pointer-to-member-type>
2982 // <pointer-to-member-type> ::= M <class type> <member type>
2983 void CXXNameMangler::mangleType(const MemberPointerType *T) {
2984  Out << 'M';
2985  mangleType(QualType(T->getClass(), 0));
2986  QualType PointeeType = T->getPointeeType();
2987  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2988  mangleType(FPT);
2989 
2990  // Itanium C++ ABI 5.1.8:
2991  //
2992  // The type of a non-static member function is considered to be different,
2993  // for the purposes of substitution, from the type of a namespace-scope or
2994  // static member function whose type appears similar. The types of two
2995  // non-static member functions are considered to be different, for the
2996  // purposes of substitution, if the functions are members of different
2997  // classes. In other words, for the purposes of substitution, the class of
2998  // which the function is a member is considered part of the type of
2999  // function.
3000 
3001  // Given that we already substitute member function pointers as a
3002  // whole, the net effect of this rule is just to unconditionally
3003  // suppress substitution on the function type in a member pointer.
3004  // We increment the SeqID here to emulate adding an entry to the
3005  // substitution table.
3006  ++SeqID;
3007  } else
3008  mangleType(PointeeType);
3009 }
3010 
3011 // <type> ::= <template-param>
3012 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
3013  mangleTemplateParameter(T->getDepth(), T->getIndex());
3014 }
3015 
3016 // <type> ::= <template-param>
3017 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
3018  // FIXME: not clear how to mangle this!
3019  // template <class T...> class A {
3020  // template <class U...> void foo(T(*)(U) x...);
3021  // };
3022  Out << "_SUBSTPACK_";
3023 }
3024 
3025 // <type> ::= P <type> # pointer-to
3026 void CXXNameMangler::mangleType(const PointerType *T) {
3027  Out << 'P';
3028  mangleType(T->getPointeeType());
3029 }
3030 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
3031  Out << 'P';
3032  mangleType(T->getPointeeType());
3033 }
3034 
3035 // <type> ::= R <type> # reference-to
3036 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
3037  Out << 'R';
3038  mangleType(T->getPointeeType());
3039 }
3040 
3041 // <type> ::= O <type> # rvalue reference-to (C++0x)
3042 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
3043  Out << 'O';
3044  mangleType(T->getPointeeType());
3045 }
3046 
3047 // <type> ::= C <type> # complex pair (C 2000)
3048 void CXXNameMangler::mangleType(const ComplexType *T) {
3049  Out << 'C';
3050  mangleType(T->getElementType());
3051 }
3052 
3053 // ARM's ABI for Neon vector types specifies that they should be mangled as
3054 // if they are structs (to match ARM's initial implementation). The
3055 // vector type must be one of the special types predefined by ARM.
3056 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3057  QualType EltType = T->getElementType();
3058  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3059  const char *EltName = nullptr;
3061  switch (cast<BuiltinType>(EltType)->getKind()) {
3062  case BuiltinType::SChar:
3063  case BuiltinType::UChar:
3064  EltName = "poly8_t";
3065  break;
3066  case BuiltinType::Short:
3067  case BuiltinType::UShort:
3068  EltName = "poly16_t";
3069  break;
3070  case BuiltinType::ULongLong:
3071  EltName = "poly64_t";
3072  break;
3073  default: llvm_unreachable("unexpected Neon polynomial vector element type");
3074  }
3075  } else {
3076  switch (cast<BuiltinType>(EltType)->getKind()) {
3077  case BuiltinType::SChar: EltName = "int8_t"; break;
3078  case BuiltinType::UChar: EltName = "uint8_t"; break;
3079  case BuiltinType::Short: EltName = "int16_t"; break;
3080  case BuiltinType::UShort: EltName = "uint16_t"; break;
3081  case BuiltinType::Int: EltName = "int32_t"; break;
3082  case BuiltinType::UInt: EltName = "uint32_t"; break;
3083  case BuiltinType::LongLong: EltName = "int64_t"; break;
3084  case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3085  case BuiltinType::Double: EltName = "float64_t"; break;
3086  case BuiltinType::Float: EltName = "float32_t"; break;
3087  case BuiltinType::Half: EltName = "float16_t";break;
3088  default:
3089  llvm_unreachable("unexpected Neon vector element type");
3090  }
3091  }
3092  const char *BaseName = nullptr;
3093  unsigned BitSize = (T->getNumElements() *
3094  getASTContext().getTypeSize(EltType));
3095  if (BitSize == 64)
3096  BaseName = "__simd64_";
3097  else {
3098  assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3099  BaseName = "__simd128_";
3100  }
3101  Out << strlen(BaseName) + strlen(EltName);
3102  Out << BaseName << EltName;
3103 }
3104 
3105 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3106  DiagnosticsEngine &Diags = Context.getDiags();
3107  unsigned DiagID = Diags.getCustomDiagID(
3109  "cannot mangle this dependent neon vector type yet");
3110  Diags.Report(T->getAttributeLoc(), DiagID);
3111 }
3112 
3113 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3114  switch (EltType->getKind()) {
3115  case BuiltinType::SChar:
3116  return "Int8";
3117  case BuiltinType::Short:
3118  return "Int16";
3119  case BuiltinType::Int:
3120  return "Int32";
3121  case BuiltinType::Long:
3122  case BuiltinType::LongLong:
3123  return "Int64";
3124  case BuiltinType::UChar:
3125  return "Uint8";
3126  case BuiltinType::UShort:
3127  return "Uint16";
3128  case BuiltinType::UInt:
3129  return "Uint32";
3130  case BuiltinType::ULong:
3131  case BuiltinType::ULongLong:
3132  return "Uint64";
3133  case BuiltinType::Half:
3134  return "Float16";
3135  case BuiltinType::Float:
3136  return "Float32";
3137  case BuiltinType::Double:
3138  return "Float64";
3139  default:
3140  llvm_unreachable("Unexpected vector element base type");
3141  }
3142 }
3143 
3144 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3145 // the equivalent internal name. The vector type must be one of the special
3146 // types predefined by ARM.
3147 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3148  QualType EltType = T->getElementType();
3149  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3150  unsigned BitSize =
3151  (T->getNumElements() * getASTContext().getTypeSize(EltType));
3152  (void)BitSize; // Silence warning.
3153 
3154  assert((BitSize == 64 || BitSize == 128) &&
3155  "Neon vector type not 64 or 128 bits");
3156 
3157  StringRef EltName;
3159  switch (cast<BuiltinType>(EltType)->getKind()) {
3160  case BuiltinType::UChar:
3161  EltName = "Poly8";
3162  break;
3163  case BuiltinType::UShort:
3164  EltName = "Poly16";
3165  break;
3166  case BuiltinType::ULong:
3167  case BuiltinType::ULongLong:
3168  EltName = "Poly64";
3169  break;
3170  default:
3171  llvm_unreachable("unexpected Neon polynomial vector element type");
3172  }
3173  } else
3174  EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3175 
3176  std::string TypeName =
3177  ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3178  Out << TypeName.length() << TypeName;
3179 }
3180 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3181  DiagnosticsEngine &Diags = Context.getDiags();
3182  unsigned DiagID = Diags.getCustomDiagID(
3184  "cannot mangle this dependent neon vector type yet");
3185  Diags.Report(T->getAttributeLoc(), DiagID);
3186 }
3187 
3188 // GNU extension: vector types
3189 // <type> ::= <vector-type>
3190 // <vector-type> ::= Dv <positive dimension number> _
3191 // <extended element type>
3192 // ::= Dv [<dimension expression>] _ <element type>
3193 // <extended element type> ::= <element type>
3194 // ::= p # AltiVec vector pixel
3195 // ::= b # Altivec vector bool
3196 void CXXNameMangler::mangleType(const VectorType *T) {
3197  if ((T->getVectorKind() == VectorType::NeonVector ||
3199  llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3200  llvm::Triple::ArchType Arch =
3201  getASTContext().getTargetInfo().getTriple().getArch();
3202  if ((Arch == llvm::Triple::aarch64 ||
3203  Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3204  mangleAArch64NeonVectorType(T);
3205  else
3206  mangleNeonVectorType(T);
3207  return;
3208  }
3209  Out << "Dv" << T->getNumElements() << '_';
3211  Out << 'p';
3212  else if (T->getVectorKind() == VectorType::AltiVecBool)
3213  Out << 'b';
3214  else
3215  mangleType(T->getElementType());
3216 }
3217 
3218 void CXXNameMangler::mangleType(const DependentVectorType *T) {
3219  if ((T->getVectorKind() == VectorType::NeonVector ||
3221  llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3222  llvm::Triple::ArchType Arch =
3223  getASTContext().getTargetInfo().getTriple().getArch();
3224  if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3225  !Target.isOSDarwin())
3226  mangleAArch64NeonVectorType(T);
3227  else
3228  mangleNeonVectorType(T);
3229  return;
3230  }
3231 
3232  Out << "Dv";
3233  mangleExpression(T->getSizeExpr());
3234  Out << '_';
3236  Out << 'p';
3237  else if (T->getVectorKind() == VectorType::AltiVecBool)
3238  Out << 'b';
3239  else
3240  mangleType(T->getElementType());
3241 }
3242 
3243 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3244  mangleType(static_cast<const VectorType*>(T));
3245 }
3246 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3247  Out << "Dv";
3248  mangleExpression(T->getSizeExpr());
3249  Out << '_';
3250  mangleType(T->getElementType());
3251 }
3252 
3253 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3254  SplitQualType split = T->getPointeeType().split();
3255  mangleQualifiers(split.Quals, T);
3256  mangleType(QualType(split.Ty, 0));
3257 }
3258 
3259 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3260  // <type> ::= Dp <type> # pack expansion (C++0x)
3261  Out << "Dp";
3262  mangleType(T->getPattern());
3263 }
3264 
3265 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3266  mangleSourceName(T->getDecl()->getIdentifier());
3267 }
3268 
3269 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3270  // Treat __kindof as a vendor extended type qualifier.
3271  if (T->isKindOfType())
3272  Out << "U8__kindof";
3273 
3274  if (!T->qual_empty()) {
3275  // Mangle protocol qualifiers.
3276  SmallString<64> QualStr;
3277  llvm::raw_svector_ostream QualOS(QualStr);
3278  QualOS << "objcproto";
3279  for (const auto *I : T->quals()) {
3280  StringRef name = I->getName();
3281  QualOS << name.size() << name;
3282  }
3283  Out << 'U' << QualStr.size() << QualStr;
3284  }
3285 
3286  mangleType(T->getBaseType());
3287 
3288  if (T->isSpecialized()) {
3289  // Mangle type arguments as I <type>+ E
3290  Out << 'I';
3291  for (auto typeArg : T->getTypeArgs())
3292  mangleType(typeArg);
3293  Out << 'E';
3294  }
3295 }
3296 
3297 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3298  Out << "U13block_pointer";
3299  mangleType(T->getPointeeType());
3300 }
3301 
3302 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3303  // Mangle injected class name types as if the user had written the
3304  // specialization out fully. It may not actually be possible to see
3305  // this mangling, though.
3306  mangleType(T->getInjectedSpecializationType());
3307 }
3308 
3309 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3310  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3311  mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3312  } else {
3313  if (mangleSubstitution(QualType(T, 0)))
3314  return;
3315 
3316  mangleTemplatePrefix(T->getTemplateName());
3317 
3318  // FIXME: GCC does not appear to mangle the template arguments when
3319  // the template in question is a dependent template name. Should we
3320  // emulate that badness?
3321  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3322  addSubstitution(QualType(T, 0));
3323  }
3324 }
3325 
3326 void CXXNameMangler::mangleType(const DependentNameType *T) {
3327  // Proposal by cxx-abi-dev, 2014-03-26
3328  // <class-enum-type> ::= <name> # non-dependent or dependent type name or
3329  // # dependent elaborated type specifier using
3330  // # 'typename'
3331  // ::= Ts <name> # dependent elaborated type specifier using
3332  // # 'struct' or 'class'
3333  // ::= Tu <name> # dependent elaborated type specifier using
3334  // # 'union'
3335  // ::= Te <name> # dependent elaborated type specifier using
3336  // # 'enum'
3337  switch (T->getKeyword()) {
3338  case ETK_None:
3339  case ETK_Typename:
3340  break;
3341  case ETK_Struct:
3342  case ETK_Class:
3343  case ETK_Interface:
3344  Out << "Ts";
3345  break;
3346  case ETK_Union:
3347  Out << "Tu";
3348  break;
3349  case ETK_Enum:
3350  Out << "Te";
3351  break;
3352  }
3353  // Typename types are always nested
3354  Out << 'N';
3355  manglePrefix(T->getQualifier());
3356  mangleSourceName(T->getIdentifier());
3357  Out << 'E';
3358 }
3359 
3360 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3361  // Dependently-scoped template types are nested if they have a prefix.
3362  Out << 'N';
3363 
3364  // TODO: avoid making this TemplateName.
3365  TemplateName Prefix =
3366  getASTContext().getDependentTemplateName(T->getQualifier(),
3367  T->getIdentifier());
3368  mangleTemplatePrefix(Prefix);
3369 
3370  // FIXME: GCC does not appear to mangle the template arguments when
3371  // the template in question is a dependent template name. Should we
3372  // emulate that badness?
3373  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3374  Out << 'E';
3375 }
3376 
3377 void CXXNameMangler::mangleType(const TypeOfType *T) {
3378  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3379  // "extension with parameters" mangling.
3380  Out << "u6typeof";
3381 }
3382 
3383 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3384  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3385  // "extension with parameters" mangling.
3386  Out << "u6typeof";
3387 }
3388 
3389 void CXXNameMangler::mangleType(const DecltypeType *T) {
3390  Expr *E = T->getUnderlyingExpr();
3391 
3392  // type ::= Dt <expression> E # decltype of an id-expression
3393  // # or class member access
3394  // ::= DT <expression> E # decltype of an expression
3395 
3396  // This purports to be an exhaustive list of id-expressions and
3397  // class member accesses. Note that we do not ignore parentheses;
3398  // parentheses change the semantics of decltype for these
3399  // expressions (and cause the mangler to use the other form).
