clang  10.0.0git
MicrosoftMangle.cpp
Go to the documentation of this file.
1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Mangle.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/Attr.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
26 #include "clang/Basic/ABI.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/Support/CRC.h"
31 #include "llvm/Support/MD5.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/StringSaver.h"
34 #include "llvm/Support/xxhash.h"
35 
36 using namespace clang;
37 
38 namespace {
39 
40 struct msvc_hashing_ostream : public llvm::raw_svector_ostream {
41  raw_ostream &OS;
42  llvm::SmallString<64> Buffer;
43 
44  msvc_hashing_ostream(raw_ostream &OS)
45  : llvm::raw_svector_ostream(Buffer), OS(OS) {}
46  ~msvc_hashing_ostream() override {
47  StringRef MangledName = str();
48  bool StartsWithEscape = MangledName.startswith("\01");
49  if (StartsWithEscape)
50  MangledName = MangledName.drop_front(1);
51  if (MangledName.size() <= 4096) {
52  OS << str();
53  return;
54  }
55 
56  llvm::MD5 Hasher;
57  llvm::MD5::MD5Result Hash;
58  Hasher.update(MangledName);
59  Hasher.final(Hash);
60 
61  SmallString<32> HexString;
62  llvm::MD5::stringifyResult(Hash, HexString);
63 
64  if (StartsWithEscape)
65  OS << '\01';
66  OS << "??@" << HexString << '@';
67  }
68 };
69 
70 static const DeclContext *
71 getLambdaDefaultArgumentDeclContext(const Decl *D) {
72  if (const auto *RD = dyn_cast<CXXRecordDecl>(D))
73  if (RD->isLambda())
74  if (const auto *Parm =
75  dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
76  return Parm->getDeclContext();
77  return nullptr;
78 }
79 
80 /// Retrieve the declaration context that should be used when mangling
81 /// the given declaration.
82 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
83  // The ABI assumes that lambda closure types that occur within
84  // default arguments live in the context of the function. However, due to
85  // the way in which Clang parses and creates function declarations, this is
86  // not the case: the lambda closure type ends up living in the context
87  // where the function itself resides, because the function declaration itself
88  // had not yet been created. Fix the context here.
89  if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D))
90  return LDADC;
91 
92  // Perform the same check for block literals.
93  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
94  if (ParmVarDecl *ContextParam =
95  dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
96  return ContextParam->getDeclContext();
97  }
98 
99  const DeclContext *DC = D->getDeclContext();
100  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
101  isa<OMPDeclareMapperDecl>(DC)) {
102  return getEffectiveDeclContext(cast<Decl>(DC));
103  }
104 
105  return DC->getRedeclContext();
106 }
107 
108 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
109  return getEffectiveDeclContext(cast<Decl>(DC));
110 }
111 
112 static const FunctionDecl *getStructor(const NamedDecl *ND) {
113  if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
114  return FTD->getTemplatedDecl()->getCanonicalDecl();
115 
116  const auto *FD = cast<FunctionDecl>(ND);
117  if (const auto *FTD = FD->getPrimaryTemplate())
118  return FTD->getTemplatedDecl()->getCanonicalDecl();
119 
120  return FD->getCanonicalDecl();
121 }
122 
123 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
124 /// Microsoft Visual C++ ABI.
125 class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
126  typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
127  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
128  llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
129  llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
130  llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds;
131  llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds;
132  SmallString<16> AnonymousNamespaceHash;
133 
134 public:
135  MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags);
136  bool shouldMangleCXXName(const NamedDecl *D) override;
137  bool shouldMangleStringLiteral(const StringLiteral *SL) override;
138  void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override;
139  void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
140  const MethodVFTableLocation &ML,
141  raw_ostream &Out) override;
142  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
143  raw_ostream &) override;
144  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
146  raw_ostream &) override;
147  void mangleCXXVFTable(const CXXRecordDecl *Derived,
149  raw_ostream &Out) override;
150  void mangleCXXVBTable(const CXXRecordDecl *Derived,
152  raw_ostream &Out) override;
153  void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
154  const CXXRecordDecl *DstRD,
155  raw_ostream &Out) override;
156  void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
157  bool IsUnaligned, uint32_t NumEntries,
158  raw_ostream &Out) override;
159  void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
160  raw_ostream &Out) override;
161  void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
162  CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
163  int32_t VBPtrOffset, uint32_t VBIndex,
164  raw_ostream &Out) override;
165  void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
166  void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
167  void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
168  uint32_t NVOffset, int32_t VBPtrOffset,
169  uint32_t VBTableOffset, uint32_t Flags,
170  raw_ostream &Out) override;
171  void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
172  raw_ostream &Out) override;
173  void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
174  raw_ostream &Out) override;
175  void
176  mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
178  raw_ostream &Out) override;
179  void mangleTypeName(QualType T, raw_ostream &) override;
180  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
181  raw_ostream &) override;
182  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
183  raw_ostream &) override;
184  void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
185  raw_ostream &) override;
186  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
187  void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
188  raw_ostream &Out) override;
189  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
190  void mangleDynamicAtExitDestructor(const VarDecl *D,
191  raw_ostream &Out) override;
192  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
193  raw_ostream &Out) override;
194  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
195  raw_ostream &Out) override;
196  void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
197  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
198  const DeclContext *DC = getEffectiveDeclContext(ND);
199  if (!DC->isFunctionOrMethod())
200  return false;
201 
202  // Lambda closure types are already numbered, give out a phony number so
203  // that they demangle nicely.
204  if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
205  if (RD->isLambda()) {
206  disc = 1;
207  return true;
208  }
209  }
210 
211  // Use the canonical number for externally visible decls.
212  if (ND->isExternallyVisible()) {
213  disc = getASTContext().getManglingNumber(ND);
214  return true;
215  }
216 
217  // Anonymous tags are already numbered.
218  if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
219  if (!Tag->hasNameForLinkage() &&
220  !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) &&
221  !getASTContext().getTypedefNameForUnnamedTagDecl(Tag))
222  return false;
223  }
224 
225  // Make up a reasonable number for internal decls.
226  unsigned &discriminator = Uniquifier[ND];
227  if (!discriminator)
228  discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
229  disc = discriminator + 1;
230  return true;
231  }
232 
233  unsigned getLambdaId(const CXXRecordDecl *RD) {
234  assert(RD->isLambda() && "RD must be a lambda!");
235  assert(!RD->isExternallyVisible() && "RD must not be visible!");
236  assert(RD->getLambdaManglingNumber() == 0 &&
237  "RD must not have a mangling number!");
238  std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
239  Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
240  return Result.first->second;
241  }
242 
243  /// Return a character sequence that is (somewhat) unique to the TU suitable
244  /// for mangling anonymous namespaces.
245  StringRef getAnonymousNamespaceHash() const {
246  return AnonymousNamespaceHash;
247  }
248 
249 private:
250  void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out);
251 };
252 
253 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
254 /// Microsoft Visual C++ ABI.
255 class MicrosoftCXXNameMangler {
256  MicrosoftMangleContextImpl &Context;
257  raw_ostream &Out;
258 
259  /// The "structor" is the top-level declaration being mangled, if
260  /// that's not a template specialization; otherwise it's the pattern
261  /// for that specialization.
262  const NamedDecl *Structor;
263  unsigned StructorType;
264 
265  typedef llvm::SmallVector<std::string, 10> BackRefVec;
266  BackRefVec NameBackReferences;
267 
268  typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap;
269  ArgBackRefMap FunArgBackReferences;
270  ArgBackRefMap TemplateArgBackReferences;
271 
272  typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap;
273  TemplateArgStringMap TemplateArgStrings;
274  llvm::StringSaver TemplateArgStringStorage;
275  llvm::BumpPtrAllocator TemplateArgStringStorageAlloc;
276 
277  typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet;
278  PassObjectSizeArgsSet PassObjectSizeArgs;
279 
280  ASTContext &getASTContext() const { return Context.getASTContext(); }
281 
282  const bool PointersAre64Bit;
283 
284 public:
285  enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
286 
287  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
288  : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
289  TemplateArgStringStorage(TemplateArgStringStorageAlloc),
290  PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
291  64) {}
292 
293  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
295  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
296  TemplateArgStringStorage(TemplateArgStringStorageAlloc),
297  PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
298  64) {}
299 
300  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
302  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
303  TemplateArgStringStorage(TemplateArgStringStorageAlloc),
304  PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
305  64) {}
306 
307  raw_ostream &getStream() const { return Out; }
308 
309  void mangle(const NamedDecl *D, StringRef Prefix = "?");
310  void mangleName(const NamedDecl *ND);
311  void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle);
312  void mangleVariableEncoding(const VarDecl *VD);
313  void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
314  void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
315  const CXXMethodDecl *MD);
316  void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
317  const MethodVFTableLocation &ML);
318  void mangleNumber(int64_t Number);
319  void mangleTagTypeKind(TagTypeKind TK);
320  void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName,
321  ArrayRef<StringRef> NestedNames = None);
322  void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range);
323  void mangleType(QualType T, SourceRange Range,
324  QualifierMangleMode QMM = QMM_Mangle);
325  void mangleFunctionType(const FunctionType *T,
326  const FunctionDecl *D = nullptr,
327  bool ForceThisQuals = false,
328  bool MangleExceptionSpec = true);
329  void mangleNestedName(const NamedDecl *ND);
330 
331 private:
332  bool isStructorDecl(const NamedDecl *ND) const {
333  return ND == Structor || getStructor(ND) == Structor;
334  }
335 
336  bool is64BitPointer(Qualifiers Quals) const {
337  LangAS AddrSpace = Quals.getAddressSpace();
338  return AddrSpace == LangAS::ptr64 ||
339  (PointersAre64Bit && !(AddrSpace == LangAS::ptr32_sptr ||
340  AddrSpace == LangAS::ptr32_uptr));
341  }
342 
343  void mangleUnqualifiedName(const NamedDecl *ND) {
344  mangleUnqualifiedName(ND, ND->getDeclName());
345  }
346  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
347  void mangleSourceName(StringRef Name);
348  void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
349  void mangleCXXDtorType(CXXDtorType T);
350  void mangleQualifiers(Qualifiers Quals, bool IsMember);
351  void mangleRefQualifier(RefQualifierKind RefQualifier);
352  void manglePointerCVQualifiers(Qualifiers Quals);
353  void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);
354 
355  void mangleUnscopedTemplateName(const TemplateDecl *ND);
356  void
357  mangleTemplateInstantiationName(const TemplateDecl *TD,
358  const TemplateArgumentList &TemplateArgs);
359  void mangleObjCMethodName(const ObjCMethodDecl *MD);
360 
361  void mangleFunctionArgumentType(QualType T, SourceRange Range);
362  void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA);
363 
364  bool isArtificialTagType(QualType T) const;
365 
366  // Declare manglers for every type class.
367 #define ABSTRACT_TYPE(CLASS, PARENT)
368 #define NON_CANONICAL_TYPE(CLASS, PARENT)
369 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
370  Qualifiers Quals, \
371  SourceRange Range);
372 #include "clang/AST/TypeNodes.inc"
373 #undef ABSTRACT_TYPE
374 #undef NON_CANONICAL_TYPE
375 #undef TYPE
376 
377  void mangleType(const TagDecl *TD);
378  void mangleDecayedArrayType(const ArrayType *T);
379  void mangleArrayType(const ArrayType *T);
380  void mangleFunctionClass(const FunctionDecl *FD);
381  void mangleCallingConvention(CallingConv CC);
382  void mangleCallingConvention(const FunctionType *T);
383  void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
384  void mangleExpression(const Expr *E);
385  void mangleThrowSpecification(const FunctionProtoType *T);
386 
387  void mangleTemplateArgs(const TemplateDecl *TD,
388  const TemplateArgumentList &TemplateArgs);
389  void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
390  const NamedDecl *Parm);
391 
392  void mangleObjCProtocol(const ObjCProtocolDecl *PD);
393  void mangleObjCLifetime(const QualType T, Qualifiers Quals,
394  SourceRange Range);
395  void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals,
396  SourceRange Range);
397 };
398 }
399 
400 MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context,
401  DiagnosticsEngine &Diags)
402  : MicrosoftMangleContext(Context, Diags) {
403  // To mangle anonymous namespaces, hash the path to the main source file. The
404  // path should be whatever (probably relative) path was passed on the command
405  // line. The goal is for the compiler to produce the same output regardless of
406  // working directory, so use the uncanonicalized relative path.
407  //
408  // It's important to make the mangled names unique because, when CodeView
409  // debug info is in use, the debugger uses mangled type names to distinguish
410  // between otherwise identically named types in anonymous namespaces.
411  //
412  // These symbols are always internal, so there is no need for the hash to
413  // match what MSVC produces. For the same reason, clang is free to change the
414  // hash at any time without breaking compatibility with old versions of clang.
415  // The generated names are intended to look similar to what MSVC generates,
416  // which are something like "?A0x01234567@".
417  SourceManager &SM = Context.getSourceManager();
418  if (const FileEntry *FE = SM.getFileEntryForID(SM.getMainFileID())) {
419  // Truncate the hash so we get 8 characters of hexadecimal.
420  uint32_t TruncatedHash = uint32_t(xxHash64(FE->getName()));
421  AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash);
422  } else {
423  // If we don't have a path to the main file, we'll just use 0.
424  AnonymousNamespaceHash = "0";
425  }
426 }
427 
428 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
429  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
430  LanguageLinkage L = FD->getLanguageLinkage();
431  // Overloadable functions need mangling.
432  if (FD->hasAttr<OverloadableAttr>())
433  return true;
434 
435  // The ABI expects that we would never mangle "typical" user-defined entry
436  // points regardless of visibility or freestanding-ness.
437  //
438  // N.B. This is distinct from asking about "main". "main" has a lot of
439  // special rules associated with it in the standard while these
440  // user-defined entry points are outside of the purview of the standard.
441  // For example, there can be only one definition for "main" in a standards
442  // compliant program; however nothing forbids the existence of wmain and
443  // WinMain in the same translation unit.
444  if (FD->isMSVCRTEntryPoint())
445  return false;
446 
447  // C++ functions and those whose names are not a simple identifier need
448  // mangling.
449  if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
450  return true;
451 
452  // C functions are not mangled.
453  if (L == CLanguageLinkage)
454  return false;
455  }
456 
457  // Otherwise, no mangling is done outside C++ mode.
458  if (!getASTContext().getLangOpts().CPlusPlus)
459  return false;
460 
461  const VarDecl *VD = dyn_cast<VarDecl>(D);
462  if (VD && !isa<DecompositionDecl>(D)) {
463  // C variables are not mangled.
464  if (VD->isExternC())
465  return false;
466 
467  // Variables at global scope with non-internal linkage are not mangled.
468  const DeclContext *DC = getEffectiveDeclContext(D);
469  // Check for extern variable declared locally.
470  if (DC->isFunctionOrMethod() && D->hasLinkage())
471  while (!DC->isNamespace() && !DC->isTranslationUnit())
472  DC = getEffectiveParentContext(DC);
473 
474  if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
475  !isa<VarTemplateSpecializationDecl>(D) &&
476  D->getIdentifier() != nullptr)
477  return false;
478  }
479 
480  return true;
481 }
482 
483 bool
484 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
485  return true;
486 }
487 
488 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
489  // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
490  // Therefore it's really important that we don't decorate the
491  // name with leading underscores or leading/trailing at signs. So, by
492  // default, we emit an asm marker at the start so we get the name right.
493  // Callers can override this with a custom prefix.
494 
495  // <mangled-name> ::= ? <name> <type-encoding>
496  Out << Prefix;
497  mangleName(D);
498  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
499  mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD));
500  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
501  mangleVariableEncoding(VD);
502  else
503  llvm_unreachable("Tried to mangle unexpected NamedDecl!");
504 }
505 
506 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD,
507  bool ShouldMangle) {
508  // <type-encoding> ::= <function-class> <function-type>
509 
510  // Since MSVC operates on the type as written and not the canonical type, it
511  // actually matters which decl we have here. MSVC appears to choose the
512  // first, since it is most likely to be the declaration in a header file.
513  FD = FD->getFirstDecl();
514 
515  // We should never ever see a FunctionNoProtoType at this point.
516  // We don't even know how to mangle their types anyway :).
517  const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
518 
519  // extern "C" functions can hold entities that must be mangled.
520  // As it stands, these functions still need to get expressed in the full
521  // external name. They have their class and type omitted, replaced with '9'.
522  if (ShouldMangle) {
523  // We would like to mangle all extern "C" functions using this additional
524  // component but this would break compatibility with MSVC's behavior.
525  // Instead, do this when we know that compatibility isn't important (in
526  // other words, when it is an overloaded extern "C" function).
527  if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
528  Out << "$$J0";
529 
530  mangleFunctionClass(FD);
531 
532  mangleFunctionType(FT, FD, false, false);
533  } else {
534  Out << '9';
535  }
536 }
537 
538 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
539  // <type-encoding> ::= <storage-class> <variable-type>
540  // <storage-class> ::= 0 # private static member
541  // ::= 1 # protected static member
542  // ::= 2 # public static member
543  // ::= 3 # global
544  // ::= 4 # static local
545 
546  // The first character in the encoding (after the name) is the storage class.
547  if (VD->isStaticDataMember()) {
548  // If it's a static member, it also encodes the access level.
549  switch (VD->getAccess()) {
550  default:
551  case AS_private: Out << '0'; break;
552  case AS_protected: Out << '1'; break;
553  case AS_public: Out << '2'; break;
554  }
555  }
556  else if (!VD->isStaticLocal())
557  Out << '3';
558  else
559  Out << '4';
560  // Now mangle the type.
561  // <variable-type> ::= <type> <cvr-qualifiers>
562  // ::= <type> <pointee-cvr-qualifiers> # pointers, references
563  // Pointers and references are odd. The type of 'int * const foo;' gets
564  // mangled as 'QAHA' instead of 'PAHB', for example.
565  SourceRange SR = VD->getSourceRange();
566  QualType Ty = VD->getType();
567  if (Ty->isPointerType() || Ty->isReferenceType() ||
568  Ty->isMemberPointerType()) {
569  mangleType(Ty, SR, QMM_Drop);
570  manglePointerExtQualifiers(
571  Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType());
572  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
573  mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
574  // Member pointers are suffixed with a back reference to the member
575  // pointer's class name.
576  mangleName(MPT->getClass()->getAsCXXRecordDecl());
577  } else
578  mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
579  } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
580  // Global arrays are funny, too.
581  mangleDecayedArrayType(AT);
582  if (AT->getElementType()->isArrayType())
583  Out << 'A';
584  else
585  mangleQualifiers(Ty.getQualifiers(), false);
586  } else {
587  mangleType(Ty, SR, QMM_Drop);
588  mangleQualifiers(Ty.getQualifiers(), false);
589  }
590 }
591 
592 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
593  const ValueDecl *VD) {
594  // <member-data-pointer> ::= <integer-literal>
595  // ::= $F <number> <number>
596  // ::= $G <number> <number> <number>
597 
598  int64_t FieldOffset;
599  int64_t VBTableOffset;
601  if (VD) {
602  FieldOffset = getASTContext().getFieldOffset(VD);
603  assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
604  "cannot take address of bitfield");
605  FieldOffset /= getASTContext().getCharWidth();
606 
607  VBTableOffset = 0;
608 
609  if (IM == MSInheritanceModel::Virtual)
610  FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
611  } else {
612  FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
613 
614  VBTableOffset = -1;
615  }
616 
617  char Code = '\0';
618  switch (IM) {
619  case MSInheritanceModel::Single: Code = '0'; break;
620  case MSInheritanceModel::Multiple: Code = '0'; break;
621  case MSInheritanceModel::Virtual: Code = 'F'; break;
622  case MSInheritanceModel::Unspecified: Code = 'G'; break;
623  }
624 
625  Out << '$' << Code;
626 
627  mangleNumber(FieldOffset);
628 
629  // The C++ standard doesn't allow base-to-derived member pointer conversions
630  // in template parameter contexts, so the vbptr offset of data member pointers
631  // is always zero.
633  mangleNumber(0);
635  mangleNumber(VBTableOffset);
636 }
637 
638 void
639 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
640  const CXXMethodDecl *MD) {
641  // <member-function-pointer> ::= $1? <name>
642  // ::= $H? <name> <number>
643  // ::= $I? <name> <number> <number>
644  // ::= $J? <name> <number> <number> <number>
645 
647 
648  char Code = '\0';
649  switch (IM) {
650  case MSInheritanceModel::Single: Code = '1'; break;
651  case MSInheritanceModel::Multiple: Code = 'H'; break;
652  case MSInheritanceModel::Virtual: Code = 'I'; break;
653  case MSInheritanceModel::Unspecified: Code = 'J'; break;
654  }
655 
656  // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr
657  // thunk.
658  uint64_t NVOffset = 0;
659  uint64_t VBTableOffset = 0;
660  uint64_t VBPtrOffset = 0;
661  if (MD) {
662  Out << '$' << Code << '?';
663  if (MD->isVirtual()) {
664  MicrosoftVTableContext *VTContext =
665  cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
667  VTContext->getMethodVFTableLocation(GlobalDecl(MD));
668  mangleVirtualMemPtrThunk(MD, ML);
669  NVOffset = ML.VFPtrOffset.getQuantity();
670  VBTableOffset = ML.VBTableIndex * 4;
671  if (ML.VBase) {
672  const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
673  VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
674  }
675  } else {
676  mangleName(MD);
677  mangleFunctionEncoding(MD, /*ShouldMangle=*/true);
678  }
679 
680  if (VBTableOffset == 0 && IM == MSInheritanceModel::Virtual)
681  NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
682  } else {
683  // Null single inheritance member functions are encoded as a simple nullptr.
684  if (IM == MSInheritanceModel::Single) {
685  Out << "$0A@";
686  return;
687  }
688  if (IM == MSInheritanceModel::Unspecified)
689  VBTableOffset = -1;
690  Out << '$' << Code;
691  }
692 
693  if (inheritanceModelHasNVOffsetField(/*IsMemberFunction=*/true, IM))
694  mangleNumber(static_cast<uint32_t>(NVOffset));
696  mangleNumber(VBPtrOffset);
698  mangleNumber(VBTableOffset);
699 }
700 
701 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
702  const CXXMethodDecl *MD, const MethodVFTableLocation &ML) {
703  // Get the vftable offset.
704  CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
705  getASTContext().getTargetInfo().getPointerWidth(0));
706  uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
707 
708  Out << "?_9";
709  mangleName(MD->getParent());
710  Out << "$B";
711  mangleNumber(OffsetInVFTable);
712  Out << 'A';
713  mangleCallingConvention(MD->getType()->castAs<FunctionProtoType>());
714 }
715 
716 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
717  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
718 
719  // Always start with the unqualified name.
720  mangleUnqualifiedName(ND);
721 
722  mangleNestedName(ND);
723 
724  // Terminate the whole name with an '@'.
725  Out << '@';
726 }
727 
728 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
729  // <non-negative integer> ::= A@ # when Number == 0
730  // ::= <decimal digit> # when 1 <= Number <= 10
731  // ::= <hex digit>+ @ # when Number >= 10
732  //
733  // <number> ::= [?] <non-negative integer>
734 
735  uint64_t Value = static_cast<uint64_t>(Number);
736  if (Number < 0) {
737  Value = -Value;
738  Out << '?';
739  }
740 
741  if (Value == 0)
742  Out << "A@";
743  else if (Value >= 1 && Value <= 10)
744  Out << (Value - 1);
745  else {
746  // Numbers that are not encoded as decimal digits are represented as nibbles
747  // in the range of ASCII characters 'A' to 'P'.
748  // The number 0x123450 would be encoded as 'BCDEFA'
749  char EncodedNumberBuffer[sizeof(uint64_t) * 2];
750  MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
751  MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
752  for (; Value != 0; Value >>= 4)
753  *I++ = 'A' + (Value & 0xf);
754  Out.write(I.base(), I - BufferRef.rbegin());
755  Out << '@';
756  }
757 }
758 
759 static const TemplateDecl *
760 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
761  // Check if we have a function template.
762  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
763  if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
764  TemplateArgs = FD->getTemplateSpecializationArgs();
765  return TD;
766  }
767  }
768 
769  // Check if we have a class template.
770  if (const ClassTemplateSpecializationDecl *Spec =
771  dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
772  TemplateArgs = &Spec->getTemplateArgs();
773  return Spec->getSpecializedTemplate();
774  }
775 
776  // Check if we have a variable template.
777  if (const VarTemplateSpecializationDecl *Spec =
778  dyn_cast<VarTemplateSpecializationDecl>(ND)) {
779  TemplateArgs = &Spec->getTemplateArgs();
780  return Spec->getSpecializedTemplate();
781  }
782 
783  return nullptr;
784 }
785 
786 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
787  DeclarationName Name) {
788  // <unqualified-name> ::= <operator-name>
789  // ::= <ctor-dtor-name>
790  // ::= <source-name>
791  // ::= <template-name>
792 
793  // Check if we have a template.