3400  if (isa<DeclRefExpr>(E) ||
3401  isa<MemberExpr>(E) ||
3402  isa<UnresolvedLookupExpr>(E) ||
3403  isa<DependentScopeDeclRefExpr>(E) ||
3404  isa<CXXDependentScopeMemberExpr>(E) ||
3405  isa<UnresolvedMemberExpr>(E))
3406  Out << "Dt";
3407  else
3408  Out << "DT";
3409  mangleExpression(E);
3410  Out << 'E';
3411 }
3412 
3413 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3414  // If this is dependent, we need to record that. If not, we simply
3415  // mangle it as the underlying type since they are equivalent.
3416  if (T->isDependentType()) {
3417  Out << 'U';
3418 
3419  switch (T->getUTTKind()) {
3421  Out << "3eut";
3422  break;
3423  }
3424  }
3425 
3426  mangleType(T->getBaseType());
3427 }
3428 
3429 void CXXNameMangler::mangleType(const AutoType *T) {
3430  assert(T->getDeducedType().isNull() &&
3431  "Deduced AutoType shouldn't be handled here!");
3432  assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3433  "shouldn't need to mangle __auto_type!");
3434  // <builtin-type> ::= Da # auto
3435  // ::= Dc # decltype(auto)
3436  Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3437 }
3438 
3439 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3440  // FIXME: This is not the right mangling. We also need to include a scope
3441  // here in some cases.
3442  QualType D = T->getDeducedType();
3443  if (D.isNull())
3444  mangleUnscopedTemplateName(T->getTemplateName(), nullptr);
3445  else
3446  mangleType(D);
3447 }
3448 
3449 void CXXNameMangler::mangleType(const AtomicType *T) {
3450  // <type> ::= U <source-name> <type> # vendor extended type qualifier
3451  // (Until there's a standardized mangling...)
3452  Out << "U7_Atomic";
3453  mangleType(T->getValueType());
3454 }
3455 
3456 void CXXNameMangler::mangleType(const PipeType *T) {
3457  // Pipe type mangling rules are described in SPIR 2.0 specification
3458  // A.1 Data types and A.3 Summary of changes
3459  // <type> ::= 8ocl_pipe
3460  Out << "8ocl_pipe";
3461 }
3462 
3463 void CXXNameMangler::mangleIntegerLiteral(QualType T,
3464  const llvm::APSInt &Value) {
3465  // <expr-primary> ::= L <type> <value number> E # integer literal
3466  Out << 'L';
3467 
3468  mangleType(T);
3469  if (T->isBooleanType()) {
3470  // Boolean values are encoded as 0/1.
3471  Out << (Value.getBoolValue() ? '1' : '0');
3472  } else {
3473  mangleNumber(Value);
3474  }
3475  Out << 'E';
3476 
3477 }
3478 
3479 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3480  // Ignore member expressions involving anonymous unions.
3481  while (const auto *RT = Base->getType()->getAs<RecordType>()) {
3482  if (!RT->getDecl()->isAnonymousStructOrUnion())
3483  break;
3484  const auto *ME = dyn_cast<MemberExpr>(Base);
3485  if (!ME)
3486  break;
3487  Base = ME->getBase();
3488  IsArrow = ME->isArrow();
3489  }
3490 
3491  if (Base->isImplicitCXXThis()) {
3492  // Note: GCC mangles member expressions to the implicit 'this' as
3493  // *this., whereas we represent them as this->. The Itanium C++ ABI
3494  // does not specify anything here, so we follow GCC.
3495  Out << "dtdefpT";
3496  } else {
3497  Out << (IsArrow ? "pt" : "dt");
3498  mangleExpression(Base);
3499  }
3500 }
3501 
3502 /// Mangles a member expression.
3503 void CXXNameMangler::mangleMemberExpr(const Expr *base,
3504  bool isArrow,
3505  NestedNameSpecifier *qualifier,
3506  NamedDecl *firstQualifierLookup,
3508  const TemplateArgumentLoc *TemplateArgs,
3509  unsigned NumTemplateArgs,
3510  unsigned arity) {
3511  // <expression> ::= dt <expression> <unresolved-name>
3512  // ::= pt <expression> <unresolved-name>
3513  if (base)
3514  mangleMemberExprBase(base, isArrow);
3515  mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
3516 }
3517 
3518 /// Look at the callee of the given call expression and determine if
3519 /// it's a parenthesized id-expression which would have triggered ADL
3520 /// otherwise.
3521 static bool isParenthesizedADLCallee(const CallExpr *call) {
3522  const Expr *callee = call->getCallee();
3523  const Expr *fn = callee->IgnoreParens();
3524 
3525  // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
3526  // too, but for those to appear in the callee, it would have to be
3527  // parenthesized.
3528  if (callee == fn) return false;
3529 
3530  // Must be an unresolved lookup.
3531  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
3532  if (!lookup) return false;
3533 
3534  assert(!lookup->requiresADL());
3535 
3536  // Must be an unqualified lookup.
3537  if (lookup->getQualifier()) return false;
3538 
3539  // Must not have found a class member. Note that if one is a class
3540  // member, they're all class members.
3541  if (lookup->getNumDecls() > 0 &&
3542  (*lookup->decls_begin())->isCXXClassMember())
3543  return false;
3544 
3545  // Otherwise, ADL would have been triggered.
3546  return true;
3547 }
3548 
3549 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
3550  const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
3551  Out << CastEncoding;
3552  mangleType(ECE->getType());
3553  mangleExpression(ECE->getSubExpr());
3554 }
3555 
3556 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
3557  if (auto *Syntactic = InitList->getSyntacticForm())
3558  InitList = Syntactic;
3559  for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
3560  mangleExpression(InitList->getInit(i));
3561 }
3562 
3563 void CXXNameMangler::mangleDeclRefExpr(const NamedDecl *D) {
3564  switch (D->getKind()) {
3565  default:
3566  // <expr-primary> ::= L <mangled-name> E # external name
3567  Out << 'L';
3568  mangle(D);
3569  Out << 'E';
3570  break;
3571 
3572  case Decl::ParmVar:
3573  mangleFunctionParam(cast<ParmVarDecl>(D));
3574  break;
3575 
3576  case Decl::EnumConstant: {
3577  const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3578  mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3579  break;
3580  }
3581 
3582  case Decl::NonTypeTemplateParm:
3583  const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3584  mangleTemplateParameter(PD->getDepth(), PD->getIndex());
3585  break;
3586  }
3587 }
3588 
3589 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
3590  // <expression> ::= <unary operator-name> <expression>
3591  // ::= <binary operator-name> <expression> <expression>
3592  // ::= <trinary operator-name> <expression> <expression> <expression>
3593  // ::= cv <type> expression # conversion with one argument
3594  // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
3595  // ::= dc <type> <expression> # dynamic_cast<type> (expression)
3596  // ::= sc <type> <expression> # static_cast<type> (expression)
3597  // ::= cc <type> <expression> # const_cast<type> (expression)
3598  // ::= rc <type> <expression> # reinterpret_cast<type> (expression)
3599  // ::= st <type> # sizeof (a type)
3600  // ::= at <type> # alignof (a type)
3601  // ::= <template-param>
3602  // ::= <function-param>
3603  // ::= sr <type> <unqualified-name> # dependent name
3604  // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
3605  // ::= ds <expression> <expression> # expr.*expr
3606  // ::= sZ <template-param> # size of a parameter pack
3607  // ::= sZ <function-param> # size of a function parameter pack
3608  // ::= <expr-primary>
3609  // <expr-primary> ::= L <type> <value number> E # integer literal
3610  // ::= L <type <value float> E # floating literal
3611  // ::= L <mangled-name> E # external name
3612  // ::= fpT # 'this' expression
3613  QualType ImplicitlyConvertedToType;
3614 
3615 recurse:
3616  switch (E->getStmtClass()) {
3617  case Expr::NoStmtClass:
3618 #define ABSTRACT_STMT(Type)
3619 #define EXPR(Type, Base)
3620 #define STMT(Type, Base) \
3621  case Expr::Type##Class:
3622 #include "clang/AST/StmtNodes.inc"
3623  // fallthrough
3624 
3625  // These all can only appear in local or variable-initialization
3626  // contexts and so should never appear in a mangling.
3627  case Expr::AddrLabelExprClass:
3628  case Expr::DesignatedInitUpdateExprClass:
3629  case Expr::ImplicitValueInitExprClass:
3630  case Expr::ArrayInitLoopExprClass:
3631  case Expr::ArrayInitIndexExprClass:
3632  case Expr::NoInitExprClass:
3633  case Expr::ParenListExprClass:
3634  case Expr::LambdaExprClass:
3635  case Expr::MSPropertyRefExprClass:
3636  case Expr::MSPropertySubscriptExprClass:
3637  case Expr::TypoExprClass: // This should no longer exist in the AST by now.
3638  case Expr::OMPArraySectionExprClass:
3639  case Expr::CXXInheritedCtorInitExprClass:
3640  llvm_unreachable("unexpected statement kind");
3641 
3642  case Expr::ConstantExprClass:
3643  E = cast<ConstantExpr>(E)->getSubExpr();
3644  goto recurse;
3645 
3646  // FIXME: invent manglings for all these.
3647  case Expr::BlockExprClass:
3648  case Expr::ChooseExprClass:
3649  case Expr::CompoundLiteralExprClass:
3650  case Expr::ExtVectorElementExprClass:
3651  case Expr::GenericSelectionExprClass:
3652  case Expr::ObjCEncodeExprClass:
3653  case Expr::ObjCIsaExprClass:
3654  case Expr::ObjCIvarRefExprClass:
3655  case Expr::ObjCMessageExprClass:
3656  case Expr::ObjCPropertyRefExprClass:
3657  case Expr::ObjCProtocolExprClass:
3658  case Expr::ObjCSelectorExprClass:
3659  case Expr::ObjCStringLiteralClass:
3660  case Expr::ObjCBoxedExprClass:
3661  case Expr::ObjCArrayLiteralClass:
3662  case Expr::ObjCDictionaryLiteralClass:
3663  case Expr::ObjCSubscriptRefExprClass:
3664  case Expr::ObjCIndirectCopyRestoreExprClass:
3665  case Expr::ObjCAvailabilityCheckExprClass:
3666  case Expr::OffsetOfExprClass:
3667  case Expr::PredefinedExprClass:
3668  case Expr::ShuffleVectorExprClass:
3669  case Expr::ConvertVectorExprClass:
3670  case Expr::StmtExprClass:
3671  case Expr::TypeTraitExprClass:
3672  case Expr::RequiresExprClass:
3673  case Expr::ArrayTypeTraitExprClass:
3674  case Expr::ExpressionTraitExprClass:
3675  case Expr::VAArgExprClass:
3676  case Expr::CUDAKernelCallExprClass:
3677  case Expr::AsTypeExprClass:
3678  case Expr::PseudoObjectExprClass:
3679  case Expr::AtomicExprClass:
3680  case Expr::SourceLocExprClass:
3681  case Expr::FixedPointLiteralClass:
3682  case Expr::BuiltinBitCastExprClass:
3683  {
3684  if (!NullOut) {
3685  // As bad as this diagnostic is, it's better than crashing.
3686  DiagnosticsEngine &Diags = Context.getDiags();
3687  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3688  "cannot yet mangle expression type %0");
3689  Diags.Report(E->getExprLoc(), DiagID)
3690  << E->getStmtClassName() << E->getSourceRange();
3691  }
3692  break;
3693  }
3694 
3695  case Expr::CXXUuidofExprClass: {
3696  const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
3697  if (UE->isTypeOperand()) {
3698  QualType UuidT = UE->getTypeOperand(Context.getASTContext());
3699  Out << "u8__uuidoft";
3700  mangleType(UuidT);
3701  } else {
3702  Expr *UuidExp = UE->getExprOperand();
3703  Out << "u8__uuidofz";
3704  mangleExpression(UuidExp, Arity);
3705  }
3706  break;
3707  }
3708 
3709  // Even gcc-4.5 doesn't mangle this.
3710  case Expr::BinaryConditionalOperatorClass: {
3711  DiagnosticsEngine &Diags = Context.getDiags();
3712  unsigned DiagID =
3714  "?: operator with omitted middle operand cannot be mangled");
3715  Diags.Report(E->getExprLoc(), DiagID)
3716  << E->getStmtClassName() << E->getSourceRange();
3717  break;
3718  }
3719 
3720  // These are used for internal purposes and cannot be meaningfully mangled.
3721  case Expr::OpaqueValueExprClass:
3722  llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
3723 
3724  case Expr::InitListExprClass: {
3725  Out << "il";
3726  mangleInitListElements(cast<InitListExpr>(E));
3727  Out << "E";
3728  break;
3729  }
3730 
3731  case Expr::DesignatedInitExprClass: {
3732  auto *DIE = cast<DesignatedInitExpr>(E);
3733  for (const auto &Designator : DIE->designators()) {
3734  if (Designator.isFieldDesignator()) {
3735  Out << "di";
3736  mangleSourceName(Designator.getFieldName());
3737  } else if (Designator.isArrayDesignator()) {
3738  Out << "dx";
3739  mangleExpression(DIE->getArrayIndex(Designator));
3740  } else {
3742  "unknown designator kind");
3743  Out << "dX";
3744  mangleExpression(DIE->getArrayRangeStart(Designator));
3745  mangleExpression(DIE->getArrayRangeEnd(Designator));
3746  }
3747  }
3748  mangleExpression(DIE->getInit());
3749  break;
3750  }
3751 
3752  case Expr::CXXDefaultArgExprClass:
3753  mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
3754  break;
3755 
3756  case Expr::CXXDefaultInitExprClass:
3757  mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
3758  break;
3759 
3760  case Expr::CXXStdInitializerListExprClass:
3761  mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
3762  break;
3763 
3764  case Expr::SubstNonTypeTemplateParmExprClass:
3765  mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
3766  Arity);
3767  break;
3768 
3769  case Expr::UserDefinedLiteralClass:
3770  // We follow g++'s approach of mangling a UDL as a call to the literal
3771  // operator.
3772  case Expr::CXXMemberCallExprClass: // fallthrough
3773  case Expr::CallExprClass: {
3774  const CallExpr *CE = cast<CallExpr>(E);
3775 
3776  // <expression> ::= cp <simple-id> <expression>* E
3777  // We use this mangling only when the call would use ADL except
3778  // for being parenthesized. Per discussion with David
3779  // Vandervoorde, 2011.04.25.
3780  if (isParenthesizedADLCallee(CE)) {
3781  Out << "cp";
3782  // The callee here is a parenthesized UnresolvedLookupExpr with
3783  // no qualifier and should always get mangled as a <simple-id>
3784  // anyway.
3785 
3786  // <expression> ::= cl <expression>* E
3787  } else {
3788  Out << "cl";
3789  }
3790 
3791  unsigned CallArity = CE->getNumArgs();
3792  for (const Expr *Arg : CE->arguments())
3793  if (isa<PackExpansionExpr>(Arg))
3794  CallArity = UnknownArity;
3795 
3796  mangleExpression(CE->getCallee(), CallArity);
3797  for (const Expr *Arg : CE->arguments())
3798  mangleExpression(Arg);
3799  Out << 'E';
3800  break;
3801  }
3802 
3803  case Expr::CXXNewExprClass: {
3804  const CXXNewExpr *New = cast<CXXNewExpr>(E);
3805  if (New->isGlobalNew()) Out << "gs";
3806  Out << (New->isArray() ? "na" : "nw");
3808  E = New->placement_arg_end(); I != E; ++I)
3809  mangleExpression(*I);
3810  Out << '_';
3811  mangleType(New->getAllocatedType());
3812  if (New->hasInitializer()) {
3814  Out << "il";
3815  else
3816  Out << "pi";
3817  const Expr *Init = New->getInitializer();
3818  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
3819  // Directly inline the initializers.
3820  for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
3821  E = CCE->arg_end();
3822  I != E; ++I)
3823  mangleExpression(*I);
3824  } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
3825  for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
3826  mangleExpression(PLE->getExpr(i));
3827  } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
3828  isa<InitListExpr>(Init)) {
3829  // Only take InitListExprs apart for list-initialization.
3830  mangleInitListElements(cast<InitListExpr>(Init));
3831  } else
3832  mangleExpression(Init);
3833  }
3834  Out << 'E';
3835  break;
3836  }
3837 
3838  case Expr::CXXPseudoDestructorExprClass: {
3839  const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
3840  if (const Expr *Base = PDE->getBase())
3841  mangleMemberExprBase(Base, PDE->isArrow());
3842  NestedNameSpecifier *Qualifier = PDE->getQualifier();
3843  if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
3844  if (Qualifier) {
3845  mangleUnresolvedPrefix(Qualifier,
3846  /*recursive=*/true);
3847  mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
3848  Out << 'E';
3849  } else {
3850  Out << "sr";
3851  if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
3852  Out << 'E';
3853  }
3854  } else if (Qualifier) {
3855  mangleUnresolvedPrefix(Qualifier);
3856  }
3857  // <base-unresolved-name> ::= dn <destructor-name>
3858  Out << "dn";
3859  QualType DestroyedType = PDE->getDestroyedType();
3860  mangleUnresolvedTypeOrSimpleId(DestroyedType);
3861  break;
3862  }
3863 
3864  case Expr::MemberExprClass: {
3865  const MemberExpr *ME = cast<MemberExpr>(E);
3866  mangleMemberExpr(ME->getBase(), ME->isArrow(),
3867  ME->getQualifier(), nullptr,
3868  ME->getMemberDecl()->getDeclName(),
3869  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3870  Arity);
3871  break;
3872  }
3873 
3874  case Expr::UnresolvedMemberExprClass: {
3875  const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
3876  mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3877  ME->isArrow(), ME->getQualifier(), nullptr,
3878  ME->getMemberName(),
3879  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3880  Arity);
3881  break;
3882  }
3883 
3884  case Expr::CXXDependentScopeMemberExprClass: {
3885  const CXXDependentScopeMemberExpr *ME
3886  = cast<CXXDependentScopeMemberExpr>(E);
3887  mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3888  ME->isArrow(), ME->getQualifier(),
3890  ME->getMember(),
3891  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3892  Arity);
3893  break;
3894  }
3895 
3896  case Expr::UnresolvedLookupExprClass: {
3897  const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
3898  mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
3899  ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
3900  Arity);
3901  break;
3902  }
3903 
3904  case Expr::CXXUnresolvedConstructExprClass: {
3905  const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
3906  unsigned N = CE->arg_size();
3907 
3908  if (CE->isListInitialization()) {
3909  assert(N == 1 && "unexpected form for list initialization");
3910  auto *IL = cast<InitListExpr>(CE->getArg(0));
3911  Out << "tl";
3912  mangleType(CE->getType());
3913  mangleInitListElements(IL);
3914  Out << "E";
3915  return;
3916  }
3917 
3918  Out << "cv";
3919  mangleType(CE->getType());
3920  if (N != 1) Out << '_';
3921  for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
3922  if (N != 1) Out << 'E';
3923  break;
3924  }
3925 
3926  case Expr::CXXConstructExprClass: {
3927  const auto *CE = cast<CXXConstructExpr>(E);
3928  if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
3929  assert(
3930  CE->getNumArgs() >= 1 &&
3931  (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
3932  "implicit CXXConstructExpr must have one argument");
3933  return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
3934  }
3935  Out << "il";
3936  for (auto *E : CE->arguments())
3937  mangleExpression(E);
3938  Out << "E";
3939  break;
3940  }
3941 
3942  case Expr::CXXTemporaryObjectExprClass: {
3943  const auto *CE = cast<CXXTemporaryObjectExpr>(E);
3944  unsigned N = CE->getNumArgs();
3945  bool List = CE->isListInitialization();
3946 
3947  if (List)
3948  Out << "tl";
3949  else
3950  Out << "cv";
3951  mangleType(CE->getType());
3952  if (!List && N != 1)
3953  Out << '_';
3954  if (CE->isStdInitListInitialization()) {
3955  // We implicitly created a std::initializer_list<T> for the first argument
3956  // of a constructor of type U in an expression of the form U{a, b, c}.
3957  // Strip all the semantic gunk off the initializer list.
3958  auto *SILE =
3959  cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
3960  auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
3961  mangleInitListElements(ILE);
3962  } else {
3963  for (auto *E : CE->arguments())
3964  mangleExpression(E);
3965  }
3966  if (List || N != 1)
3967  Out << 'E';
3968  break;
3969  }
3970 
3971  case Expr::CXXScalarValueInitExprClass:
3972  Out << "cv";
3973  mangleType(E->getType());
3974  Out << "_E";
3975  break;
3976 
3977  case Expr::CXXNoexceptExprClass:
3978  Out << "nx";
3979  mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
3980  break;
3981 
3982  case Expr::UnaryExprOrTypeTraitExprClass: {
3983  const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
3984 
3985  if (!SAE->isInstantiationDependent()) {
3986  // Itanium C++ ABI:
3987  // If the operand of a sizeof or alignof operator is not
3988  // instantiation-dependent it is encoded as an integer literal
3989  // reflecting the result of the operator.
3990  //
3991  // If the result of the operator is implicitly converted to a known
3992  // integer type, that type is used for the literal; otherwise, the type
3993  // of std::size_t or std::ptrdiff_t is used.
3994  QualType T = (ImplicitlyConvertedToType.isNull() ||
3995  !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
3996  : ImplicitlyConvertedToType;
3997  llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
3998  mangleIntegerLiteral(T, V);
3999  break;
4000  }
4001 
4002  switch(SAE->getKind()) {
4003  case UETT_SizeOf:
4004  Out << 's';
4005  break;
4006  case UETT_PreferredAlignOf:
4007  case UETT_AlignOf:
4008  Out << 'a';
4009  break;
4010  case UETT_VecStep: {
4011  DiagnosticsEngine &Diags = Context.getDiags();
4012  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4013  "cannot yet mangle vec_step expression");
4014  Diags.Report(DiagID);
4015  return;
4016  }
4018  DiagnosticsEngine &Diags = Context.getDiags();
4019  unsigned DiagID = Diags.getCustomDiagID(
4021  "cannot yet mangle __builtin_omp_required_simd_align expression");
4022  Diags.Report(DiagID);
4023  return;
4024  }
4025  }
4026  if (SAE->isArgumentType()) {
4027  Out << 't';
4028  mangleType(SAE->getArgumentType());
4029  } else {
4030  Out << 'z';
4031  mangleExpression(SAE->getArgumentExpr());
4032  }
4033  break;
4034  }
4035 
4036  case Expr::CXXThrowExprClass: {
4037  const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
4038  // <expression> ::= tw <expression> # throw expression
4039  // ::= tr # rethrow
4040  if (TE->getSubExpr()) {
4041  Out << "tw";
4042  mangleExpression(TE->getSubExpr());
4043  } else {
4044  Out << "tr";
4045  }
4046  break;
4047  }
4048 
4049  case Expr::CXXTypeidExprClass: {
4050  const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
4051  // <expression> ::= ti <type> # typeid (type)
4052  // ::= te <expression> # typeid (expression)
4053  if (TIE->isTypeOperand()) {
4054  Out << "ti";
4055  mangleType(TIE->getTypeOperand(Context.getASTContext()));
4056  } else {
4057  Out << "te";
4058  mangleExpression(TIE->getExprOperand());
4059  }
4060  break;
4061  }
4062 
4063  case Expr::CXXDeleteExprClass: {
4064  const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
4065  // <expression> ::= [gs] dl <expression> # [::] delete expr
4066  // ::= [gs] da <expression> # [::] delete [] expr
4067  if (DE->isGlobalDelete()) Out << "gs";
4068  Out << (DE->isArrayForm() ? "da" : "dl");
4069  mangleExpression(DE->getArgument());
4070  break;
4071  }
4072 
4073  case Expr::UnaryOperatorClass: {
4074  const UnaryOperator *UO = cast<UnaryOperator>(E);
4075  mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
4076  /*Arity=*/1);
4077  mangleExpression(UO->getSubExpr());
4078  break;
4079  }
4080 
4081  case Expr::ArraySubscriptExprClass: {
4082  const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
4083 
4084  // Array subscript is treated as a syntactically weird form of
4085  // binary operator.
4086  Out << "ix";
4087  mangleExpression(AE->getLHS());
4088  mangleExpression(AE->getRHS());
4089  break;
4090  }
4091 
4092  case Expr::CompoundAssignOperatorClass: // fallthrough
4093  case Expr::BinaryOperatorClass: {
4094  const BinaryOperator *BO = cast<BinaryOperator>(E);
4095  if (BO->getOpcode() == BO_PtrMemD)
4096  Out << "ds";
4097  else
4098  mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
4099  /*Arity=*/2);
4100  mangleExpression(BO->getLHS());
4101  mangleExpression(BO->getRHS());
4102  break;
4103  }
4104 
4105  case Expr::CXXRewrittenBinaryOperatorClass: {
4106  // The mangled form represents the original syntax.
4108  cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
4109  mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
4110  /*Arity=*/2);
4111  mangleExpression(Decomposed.LHS);
4112  mangleExpression(Decomposed.RHS);
4113  break;
4114  }
4115 
4116  case Expr::ConditionalOperatorClass: {
4117  const ConditionalOperator *CO = cast<ConditionalOperator>(E);
4118  mangleOperatorName(OO_Conditional, /*Arity=*/3);
4119  mangleExpression(CO->getCond());
4120  mangleExpression(CO->getLHS(), Arity);
4121  mangleExpression(CO->getRHS(), Arity);
4122  break;
4123  }
4124 
4125  case Expr::ImplicitCastExprClass: {
4126  ImplicitlyConvertedToType = E->getType();
4127  E = cast<ImplicitCastExpr>(E)->getSubExpr();
4128  goto recurse;
4129  }
4130 
4131  case Expr::ObjCBridgedCastExprClass: {
4132  // Mangle ownership casts as a vendor extended operator __bridge,
4133  // __bridge_transfer, or __bridge_retain.
4134  StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4135  Out << "v1U" << Kind.size() << Kind;
4136  }
4137  // Fall through to mangle the cast itself.
4138  LLVM_FALLTHROUGH;
4139 
4140  case Expr::CStyleCastExprClass:
4141  mangleCastExpression(E, "cv");
4142  break;
4143 
4144  case Expr::CXXFunctionalCastExprClass: {
4145  auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4146  // FIXME: Add isImplicit to CXXConstructExpr.
4147  if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4148  if (CCE->getParenOrBraceRange().isInvalid())
4149  Sub = CCE->getArg(0)->IgnoreImplicit();
4150  if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4151  Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4152  if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4153  Out << "tl";
4154  mangleType(E->getType());
4155  mangleInitListElements(IL);
4156  Out << "E";
4157  } else {
4158  mangleCastExpression(E, "cv");
4159  }
4160  break;
4161  }
4162 
4163  case Expr::CXXStaticCastExprClass:
4164  mangleCastExpression(E, "sc");
4165  break;
4166  case Expr::CXXDynamicCastExprClass:
4167  mangleCastExpression(E, "dc");
4168  break;
4169  case Expr::CXXReinterpretCastExprClass:
4170  mangleCastExpression(E, "rc");
4171  break;
4172  case Expr::CXXConstCastExprClass:
4173  mangleCastExpression(E, "cc");
4174  break;
4175 
4176  case Expr::CXXOperatorCallExprClass: {
4177  const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4178  unsigned NumArgs = CE->getNumArgs();
4179  // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4180  // (the enclosing MemberExpr covers the syntactic portion).
4181  if (CE->getOperator() != OO_Arrow)
4182  mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4183  // Mangle the arguments.