794  const TemplateArgumentList *TemplateArgs = nullptr;
795  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
796  // Function templates aren't considered for name back referencing. This
797  // makes sense since function templates aren't likely to occur multiple
798  // times in a symbol.
799  if (isa<FunctionTemplateDecl>(TD)) {
800  mangleTemplateInstantiationName(TD, *TemplateArgs);
801  Out << '@';
802  return;
803  }
804 
805  // Here comes the tricky thing: if we need to mangle something like
806  // void foo(A::X<Y>, B::X<Y>),
807  // the X<Y> part is aliased. However, if you need to mangle
808  // void foo(A::X<A::Y>, A::X<B::Y>),
809  // the A::X<> part is not aliased.
810  // That is, from the mangler's perspective we have a structure like this:
811  // namespace[s] -> type[ -> template-parameters]
812  // but from the Clang perspective we have
813  // type [ -> template-parameters]
814  // \-> namespace[s]
815  // What we do is we create a new mangler, mangle the same type (without
816  // a namespace suffix) to a string using the extra mangler and then use
817  // the mangled type name as a key to check the mangling of different types
818  // for aliasing.
819 
820  // It's important to key cache reads off ND, not TD -- the same TD can
821  // be used with different TemplateArgs, but ND uniquely identifies
822  // TD / TemplateArg pairs.
823  ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(ND);
824  if (Found == TemplateArgBackReferences.end()) {
825 
826  TemplateArgStringMap::iterator Found = TemplateArgStrings.find(ND);
827  if (Found == TemplateArgStrings.end()) {
828  // Mangle full template name into temporary buffer.
829  llvm::SmallString<64> TemplateMangling;
830  llvm::raw_svector_ostream Stream(TemplateMangling);
831  MicrosoftCXXNameMangler Extra(Context, Stream);
832  Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
833 
834  // Use the string backref vector to possibly get a back reference.
835  mangleSourceName(TemplateMangling);
836 
837  // Memoize back reference for this type if one exist, else memoize
838  // the mangling itself.
839  BackRefVec::iterator StringFound =
840  llvm::find(NameBackReferences, TemplateMangling);
841  if (StringFound != NameBackReferences.end()) {
842  TemplateArgBackReferences[ND] =
843  StringFound - NameBackReferences.begin();
844  } else {
845  TemplateArgStrings[ND] =
846  TemplateArgStringStorage.save(TemplateMangling.str());
847  }
848  } else {
849  Out << Found->second << '@'; // Outputs a StringRef.
850  }
851  } else {
852  Out << Found->second; // Outputs a back reference (an int).
853  }
854  return;
855  }
856 
857  switch (Name.getNameKind()) {
859  if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
860  mangleSourceName(II->getName());
861  break;
862  }
863 
864  // Otherwise, an anonymous entity. We must have a declaration.
865  assert(ND && "mangling empty name without declaration");
866 
867  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
868  if (NS->isAnonymousNamespace()) {
869  Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@';
870  break;
871  }
872  }
873 
874  if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) {
875  // Decomposition declarations are considered anonymous, and get
876  // numbered with a $S prefix.
877  llvm::SmallString<64> Name("$S");
878  // Get a unique id for the anonymous struct.
879  Name += llvm::utostr(Context.getAnonymousStructId(DD) + 1);
880  mangleSourceName(Name);
881  break;
882  }
883 
884  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
885  // We must have an anonymous union or struct declaration.
886  const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
887  assert(RD && "expected variable decl to have a record type");
888  // Anonymous types with no tag or typedef get the name of their
889  // declarator mangled in. If they have no declarator, number them with
890  // a $S prefix.
891  llvm::SmallString<64> Name("$S");
892  // Get a unique id for the anonymous struct.
893  Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
894  mangleSourceName(Name.str());
895  break;
896  }
897 
898  // We must have an anonymous struct.
899  const TagDecl *TD = cast<TagDecl>(ND);
900  if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
901  assert(TD->getDeclContext() == D->getDeclContext() &&
902  "Typedef should not be in another decl context!");
903  assert(D->getDeclName().getAsIdentifierInfo() &&
904  "Typedef was not named!");
905  mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
906  break;
907  }
908 
909  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
910  if (Record->isLambda()) {
911  llvm::SmallString<10> Name("<lambda_");
912 
913  Decl *LambdaContextDecl = Record->getLambdaContextDecl();
914  unsigned LambdaManglingNumber = Record->getLambdaManglingNumber();
915  unsigned LambdaId;
916  const ParmVarDecl *Parm =
917  dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
918  const FunctionDecl *Func =
919  Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
920 
921  if (Func) {
922  unsigned DefaultArgNo =
923  Func->getNumParams() - Parm->getFunctionScopeIndex();
924  Name += llvm::utostr(DefaultArgNo);
925  Name += "_";
926  }
927 
928  if (LambdaManglingNumber)
929  LambdaId = LambdaManglingNumber;
930  else
931  LambdaId = Context.getLambdaId(Record);
932 
933  Name += llvm::utostr(LambdaId);
934  Name += ">";
935 
936  mangleSourceName(Name);
937 
938  // If the context of a closure type is an initializer for a class
939  // member (static or nonstatic), it is encoded in a qualified name.
940  if (LambdaManglingNumber && LambdaContextDecl) {
941  if ((isa<VarDecl>(LambdaContextDecl) ||
942  isa<FieldDecl>(LambdaContextDecl)) &&
943  LambdaContextDecl->getDeclContext()->isRecord()) {
944  mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl));
945  }
946  }
947  break;
948  }
949  }
950 
952  if (DeclaratorDecl *DD =
953  Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) {
954  // Anonymous types without a name for linkage purposes have their
955  // declarator mangled in if they have one.
956  Name += "<unnamed-type-";
957  Name += DD->getName();
958  } else if (TypedefNameDecl *TND =
959  Context.getASTContext().getTypedefNameForUnnamedTagDecl(
960  TD)) {
961  // Anonymous types without a name for linkage purposes have their
962  // associate typedef mangled in if they have one.
963  Name += "<unnamed-type-";
964  Name += TND->getName();
965  } else if (isa<EnumDecl>(TD) &&
966  cast<EnumDecl>(TD)->enumerator_begin() !=
967  cast<EnumDecl>(TD)->enumerator_end()) {
968  // Anonymous non-empty enums mangle in the first enumerator.
969  auto *ED = cast<EnumDecl>(TD);
970  Name += "<unnamed-enum-";
971  Name += ED->enumerator_begin()->getName();
972  } else {
973  // Otherwise, number the types using a $S prefix.
974  Name += "<unnamed-type-$S";
975  Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1);
976  }
977  Name += ">";
978  mangleSourceName(Name.str());
979  break;
980  }
981 
982  case DeclarationName::ObjCZeroArgSelector:
983  case DeclarationName::ObjCOneArgSelector:
984  case DeclarationName::ObjCMultiArgSelector: {
985  // This is reachable only when constructing an outlined SEH finally
986  // block. Nothing depends on this mangling and it's used only with
987  // functinos with internal linkage.
989  mangleSourceName(Name.str());
990  break;
991  }
992 
993  case DeclarationName::CXXConstructorName:
994  if (isStructorDecl(ND)) {
995  if (StructorType == Ctor_CopyingClosure) {
996  Out << "?_O";
997  return;
998  }
999  if (StructorType == Ctor_DefaultClosure) {
1000  Out << "?_F";
1001  return;
1002  }
1003  }
1004  Out << "?0";
1005  return;
1006 
1007  case DeclarationName::CXXDestructorName:
1008  if (isStructorDecl(ND))
1009  // If the named decl is the C++ destructor we're mangling,
1010  // use the type we were given.
1011  mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1012  else
1013  // Otherwise, use the base destructor name. This is relevant if a
1014  // class with a destructor is declared within a destructor.
1015  mangleCXXDtorType(Dtor_Base);
1016  break;
1017 
1018  case DeclarationName::CXXConversionFunctionName:
1019  // <operator-name> ::= ?B # (cast)
1020  // The target type is encoded as the return type.
1021  Out << "?B";
1022  break;
1023 
1024  case DeclarationName::CXXOperatorName:
1025  mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
1026  break;
1027 
1028  case DeclarationName::CXXLiteralOperatorName: {
1029  Out << "?__K";
1030  mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
1031  break;
1032  }
1033 
1034  case DeclarationName::CXXDeductionGuideName:
1035  llvm_unreachable("Can't mangle a deduction guide name!");
1036 
1037  case DeclarationName::CXXUsingDirective:
1038  llvm_unreachable("Can't mangle a using directive name!");
1039  }
1040 }
1041 
1042 // <postfix> ::= <unqualified-name> [<postfix>]
1043 // ::= <substitution> [<postfix>]
1044 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
1045  const DeclContext *DC = getEffectiveDeclContext(ND);
1046  while (!DC->isTranslationUnit()) {
1047  if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
1048  unsigned Disc;
1049  if (Context.getNextDiscriminator(ND, Disc)) {
1050  Out << '?';
1051  mangleNumber(Disc);
1052  Out << '?';
1053  }
1054  }
1055 
1056  if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
1057  auto Discriminate =
1058  [](StringRef Name, const unsigned Discriminator,
1059  const unsigned ParameterDiscriminator) -> std::string {
1060  std::string Buffer;
1061  llvm::raw_string_ostream Stream(Buffer);
1062  Stream << Name;
1063  if (Discriminator)
1064  Stream << '_' << Discriminator;
1065  if (ParameterDiscriminator)
1066  Stream << '_' << ParameterDiscriminator;
1067  return Stream.str();
1068  };
1069 
1070  unsigned Discriminator = BD->getBlockManglingNumber();
1071  if (!Discriminator)
1072  Discriminator = Context.getBlockId(BD, /*Local=*/false);
1073 
1074  // Mangle the parameter position as a discriminator to deal with unnamed
1075  // parameters. Rather than mangling the unqualified parameter name,
1076  // always use the position to give a uniform mangling.
1077  unsigned ParameterDiscriminator = 0;
1078  if (const auto *MC = BD->getBlockManglingContextDecl())
1079  if (const auto *P = dyn_cast<ParmVarDecl>(MC))
1080  if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext()))
1081  ParameterDiscriminator =
1082  F->getNumParams() - P->getFunctionScopeIndex();
1083 
1084  DC = getEffectiveDeclContext(BD);
1085 
1086  Out << '?';
1087  mangleSourceName(Discriminate("_block_invoke", Discriminator,
1088  ParameterDiscriminator));
1089  // If we have a block mangling context, encode that now. This allows us
1090  // to discriminate between named static data initializers in the same
1091  // scope. This is handled differently from parameters, which use
1092  // positions to discriminate between multiple instances.
1093  if (const auto *MC = BD->getBlockManglingContextDecl())
1094  if (!isa<ParmVarDecl>(MC))
1095  if (const auto *ND = dyn_cast<NamedDecl>(MC))
1096  mangleUnqualifiedName(ND);
1097  // MS ABI and Itanium manglings are in inverted scopes. In the case of a
1098  // RecordDecl, mangle the entire scope hierarchy at this point rather than
1099  // just the unqualified name to get the ordering correct.
1100  if (const auto *RD = dyn_cast<RecordDecl>(DC))
1101  mangleName(RD);
1102  else
1103  Out << '@';
1104  // void __cdecl
1105  Out << "YAX";
1106  // struct __block_literal *
1107  Out << 'P';
1108  // __ptr64
1109  if (PointersAre64Bit)
1110  Out << 'E';
1111  Out << 'A';
1112  mangleArtificialTagType(TTK_Struct,
1113  Discriminate("__block_literal", Discriminator,
1114  ParameterDiscriminator));
1115  Out << "@Z";
1116 
1117  // If the effective context was a Record, we have fully mangled the
1118  // qualified name and do not need to continue.
1119  if (isa<RecordDecl>(DC))
1120  break;
1121  continue;
1122  } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
1123  mangleObjCMethodName(Method);
1124  } else if (isa<NamedDecl>(DC)) {
1125  ND = cast<NamedDecl>(DC);
1126  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1127  mangle(FD, "?");
1128  break;
1129  } else {
1130  mangleUnqualifiedName(ND);
1131  // Lambdas in default arguments conceptually belong to the function the
1132  // parameter corresponds to.
1133  if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) {
1134  DC = LDADC;
1135  continue;
1136  }
1137  }
1138  }
1139  DC = DC->getParent();
1140  }
1141 }
1142 
1143 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
1144  // Microsoft uses the names on the case labels for these dtor variants. Clang
1145  // uses the Itanium terminology internally. Everything in this ABI delegates
1146  // towards the base dtor.