4184  for (unsigned i = 0; i != NumArgs; ++i)
4185  mangleExpression(CE->getArg(i));
4186  break;
4187  }
4188 
4189  case Expr::ParenExprClass:
4190  mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
4191  break;
4192 
4193 
4194  case Expr::ConceptSpecializationExprClass: {
4195  // <expr-primary> ::= L <mangled-name> E # external name
4196  Out << "L_Z";
4197  auto *CSE = cast<ConceptSpecializationExpr>(E);
4198  mangleTemplateName(CSE->getNamedConcept(),
4199  CSE->getTemplateArguments().data(),
4200  CSE->getTemplateArguments().size());
4201  Out << 'E';
4202  break;
4203  }
4204 
4205  case Expr::DeclRefExprClass:
4206  mangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
4207  break;
4208 
4209  case Expr::SubstNonTypeTemplateParmPackExprClass:
4210  // FIXME: not clear how to mangle this!
4211  // template <unsigned N...> class A {
4212  // template <class U...> void foo(U (&x)[N]...);
4213  // };
4214  Out << "_SUBSTPACK_";
4215  break;
4216 
4217  case Expr::FunctionParmPackExprClass: {
4218  // FIXME: not clear how to mangle this!
4219  const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4220  Out << "v110_SUBSTPACK";
4221  mangleDeclRefExpr(FPPE->getParameterPack());
4222  break;
4223  }
4224 
4225  case Expr::DependentScopeDeclRefExprClass: {
4226  const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4227  mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4228  DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4229  Arity);
4230  break;
4231  }
4232 
4233  case Expr::CXXBindTemporaryExprClass:
4234  mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
4235  break;
4236 
4237  case Expr::ExprWithCleanupsClass:
4238  mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
4239  break;
4240 
4241  case Expr::FloatingLiteralClass: {
4242  const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4243  Out << 'L';
4244  mangleType(FL->getType());
4245  mangleFloat(FL->getValue());
4246  Out << 'E';
4247  break;
4248  }
4249 
4250  case Expr::CharacterLiteralClass:
4251  Out << 'L';
4252  mangleType(E->getType());
4253  Out << cast<CharacterLiteral>(E)->getValue();
4254  Out << 'E';
4255  break;
4256 
4257  // FIXME. __objc_yes/__objc_no are mangled same as true/false
4258  case Expr::ObjCBoolLiteralExprClass:
4259  Out << "Lb";
4260  Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4261  Out << 'E';
4262  break;
4263 
4264  case Expr::CXXBoolLiteralExprClass:
4265  Out << "Lb";
4266  Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4267  Out << 'E';
4268  break;
4269 
4270  case Expr::IntegerLiteralClass: {
4271  llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4272  if (E->getType()->isSignedIntegerType())
4273  Value.setIsSigned(true);
4274  mangleIntegerLiteral(E->getType(), Value);
4275  break;
4276  }
4277 
4278  case Expr::ImaginaryLiteralClass: {
4279  const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4280  // Mangle as if a complex literal.
4281  // Proposal from David Vandevoorde, 2010.06.30.
4282  Out << 'L';
4283  mangleType(E->getType());
4284  if (const FloatingLiteral *Imag =
4285  dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4286  // Mangle a floating-point zero of the appropriate type.
4287  mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4288  Out << '_';
4289  mangleFloat(Imag->getValue());
4290  } else {
4291  Out << "0_";
4292  llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4293  if (IE->getSubExpr()->getType()->isSignedIntegerType())
4294  Value.setIsSigned(true);
4295  mangleNumber(Value);
4296  }
4297  Out << 'E';
4298  break;
4299  }
4300 
4301  case Expr::StringLiteralClass: {
4302  // Revised proposal from David Vandervoorde, 2010.07.15.
4303  Out << 'L';
4304  assert(isa<ConstantArrayType>(E->getType()));
4305  mangleType(E->getType());
4306  Out << 'E';
4307  break;
4308  }
4309 
4310  case Expr::GNUNullExprClass:
4311  // Mangle as if an integer literal 0.
4312  Out << 'L';
4313  mangleType(E->getType());
4314  Out << "0E";
4315  break;
4316 
4317  case Expr::CXXNullPtrLiteralExprClass: {
4318  Out << "LDnE";
4319  break;
4320  }
4321 
4322  case Expr::PackExpansionExprClass:
4323  Out << "sp";
4324  mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4325  break;
4326 
4327  case Expr::SizeOfPackExprClass: {
4328  auto *SPE = cast<SizeOfPackExpr>(E);
4329  if (SPE->isPartiallySubstituted()) {
4330  Out << "sP";
4331  for (const auto &A : SPE->getPartialArguments())
4332  mangleTemplateArg(A);
4333  Out << "E";
4334  break;
4335  }
4336 
4337  Out << "sZ";
4338  const NamedDecl *Pack = SPE->getPack();
4339  if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4340  mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
4341  else if (const NonTypeTemplateParmDecl *NTTP
4342  = dyn_cast<NonTypeTemplateParmDecl>(Pack))
4343  mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
4344  else if (const TemplateTemplateParmDecl *TempTP
4345  = dyn_cast<TemplateTemplateParmDecl>(Pack))
4346  mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
4347  else
4348  mangleFunctionParam(cast<ParmVarDecl>(Pack));
4349  break;
4350  }
4351 
4352  case Expr::MaterializeTemporaryExprClass: {
4353  mangleExpression(cast<MaterializeTemporaryExpr>(E)->getSubExpr());
4354  break;
4355  }
4356 
4357  case Expr::CXXFoldExprClass: {
4358  auto *FE = cast<CXXFoldExpr>(E);
4359  if (FE->isLeftFold())
4360  Out << (FE->getInit() ? "fL" : "fl");
4361  else
4362  Out << (FE->getInit() ? "fR" : "fr");
4363 
4364  if (FE->getOperator() == BO_PtrMemD)
4365  Out << "ds";
4366  else
4367  mangleOperatorName(
4368  BinaryOperator::getOverloadedOperator(FE->getOperator()),
4369  /*Arity=*/2);
4370 
4371  if (FE->getLHS())
4372  mangleExpression(FE->getLHS());
4373  if (FE->getRHS())
4374  mangleExpression(FE->getRHS());
4375  break;
4376  }
4377 
4378  case Expr::CXXThisExprClass:
4379  Out << "fpT";
4380  break;
4381 
4382  case Expr::CoawaitExprClass:
4383  // FIXME: Propose a non-vendor mangling.
4384  Out << "v18co_await";
4385  mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4386  break;
4387 
4388  case Expr::DependentCoawaitExprClass:
4389  // FIXME: Propose a non-vendor mangling.
4390  Out << "v18co_await";
4391  mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
4392  break;
4393 
4394  case Expr::CoyieldExprClass:
4395  // FIXME: Propose a non-vendor mangling.
4396  Out << "v18co_yield";
4397  mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4398  break;
4399  }
4400 }
4401 
4402 /// Mangle an expression which refers to a parameter variable.
4403 ///
4404 /// <expression> ::= <function-param>
4405 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
4406 /// <function-param> ::= fp <top-level CV-qualifiers>
4407 /// <parameter-2 non-negative number> _ # L == 0, I > 0
4408 /// <function-param> ::= fL <L-1 non-negative number>
4409 /// p <top-level CV-qualifiers> _ # L > 0, I == 0
4410 /// <function-param> ::= fL <L-1 non-negative number>
4411 /// p <top-level CV-qualifiers>
4412 /// <I-1 non-negative number> _ # L > 0, I > 0
4413 ///
4414 /// L is the nesting depth of the parameter, defined as 1 if the
4415 /// parameter comes from the innermost function prototype scope
4416 /// enclosing the current context, 2 if from the next enclosing
4417 /// function prototype scope, and so on, with one special case: if
4418 /// we've processed the full parameter clause for the innermost
4419 /// function type, then L is one less. This definition conveniently
4420 /// makes it irrelevant whether a function's result type was written
4421 /// trailing or leading, but is otherwise overly complicated; the
4422 /// numbering was first designed without considering references to
4423 /// parameter in locations other than return types, and then the
4424 /// mangling had to be generalized without changing the existing
4425 /// manglings.
4426 ///
4427 /// I is the zero-based index of the parameter within its parameter
4428 /// declaration clause. Note that the original ABI document describes
4429 /// this using 1-based ordinals.
4430 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
4431  unsigned parmDepth = parm->getFunctionScopeDepth();
4432  unsigned parmIndex = parm->getFunctionScopeIndex();
4433 
4434  // Compute 'L'.
4435  // parmDepth does not include the declaring function prototype.
4436  // FunctionTypeDepth does account for that.
4437  assert(parmDepth < FunctionTypeDepth.getDepth());
4438  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
4439  if (FunctionTypeDepth.isInResultType())
4440  nestingDepth--;
4441 
4442  if (nestingDepth == 0) {
4443  Out << "fp";
4444  } else {
4445  Out << "fL" << (nestingDepth - 1) << 'p';
4446  }
4447 
4448  // Top-level qualifiers. We don't have to worry about arrays here,
4449  // because parameters declared as arrays should already have been
4450  // transformed to have pointer type. FIXME: apparently these don't
4451  // get mangled if used as an rvalue of a known non-class type?
4452  assert(!parm->getType()->isArrayType()
4453  && "parameter's type is still an array type?");
4454 
4455  if (const DependentAddressSpaceType *DAST =
4456  dyn_cast<DependentAddressSpaceType>(parm->getType())) {
4457  mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
4458  } else {
4459  mangleQualifiers(parm->getType().getQualifiers());
4460  }
4461 
4462  // Parameter index.
4463  if (parmIndex != 0) {
4464  Out << (parmIndex - 1);
4465  }
4466  Out << '_';
4467 }
4468 
4469 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
4470  const CXXRecordDecl *InheritedFrom) {
4471  // <ctor-dtor-name> ::= C1 # complete object constructor
4472  // ::= C2 # base object constructor
4473  // ::= CI1 <type> # complete inheriting constructor
4474  // ::= CI2 <type> # base inheriting constructor
4475  //
4476  // In addition, C5 is a comdat name with C1 and C2 in it.
4477  Out << 'C';
4478  if (InheritedFrom)
4479  Out << 'I';
4480  switch (T) {
4481  case Ctor_Complete:
4482  Out << '1';
4483  break;
4484  case Ctor_Base:
4485  Out << '2';
4486  break;
4487  case Ctor_Comdat:
4488  Out << '5';
4489  break;
4490  case Ctor_DefaultClosure:
4491  case Ctor_CopyingClosure:
4492  llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
4493  }
4494  if (InheritedFrom)
4495  mangleName(InheritedFrom);
4496 }
4497 
4498 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
4499  // <ctor-dtor-name> ::= D0 # deleting destructor
4500  // ::= D1 # complete object destructor
4501  // ::= D2 # base object destructor
4502  //
4503  // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
4504  switch (T) {
4505  case Dtor_Deleting:
4506  Out << "D0";
4507  break;
4508  case Dtor_Complete:
4509  Out << "D1";
4510  break;
4511  case Dtor_Base:
4512  Out << "D2";
4513  break;
4514  case Dtor_Comdat:
4515  Out << "D5";
4516  break;
4517  }
4518 }
4519 
4520 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
4521  unsigned NumTemplateArgs) {
4522  // <template-args> ::= I <template-arg>+ E
4523  Out << 'I';
4524  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4525  mangleTemplateArg(TemplateArgs[i].getArgument());
4526  Out << 'E';
4527 }
4528 
4529 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
4530  // <template-args> ::= I <template-arg>+ E
4531  Out << 'I';
4532  for (unsigned i = 0, e = AL.size(); i != e; ++i)
4533  mangleTemplateArg(AL[i]);
4534  Out << 'E';
4535 }
4536 
4537 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
4538  unsigned NumTemplateArgs) {
4539  // <template-args> ::= I <template-arg>+ E
4540  Out << 'I';
4541  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4542  mangleTemplateArg(TemplateArgs[i]);
4543  Out << 'E';
4544 }
4545 
4546 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
4547  // <template-arg> ::= <type> # type or template
4548  // ::= X <expression> E # expression
4549  // ::= <expr-primary> # simple expressions
4550  // ::= J <template-arg>* E # argument pack
4551  if (!A.isInstantiationDependent() || A.isDependent())
4552  A = Context.getASTContext().getCanonicalTemplateArgument(A);
4553 
4554  switch (A.getKind()) {
4556  llvm_unreachable("Cannot mangle NULL template argument");
4557 
4559  mangleType(A.getAsType());
4560  break;
4562  // This is mangled as <type>.
4563  mangleType(A.getAsTemplate());
4564  break;
4566  // <type> ::= Dp <type> # pack expansion (C++0x)
4567  Out << "Dp";
4568  mangleType(A.getAsTemplateOrTemplatePattern());
4569  break;
4571  // It's possible to end up with a DeclRefExpr here in certain
4572  // dependent cases, in which case we should mangle as a
4573  // declaration.
4574  const Expr *E = A.getAsExpr()->IgnoreParenImpCasts();
4575  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4576  const ValueDecl *D = DRE->getDecl();
4577  if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
4578  Out << 'L';
4579  mangle(D);
4580  Out << 'E';
4581  break;
4582  }
4583  }
4584 
4585  Out << 'X';
4586  mangleExpression(E);
4587  Out << 'E';
4588  break;
4589  }
4591  mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
4592  break;
4594  // <expr-primary> ::= L <mangled-name> E # external name
4595  // Clang produces AST's where pointer-to-member-function expressions
4596  // and pointer-to-function expressions are represented as a declaration not
4597  // an expression. We compensate for it here to produce the correct mangling.
4598  ValueDecl *D = A.getAsDecl();
4599  bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
4600  if (compensateMangling) {
4601  Out << 'X';
4602  mangleOperatorName(OO_Amp, 1);
4603  }
4604 
4605  Out << 'L';
4606  // References to external entities use the mangled name; if the name would
4607  // not normally be mangled then mangle it as unqualified.