1147  switch (T) {
1148  // <operator-name> ::= ?1 # destructor
1149  case Dtor_Base: Out << "?1"; return;
1150  // <operator-name> ::= ?_D # vbase destructor
1151  case Dtor_Complete: Out << "?_D"; return;
1152  // <operator-name> ::= ?_G # scalar deleting destructor
1153  case Dtor_Deleting: Out << "?_G"; return;
1154  // <operator-name> ::= ?_E # vector deleting destructor
1155  // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need
1156  // it.
1157  case Dtor_Comdat:
1158  llvm_unreachable("not expecting a COMDAT");
1159  }
1160  llvm_unreachable("Unsupported dtor type?");
1161 }
1162 
1163 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
1164  SourceLocation Loc) {
1165  switch (OO) {
1166  // ?0 # constructor
1167  // ?1 # destructor
1168  // <operator-name> ::= ?2 # new
1169  case OO_New: Out << "?2"; break;
1170  // <operator-name> ::= ?3 # delete
1171  case OO_Delete: Out << "?3"; break;
1172  // <operator-name> ::= ?4 # =
1173  case OO_Equal: Out << "?4"; break;
1174  // <operator-name> ::= ?5 # >>
1175  case OO_GreaterGreater: Out << "?5"; break;
1176  // <operator-name> ::= ?6 # <<
1177  case OO_LessLess: Out << "?6"; break;
1178  // <operator-name> ::= ?7 # !
1179  case OO_Exclaim: Out << "?7"; break;
1180  // <operator-name> ::= ?8 # ==
1181  case OO_EqualEqual: Out << "?8"; break;
1182  // <operator-name> ::= ?9 # !=
1183  case OO_ExclaimEqual: Out << "?9"; break;
1184  // <operator-name> ::= ?A # []
1185  case OO_Subscript: Out << "?A"; break;
1186  // ?B # conversion
1187  // <operator-name> ::= ?C # ->
1188  case OO_Arrow: Out << "?C"; break;
1189  // <operator-name> ::= ?D # *
1190  case OO_Star: Out << "?D"; break;
1191  // <operator-name> ::= ?E # ++
1192  case OO_PlusPlus: Out << "?E"; break;
1193  // <operator-name> ::= ?F # --
1194  case OO_MinusMinus: Out << "?F"; break;
1195  // <operator-name> ::= ?G # -
1196  case OO_Minus: Out << "?G"; break;
1197  // <operator-name> ::= ?H # +
1198  case OO_Plus: Out << "?H"; break;
1199  // <operator-name> ::= ?I # &
1200  case OO_Amp: Out << "?I"; break;
1201  // <operator-name> ::= ?J # ->*
1202  case OO_ArrowStar: Out << "?J"; break;
1203  // <operator-name> ::= ?K # /
1204  case OO_Slash: Out << "?K"; break;
1205  // <operator-name> ::= ?L # %
1206  case OO_Percent: Out << "?L"; break;
1207  // <operator-name> ::= ?M # <
1208  case OO_Less: Out << "?M"; break;
1209  // <operator-name> ::= ?N # <=
1210  case OO_LessEqual: Out << "?N"; break;
1211  // <operator-name> ::= ?O # >
1212  case OO_Greater: Out << "?O"; break;
1213  // <operator-name> ::= ?P # >=
1214  case OO_GreaterEqual: Out << "?P"; break;
1215  // <operator-name> ::= ?Q # ,
1216  case OO_Comma: Out << "?Q"; break;
1217  // <operator-name> ::= ?R # ()
1218  case OO_Call: Out << "?R"; break;
1219  // <operator-name> ::= ?S # ~
1220  case OO_Tilde: Out << "?S"; break;
1221  // <operator-name> ::= ?T # ^
1222  case OO_Caret: Out << "?T"; break;
1223  // <operator-name> ::= ?U # |
1224  case OO_Pipe: Out << "?U"; break;
1225  // <operator-name> ::= ?V # &&
1226  case OO_AmpAmp: Out << "?V"; break;
1227  // <operator-name> ::= ?W # ||
1228  case OO_PipePipe: Out << "?W"; break;
1229  // <operator-name> ::= ?X # *=
1230  case OO_StarEqual: Out << "?X"; break;
1231  // <operator-name> ::= ?Y # +=
1232  case OO_PlusEqual: Out << "?Y"; break;
1233  // <operator-name> ::= ?Z # -=
1234  case OO_MinusEqual: Out << "?Z"; break;
1235  // <operator-name> ::= ?_0 # /=
1236  case OO_SlashEqual: Out << "?_0"; break;
1237  // <operator-name> ::= ?_1 # %=
1238  case OO_PercentEqual: Out << "?_1"; break;
1239  // <operator-name> ::= ?_2 # >>=
1240  case OO_GreaterGreaterEqual: Out << "?_2"; break;
1241  // <operator-name> ::= ?_3 # <<=
1242  case OO_LessLessEqual: Out << "?_3"; break;
1243  // <operator-name> ::= ?_4 # &=
1244  case OO_AmpEqual: Out << "?_4"; break;
1245  // <operator-name> ::= ?_5 # |=
1246  case OO_PipeEqual: Out << "?_5"; break;
1247  // <operator-name> ::= ?_6 # ^=
1248  case OO_CaretEqual: Out << "?_6"; break;
1249  // ?_7 # vftable
1250  // ?_8 # vbtable
1251  // ?_9 # vcall
1252  // ?_A # typeof
1253  // ?_B # local static guard
1254  // ?_C # string
1255  // ?_D # vbase destructor
1256  // ?_E # vector deleting destructor
1257  // ?_F # default constructor closure
1258  // ?_G # scalar deleting destructor
1259  // ?_H # vector constructor iterator
1260  // ?_I # vector destructor iterator
1261  // ?_J # vector vbase constructor iterator
1262  // ?_K # virtual displacement map
1263  // ?_L # eh vector constructor iterator
1264  // ?_M # eh vector destructor iterator
1265  // ?_N # eh vector vbase constructor iterator
1266  // ?_O # copy constructor closure
1267  // ?_P<name> # udt returning <name>
1268  // ?_Q # <unknown>
1269  // ?_R0 # RTTI Type Descriptor
1270  // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
1271  // ?_R2 # RTTI Base Class Array
1272  // ?_R3 # RTTI Class Hierarchy Descriptor
1273  // ?_R4 # RTTI Complete Object Locator
1274  // ?_S # local vftable
1275  // ?_T # local vftable constructor closure
1276  // <operator-name> ::= ?_U # new[]
1277  case OO_Array_New: Out << "?_U"; break;
1278  // <operator-name> ::= ?_V # delete[]
1279  case OO_Array_Delete: Out << "?_V"; break;
1280  // <operator-name> ::= ?__L # co_await
1281  case OO_Coawait: Out << "?__L"; break;
1282  // <operator-name> ::= ?__M # <=>
1283  case OO_Spaceship: Out << "?__M"; break;
1284 
1285  case OO_Conditional: {
1286  DiagnosticsEngine &Diags = Context.getDiags();
1287  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1288  "cannot mangle this conditional operator yet");
1289  Diags.Report(Loc, DiagID);
1290  break;
1291  }
1292 
1293  case OO_None:
1295  llvm_unreachable("Not an overloaded operator");
1296  }
1297 }
1298 
1299 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
1300  // <source name> ::= <identifier> @
1301  BackRefVec::iterator Found = llvm::find(NameBackReferences, Name);
1302  if (Found == NameBackReferences.end()) {
1303  if (NameBackReferences.size() < 10)
1304  NameBackReferences.push_back(Name);
1305  Out << Name << '@';
1306  } else {
1307  Out << (Found - NameBackReferences.begin());
1308  }
1309 }
1310 
1311 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1312  Context.mangleObjCMethodName(MD, Out);
1313 }
1314 
1315 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1316  const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1317  // <template-name> ::= <unscoped-template-name> <template-args>
1318  // ::= <substitution>
1319  // Always start with the unqualified name.
1320 
1321  // Templates have their own context for back references.
1322  ArgBackRefMap OuterFunArgsContext;
1323  ArgBackRefMap OuterTemplateArgsContext;
1324  BackRefVec OuterTemplateContext;
1325  PassObjectSizeArgsSet OuterPassObjectSizeArgs;
1326  NameBackReferences.swap(OuterTemplateContext);
1327  FunArgBackReferences.swap(OuterFunArgsContext);
1328  TemplateArgBackReferences.swap(OuterTemplateArgsContext);
1329  PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1330 
1331  mangleUnscopedTemplateName(TD);
1332  mangleTemplateArgs(TD, TemplateArgs);
1333 
1334  // Restore the previous back reference contexts.
1335  NameBackReferences.swap(OuterTemplateContext);
1336  FunArgBackReferences.swap(OuterFunArgsContext);
1337  TemplateArgBackReferences.swap(OuterTemplateArgsContext);
1338  PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1339 }
1340 
1341 void
1342 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
1343  // <unscoped-template-name> ::= ?$ <unqualified-name>
1344  Out << "?$";
1345  mangleUnqualifiedName(TD);
1346 }
1347 
1348 void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
1349  bool IsBoolean) {
1350  // <integer-literal> ::= $0 <number>
1351  Out << "$0";
1352  // Make sure booleans are encoded as 0/1.
1353  if (IsBoolean && Value.getBoolValue())
1354  mangleNumber(1);
1355  else if (Value.isSigned())
1356  mangleNumber(Value.getSExtValue());
1357  else
1358  mangleNumber(Value.getZExtValue());
1359 }
1360 
1361 void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
1362  // See if this is a constant expression.
1364  if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
1365  mangleIntegerLiteral(Value, E->getType()->isBooleanType());
1366  return;
1367  }
1368 
1369  // Look through no-op casts like template parameter substitutions.
1370  E = E->IgnoreParenNoopCasts(Context.getASTContext());
1371 
1372  const CXXUuidofExpr *UE = nullptr;
1373  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1374  if (UO->getOpcode() == UO_AddrOf)
1375  UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
1376  } else
1377  UE = dyn_cast<CXXUuidofExpr>(E);
1378 
1379  if (UE) {
1380  // If we had to peek through an address-of operator, treat this like we are
1381  // dealing with a pointer type. Otherwise, treat it like a const reference.
1382  //
1383  // N.B. This matches up with the handling of TemplateArgument::Declaration
1384  // in mangleTemplateArg
1385  if (UE == E)
1386  Out << "$E?";
1387  else
1388  Out << "$1?";
1389 
1390  // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
1391  // const __s_GUID _GUID_{lower case UUID with underscores}
1392  StringRef Uuid = UE->getUuidStr();
1393  std::string Name = "_GUID_" + Uuid.lower();
1394  std::replace(Name.begin(), Name.end(), '-', '_');
1395 
1396  mangleSourceName(Name);
1397  // Terminate the whole name with an '@'.
1398  Out << '@';
1399  // It's a global variable.
1400  Out << '3';
1401  // It's a struct called __s_GUID.
1402  mangleArtificialTagType(TTK_Struct, "__s_GUID");
1403  // It's const.
1404  Out << 'B';
1405  return;
1406  }
1407 
1408  // As bad as this diagnostic is, it's better than crashing.
1409  DiagnosticsEngine &Diags = Context.getDiags();
1410  unsigned DiagID = Diags.getCustomDiagID(
1411  DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
1412  Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
1413  << E->getSourceRange();
1414 }
1415 
1416 void MicrosoftCXXNameMangler::mangleTemplateArgs(
1417  const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1418  // <template-args> ::= <template-arg>+
1419  const TemplateParameterList *TPL = TD->getTemplateParameters();
1420  assert(TPL->size() == TemplateArgs.size() &&
1421  "size mismatch between args and parms!");
1422 
1423  for (size_t i = 0; i < TemplateArgs.size(); ++i) {
1424  const TemplateArgument &TA = TemplateArgs[i];
1425 
1426  // Separate consecutive packs by $$Z.
1427  if (i > 0 && TA.getKind() == TemplateArgument::Pack &&
1428  TemplateArgs[i - 1].getKind() == TemplateArgument::Pack)
1429  Out << "$$Z";
1430 
1431  mangleTemplateArg(TD, TA, TPL->getParam(i));
1432  }
1433 }
1434 
1435 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1436  const TemplateArgument &TA,
1437  const NamedDecl *Parm) {
1438  // <template-arg> ::= <type>
1439  // ::= <integer-literal>
1440  // ::= <member-data-pointer>
1441  // ::= <member-function-pointer>
1442  // ::= $E? <name> <type-encoding>
1443  // ::= $1? <name> <type-encoding>
1444  // ::= $0A@
1445  // ::= <template-args>
1446 
1447  switch (TA.getKind()) {
1449  llvm_unreachable("Can't mangle null template arguments!");
1450  case TemplateArgument::TemplateExpansion:
1451  llvm_unreachable("Can't mangle template expansion arguments!");
1452  case TemplateArgument::Type: {
1453  QualType T = TA.getAsType();
1454  mangleType(T, SourceRange(), QMM_Escape);
1455  break;
1456  }
1457  case TemplateArgument::Declaration: {
1458  const NamedDecl *ND = TA.getAsDecl();
1459  if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
1460  mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext())
1461  ->getMostRecentNonInjectedDecl(),
1462  cast<ValueDecl>(ND));
1463  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1464  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1465  if (MD && MD->isInstance()) {
1466  mangleMemberFunctionPointer(
1468  } else {
1469  Out << "$1?";
1470  mangleName(FD);
1471  mangleFunctionEncoding(FD, /*ShouldMangle=*/true);
1472  }
1473  } else {
1474  mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
1475  }
1476  break;
1477  }
1478  case TemplateArgument::Integral:
1479  mangleIntegerLiteral(TA.getAsIntegral(),
1480  TA.getIntegralType()->isBooleanType());
1481  break;
1482  case TemplateArgument::NullPtr: {
1483  QualType T = TA.getNullPtrType();
1484  if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1485  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1486  if (MPT->isMemberFunctionPointerType() &&
1487  !isa<FunctionTemplateDecl>(TD)) {
1488  mangleMemberFunctionPointer(RD, nullptr);
1489  return;
1490  }
1491  if (MPT->isMemberDataPointer()) {
1492  if (!isa<FunctionTemplateDecl>(TD)) {
1493  mangleMemberDataPointer(RD, nullptr);
1494  return;
1495  }
1496  // nullptr data pointers are always represented with a single field
1497  // which is initialized with either 0 or -1. Why -1? Well, we need to
1498  // distinguish the case where the data member is at offset zero in the
1499  // record.
1500  // However, we are free to use 0 *if* we would use multiple fields for
1501  // non-nullptr member pointers.
1502  if (!RD->nullFieldOffsetIsZero()) {
1503  mangleIntegerLiteral(llvm::APSInt::get(-1), /*IsBoolean=*/false);
1504  return;
1505  }
1506  }
1507  }
1508  mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), /*IsBoolean=*/false);
1509  break;
1510  }
1511  case TemplateArgument::Expression:
1512  mangleExpression(TA.getAsExpr());
1513  break;
1514  case TemplateArgument::Pack: {
1515  ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1516  if (TemplateArgs.empty()) {
1517  if (isa<TemplateTypeParmDecl>(Parm) ||
1518  isa<TemplateTemplateParmDecl>(Parm))
1519  // MSVC 2015 changed the mangling for empty expanded template packs,
1520  // use the old mangling for link compatibility for old versions.
1521  Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
1522  LangOptions::MSVC2015)
1523  ? "$$V"
1524  : "$$$V");
1525  else if (isa<NonTypeTemplateParmDecl>(Parm))
1526  Out << "$S";
1527  else
1528  llvm_unreachable("unexpected template parameter decl!");
1529  } else {
1530  for (const TemplateArgument &PA : TemplateArgs)
1531  mangleTemplateArg(TD, PA, Parm);
1532  }
1533  break;
1534  }
1535  case TemplateArgument::Template: {
1536  const NamedDecl *ND =
1538  if (const auto *TD = dyn_cast<TagDecl>(ND)) {
1539  mangleType(TD);
1540  } else if (isa<TypeAliasDecl>(ND)) {
1541  Out << "$$Y";
1542  mangleName(ND);
1543  } else {
1544  llvm_unreachable("unexpected template template NamedDecl!");
1545  }
1546  break;
1547  }
1548  }
1549 }
1550 
1551 void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) {
1552  llvm::SmallString<64> TemplateMangling;
1553  llvm::raw_svector_ostream Stream(TemplateMangling);
1554  MicrosoftCXXNameMangler Extra(Context, Stream);
1555 
1556  Stream << "?$";
1557  Extra.mangleSourceName("Protocol");
1558  Extra.mangleArtificialTagType(TTK_Struct, PD->getName());
1559 
1560  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1561 }
1562 
1563 void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type,
1564  Qualifiers Quals,
1565  SourceRange Range) {
1566  llvm::SmallString<64> TemplateMangling;
1567  llvm::raw_svector_ostream Stream(TemplateMangling);
1568  MicrosoftCXXNameMangler Extra(Context, Stream);
1569 
1570  Stream << "?$";
1571  switch (Quals.getObjCLifetime()) {
1572  case Qualifiers::OCL_None:
1573  case Qualifiers::OCL_ExplicitNone:
1574  break;
1575  case Qualifiers::OCL_Autoreleasing:
1576  Extra.mangleSourceName("Autoreleasing");
1577  break;
1578  case Qualifiers::OCL_Strong:
1579  Extra.mangleSourceName("Strong");
1580  break;
1581  case Qualifiers::OCL_Weak:
1582  Extra.mangleSourceName("Weak");
1583  break;
1584  }
1585  Extra.manglePointerCVQualifiers(Quals);
1586  Extra.manglePointerExtQualifiers(Quals, Type);
1587  Extra.mangleType(Type, Range);
1588 
1589  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1590 }
1591 
1592 void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T,
1593  Qualifiers Quals,
1594  SourceRange Range) {
1595  llvm::SmallString<64> TemplateMangling;
1596  llvm::raw_svector_ostream Stream(TemplateMangling);
1597  MicrosoftCXXNameMangler Extra(Context, Stream);
1598 
1599  Stream << "?$";
1600  Extra.mangleSourceName("KindOf");
1601  Extra.mangleType(QualType(T, 0)
1602  .stripObjCKindOfType(getASTContext())
1603  ->getAs<ObjCObjectType>(),
1604  Quals, Range);
1605 
1606  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1607 }
1608 
1609 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
1610  bool IsMember) {
1611  // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
1612  // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
1613  // 'I' means __restrict (32/64-bit).
1614  // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
1615  // keyword!
1616  // <base-cvr-qualifiers> ::= A # near
1617  // ::= B # near const
1618  // ::= C # near volatile
1619  // ::= D # near const volatile
1620  // ::= E # far (16-bit)
1621  // ::= F # far const (16-bit)
1622  // ::= G # far volatile (16-bit)
1623  // ::= H # far const volatile (16-bit)
1624  // ::= I # huge (16-bit)
1625  // ::= J # huge const (16-bit)
1626  // ::= K # huge volatile (16-bit)
1627  // ::= L # huge const volatile (16-bit)
1628  // ::= M <basis> # based
1629  // ::= N <basis> # based const
1630  // ::= O <basis> # based volatile
1631  // ::= P <basis> # based const volatile
1632  // ::= Q # near member
1633  // ::= R # near const member
1634  // ::= S # near volatile member
1635  // ::= T # near const volatile member
1636  // ::= U # far member (16-bit)
1637  // ::= V # far const member (16-bit)
1638  // ::= W # far volatile member (16-bit)
1639  // ::= X # far const volatile member (16-bit)
1640  // ::= Y # huge member (16-bit)
1641  // ::= Z # huge const member (16-bit)
1642  // ::= 0 # huge volatile member (16-bit)
1643  // ::= 1 # huge const volatile member (16-bit)
1644  // ::= 2 <basis> # based member
1645  // ::= 3 <basis> # based const member
1646  // ::= 4 <basis> # based volatile member
1647  // ::= 5 <basis> # based const volatile member
1648  // ::= 6 # near function (pointers only)
1649  // ::= 7 # far function (pointers only)
1650  // ::= 8 # near method (pointers only)
1651  // ::= 9 # far method (pointers only)
1652  // ::= _A <basis> # based function (pointers only)
1653  // ::= _B <basis> # based function (far?) (pointers only)
1654  // ::= _C <basis> # based method (pointers only)
1655  // ::= _D <basis> # based method (far?) (pointers only)
1656  // ::= _E # block (Clang)
1657  // <basis> ::= 0 # __based(void)
1658  // ::= 1 # __based(segment)?
1659  // ::= 2 <name> # __based(name)
1660  // ::= 3 # ?
1661  // ::= 4 # ?
1662  // ::= 5 # not really based
1663  bool HasConst = Quals.hasConst(),
1664  HasVolatile = Quals.hasVolatile();
1665 
1666  if (!IsMember) {
1667  if (HasConst && HasVolatile) {
1668  Out << 'D';
1669  } else if (HasVolatile) {
1670  Out << 'C';
1671  } else if (HasConst) {
1672  Out << 'B';
1673  } else {
1674  Out << 'A';
1675  }
1676  } else {
1677  if (HasConst && HasVolatile) {
1678  Out << 'T';
1679  } else if (HasVolatile) {
1680  Out << 'S';
1681  } else if (HasConst) {
1682  Out << 'R';
1683  } else {
1684  Out << 'Q';
1685  }
1686  }
1687 
1688  // FIXME: For now, just drop all extension qualifiers on the floor.
1689 }
1690 
1691 void
1692 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1693  // <ref-qualifier> ::= G # lvalue reference
1694  // ::= H # rvalue-reference
1695  switch (RefQualifier) {
1696  case RQ_None:
1697  break;
1698 
1699  case RQ_LValue:
1700  Out << 'G';
1701  break;
1702 
1703  case RQ_RValue:
1704  Out << 'H';
1705  break;
1706  }
1707 }
1708 
1709 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
1710  QualType PointeeType) {
1711  // Check if this is a default 64-bit pointer or has __ptr64 qualifier.
1712  bool is64Bit = PointeeType.isNull() ? PointersAre64Bit :
1713  is64BitPointer(PointeeType.getQualifiers());
1714  if (is64Bit && (PointeeType.isNull() || !PointeeType->isFunctionType()))
1715  Out << 'E';
1716 
1717  if (Quals.hasRestrict())
1718  Out << 'I';
1719 
1720  if (Quals.hasUnaligned() ||
1721  (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned()))
1722  Out << 'F';
1723 }
1724 
1725 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
1726  // <pointer-cv-qualifiers> ::= P # no qualifiers
1727  // ::= Q # const
1728  // ::= R # volatile
1729  // ::= S # const volatile
1730  bool HasConst = Quals.hasConst(),
1731  HasVolatile = Quals.hasVolatile();
1732 
1733  if (HasConst && HasVolatile) {
1734  Out << 'S';
1735  } else if (HasVolatile) {
1736  Out << 'R';
1737  } else if (HasConst) {
1738  Out << 'Q';
1739  } else {
1740  Out << 'P';
1741  }
1742 }
1743 
1744 void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T,
1745  SourceRange Range) {
1746  // MSVC will backreference two canonically equivalent types that have slightly
1747  // different manglings when mangled alone.
1748 
1749  // Decayed types do not match up with non-decayed versions of the same type.
1750  //
1751  // e.g.
1752  // void (*x)(void) will not form a backreference with void x(void)
1753  void *TypePtr;
1754  if (const auto *DT = T->getAs<DecayedType>()) {
1755  QualType OriginalType = DT->getOriginalType();
1756  // All decayed ArrayTypes should be treated identically; as-if they were
1757  // a decayed IncompleteArrayType.
1758  if (const auto *AT = getASTContext().getAsArrayType(OriginalType))
1759  OriginalType = getASTContext().getIncompleteArrayType(
1760  AT->getElementType(), AT->getSizeModifier(),
1761  AT->getIndexTypeCVRQualifiers());
1762 
1763  TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
1764  // If the original parameter was textually written as an array,
1765  // instead treat the decayed parameter like it's const.
1766  //
1767  // e.g.
1768  // int [] -> int * const
1769  if (OriginalType->isArrayType())
1770  T = T.withConst();
1771  } else {
1772  TypePtr = T.getCanonicalType().getAsOpaquePtr();
1773  }
1774 
1775  ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr);
1776 
1777  if (Found == FunArgBackReferences.end()) {
1778  size_t OutSizeBefore = Out.tell();
1779 
1780  mangleType(T, Range, QMM_Drop);
1781 
1782  // See if it's worth creating a back reference.