4608  mangle(D);
4609  Out << 'E';
4610 
4611  if (compensateMangling)
4612  Out << 'E';
4613 
4614  break;
4615  }
4617  // <expr-primary> ::= L <type> 0 E
4618  Out << 'L';
4619  mangleType(A.getNullPtrType());
4620  Out << "0E";
4621  break;
4622  }
4623  case TemplateArgument::Pack: {
4624  // <template-arg> ::= J <template-arg>* E
4625  Out << 'J';
4626  for (const auto &P : A.pack_elements())
4627  mangleTemplateArg(P);
4628  Out << 'E';
4629  }
4630  }
4631 }
4632 
4633 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
4634  // <template-param> ::= T_ # first template parameter
4635  // ::= T <parameter-2 non-negative number> _
4636  // ::= TL <L-1 non-negative number> __
4637  // ::= TL <L-1 non-negative number> _
4638  // <parameter-2 non-negative number> _
4639  //
4640  // The latter two manglings are from a proposal here:
4641  // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
4642  Out << 'T';
4643  if (Depth != 0)
4644  Out << 'L' << (Depth - 1) << '_';
4645  if (Index != 0)
4646  Out << (Index - 1);
4647  Out << '_';
4648 }
4649 
4650 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
4651  if (SeqID == 1)
4652  Out << '0';
4653  else if (SeqID > 1) {
4654  SeqID--;
4655 
4656  // <seq-id> is encoded in base-36, using digits and upper case letters.
4657  char Buffer[7]; // log(2**32) / log(36) ~= 7
4658  MutableArrayRef<char> BufferRef(Buffer);
4659  MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
4660 
4661  for (; SeqID != 0; SeqID /= 36) {
4662  unsigned C = SeqID % 36;
4663  *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
4664  }
4665 
4666  Out.write(I.base(), I - BufferRef.rbegin());
4667  }
4668  Out << '_';
4669 }
4670 
4671 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
4672  bool result = mangleSubstitution(tname);
4673  assert(result && "no existing substitution for template name");
4674  (void) result;
4675 }
4676 
4677 // <substitution> ::= S <seq-id> _
4678 // ::= S_
4679 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
4680  // Try one of the standard substitutions first.
4681  if (mangleStandardSubstitution(ND))
4682  return true;
4683 
4684  ND = cast<NamedDecl>(ND->getCanonicalDecl());
4685  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
4686 }
4687 
4688 /// Determine whether the given type has any qualifiers that are relevant for
4689 /// substitutions.
4691  Qualifiers Qs = T.getQualifiers();
4692  return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
4693 }
4694 
4695 bool CXXNameMangler::mangleSubstitution(QualType T) {
4697  if (const RecordType *RT = T->getAs<RecordType>())
4698  return mangleSubstitution(RT->getDecl());
4699  }
4700 
4701  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4702 
4703  return mangleSubstitution(TypePtr);
4704 }
4705 
4706 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
4707  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4708  return mangleSubstitution(TD);
4709 
4710  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4711  return mangleSubstitution(
4712  reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4713 }
4714 
4715 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
4716  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
4717  if (I == Substitutions.end())
4718  return false;
4719 
4720  unsigned SeqID = I->second;
4721  Out << 'S';
4722  mangleSeqID(SeqID);
4723 
4724  return true;
4725 }
4726 
4727 static bool isCharType(QualType T) {
4728  if (T.isNull())
4729  return false;
4730 
4731  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
4732  T->isSpecificBuiltinType(BuiltinType::Char_U);
4733 }
4734 
4735 /// Returns whether a given type is a template specialization of a given name
4736 /// with a single argument of type char.
4737 static bool isCharSpecialization(QualType T, const char *Name) {
4738  if (T.isNull())
4739  return false;
4740 
4741  const RecordType *RT = T->getAs<RecordType>();
4742  if (!RT)
4743  return false;
4744 
4746  dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
4747  if (!SD)
4748  return false;
4749 
4750  if (!isStdNamespace(getEffectiveDeclContext(SD)))
4751  return false;
4752 
4753  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4754  if (TemplateArgs.size() != 1)
4755  return false;
4756 
4757  if (!isCharType(TemplateArgs[0].getAsType()))
4758  return false;
4759 
4760  return SD->getIdentifier()->getName() == Name;
4761 }
4762 
4763 template <std::size_t StrLen>
4765  const char (&Str)[StrLen]) {
4766  if (!SD->getIdentifier()->isStr(Str))
4767  return false;
4768 
4769  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4770  if (TemplateArgs.size() != 2)
4771  return false;
4772 
4773  if (!isCharType(TemplateArgs[0].getAsType()))
4774  return false;
4775 
4776  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4777  return false;
4778 
4779  return true;
4780 }
4781 
4782 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
4783  // <substitution> ::= St # ::std::
4784  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
4785  if (isStd(NS)) {
4786  Out << "St";
4787  return true;
4788  }
4789  }
4790 
4791  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
4792  if (!isStdNamespace(getEffectiveDeclContext(TD)))
4793  return false;
4794 
4795  // <substitution> ::= Sa # ::std::allocator
4796  if (TD->getIdentifier()->isStr("allocator")) {
4797  Out << "Sa";
4798  return true;
4799  }
4800 
4801  // <<substitution> ::= Sb # ::std::basic_string
4802  if (TD->getIdentifier()->isStr("basic_string")) {
4803  Out << "Sb";
4804  return true;
4805  }
4806  }
4807 
4808  if (const ClassTemplateSpecializationDecl *SD =
4809  dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
4810  if (!isStdNamespace(getEffectiveDeclContext(SD)))
4811  return false;
4812 
4813  // <substitution> ::= Ss # ::std::basic_string<char,
4814  // ::std::char_traits<char>,
4815  // ::std::allocator<char> >
4816  if (SD->getIdentifier()->isStr("basic_string")) {
4817  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4818 
4819  if (TemplateArgs.size() != 3)
4820  return false;
4821 
4822  if (!isCharType(TemplateArgs[0].getAsType()))
4823  return false;
4824 
4825  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4826  return false;
4827 
4828  if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
4829  return false;
4830 
4831  Out << "Ss";
4832  return true;
4833  }
4834 
4835  // <substitution> ::= Si # ::std::basic_istream<char,
4836  // ::std::char_traits<char> >
4837  if (isStreamCharSpecialization(SD, "basic_istream")) {
4838  Out << "Si";
4839  return true;
4840  }
4841 
4842  // <substitution> ::= So # ::std::basic_ostream<char,
4843  // ::std::char_traits<char> >
4844  if (isStreamCharSpecialization(SD, "basic_ostream")) {
4845  Out << "So";
4846  return true;
4847  }
4848 
4849  // <substitution> ::= Sd # ::std::basic_iostream<char,
4850  // ::std::char_traits<char> >
4851  if (isStreamCharSpecialization(SD, "basic_iostream")) {
4852  Out << "Sd";
4853  return true;
4854  }
4855  }
4856  return false;
4857 }
4858 
4859 void CXXNameMangler::addSubstitution(QualType T) {
4861  if (const RecordType *RT = T->getAs<RecordType>()) {
4862  addSubstitution(RT->getDecl());
4863  return;
4864  }
4865  }
4866 
4867  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4868  addSubstitution(TypePtr);
4869 }
4870 
4871 void CXXNameMangler::addSubstitution(TemplateName Template) {
4872  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4873  return addSubstitution(TD);
4874 
4875  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4876  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4877 }
4878 
4879 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
4880  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
4881  Substitutions[Ptr] = SeqID++;
4882 }
4883 
4884 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
4885  assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
4886  if (Other->SeqID > SeqID) {
4887  Substitutions.swap(Other->Substitutions);
4888  SeqID = Other->SeqID;
4889  }
4890 }
4891 
4892 CXXNameMangler::AbiTagList
4893 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
4894  // When derived abi tags are disabled there is no need to make any list.
4895  if (DisableDerivedAbiTags)
4896  return AbiTagList();
4897 
4898  llvm::raw_null_ostream NullOutStream;
4899  CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
4900  TrackReturnTypeTags.disableDerivedAbiTags();
4901 
4902  const FunctionProtoType *Proto =
4903  cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
4904  FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
4905  TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
4906  TrackReturnTypeTags.mangleType(Proto->getReturnType());
4907  TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
4908  TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
4909 
4910  return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4911 }
4912 
4913 CXXNameMangler::AbiTagList
4914 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
4915  // When derived abi tags are disabled there is no need to make any list.
4916  if (DisableDerivedAbiTags)
4917  return AbiTagList();
4918 
4919  llvm::raw_null_ostream NullOutStream;
4920  CXXNameMangler TrackVariableType(*this, NullOutStream);
4921  TrackVariableType.disableDerivedAbiTags();
4922 
4923  TrackVariableType.mangleType(VD->getType());
4924 
4925  return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4926 }
4927 
4928 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
4929  const VarDecl *VD) {
4930  llvm::raw_null_ostream NullOutStream;
4931  CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
4932  TrackAbiTags.mangle(VD);
4933  return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
4934 }
4935 
4936 //
4937 
4938 /// Mangles the name of the declaration D and emits that name to the given
4939 /// output stream.
4940 ///
4941 /// If the declaration D requires a mangled name, this routine will emit that
4942 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
4943 /// and this routine will return false. In this case, the caller should just
4944 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
4945 /// name.
4946 void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
4947  raw_ostream &Out) {
4948  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
4949  "Invalid mangleName() call, argument is not a variable or function!");
4950  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
4951  "Invalid mangleName() call on 'structor decl!");
4952 
4953  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
4954  getASTContext().getSourceManager(),
4955  "Mangling declaration");
4956 
4957  CXXNameMangler Mangler(*this, Out, D);
4958  Mangler.mangle(D);
4959 }
4960 
4961 void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
4962  CXXCtorType Type,
4963  raw_ostream &Out) {
4964  CXXNameMangler Mangler(*this, Out, D, Type);
4965  Mangler.mangle(D);
4966 }
4967 
4968 void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
4969  CXXDtorType Type,
4970  raw_ostream &Out) {
4971  CXXNameMangler Mangler(*this, Out, D, Type);
4972  Mangler.mangle(D);
4973 }
4974 
4975 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
4976  raw_ostream &Out) {
4977  CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
4978  Mangler.mangle(D);
4979 }
4980 
4981 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
4982  raw_ostream &Out) {
4983  CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
4984  Mangler.mangle(D);
4985 }
4986 
4987 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
4988  const ThunkInfo &Thunk,
4989  raw_ostream &Out) {
4990  // <special-name> ::= T <call-offset> <base encoding>
4991  // # base is the nominal target function of thunk
4992  // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
4993  // # base is the nominal target function of thunk
4994  // # first call-offset is 'this' adjustment
4995  // # second call-offset is result adjustment
4996 
4997  assert(!isa<CXXDestructorDecl>(MD) &&
4998  "Use mangleCXXDtor for destructor decls!");
4999  CXXNameMangler Mangler(*this, Out);
5000  Mangler.getStream() << "_ZT";
5001  if (!Thunk.Return.isEmpty())
5002  Mangler.getStream() << 'c';
5003 
5004  // Mangle the 'this' pointer adjustment.
5005  Mangler.mangleCallOffset(Thunk.This.NonVirtual,
5007 
5008  // Mangle the return pointer adjustment if there is one.
5009  if (!Thunk.Return.isEmpty())
5010  Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
5012 
5013  Mangler.mangleFunctionEncoding(MD);
5014 }
5015 
5016 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
5017  const CXXDestructorDecl *DD, CXXDtorType Type,
5018  const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
5019  // <special-name> ::= T <call-offset> <base encoding>
5020  // # base is the nominal target function of thunk
5021  CXXNameMangler Mangler(*this, Out, DD, Type);
5022  Mangler.getStream() << "_ZT";
5023 
5024  // Mangle the 'this' pointer adjustment.
5025  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
5026  ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
5027 
5028  Mangler.mangleFunctionEncoding(DD);
5029 }
5030 
5031 /// Returns the mangled name for a guard variable for the passed in VarDecl.
5032 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
5033  raw_ostream &Out) {
5034  // <special-name> ::= GV <object name> # Guard variable for one-time
5035  // # initialization
5036  CXXNameMangler Mangler(*this, Out);
5037  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
5038  // be a bug that is fixed in trunk.
5039  Mangler.getStream() << "_ZGV";
5040  Mangler.mangleName(D);
5041 }
5042 
5043 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
5044  raw_ostream &Out) {
5045  // These symbols are internal in the Itanium ABI, so the names don't matter.
5046  // Clang has traditionally used this symbol and allowed LLVM to adjust it to
5047  // avoid duplicate symbols.
5048  Out << "__cxx_global_var_init";
5049 }
5050 
5051 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
5052  raw_ostream &Out) {
5053  // Prefix the mangling of D with __dtor_.
5054  CXXNameMangler Mangler(*this, Out);
5055  Mangler.getStream() << "__dtor_";
5056  if (shouldMangleDeclName(D))
5057  Mangler.mangle(D);
5058  else
5059  Mangler.getStream() << D->getName();
5060 }
5061 
5062 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
5063  const NamedDecl *EnclosingDecl, raw_ostream &Out) {
5064  CXXNameMangler Mangler(*this, Out);
5065  Mangler.getStream() << "__filt_";
5066  if (shouldMangleDeclName(EnclosingDecl))
5067  Mangler.mangle(EnclosingDecl);
5068  else
5069  Mangler.getStream() << EnclosingDecl->getName();
5070 }
5071 
5072 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
5073  const NamedDecl *EnclosingDecl, raw_ostream &Out) {
5074  CXXNameMangler Mangler(*this, Out);
5075  Mangler.getStream() << "__fin_";
5076  if (shouldMangleDeclName(EnclosingDecl))
5077  Mangler.mangle(EnclosingDecl);
5078  else
5079  Mangler.getStream() << EnclosingDecl->getName();
5080 }
5081 
5082 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
5083  raw_ostream &Out) {
5084  // <special-name> ::= TH <object name>
5085  CXXNameMangler Mangler(*this, Out);
5086  Mangler.getStream() << "_ZTH";
5087  Mangler.mangleName(D);
5088 }
5089 
5090 void
5091 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
5092  raw_ostream &Out) {
5093  // <special-name> ::= TW <object name>
5094  CXXNameMangler Mangler(*this, Out);
5095  Mangler.getStream() << "_ZTW";
5096  Mangler.mangleName(D);
5097 }
5098 
5099 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
5100  unsigned ManglingNumber,
5101  raw_ostream &Out) {
5102  // We match the GCC mangling here.
5103  // <special-name> ::= GR <object name>
5104  CXXNameMangler Mangler(*this, Out);
5105  Mangler.getStream() << "_ZGR";
5106  Mangler.mangleName(D);
5107  assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
5108  Mangler.mangleSeqID(ManglingNumber - 1);
5109 }
5110 
5111 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
5112  raw_ostream &Out) {
5113  // <special-name> ::= TV <type> # virtual table
5114  CXXNameMangler Mangler(*this, Out);
5115  Mangler.getStream() << "_ZTV";
5116  Mangler.mangleNameOrStandardSubstitution(RD);
5117 }
5118 
5119 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
5120  raw_ostream &Out) {
5121  // <special-name> ::= TT <type> # VTT structure
5122  CXXNameMangler Mangler(*this, Out);
5123  Mangler.getStream() << "_ZTT";
5124  Mangler.mangleNameOrStandardSubstitution(RD);
5125 }
5126 
5127 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
5128  int64_t Offset,
5129  const CXXRecordDecl *Type,
5130  raw_ostream &Out) {
5131  // <special-name> ::= TC <type> <offset number> _ <base type>
5132  CXXNameMangler Mangler(*this, Out);
5133  Mangler.getStream() << "_ZTC";
5134  Mangler.mangleNameOrStandardSubstitution(RD);
5135  Mangler.getStream() << Offset;
5136  Mangler.getStream() << '_';
5137  Mangler.mangleNameOrStandardSubstitution(Type);
5138 }
5139 
5140 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
5141  // <special-name> ::= TI <type> # typeinfo structure
5142  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
5143  CXXNameMangler Mangler(*this, Out);
5144  Mangler.getStream() << "_ZTI";
5145  Mangler.mangleType(Ty);
5146 }
5147 
5148 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
5149  raw_ostream &Out) {
5150  // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
5151  CXXNameMangler Mangler(*this, Out);
5152  Mangler.getStream() << "_ZTS";
5153  Mangler.mangleType(Ty);
5154 }
5155 
5156 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
5157  mangleCXXRTTIName(Ty, Out);
5158 }
5159 
5160 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
5161  llvm_unreachable("Can't mangle string literals");
5162 }
5163 
5164 void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
5165  raw_ostream &Out) {
5166  CXXNameMangler Mangler(*this, Out);
5167  Mangler.mangleLambdaSig(Lambda);
5168 }
5169 
5172  return new ItaniumMangleContextImpl(Context, Diags);
5173 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
QualType getPattern() const
Retrieve the pattern of this pack expansion, which is the type that will be repeatedly instantiated w...
Definition: Type.h:5532
Defines the clang::ASTContext interface.
QualType getDeducedType() const
Get the type deduced for this placeholder type, or null if it&#39;s either not been deduced or was deduce...
Definition: Type.h:4859
const Type * Ty
The locally-unqualified type.
Definition: Type.h:595
unsigned getNumDecls() const
Gets the number of declarations in the unresolved set.
Definition: ExprCXX.h:2947
Represents a function declaration or definition.
Definition: Decl.h:1783
std::string Name
The name of this module.
Definition: Module.h:67
Expr * getLHS() const
Definition: Expr.h:3780
The "enum" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5220
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this __uuidof() expression after various required adjustments (removing...
Definition: ExprCXX.cpp:154
RangeSelector member(std::string ID)
Given a MemberExpr, selects the member token.
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2614
RefQualifierKind getRefQualifier() const
Retrieve the ref-qualifier associated with this function type.
Definition: Type.h:4112
Complete object ctor.
Definition: ABI.h:25
void * getAsVoidPointer() const
Retrieve the template name as a void pointer.
Definition: TemplateName.h:332
QualType getPointeeType() const
Definition: Type.h:2627
Represents the dependent type named by a dependently-scoped typename using declaration, e.g.
Definition: Type.h:4210
A (possibly-)qualified type.
Definition: Type.h:654
OverloadedOperatorKind getOperator() const
Return the overloaded operator to which this template name refers.
Definition: TemplateName.h:518
bool isArrayType() const
Definition: Type.h:6570
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2919
Attempt to be ABI-compatible with code generated by Clang 6.0.x (SVN r321711).
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2702
static const TemplateArgument & getArgument(const TemplateArgument &A)
QualType getInjectedSpecializationType() const
Definition: Type.h:5166
NestedNameSpecifier * getQualifier() const
Return the nested name specifier that qualifies this name.
Definition: TemplateName.h:502
const Expr * getSubExpr() const
Definition: ExprCXX.h:1162
__auto_type (GNU extension)
VarDecl * getParameterPack() const
Get the parameter pack which this expression refers to.
Definition: ExprCXX.h:4366
The COMDAT used for ctors.
Definition: ABI.h:27
BinaryOperatorKind Opcode
The original opcode, prior to rewriting.
Definition: ExprCXX.h:298
const Expr * getInit(unsigned Init) const
Definition: Expr.h:4451
bool isListInitialization() const
Determine whether this expression models list-initialization.
Definition: ExprCXX.h:3444
Expr * getUnderlyingExpr() const
Definition: Type.h:4380
bool isDependent() const
Whether this template argument is dependent on a template parameter such that its result can change f...
Module * getOwningModuleForLinkage(bool IgnoreLinkage=false) const
Get the module that owns this declaration for linkage purposes.
Definition: Decl.cpp:1511
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2689
Kind getKind() const
Definition: Type.h:2495
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3422
bool isMain() const
Determines whether this function is "main", which is the entry point into an executable program...
Definition: Decl.cpp:2926
bool hasExtParameterInfos() const
Is there any interesting extra information for any of the parameters of this function type...
Definition: Type.h:4148
TemplateArgumentLoc const * getTemplateArgs() const
Definition: ExprCXX.h:3253
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:2941
Defines the SourceManager interface.
Microsoft&#39;s &#39;__super&#39; specifier, stored as a CXXRecordDecl* of the class it appeared in...
Represents a qualified type name for which the type name is dependent.
Definition: Type.h:5368
The template argument is an expression, and we&#39;ve not resolved it to one of the other forms yet...
Definition: TemplateBase.h:86
Expr * getBase() const
Definition: Expr.h:2913
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:299
NestedNameSpecifier * getQualifier() const
Retrieve the qualification on this type.
Definition: Type.h:5387
bool isEmpty() const
Definition: ABI.h:86
bool isDecltypeAuto() const
Definition: Type.h:4916
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
bool isVariadic() const
Whether this function prototype is variadic.
Definition: Type.h:4086
TagDecl * getDecl() const
Definition: Type.cpp:3296
static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl *SD, const char(&Str)[StrLen])
llvm::APFloat getValue() const
Definition: Expr.h:1597
A reference to a name which we were able to look up during parsing but could not resolve to a specifi...
Definition: ExprCXX.h:3037
NestedNameSpecifier * getPrefix() const
Return the prefix of this nested name specifier.
Defines the C++ template declaration subclasses.
Opcode getOpcode() const
Definition: Expr.h:3469
StringRef P
OverloadedOperatorKind getCXXOverloadedOperator() const
If this name is the name of an overloadable operator in C++ (e.g., operator+), retrieve the kind of o...
NamedDecl * getTemplatedDecl() const
Get the underlying, templated declaration.
Definition: DeclTemplate.h:434
Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained by a type-constraint.
Definition: Type.h:4874
unsigned getBlockManglingNumber() const
Definition: Decl.h:4203
The base class of the type hierarchy.
Definition: Type.h:1450
NestedNameSpecifier * getQualifier() const
Retrieve the nested-name-specifier that qualifies this declaration.
Definition: ExprCXX.h:3211
int64_t NonVirtual
The non-virtual adjustment from the derived object to its nearest virtual base.
Definition: ABI.h:110
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1300
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:63
Represent a C++ namespace.
Definition: Decl.h:497
bool isArrayRangeDesignator() const
Definition: Designator.h:71
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1422
static bool isParenthesizedADLCallee(const CallExpr *call)
Look at the callee of the given call expression and determine if it&#39;s a parenthesized id-expression w...
ArrayRef< NamedDecl * > getLambdaExplicitTemplateParameters() const
Retrieve the lambda template parameters that were specified explicitly.
Definition: DeclCXX.cpp:1482
A container of type source information.
Definition: Type.h:6227
const Expr * RHS
The original right-hand side.
Definition: ExprCXX.h:302
QualType getValueType() const
Gets the type contained by this atomic type, i.e.
Definition: Type.h:6140
SourceLocation getAttributeLoc() const
Definition: Type.h:3327
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2383
A template template parameter that has been substituted for some other template name.
Definition: TemplateName.h:223
Default closure variant of a ctor.
Definition: ABI.h:29
QualType getElementType() const
Definition: Type.h:2910
const Expr * getSubExpr() const
Definition: Expr.h:1674
const IdentifierInfo * getIdentifier() const
Returns the identifier to which this template name refers.
Definition: TemplateName.h:508
TemplateName getTemplateName() const
Retrieve the name of the template that we are deducing.
Definition: Type.h:4958
An identifier, stored as an IdentifierInfo*.
unsigned getDepth() const
Get the nesting depth of the template parameter.
Represents a variable declaration or definition.
Definition: Decl.h:820
void removeObjCLifetime()
Definition: Type.h:339
unsigned getNumParams() const
Definition: Type.h:3964
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:7002
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:56
LangAS
Defines the address space values used by the address space qualifier of QualType. ...
Definition: AddressSpaces.h:25
Represents a C++17 deduced template specialization type.
Definition: Type.h:4940
A this pointer adjustment.
Definition: ABI.h:107
QualifiedTemplateName * getAsQualifiedTemplateName() const
Retrieve the underlying qualified template name structure, if any.
Represents a variable template specialization, which refers to a variable template with a given set o...
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:138
A namespace, stored as a NamespaceDecl*.
DeclarationName getName() const
Gets the name looked up.
Definition: ExprCXX.h:2953
bool requiresADL() const
True if this declaration should be extended by argument-dependent lookup.
Definition: ExprCXX.h:3105
SpecifierKind getKind() const
Determine what kind of nested name specifier is stored.
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:1140
Expr * getExprOperand() const
Definition: ExprCXX.h:821
Represents a parameter to a function.
Definition: Decl.h:1595
Defines the clang::Expr interface and subclasses for C++ expressions.
QualType getIntegralType() const
Retrieve the type of the integral value.
Definition: TemplateBase.h:314
static const TemplateDecl * isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs)
The collection of all-type qualifiers we support.
Definition: Type.h:143
PipeType - OpenCL20.
Definition: Type.h:6159
Expr * getExprOperand() const
Definition: ExprCXX.h:1046
SubstTemplateTemplateParmStorage * getAsSubstTemplateTemplateParm() const
Retrieve the substituted template template parameter, if known.
const char * getStmtClassName() const
Definition: Stmt.cpp:76
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:244
Represents a struct/union/class.
Definition: Decl.h:3748
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the class template specialization.
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:272
Linkage getFormalLinkage() const
Get the linkage from a semantic point of view.
Definition: Decl.h:353
Represents a class template specialization, which refers to a class template with a given set of temp...
One of these records is kept for each identifier that is lexed.
bool isNothrow(bool ResultIfDependent=false) const
Determine whether this function type has a non-throwing exception specification.
Definition: Type.h:4081
bool isInAnonymousNamespace() const
Definition: DeclBase.cpp:347
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
Represents a class type in Objective C.
Definition: Type.h:5694
void removeRestrict()
Definition: Type.h:272
QualType getPointeeType() const
Definition: Type.h:2731
Expr * getAsExpr() const
Retrieve the template argument as an expression.
Definition: TemplateBase.h:329
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:168
is ARM Neon vector
Definition: Type.h:3251
Represents a dependent template name that cannot be resolved prior to template instantiation.
Definition: TemplateName.h:446
NamespaceDecl * getNamespace()
Retrieve the namespace declaration aliased by this directive.
Definition: DeclCXX.h:3040
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:71
Used for GCC&#39;s __alignof.
Definition: TypeTraits.h:106
TemplateDecl * getAsTemplateDecl() const
Retrieve the underlying template declaration that this template name refers to, if known...
NameKind getNameKind() const
Determine what kind of name this is.
Represents a member of a struct/union/class.
Definition: Decl.h:2729
TemplateName getTemplateName() const
Retrieve the name of the template that we are specializing.
Definition: Type.h:5059
const Type * getAsType() const
Retrieve the type stored in this nested name specifier.
Expr * getBase()
Retrieve the base object of this member expressions, e.g., the x in x.m.
Definition: ExprCXX.h:3848
const llvm::APSInt & getInitVal() const
Definition: Decl.h:2962
bool isNamespace() const
Definition: DeclBase.h:1868
unsigned getFunctionScopeIndex() const
Returns the index of this parameter in its prototype or method scope.
Definition: Decl.h:1652
SubstTemplateTemplateParmStorage * getAsSubstTemplateTemplateParm()
Definition: TemplateName.h:89
bool isReferenceType() const
Definition: Type.h:6516
Represents the result of substituting a set of types for a template type parameter pack...
Definition: Type.h:4784
bool isSpecificBuiltinType(unsigned K) const
Test for a particular builtin type.
Definition: Type.h:6744
Expr * getArg(unsigned I)
Definition: ExprCXX.h:3465
Represents a C++ member access expression for which lookup produced a set of overloaded functions...
Definition: ExprCXX.h:3771
Expr * getSubExpr()
Definition: Expr.h:3202
The this pointer adjustment as well as an optional return adjustment for a thunk. ...
Definition: ABI.h:178
TypeSourceInfo * getLambdaTypeInfo() const
Definition: DeclCXX.h:1771
QualType getParamTypeForDecl() const
Definition: TemplateBase.h:268
Describes a module or submodule.
Definition: Module.h:64
bool getProducesResult() const
Definition: Type.h:3580
Describes an C or C++ initializer list.