1783  // Only types longer than 1 character are considered
1784  // and only 10 back references slots are available:
1785  bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
1786  if (LongerThanOneChar && FunArgBackReferences.size() < 10) {
1787  size_t Size = FunArgBackReferences.size();
1788  FunArgBackReferences[TypePtr] = Size;
1789  }
1790  } else {
1791  Out << Found->second;
1792  }
1793 }
1794 
1795 void MicrosoftCXXNameMangler::manglePassObjectSizeArg(
1796  const PassObjectSizeAttr *POSA) {
1797  int Type = POSA->getType();
1798  bool Dynamic = POSA->isDynamic();
1799 
1800  auto Iter = PassObjectSizeArgs.insert({Type, Dynamic}).first;
1801  auto *TypePtr = (const void *)&*Iter;
1802  ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr);
1803 
1804  if (Found == FunArgBackReferences.end()) {
1805  std::string Name =
1806  Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size";
1807  mangleArtificialTagType(TTK_Enum, Name + llvm::utostr(Type), {"__clang"});
1808 
1809  if (FunArgBackReferences.size() < 10) {
1810  size_t Size = FunArgBackReferences.size();
1811  FunArgBackReferences[TypePtr] = Size;
1812  }
1813  } else {
1814  Out << Found->second;
1815  }
1816 }
1817 
1818 void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T,
1819  Qualifiers Quals,
1820  SourceRange Range) {
1821  // Address space is mangled as an unqualified templated type in the __clang
1822  // namespace. The demangled version of this is:
1823  // In the case of a language specific address space:
1824  // __clang::struct _AS[language_addr_space]<Type>
1825  // where:
1826  // <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace>
1827  // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
1828  // "private"| "generic" ]
1829  // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
1830  // Note that the above were chosen to match the Itanium mangling for this.
1831  //
1832  // In the case of a non-language specific address space:
1833  // __clang::struct _AS<TargetAS, Type>
1834  assert(Quals.hasAddressSpace() && "Not valid without address space");
1835  llvm::SmallString<32> ASMangling;
1836  llvm::raw_svector_ostream Stream(ASMangling);
1837  MicrosoftCXXNameMangler Extra(Context, Stream);
1838  Stream << "?$";
1839 
1840  LangAS AS = Quals.getAddressSpace();
1841  if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
1842  unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
1843  Extra.mangleSourceName("_AS");
1844  Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(TargetAS),
1845  /*IsBoolean*/ false);
1846  } else {
1847  switch (AS) {
1848  default:
1849  llvm_unreachable("Not a language specific address space");
1850  case LangAS::opencl_global:
1851  Extra.mangleSourceName("_ASCLglobal");
1852  break;
1853  case LangAS::opencl_local:
1854  Extra.mangleSourceName("_ASCLlocal");
1855  break;
1856  case LangAS::opencl_constant:
1857  Extra.mangleSourceName("_ASCLconstant");
1858  break;
1859  case LangAS::opencl_private:
1860  Extra.mangleSourceName("_ASCLprivate");
1861  break;
1862  case LangAS::opencl_generic:
1863  Extra.mangleSourceName("_ASCLgeneric");
1864  break;
1865  case LangAS::cuda_device:
1866  Extra.mangleSourceName("_ASCUdevice");
1867  break;
1868  case LangAS::cuda_constant:
1869  Extra.mangleSourceName("_ASCUconstant");
1870  break;
1871  case LangAS::cuda_shared:
1872  Extra.mangleSourceName("_ASCUshared");
1873  break;
1874  case LangAS::ptr32_sptr:
1875  case LangAS::ptr32_uptr:
1876  case LangAS::ptr64:
1877  llvm_unreachable("don't mangle ptr address spaces with _AS");
1878  }
1879  }
1880 
1881  Extra.mangleType(T, Range, QMM_Escape);
1882  mangleQualifiers(Qualifiers(), false);
1883  mangleArtificialTagType(TTK_Struct, ASMangling, {"__clang"});
1884 }
1885 
1886 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
1887  QualifierMangleMode QMM) {
1888  // Don't use the canonical types. MSVC includes things like 'const' on
1889  // pointer arguments to function pointers that canonicalization strips away.
1890  T = T.getDesugaredType(getASTContext());
1891  Qualifiers Quals = T.getLocalQualifiers();
1892 
1893  if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
1894  // If there were any Quals, getAsArrayType() pushed them onto the array
1895  // element type.
1896  if (QMM == QMM_Mangle)
1897  Out << 'A';
1898  else if (QMM == QMM_Escape || QMM == QMM_Result)
1899  Out << "$$B";
1900  mangleArrayType(AT);
1901  return;
1902  }
1903 
1904  bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
1905  T->isReferenceType() || T->isBlockPointerType();
1906 
1907  switch (QMM) {
1908  case QMM_Drop:
1909  if (Quals.hasObjCLifetime())
1910  Quals = Quals.withoutObjCLifetime();
1911  break;
1912  case QMM_Mangle:
1913  if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
1914  Out << '6';
1915  mangleFunctionType(FT);
1916  return;
1917  }
1918  mangleQualifiers(Quals, false);
1919  break;
1920  case QMM_Escape:
1921  if (!IsPointer && Quals) {
1922  Out << "$$C";
1923  mangleQualifiers(Quals, false);
1924  }
1925  break;
1926  case QMM_Result:
1927  // Presence of __unaligned qualifier shouldn't affect mangling here.
1928  Quals.removeUnaligned();
1929  if (Quals.hasObjCLifetime())
1930  Quals = Quals.withoutObjCLifetime();
1931  if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) {
1932  Out << '?';
1933  mangleQualifiers(Quals, false);
1934  }
1935  break;
1936  }
1937 
1938  const Type *ty = T.getTypePtr();
1939 
1940  switch (ty->getTypeClass()) {
1941 #define ABSTRACT_TYPE(CLASS, PARENT)
1942 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1943  case Type::CLASS: \
1944  llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1945  return;
1946 #define TYPE(CLASS, PARENT) \
1947  case Type::CLASS: \
1948  mangleType(cast<CLASS##Type>(ty), Quals, Range); \
1949  break;
1950 #include "clang/AST/TypeNodes.inc"
1951 #undef ABSTRACT_TYPE
1952 #undef NON_CANONICAL_TYPE
1953 #undef TYPE
1954  }
1955 }
1956 
1957 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
1958  SourceRange Range) {
1959  // <type> ::= <builtin-type>
1960  // <builtin-type> ::= X # void
1961  // ::= C # signed char
1962  // ::= D # char
1963  // ::= E # unsigned char
1964  // ::= F # short
1965  // ::= G # unsigned short (or wchar_t if it's not a builtin)
1966  // ::= H # int
1967  // ::= I # unsigned int
1968  // ::= J # long
1969  // ::= K # unsigned long
1970  // L # <none>
1971  // ::= M # float
1972  // ::= N # double
1973  // ::= O # long double (__float80 is mangled differently)
1974  // ::= _J # long long, __int64
1975  // ::= _K # unsigned long long, __int64
1976  // ::= _L # __int128
1977  // ::= _M # unsigned __int128
1978  // ::= _N # bool
1979  // _O # <array in parameter>
1980  // ::= _Q # char8_t
1981  // ::= _S # char16_t
1982  // ::= _T # __float80 (Intel)
1983  // ::= _U # char32_t
1984  // ::= _W # wchar_t
1985  // ::= _Z # __float80 (Digital Mars)
1986  switch (T->getKind()) {
1987  case BuiltinType::Void:
1988  Out << 'X';
1989  break;
1990  case BuiltinType::SChar:
1991  Out << 'C';
1992  break;
1993  case BuiltinType::Char_U:
1994  case BuiltinType::Char_S:
1995  Out << 'D';
1996  break;
1997  case BuiltinType::UChar:
1998  Out << 'E';
1999  break;
2000  case BuiltinType::Short:
2001  Out << 'F';
2002  break;
2003  case BuiltinType::UShort:
2004  Out << 'G';
2005  break;
2006  case BuiltinType::Int:
2007  Out << 'H';
2008  break;
2009  case BuiltinType::UInt:
2010  Out << 'I';
2011  break;
2012  case BuiltinType::Long:
2013  Out << 'J';
2014  break;
2015  case BuiltinType::ULong:
2016  Out << 'K';
2017  break;
2018  case BuiltinType::Float:
2019  Out << 'M';
2020  break;
2021  case BuiltinType::Double:
2022  Out << 'N';
2023  break;
2024  // TODO: Determine size and mangle accordingly
2025  case BuiltinType::LongDouble:
2026  Out << 'O';
2027  break;
2028  case BuiltinType::LongLong:
2029  Out << "_J";
2030  break;
2031  case BuiltinType::ULongLong:
2032  Out << "_K";
2033  break;
2034  case BuiltinType::Int128:
2035  Out << "_L";
2036  break;
2037  case BuiltinType::UInt128:
2038  Out << "_M";
2039  break;
2040  case BuiltinType::Bool:
2041  Out << "_N";
2042  break;
2043  case BuiltinType::Char8:
2044  Out << "_Q";
2045  break;
2046  case BuiltinType::Char16:
2047  Out << "_S";
2048  break;
2049  case BuiltinType::Char32:
2050  Out << "_U";
2051  break;
2052  case BuiltinType::WChar_S:
2053  case BuiltinType::WChar_U:
2054  Out << "_W";
2055  break;
2056 
2057 #define BUILTIN_TYPE(Id, SingletonId)
2058 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2059  case BuiltinType::Id:
2060 #include "clang/AST/BuiltinTypes.def"
2061  case BuiltinType::Dependent:
2062  llvm_unreachable("placeholder types shouldn't get to name mangling");
2063 
2064  case BuiltinType::ObjCId:
2065  mangleArtificialTagType(TTK_Struct, "objc_object");
2066  break;
2067  case BuiltinType::ObjCClass:
2068  mangleArtificialTagType(TTK_Struct, "objc_class");
2069  break;
2070  case BuiltinType::ObjCSel:
2071  mangleArtificialTagType(TTK_Struct, "objc_selector");
2072  break;
2073 
2074 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2075  case BuiltinType::Id: \
2076  Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \
2077  break;
2078 #include "clang/Basic/OpenCLImageTypes.def"
2079  case BuiltinType::OCLSampler:
2080  Out << "PA";
2081  mangleArtificialTagType(TTK_Struct, "ocl_sampler");
2082  break;
2083  case BuiltinType::OCLEvent:
2084  Out << "PA";
2085  mangleArtificialTagType(TTK_Struct, "ocl_event");
2086  break;
2087  case BuiltinType::OCLClkEvent:
2088  Out << "PA";
2089  mangleArtificialTagType(TTK_Struct, "ocl_clkevent");
2090  break;
2091  case BuiltinType::OCLQueue:
2092  Out << "PA";
2093  mangleArtificialTagType(TTK_Struct, "ocl_queue");
2094  break;
2095  case BuiltinType::OCLReserveID:
2096  Out << "PA";
2097  mangleArtificialTagType(TTK_Struct, "ocl_reserveid");
2098  break;
2099 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2100  case BuiltinType::Id: \
2101  mangleArtificialTagType(TTK_Struct, "ocl_" #ExtType); \
2102  break;
2103 #include "clang/Basic/OpenCLExtensionTypes.def"
2104 
2105  case BuiltinType::NullPtr:
2106  Out << "$$T";
2107  break;
2108 
2109  case BuiltinType::Float16:
2110  mangleArtificialTagType(TTK_Struct, "_Float16", {"__clang"});
2111  break;
2112 
2113  case BuiltinType::Half:
2114  mangleArtificialTagType(TTK_Struct, "_Half", {"__clang"});
2115  break;
2116 
2117 #define SVE_TYPE(Name, Id, SingletonId) \
2118  case BuiltinType::Id:
2119 #include "clang/Basic/AArch64SVEACLETypes.def"
2120  case BuiltinType::ShortAccum:
2121  case BuiltinType::Accum:
2122  case BuiltinType::LongAccum:
2123  case BuiltinType::UShortAccum:
2124  case BuiltinType::UAccum:
2125  case BuiltinType::ULongAccum:
2126  case BuiltinType::ShortFract:
2127  case BuiltinType::Fract:
2128  case BuiltinType::LongFract:
2129  case BuiltinType::UShortFract:
2130  case BuiltinType::UFract:
2131  case BuiltinType::ULongFract:
2132  case BuiltinType::SatShortAccum:
2133  case BuiltinType::SatAccum:
2134  case BuiltinType::SatLongAccum:
2135  case BuiltinType::SatUShortAccum:
2136  case BuiltinType::SatUAccum:
2137  case BuiltinType::SatULongAccum:
2138  case BuiltinType::SatShortFract:
2139  case BuiltinType::SatFract:
2140  case BuiltinType::SatLongFract:
2141  case BuiltinType::SatUShortFract:
2142  case BuiltinType::SatUFract:
2143  case BuiltinType::SatULongFract:
2144  case BuiltinType::Float128: {
2145  DiagnosticsEngine &Diags = Context.getDiags();
2146  unsigned DiagID = Diags.getCustomDiagID(
2147  DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet");
2148  Diags.Report(Range.getBegin(), DiagID)
2149  << T->getName(Context.getASTContext().getPrintingPolicy()) << Range;
2150  break;
2151  }
2152  }
2153 }
2154 
2155 // <type> ::= <function-type>
2156 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
2157  SourceRange) {
2158  // Structors only appear in decls, so at this point we know it's not a
2159  // structor type.