Definition: Expr.h:4403
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:764
This parameter (which must have pointer type) uses the special Swift context-pointer ABI treatment...
An rvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2815
UnresolvedUsingTypenameDecl * getDecl() const
Definition: Type.h:4221
IdentifierInfo * getAsIdentifier() const
Retrieve the identifier stored in this nested name specifier.
A qualified template name, where the qualification is kept to describe the source code as written...
Definition: TemplateName.h:215
An lvalue ref-qualifier was provided (&).
Definition: Type.h:1406
Base object ctor.
Definition: ABI.h:26
static ItaniumMangleContext * create(ASTContext &Context, DiagnosticsEngine &Diags)
bool isGlobalNew() const
Definition: ExprCXX.h:2259
ArrayRef< QualType > getTypeArgs() const
Retrieve the type arguments of this object type (semantically).
Definition: Type.cpp:716
bool hasAddressSpace() const
Definition: Type.h:358
An unqualified-id that has been assumed to name a function template that will be found by ADL...
Definition: TemplateName.h:211
The "struct" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5208
QualType getNullPtrType() const
Retrieve the type for null non-type template argument.
Definition: TemplateBase.h:274
Expr * getInitializer()
The initializer of this new-expression.
Definition: ExprCXX.h:2275
Deleting dtor.
Definition: ABI.h:34
static bool isStdNamespace(const DeclContext *DC)
NamespaceAliasDecl * getAsNamespaceAlias() const
Retrieve the namespace alias stored in this nested name specifier.
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
Represents a typeof (or typeof) expression (a GCC extension).
Definition: Type.h:4300
unsigned getNumTemplateArgs() const
Retrieve the number of template arguments provided as part of this template-id.
Definition: ExprCXX.h:3713
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3434
LangAS getAddressSpace() const
Definition: Type.h:359
const Type * getClass() const
Definition: Type.h:2867
RangeSelector name(std::string ID)
Given a node with a "name", (like NamedDecl, DeclRefExpr or CxxCtorInitializer) selects the name&#39;s to...
bool isArrow() const
Definition: Expr.h:3020
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition: DeclCXX.h:960
Expr * getSizeExpr() const
Definition: Type.h:3058
const TemplateArgument * getArgs() const
Retrieve the template arguments.
Definition: Type.h:5062
unsigned getIndex() const
Get the index of the template parameter within its parameter list.
NestedNameSpecifier * getQualifier() const
Fetches the nested-name qualifier, if one was given.
Definition: ExprCXX.h:2959
Enums/classes describing ABI related information about constructors, destructors and thunks...
bool isInstantiationDependent() const
Whether this template argument is dependent on a template parameter.
virtual const char * getLongDoubleMangling() const
Return the mangled code of long double.
Definition: TargetInfo.h:606
void * getAsOpaquePtr() const
Definition: Type.h:699
DeclarationName getDeclName() const
Retrieve the name that this expression refers to.
Definition: ExprCXX.h:3198
Represents a C++ member access expression where the actual member referenced could not be resolved be...
Definition: ExprCXX.h:3511
is ARM Neon polynomial vector
Definition: Type.h:3254
bool hasConst() const
Definition: Type.h:260
Expr * getSizeExpr() const
Definition: Type.h:3115
unsigned getLength() const
Efficiently return the length of this identifier info.
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:877
bool isTypeOperand() const
Definition: ExprCXX.h:1029
Expr * getSizeExpr() const
Definition: Type.h:3325
QualType getElementType() const
Definition: Type.h:3211
arg_iterator placement_arg_end()
Definition: ExprCXX.h:2316
This parameter (which must have pointer-to-pointer type) uses the special Swift error-result ABI trea...
bool isAnonymousStructOrUnion() const
Whether this is an anonymous struct or union.
Definition: Decl.h:3821
Represents an extended vector type where either the type or size is dependent.
Definition: Type.h:3195
This object can be modified without requiring retains or releases.
Definition: Type.h:164
NamedDecl * getFirstQualifierFoundInScope() const
Retrieve the first part of the nested-name-specifier that was found in the scope of the member access...
Definition: ExprCXX.h:3645
DeclarationName getMemberName() const
Retrieve the name of the member that this expression refers to.
Definition: ExprCXX.h:3883
bool isArrayForm() const
Definition: ExprCXX.h:2386
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3653
Represents a K&R-style &#39;int foo()&#39; function, which has no information available about its arguments...
Definition: Type.h:3717
Expr * getAddrSpaceExpr() const
Definition: Type.h:3166
NodeId Parent
Definition: ASTDiff.cpp:191
bool isExternC() const
Determines whether this variable is a variable with external, C linkage.
Definition: Decl.cpp:2076
llvm::StringRef getParameterABISpelling(ParameterABI kind)
unsigned getLambdaManglingNumber() const
If this is the closure type of a lambda expression, retrieve the number to be used for name mangling ...
Definition: DeclCXX.h:1705
bool hasAttr() const
Definition: DeclBase.h:542
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3732
QualType getBaseType() const
Gets the base type of this object type.
Definition: Type.h:5757
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3754
NestedNameSpecifier * getQualifier() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name...
Definition: Expr.h:2947
qual_range quals() const
Definition: Type.h:5594
const TemplateArgumentLoc * getTemplateArgs() const
Retrieve the template arguments provided as part of this template-id.
Definition: ExprCXX.h:3704
A dependent template name that has not been resolved to a template (or set of templates).
Definition: TemplateName.h:219
UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) expression operand...
Definition: Expr.h:2372
union clang::ReturnAdjustment::VirtualAdjustment Virtual
bool hasQualifiers() const
Determine whether this type has any qualifiers.
Definition: Type.h:6331
ValueDecl * getAsDecl() const
Retrieve the declaration for a declaration non-type template argument.
Definition: TemplateBase.h:263
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
bool isImplicitAccess() const
True if this is an implicit access, i.e.
Definition: ExprCXX.h:3601
unsigned Offset
Definition: Format.cpp:1827
Exposes information about the current target.
Definition: TargetInfo.h:164
Represents an array type in C++ whose size is a value-dependent expression.
Definition: Type.h:3093
CXXDtorType
C++ destructor types.
Definition: ABI.h:33
Expr * getCond() const
Definition: Expr.h:3769
QualType getElementType() const
Definition: Type.h:2567
QualType getCXXNameType() const
If this name is one of the C++ names (of a constructor, destructor, or conversion function)...
unsigned getNumArgs() const
Retrieve the number of template arguments.
Definition: Type.h:5455
unsigned getFunctionScopeDepth() const
Definition: Decl.h:1642
Represents a block literal declaration, which is like an unnamed FunctionDecl.
Definition: Decl.h:4037
NamespaceDecl * getAsNamespace() const
Retrieve the namespace stored in this nested name specifier.
const FieldDecl * findFirstNamedDataMember() const
Finds the first data member which has a name.
Definition: Decl.cpp:4517
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:619
This represents one expression.
Definition: Expr.h:108
static const DeclContext * IgnoreLinkageSpecDecls(const DeclContext *DC)
QualType getPointeeType() const
Definition: Type.h:2771
TemplateDecl * getTemplateDecl() const
The template declaration to which this qualified name refers.
Definition: TemplateName.h:424
The "typename" keyword precedes the qualified type name, e.g., typename T::type.
Definition: Type.h:5224
TemplateArgumentLoc const * getTemplateArgs() const
Definition: ExprCXX.h:2997
bool isArrow() const
Determine whether this member expression used the &#39;->&#39; operator; otherwise, it used the &#39;...
Definition: ExprCXX.h:3867
int Id
Definition: ASTDiff.cpp:190
Declaration of a template type parameter.
unsigned getIndex() const
Definition: Type.h:4691
bool isImplicitAccess() const
True if this is an implicit access, i.e., one in which the member being accessed was not written in t...
Definition: ExprCXX.cpp:1531
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:7067
The template argument is a null pointer or null pointer to member that was provided for a non-type te...
Definition: TemplateBase.h:67
#define V(N, I)
Definition: ASTContext.h:2941
__UINTPTR_TYPE__ uintptr_t
An unsigned integer type with the property that any valid pointer to void can be converted to this ty...
Definition: opencl-c-base.h:62
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2649
New-expression has a C++11 list-initializer.
Definition: ExprCXX.h:2160
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
Expr * getCallee()
Definition: Expr.h:2663
unsigned getNumInits() const
Definition: Expr.h:4433
bool isArrayDesignator() const
Definition: Designator.h:70
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition: Decl.cpp:3669
QualType getArgumentType() const
Definition: Expr.h:2409
ObjCLifetime getObjCLifetime() const
Definition: Type.h:333
unsigned getNumTemplateArgs() const
Definition: ExprCXX.h:3003
DeclContext * getDeclContext()
Definition: DeclBase.h:438
LanguageLinkage getLanguageLinkage() const
Compute the language linkage.
Definition: Decl.cpp:3071
A structure for storing the information associated with a substituted template template parameter...
Definition: TemplateName.h:349
QualType getBaseType() const
Definition: Type.h:4439
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)
Retrieve the overloaded operator kind that corresponds to the given unary opcode. ...
Definition: Expr.cpp:1318
const IdentifierInfo * getIdentifier() const
Retrieve the type named by the typename specifier as an identifier.
Definition: Type.h:5394
NonTypeTemplateParmDecl - Declares a non-type template parameter, e.g., "Size" in.
Represents a C++ template name within the type system.
Definition: TemplateName.h:191
Represents the type decltype(expr) (C++11).
Definition: Type.h:4370
decls_iterator decls_begin() const
Definition: ExprCXX.h:2936
static SVal getValue(SVal val, SValBuilder &svalBuilder)
Defines the clang::TypeLoc interface and its subclasses.
bool isIdentifier() const
Determine whether this template name refers to an identifier.
Definition: TemplateName.h:505
A namespace alias, stored as a NamespaceAliasDecl*.
int Depth
Definition: ASTDiff.cpp:190
IdentifierInfo * getAsIdentifierInfo() const
Retrieve the IdentifierInfo * stored in this declaration name, or null if this declaration name isn&#39;t...
A std::pair-like structure for storing a qualified type split into its local qualifiers and its local...
Definition: Type.h:593
static StringRef mangleAArch64VectorBase(const BuiltinType *EltType)
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char, signed char, short, int, long..], or an enum decl which has a signed representation.
Definition: Type.cpp:1928
Base object dtor.
Definition: ABI.h:36
QualType getType() const
Definition: Expr.h:137
bool isFunctionOrMethod() const
Definition: DeclBase.h:1836
A unary type transform, which is a type constructed from another.
Definition: Type.h:4413
bool isIdentifier() const
Predicate functions for querying what type of name this is.
Qualifiers Quals
The local qualifiers.
Definition: Type.h:598
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1784
bool hasInitializer() const
Whether this new-expression has any initializer at all.
Definition: ExprCXX.h:2262
bool hasInstantiationDependentExceptionSpec() const
Return whether this function has an instantiation-dependent exception spec.
Definition: Type.cpp:3089
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:2046
Represents a GCC generic vector type.
Definition: Type.h:3235
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this typeid() expression after various required adjustments (removing r...
Definition: ExprCXX.cpp:147
An lvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2797
TemplateTemplateParmDecl - Declares a template template parameter, e.g., "T" in.
UTTKind getUTTKind() const
Definition: Type.h:4441
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:719
Expr * getLHS()
An array access can be written A[4] or 4[A] (both are equivalent).
Definition: Expr.h:2497
The COMDAT used for dtors.
Definition: ABI.h:37
static StringRef getIdentifier(const Token &Tok)
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:265
ImaginaryLiteral - We support imaginary integer and floating point literals, like "1...
Definition: Expr.h:1662
AttrVec & getAttrs()
Definition: DeclBase.h:490
SplitQualType split() const
Divides a QualType into its unqualified type and a set of local qualifiers.
Definition: Type.h:6264
RecordDecl * getDecl() const
Definition: Type.h:4505
NestedNameSpecifier * getQualifier() const
Retrieve the nested-name-specifier that qualifies the member name.
Definition: ExprCXX.h:3626
int64_t NonVirtual
The non-virtual adjustment from the derived object to its nearest virtual base.
Definition: ABI.h:44
static bool hasMangledSubstitutionQualifiers(QualType T)
Determine whether the given type has any qualifiers that are relevant for substitutions.
Expr * getArgument()
Definition: ExprCXX.h:2401
A template template parameter pack that has been substituted for a template template argument pack...
Definition: TemplateName.h:228
bool isComputedNoexcept(ExceptionSpecificationType ESpecType)
There is no lifetime qualification on this type.
Definition: Type.h:160
OverloadedTemplateStorage * getAsOverloadedTemplate() const
Retrieve the underlying, overloaded function template declarations that this template name refers to...
is AltiVec &#39;vector Pixel&#39;
Definition: Type.h:3245
#define false
Definition: stdbool.h:17
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:171
Kind
QualType getCanonicalType() const
Definition: Type.h:6295
bool isBuiltinType() const
Helper methods to distinguish type categories.
Definition: Type.h:6590
bool isInstantiationDependent() const
Whether this expression is instantiation-dependent, meaning that it depends in some way on a template...
Definition: Expr.h:200
ExtParameterInfo getExtParameterInfo(unsigned I) const
Definition: Type.h:4167
bool isSpecialized() const
Determine whether this object type is "specialized", meaning that it has type arguments.
Definition: Type.cpp:698
ElaboratedTypeKeyword getKeyword() const
Definition: Type.h:5246
Encodes a location in the source.
const Expr * LHS
The original left-hand side.
Definition: ExprCXX.h:300
ObjCInterfaceDecl * getDecl() const
Get the declaration of this interface.
Definition: Type.h:5908
QualType getReturnType() const
Definition: Type.h:3680
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4521
llvm::APSInt APSInt
QualType getSingleStepDesugaredType(const ASTContext &Context) const
Return the specified type with one level of "sugar" removed from the type.
Definition: Type.h:967
Expr * getSubExpr() const
Definition: Expr.h:2076
Represents typeof(type), a GCC extension.