2160  // FIXME: This may not be lambda-friendly.
2161  if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) {
2162  Out << "$$A8@@";
2163  mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
2164  } else {
2165  Out << "$$A6";
2166  mangleFunctionType(T);
2167  }
2168 }
2169 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
2171  Out << "$$A6";
2172  mangleFunctionType(T);
2173 }
2174 
2175 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
2176  const FunctionDecl *D,
2177  bool ForceThisQuals,
2178  bool MangleExceptionSpec) {
2179  // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
2180  // <return-type> <argument-list> <throw-spec>
2181  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T);
2182 
2183  SourceRange Range;
2184  if (D) Range = D->getSourceRange();
2185 
2186  bool IsInLambda = false;
2187  bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
2188  CallingConv CC = T->getCallConv();
2189  if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
2190  if (MD->getParent()->isLambda())
2191  IsInLambda = true;
2192  if (MD->isInstance())
2193  HasThisQuals = true;
2194  if (isa<CXXDestructorDecl>(MD)) {
2195  IsStructor = true;
2196  } else if (isa<CXXConstructorDecl>(MD)) {
2197  IsStructor = true;
2198  IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
2199  StructorType == Ctor_DefaultClosure) &&
2200  isStructorDecl(MD);
2201  if (IsCtorClosure)
2202  CC = getASTContext().getDefaultCallingConvention(
2203  /*IsVariadic=*/false, /*IsCXXMethod=*/true);
2204  }
2205  }
2206 
2207  // If this is a C++ instance method, mangle the CVR qualifiers for the
2208  // this pointer.
2209  if (HasThisQuals) {
2210  Qualifiers Quals = Proto->getMethodQuals();
2211  manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
2212  mangleRefQualifier(Proto->getRefQualifier());
2213  mangleQualifiers(Quals, /*IsMember=*/false);
2214  }
2215 
2216  mangleCallingConvention(CC);
2217 
2218  // <return-type> ::= <type>
2219  // ::= @ # structors (they have no declared return type)
2220  if (IsStructor) {
2221  if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) {
2222  // The scalar deleting destructor takes an extra int argument which is not
2223  // reflected in the AST.
2224  if (StructorType == Dtor_Deleting) {
2225  Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
2226  return;
2227  }
2228  // The vbase destructor returns void which is not reflected in the AST.
2229  if (StructorType == Dtor_Complete) {
2230  Out << "XXZ";
2231  return;
2232  }
2233  }
2234  if (IsCtorClosure) {
2235  // Default constructor closure and copy constructor closure both return
2236  // void.
2237  Out << 'X';
2238 
2239  if (StructorType == Ctor_DefaultClosure) {
2240  // Default constructor closure always has no arguments.
2241  Out << 'X';
2242  } else if (StructorType == Ctor_CopyingClosure) {
2243  // Copy constructor closure always takes an unqualified reference.
2244  mangleFunctionArgumentType(getASTContext().getLValueReferenceType(
2245  Proto->getParamType(0)
2247  ->getPointeeType(),
2248  /*SpelledAsLValue=*/true),
2249  Range);
2250  Out << '@';
2251  } else {
2252  llvm_unreachable("unexpected constructor closure!");
2253  }
2254  Out << 'Z';
2255  return;
2256  }
2257  Out << '@';
2258  } else {
2259  QualType ResultType = T->getReturnType();
2260  if (const auto *AT =
2261  dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
2262  Out << '?';
2263  mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
2264  Out << '?';
2265  assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
2266  "shouldn't need to mangle __auto_type!");
2267  mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
2268  Out << '@';
2269  } else if (IsInLambda) {
2270  Out << '@';
2271  } else {
2272  if (ResultType->isVoidType())
2273  ResultType = ResultType.getUnqualifiedType();
2274  mangleType(ResultType, Range, QMM_Result);
2275  }
2276  }
2277 
2278  // <argument-list> ::= X # void
2279  // ::= <type>+ @
2280  // ::= <type>* Z # varargs
2281  if (!Proto) {
2282  // Function types without prototypes can arise when mangling a function type
2283  // within an overloadable function in C. We mangle these as the absence of
2284  // any parameter types (not even an empty parameter list).
2285  Out << '@';
2286  } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2287  Out << 'X';
2288  } else {
2289  // Happens for function pointer type arguments for example.
2290  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2291  mangleFunctionArgumentType(Proto->getParamType(I), Range);
2292  // Mangle each pass_object_size parameter as if it's a parameter of enum
2293  // type passed directly after the parameter with the pass_object_size
2294  // attribute. The aforementioned enum's name is __pass_object_size, and we
2295  // pretend it resides in a top-level namespace called __clang.
2296  //
2297  // FIXME: Is there a defined extension notation for the MS ABI, or is it
2298  // necessary to just cross our fingers and hope this type+namespace
2299  // combination doesn't conflict with anything?
2300  if (D)
2301  if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>())
2302  manglePassObjectSizeArg(P);
2303  }
2304  // <builtin-type> ::= Z # ellipsis
2305  if (Proto->isVariadic())
2306  Out << 'Z';
2307  else
2308  Out << '@';
2309  }
2310 
2311  if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 &&
2312  getASTContext().getLangOpts().isCompatibleWithMSVC(
2313  LangOptions::MSVC2017_5))
2314  mangleThrowSpecification(Proto);
2315  else
2316  Out << 'Z';
2317 }
2318 
2319 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
2320  // <function-class> ::= <member-function> E? # E designates a 64-bit 'this'
2321  // # pointer. in 64-bit mode *all*
2322  // # 'this' pointers are 64-bit.
2323  // ::= <global-function>
2324  // <member-function> ::= A # private: near
2325  // ::= B # private: far
2326  // ::= C # private: static near
2327  // ::= D # private: static far
2328  // ::= E # private: virtual near
2329  // ::= F # private: virtual far
2330  // ::= I # protected: near
2331  // ::= J # protected: far
2332  // ::= K # protected: static near
2333  // ::= L # protected: static far
2334  // ::= M # protected: virtual near
2335  // ::= N # protected: virtual far
2336  // ::= Q # public: near
2337  // ::= R # public: far
2338  // ::= S # public: static near
2339  // ::= T # public: static far
2340  // ::= U # public: virtual near
2341  // ::= V # public: virtual far
2342  // <global-function> ::= Y # global near
2343  // ::= Z # global far
2344  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
2345  bool IsVirtual = MD->isVirtual();
2346  // When mangling vbase destructor variants, ignore whether or not the
2347  // underlying destructor was defined to be virtual.
2348  if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) &&
2349  StructorType == Dtor_Complete) {
2350  IsVirtual = false;
2351  }
2352  switch (MD->getAccess()) {
2353  case AS_none:
2354  llvm_unreachable("Unsupported access specifier");
2355  case AS_private:
2356  if (MD->isStatic())
2357  Out << 'C';
2358  else if (IsVirtual)
2359  Out << 'E';
2360  else
2361  Out << 'A';
2362  break;
2363  case AS_protected:
2364  if (MD->isStatic())
2365  Out << 'K';
2366  else if (IsVirtual)
2367  Out << 'M';
2368  else
2369  Out << 'I';
2370  break;
2371  case AS_public:
2372  if (MD->isStatic())
2373  Out << 'S';
2374  else if (IsVirtual)
2375  Out << 'U';
2376  else
2377  Out << 'Q';
2378  }
2379  } else {
2380  Out << 'Y';
2381  }
2382 }
2383 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
2384  // <calling-convention> ::= A # __cdecl
2385  // ::= B # __export __cdecl
2386  // ::= C # __pascal
2387  // ::= D # __export __pascal
2388  // ::= E # __thiscall
2389  // ::= F # __export __thiscall
2390  // ::= G # __stdcall
2391  // ::= H # __export __stdcall
2392  // ::= I # __fastcall
2393  // ::= J # __export __fastcall
2394  // ::= Q # __vectorcall
2395  // ::= w # __regcall
2396  // The 'export' calling conventions are from a bygone era
2397  // (*cough*Win16*cough*) when functions were declared for export with
2398  // that keyword. (It didn't actually export them, it just made them so
2399  // that they could be in a DLL and somebody from another module could call
2400  // them.)
2401 
2402  switch (CC) {
2403  default:
2404  llvm_unreachable("Unsupported CC for mangling");
2405  case CC_Win64:
2406  case CC_X86_64SysV:
2407  case CC_C: Out << 'A'; break;
2408  case CC_X86Pascal: Out << 'C'; break;
2409  case CC_X86ThisCall: Out << 'E'; break;
2410  case CC_X86StdCall: Out << 'G'; break;
2411  case CC_X86FastCall: Out << 'I'; break;
2412  case CC_X86VectorCall: Out << 'Q'; break;
2413  case CC_Swift: Out << 'S'; break;
2414  case CC_PreserveMost: Out << 'U'; break;
2415  case CC_X86RegCall: Out << 'w'; break;
2416  }
2417 }
2418 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
2419  mangleCallingConvention(T->getCallConv());
2420 }
2421 
2422 void MicrosoftCXXNameMangler::mangleThrowSpecification(
2423  const FunctionProtoType *FT) {
2424  // <throw-spec> ::= Z # (default)
2425  // ::= _E # noexcept
2426  if (FT->canThrow())
2427  Out << 'Z';
2428  else
2429  Out << "_E";
2430 }
2431 
2432 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
2433  Qualifiers, SourceRange Range) {
2434  // Probably should be mangled as a template instantiation; need to see what
2435  // VC does first.
2436  DiagnosticsEngine &Diags = Context.getDiags();
2437  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2438  "cannot mangle this unresolved dependent type yet");
2439  Diags.Report(Range.getBegin(), DiagID)
2440  << Range;
2441 }
2442 
2443 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
2444 // <union-type> ::= T <name>
2445 // <struct-type> ::= U <name>
2446 // <class-type> ::= V <name>
2447 // <enum-type> ::= W4 <name>
2448 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) {
2449  switch (TTK) {
2450  case TTK_Union:
2451  Out << 'T';
2452  break;
2453  case TTK_Struct:
2454  case TTK_Interface:
2455  Out << 'U';
2456  break;
2457  case TTK_Class:
2458  Out << 'V';
2459  break;
2460  case TTK_Enum:
2461  Out << "W4";
2462  break;
2463  }
2464 }
2465 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
2466  SourceRange) {
2467  mangleType(cast<TagType>(T)->getDecl());
2468 }
2469 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
2470  SourceRange) {
2471  mangleType(cast<TagType>(T)->getDecl());
2472 }
2473 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
2474  mangleTagTypeKind(TD->getTagKind());
2475  mangleName(TD);
2476 }
2477 
2478 // If you add a call to this, consider updating isArtificialTagType() too.
2479 void MicrosoftCXXNameMangler::mangleArtificialTagType(
2480  TagTypeKind TK, StringRef UnqualifiedName,
2481  ArrayRef<StringRef> NestedNames) {
2482  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
2483  mangleTagTypeKind(TK);
2484 
2485  // Always start with the unqualified name.
2486  mangleSourceName(UnqualifiedName);
2487 
2488  for (auto I = NestedNames.rbegin(), E = NestedNames.rend(); I != E; ++I)
2489  mangleSourceName(*I);
2490 
2491  // Terminate the whole name with an '@'.
2492  Out << '@';
2493 }
2494 
2495 // <type> ::= <array-type>
2496 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2497 // [Y <dimension-count> <dimension>+]
2498 // <element-type> # as global, E is never required
2499 // It's supposed to be the other way around, but for some strange reason, it
2500 // isn't. Today this behavior is retained for the sole purpose of backwards
2501 // compatibility.
2502 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
2503  // This isn't a recursive mangling, so now we have to do it all in this
2504  // one call.