Definition: Type.h:4343
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:5894
virtual const char * getFloat128Mangling() const
Return the mangled code of __float128.
Definition: TargetInfo.h:609
struct clang::ReturnAdjustment::VirtualAdjustment::@135 Itanium
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:2100
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3219
LanguageLinkage
Describes the different kinds of language linkage (C++ [dcl.link]) that an entity may have...
Definition: Linkage.h:64
CallingConv getCC() const
Definition: Type.h:3592
QualType getElementType() const
Definition: Type.h:3270
Represents a vector type where either the type or size is dependent.
Definition: Type.h:3312
bool isFieldDesignator() const
Definition: Designator.h:69
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1931
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
No ref-qualifier was provided.
Definition: Type.h:1403
QualType getAllocatedType() const
Definition: ExprCXX.h:2193
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2422
This file defines OpenMP nodes for declarative directives.
Qualifiers getMethodQuals() const
Definition: Type.h:4104
Expr * getNoexceptExpr() const
Return the expression inside noexcept(expression), or a null pointer if there is none (because the ex...
Definition: Type.h:4047
UnaryExprOrTypeTrait getKind() const
Definition: Expr.h:2403
bool isArray() const
Definition: ExprCXX.h:2223
bool hasRestrict() const
Definition: Type.h:270
arg_range arguments()
Definition: Expr.h:2739
is AltiVec &#39;vector bool ...&#39;
Definition: Type.h:3248
RefQualifierKind
The kind of C++11 ref-qualifier associated with a function type.
Definition: Type.h:1401
llvm::APInt APInt
Definition: Integral.h:27
Decl * getBlockManglingContextDecl() const
Definition: Decl.h:4205
unsigned getCustomDiagID(Level L, const char(&FormatString)[N])
Return an ID for a diagnostic with the specified format string and level.
Definition: Diagnostic.h:782
AutoTypeKeyword getKeyword() const
Definition: Type.h:4920
TypeClass getTypeClass() const
Definition: Type.h:1876
Used for C&#39;s _Alignof and C++&#39;s alignof.
Definition: TypeTraits.h:100
int64_t VCallOffsetOffset
The offset (in bytes), relative to the address point, of the virtual call offset. ...
Definition: ABI.h:119
Complete object dtor.
Definition: ABI.h:35
llvm::APSInt getAsIntegral() const
Retrieve the template argument as an integral value.
Definition: TemplateBase.h:300
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1409
Assigning into this object requires a lifetime extension.
Definition: Type.h:177
bool isArgumentType() const
Definition: Expr.h:2408
DependentTemplateName * getAsDependentTemplateName() const
Retrieve the underlying dependent template name structure, if any.
bool isInstantiationDependentType() const
Determine whether this type is an instantiation-dependent type, meaning that the type involves a temp...
Definition: Type.h:2156
ExceptionSpecificationType getExceptionSpecType() const
Get the kind of exception specification on this function.
Definition: Type.h:3989
CXXCtorType
C++ constructor types.
Definition: ABI.h:24
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:224
The injected class name of a C++ class template or class template partial specialization.
Definition: Type.h:5133
A qualified reference to a name whose declaration cannot yet be resolved.
Definition: ExprCXX.h:3155
QualType getPointeeType() const
Definition: Type.h:3167
Represents a pack expansion of types.
Definition: Type.h:5511
Expr * getLHS() const
Definition: Expr.h:3474
InitializationStyle getInitializationStyle() const
The kind of initializer this new-expression has.
Definition: ExprCXX.h:2267
ArrayRef< TemplateArgument > pack_elements() const
Iterator range referencing all of the elements of a template argument pack.
Definition: TemplateBase.h:353
StringRef getName() const
Return the actual identifier string.
Base class for declarations which introduce a typedef-name.
Definition: Decl.h:3071
Represents a reference to a function parameter pack or init-capture pack that has been substituted bu...
Definition: ExprCXX.h:4337
Represents a template argument.
Definition: TemplateBase.h:50
Represents a template name that was expressed as a qualified name.
Definition: TemplateName.h:390
bool isTypeOperand() const
Definition: ExprCXX.h:804
Dataflow Directional Tag Classes.
ThisAdjustment This
The this pointer adjustment.
Definition: ABI.h:180
ExtInfo getExtInfo() const
Definition: Type.h:3691
const TemplateArgumentLoc * getTemplateArgs() const
Retrieve the template arguments provided as part of this template-id.
Definition: Expr.h:2992
NestedNameSpecifier * getQualifier() const
Definition: Type.h:5446
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1271
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2359
The base class of all kinds of template declarations (e.g., class, function, etc.).
Definition: DeclTemplate.h:402
OverloadedOperatorKind getOperator() const
Returns the kind of overloaded operator that this expression refers to.
Definition: ExprCXX.h:107
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:21
The template argument is a pack expansion of a template name that was provided for a template templat...
Definition: TemplateBase.h:79
const TemplateArgument * getArgs() const
Retrieve the template arguments.
Definition: Type.h:5450
Represents a field injected from an anonymous union/struct into the parent scope. ...
Definition: Decl.h:2980
bool isDependentAddressSpaceType() const
Definition: Type.h:6614
NamespaceDecl * getOriginalNamespace()
Get the original (first) namespace declaration.
Definition: DeclCXX.cpp:2784
DeclarationName getMember() const
Retrieve the name of the member that this expression refers to.
Definition: ExprCXX.h:3657
The name of a declaration.
StmtClass getStmtClass() const
Definition: Stmt.h:1109
VectorKind getVectorKind() const
Definition: Type.h:3280
ArrayRef< QualType > exceptions() const
Definition: Type.h:4133
The "union" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5214
Kind getKind() const
Definition: DeclBase.h:432
bool isBooleanType() const
Definition: Type.h:6894
bool isMSVCRTEntryPoint() const
Determines whether this function is a MSVCRT user defined entry point.
Definition: Decl.cpp:2934
The "class" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5217
bool isKindOfType() const
Whether this ia a "__kindof" type (semantically).
Definition: Type.cpp:734
int64_t VBaseOffsetOffset
The offset (in bytes), relative to the address point of the virtual base class offset.
Definition: ABI.h:53
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2833
ExplicitCastExpr - An explicit cast written in the source code.
Definition: Expr.h:3337
A type that was preceded by the &#39;template&#39; keyword, stored as a Type*.
union clang::ThisAdjustment::VirtualAdjustment Virtual
Expr * IgnoreParenImpCasts() LLVM_READONLY
Skip past any parentheses and implicit casts which might surround this expression until reaching a fi...
Definition: Expr.cpp:2995
Represents a pointer to an Objective C object.
Definition: Type.h:5951
Pointer to a block type.
Definition: Type.h:2716
Not an overloaded operator.
Definition: OperatorKinds.h:22
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4495
Complex values, per C99 6.2.5p11.
Definition: Type.h:2554
Location wrapper for a TemplateArgument.
Definition: TemplateBase.h:449
unsigned getNumArgs() const
Retrieve the number of template arguments.
Definition: Type.h:5067
Iterator for iterating over Stmt * arrays that contain only T *.
Definition: Stmt.h:1064
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2462
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6811
T * getAttr() const
Definition: DeclBase.h:538
const llvm::APInt & getSize() const
Definition: Type.h:2958
ExtVectorType - Extended vector type.
Definition: Type.h:3354
Opcode getOpcode() const
Definition: Expr.h:2071
DeclContext * getRedeclContext()
getRedeclContext - Retrieve the context in which an entity conflicts with other entities of the same ...
Definition: DeclBase.cpp:1747
ReturnAdjustment Return
The return adjustment.
Definition: ABI.h:183
The template argument is a type.
Definition: TemplateBase.h:59
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition: Linkage.h:31
The template argument is actually a parameter pack.
Definition: TemplateBase.h:90
bool isArrow() const
Determine whether this member expression used the &#39;->&#39; operator; otherwise, it used the &#39;...
Definition: ExprCXX.h:3618
unsigned getNumTemplateArgs() const
Retrieve the number of template arguments provided as part of this template-id.
Definition: Expr.h:3001
arg_iterator placement_arg_begin()
Definition: ExprCXX.h:2313
CXXMethodDecl * getLambdaStaticInvoker() const
Retrieve the lambda static invoker, the address of which is returned by the conversion operator...
Definition: DeclCXX.cpp:1439
unsigned arg_size() const
Retrieve the number of arguments.
Definition: ExprCXX.h:3447
Describes an explicit type conversion that uses functional notion but could not be resolved because o...
Definition: ExprCXX.h:3390
A template argument list.
Definition: DeclTemplate.h:239
VectorType::VectorKind getVectorKind() const
Definition: Type.h:3328
Reading or writing from this object requires a barrier call.
Definition: Type.h:174
ArgKind getKind() const
Return the kind of stored template argument.
Definition: TemplateBase.h:234
unsigned getDepth() const
Definition: Type.h:4690
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
QualType getParamType(unsigned i) const
Definition: Type.h:3966
static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty, ASTContext &Ctx)
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2836
TypedefNameDecl * getTypedefNameForAnonDecl() const
Definition: Decl.h:3429
bool hasUnaligned() const
Definition: Type.h:299
Defines Expressions and AST nodes for C++2a concepts.
Represents a C++ struct/union/class.
Definition: DeclCXX.h:253
Represents a template specialization type whose template cannot be resolved, e.g. ...
Definition: Type.h:5420
The template argument is a template name that was provided for a template template parameter...
Definition: TemplateBase.h:75
Represents a C array with an unspecified size.
Definition: Type.h:2995
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:6283
Expr * getRHS() const
Definition: Expr.h:3781
A structure for storing the information associated with an overloaded template name.
Definition: TemplateName.h:104
Declaration of a class template.
This class is used for builtin types like &#39;int&#39;.
Definition: Type.h:2465
Decl * getLambdaContextDecl() const
Retrieve the declaration that provides additional context for a lambda, when the normal declaration c...
Definition: DeclCXX.cpp:1496
static bool isCharSpecialization(QualType T, const char *Name)
Returns whether a given type is a template specialization of a given name with a single argument of t...
static bool isCharType(QualType T)
bool qual_empty() const
Definition: Type.h:5598
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:263
bool isGlobalDelete() const
Definition: ExprCXX.h:2385
bool isImplicitCXXThis() const
Whether this expression is an implicit reference to &#39;this&#39; in C++.
Definition: Expr.cpp:3137
Copying closure variant of a ctor.
Definition: ABI.h:28
Expr * getBase() const
Retrieve the base object of this member expressions, e.g., the x in x.m.
Definition: ExprCXX.h:3609
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1711
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2546
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:250
unsigned getCVRQualifiers() const
Definition: Type.h:276
bool hasVolatile() const
Definition: Type.h:265
NameKind getKind() const
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:947
unsigned getNumElements() const
Definition: Type.h:3271
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2150
QualType getAsType() const
Retrieve the type for a type template argument.
Definition: TemplateBase.h:256
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1171
Represents an extended address space qualifier where the input address space value is dependent...
Definition: Type.h:3153
Represents a type template specialization; the template must be a class template, a type alias templa...
Definition: Type.h:4996
Expr * getRHS() const
Definition: Expr.h:3476
Designator - A designator in a C99 designated initializer.
Definition: Designator.h:36
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)
Retrieve the overloaded operator kind that corresponds to the given binary opcode.
Definition: Expr.cpp:2094
IdentifierInfo * getCXXLiteralIdentifier() const
If this name is the name of a literal operator, retrieve the identifier associated with it...
QualType getType() const
Definition: Decl.h:630
#define true
Definition: stdbool.h:16
A set of overloaded template declarations.
Definition: TemplateName.h:207
This represents a decl that may have a name.
Definition: Decl.h:223
bool isTranslationUnit() const
Definition: DeclBase.h:1859
bool isOpenCLSpecificType() const
Definition: Type.h:6735
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:3039
A Microsoft C++ __uuidof expression, which gets the _GUID that corresponds to the supplied type or ex...
Definition: ExprCXX.h:1000
No keyword precedes the qualified type name.
Definition: Type.h:5227
static bool isStd(const NamespaceDecl *NS)
Return whether a given namespace is the &#39;std&#39; namespace.
TemplateName getAsTemplate() const
Retrieve the template name for a template name argument.
Definition: TemplateBase.h:280
unsigned getNumTemplateArgs() const
Definition: ExprCXX.h:3260
QualType getElementType() const
Definition: Type.h:3326
The global specifier &#39;::&#39;. There is no stored value.
TemplateName getAsTemplateOrTemplatePattern() const
Retrieve the template argument as a template name; if the argument is a pack expansion, return the pattern as a template name.
Definition: TemplateBase.h:287
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition: Decl.cpp:3242
const LangOptions & getLangOpts() const
Definition: ASTContext.h:724
The "__interface" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5211
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2935
InitListExpr * getSyntacticForm() const
Definition: Expr.h:4562
Declaration of a template function.
Definition: DeclTemplate.h:977
A class which abstracts out some details necessary for making a call.
Definition: Type.h:3533
bool Sub(InterpState &S, CodePtr OpPC)
Definition: Interp.h:140
bool hasLinkage() const
Determine whether this declaration has linkage.
Definition: Decl.cpp:1772
Attr - This represents one attribute.
Definition: Attr.h:45
struct clang::ThisAdjustment::VirtualAdjustment::@137 Itanium
QualType getPointeeType() const
Definition: Type.h:2853
bool isExternallyVisible() const
Definition: Decl.h:362
QualType getType() const
Return the type wrapped by this type source info.
Definition: Type.h:6238
A single template declaration.
Definition: TemplateName.h:204
This parameter (which must have pointer type) is a Swift indirect result parameter.
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:2991
const IdentifierInfo * getIdentifier() const
Definition: Type.h:5447
bool hasExternalFormalLinkage() const
True if this decl has external linkage.
Definition: Decl.h:358
PrettyStackTraceDecl - If a crash occurs, indicate that it happened when doing something to a specifi...
Definition: DeclBase.h:1178
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1080
QualType getPointeeType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5967