2505  manglePointerCVQualifiers(T->getElementType().getQualifiers());
2506  mangleType(T->getElementType(), SourceRange());
2507 }
2508 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
2509  SourceRange) {
2510  llvm_unreachable("Should have been special cased");
2511 }
2512 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
2513  SourceRange) {
2514  llvm_unreachable("Should have been special cased");
2515 }
2516 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
2518  llvm_unreachable("Should have been special cased");
2519 }
2520 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
2522  llvm_unreachable("Should have been special cased");
2523 }
2524 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
2525  QualType ElementTy(T, 0);
2526  SmallVector<llvm::APInt, 3> Dimensions;
2527  for (;;) {
2528  if (ElementTy->isConstantArrayType()) {
2529  const ConstantArrayType *CAT =
2530  getASTContext().getAsConstantArrayType(ElementTy);
2531  Dimensions.push_back(CAT->getSize());
2532  ElementTy = CAT->getElementType();
2533  } else if (ElementTy->isIncompleteArrayType()) {
2534  const IncompleteArrayType *IAT =
2535  getASTContext().getAsIncompleteArrayType(ElementTy);
2536  Dimensions.push_back(llvm::APInt(32, 0));
2537  ElementTy = IAT->getElementType();
2538  } else if (ElementTy->isVariableArrayType()) {
2539  const VariableArrayType *VAT =
2540  getASTContext().getAsVariableArrayType(ElementTy);
2541  Dimensions.push_back(llvm::APInt(32, 0));
2542  ElementTy = VAT->getElementType();
2543  } else if (ElementTy->isDependentSizedArrayType()) {
2544  // The dependent expression has to be folded into a constant (TODO).
2545  const DependentSizedArrayType *DSAT =
2546  getASTContext().getAsDependentSizedArrayType(ElementTy);
2547  DiagnosticsEngine &Diags = Context.getDiags();
2548  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2549  "cannot mangle this dependent-length array yet");
2550  Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
2551  << DSAT->getBracketsRange();
2552  return;
2553  } else {
2554  break;
2555  }
2556  }
2557  Out << 'Y';
2558  // <dimension-count> ::= <number> # number of extra dimensions
2559  mangleNumber(Dimensions.size());
2560  for (const llvm::APInt &Dimension : Dimensions)
2561  mangleNumber(Dimension.getLimitedValue());
2562  mangleType(ElementTy, SourceRange(), QMM_Escape);
2563 }
2564 
2565 // <type> ::= <pointer-to-member-type>
2566 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2567 // <class name> <type>
2568 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
2569  Qualifiers Quals, SourceRange Range) {
2570  QualType PointeeType = T->getPointeeType();
2571  manglePointerCVQualifiers(Quals);
2572  manglePointerExtQualifiers(Quals, PointeeType);
2573  if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
2574  Out << '8';
2575  mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2576  mangleFunctionType(FPT, nullptr, true);
2577  } else {
2578  mangleQualifiers(PointeeType.getQualifiers(), true);
2579  mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2580  mangleType(PointeeType, Range, QMM_Drop);
2581  }
2582 }
2583 
2584 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
2585  Qualifiers, SourceRange Range) {
2586  DiagnosticsEngine &Diags = Context.getDiags();
2587  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2588  "cannot mangle this template type parameter type yet");
2589  Diags.Report(Range.getBegin(), DiagID)
2590  << Range;
2591 }
2592 
2593 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
2594  Qualifiers, SourceRange Range) {
2595  DiagnosticsEngine &Diags = Context.getDiags();
2596  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2597  "cannot mangle this substituted parameter pack yet");
2598  Diags.Report(Range.getBegin(), DiagID)
2599  << Range;
2600 }
2601 
2602 // <type> ::= <pointer-type>
2603 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
2604 // # the E is required for 64-bit non-static pointers
2605 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
2606  SourceRange Range) {
2607  QualType PointeeType = T->getPointeeType();
2608  manglePointerCVQualifiers(Quals);
2609  manglePointerExtQualifiers(Quals, PointeeType);
2610 
2611  // For pointer size address spaces, go down the same type mangling path as
2612  // non address space types.
2613  LangAS AddrSpace = PointeeType.getQualifiers().getAddressSpace();
2614  if (isPtrSizeAddressSpace(AddrSpace) || AddrSpace == LangAS::Default)
2615  mangleType(PointeeType, Range);
2616  else
2617  mangleAddressSpaceType(PointeeType, PointeeType.getQualifiers(), Range);
2618 }
2619 
2620 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
2621  Qualifiers Quals, SourceRange Range) {
2622  QualType PointeeType = T->getPointeeType();
2623  switch (Quals.getObjCLifetime()) {
2624  case Qualifiers::OCL_None:
2625  case Qualifiers::OCL_ExplicitNone:
2626  break;
2627  case Qualifiers::OCL_Autoreleasing:
2628  case Qualifiers::OCL_Strong:
2629  case Qualifiers::OCL_Weak:
2630  return mangleObjCLifetime(PointeeType, Quals, Range);
2631  }
2632  manglePointerCVQualifiers(Quals);
2633  manglePointerExtQualifiers(Quals, PointeeType);
2634  mangleType(PointeeType, Range);
2635 }
2636 
2637 // <type> ::= <reference-type>
2638 // <reference-type> ::= A E? <cvr-qualifiers> <type>
2639 // # the E is required for 64-bit non-static lvalue references
2640 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
2641  Qualifiers Quals, SourceRange Range) {
2642  QualType PointeeType = T->getPointeeType();
2643  assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2644  Out << 'A';
2645  manglePointerExtQualifiers(Quals, PointeeType);
2646  mangleType(PointeeType, Range);
2647 }
2648 
2649 // <type> ::= <r-value-reference-type>
2650 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
2651 // # the E is required for 64-bit non-static rvalue references
2652 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
2653  Qualifiers Quals, SourceRange Range) {
2654  QualType PointeeType = T->getPointeeType();
2655  assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2656  Out << "$$Q";
2657  manglePointerExtQualifiers(Quals, PointeeType);
2658  mangleType(PointeeType, Range);
2659 }
2660 
2661 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
2662  SourceRange Range) {
2663  QualType ElementType = T->getElementType();
2664 
2665  llvm::SmallString<64> TemplateMangling;
2666  llvm::raw_svector_ostream Stream(TemplateMangling);
2667  MicrosoftCXXNameMangler Extra(Context, Stream);
2668  Stream << "?$";
2669  Extra.mangleSourceName("_Complex");
2670  Extra.mangleType(ElementType, Range, QMM_Escape);
2671 
2672  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
2673 }
2674 
2675 // Returns true for types that mangleArtificialTagType() gets called for with
2676 // TTK_Union, TTK_Struct, TTK_Class and where compatibility with MSVC's
2677 // mangling matters.
2678 // (It doesn't matter for Objective-C types and the like that cl.exe doesn't
2679 // support.)
2680 bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const {
2681  const Type *ty = T.getTypePtr();
2682  switch (ty->getTypeClass()) {
2683  default:
2684  return false;
2685 
2686  case Type::Vector: {
2687  // For ABI compatibility only __m64, __m128(id), and __m256(id) matter,
2688  // but since mangleType(VectorType*) always calls mangleArtificialTagType()
2689  // just always return true (the other vector types are clang-only).
2690  return true;
2691  }
2692  }
2693 }
2694 
2695 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
2696  SourceRange Range) {
2697  const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
2698  assert(ET && "vectors with non-builtin elements are unsupported");
2699  uint64_t Width = getASTContext().getTypeSize(T);
2700  // Pattern match exactly the typedefs in our intrinsic headers. Anything that
2701  // doesn't match the Intel types uses a custom mangling below.
2702  size_t OutSizeBefore = Out.tell();
2703  if (!isa<ExtVectorType>(T)) {
2704  if (getASTContext().getTargetInfo().getTriple().isX86()) {
2705  if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
2706  mangleArtificialTagType(TTK_Union, "__m64");
2707  } else if (Width >= 128) {
2708  if (ET->getKind() == BuiltinType::Float)
2709  mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width));
2710  else if (ET->getKind() == BuiltinType::LongLong)
2711  mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i');
2712  else if (ET->getKind() == BuiltinType::Double)
2713  mangleArtificialTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd');
2714  }
2715  }
2716  }
2717 
2718  bool IsBuiltin = Out.tell() != OutSizeBefore;
2719  if (!IsBuiltin) {
2720  // The MS ABI doesn't have a special mangling for vector types, so we define
2721  // our own mangling to handle uses of __vector_size__ on user-specified
2722  // types, and for extensions like __v4sf.
2723 
2724  llvm::SmallString<64> TemplateMangling;
2725  llvm::raw_svector_ostream Stream(TemplateMangling);
2726  MicrosoftCXXNameMangler Extra(Context, Stream);
2727  Stream << "?$";
2728  Extra.mangleSourceName("__vector");
2729  Extra.mangleType(QualType(ET, 0), Range, QMM_Escape);
2730  Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()),
2731  /*IsBoolean=*/false);
2732 
2733  mangleArtificialTagType(TTK_Union, TemplateMangling, {"__clang"});
2734  }
2735 }
2736 
2737 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
2738  Qualifiers Quals, SourceRange Range) {
2739  mangleType(static_cast<const VectorType *>(T), Quals, Range);
2740 }
2741 
2742 void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T,
2743  Qualifiers, SourceRange Range) {
2744  DiagnosticsEngine &Diags = Context.getDiags();
2745  unsigned DiagID = Diags.getCustomDiagID(
2747  "cannot mangle this dependent-sized vector type yet");
2748  Diags.Report(Range.getBegin(), DiagID) << Range;
2749 }
2750 
2751 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
2752  Qualifiers, SourceRange Range) {
2753  DiagnosticsEngine &Diags = Context.getDiags();
2754  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2755  "cannot mangle this dependent-sized extended vector type yet");
2756  Diags.Report(Range.getBegin(), DiagID)
2757  << Range;
2758 }
2759 
2760 void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T,
2761  Qualifiers, SourceRange Range) {
2762  DiagnosticsEngine &Diags = Context.getDiags();
2763  unsigned DiagID = Diags.getCustomDiagID(
2765  "cannot mangle this dependent address space type yet");
2766  Diags.Report(Range.getBegin(), DiagID) << Range;
2767 }
2768 
2769 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
2770  SourceRange) {
2771  // ObjC interfaces have structs underlying them.
2772  mangleTagTypeKind(TTK_Struct);
2773  mangleName(T->getDecl());
2774 }
2775 
2776 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
2777  Qualifiers Quals, SourceRange Range) {
2778  if (T->isKindOfType())
2779  return mangleObjCKindOfType(T, Quals, Range);
2780 
2781  if (T->qual_empty() && !T->isSpecialized())
2782  return mangleType(T->getBaseType(), Range, QMM_Drop);
2783 
2784  ArgBackRefMap OuterFunArgsContext;
2785  ArgBackRefMap OuterTemplateArgsContext;
2786  BackRefVec OuterTemplateContext;
2787 
2788  FunArgBackReferences.swap(OuterFunArgsContext);
2789  TemplateArgBackReferences.swap(OuterTemplateArgsContext);
2790  NameBackReferences.swap(OuterTemplateContext);
2791 
2792  mangleTagTypeKind(TTK_Struct);
2793 
2794  Out << "?$";
2795  if (T->isObjCId())
2796  mangleSourceName("objc_object");
2797  else if (T->isObjCClass())
2798  mangleSourceName("objc_class");
2799  else
2800  mangleSourceName(T->getInterface()->getName());
2801 
2802  for (const auto &Q : T->quals())
2803  mangleObjCProtocol(Q);
2804 
2805  if (T->isSpecialized())
2806  for (const auto &TA : T->getTypeArgs())
2807  mangleType(TA, Range, QMM_Drop);
2808 
2809  Out << '@';
2810 
2811  Out << '@';
2812 
2813  FunArgBackReferences.swap(OuterFunArgsContext);
2814  TemplateArgBackReferences.swap(OuterTemplateArgsContext);
2815  NameBackReferences.swap(OuterTemplateContext);
2816 }
2817 
2818 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
2819  Qualifiers Quals, SourceRange Range) {
2820  QualType PointeeType = T->getPointeeType();
2821  manglePointerCVQualifiers(Quals);
2822  manglePointerExtQualifiers(Quals, PointeeType);
2823 
2824  Out << "_E";
2825 
2826  mangleFunctionType(PointeeType->castAs<FunctionProtoType>());
2827 }
2828 
2829 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
2831  llvm_unreachable("Cannot mangle injected class name type.");
2832 }
2833 
2834 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
2835  Qualifiers, SourceRange Range) {
2836  DiagnosticsEngine &Diags = Context.getDiags();
2837  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2838  "cannot mangle this template specialization type yet");
2839  Diags.Report(Range.getBegin(), DiagID)
2840  << Range;
2841 }
2842 
2843 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
2844  SourceRange Range) {
2845  DiagnosticsEngine &Diags = Context.getDiags();
2846  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2847  "cannot mangle this dependent name type yet");
2848  Diags.Report(Range.getBegin(), DiagID)
2849  << Range;
2850 }
2851 
2852 void MicrosoftCXXNameMangler::mangleType(
2854  SourceRange Range) {
2855  DiagnosticsEngine &Diags = Context.getDiags();
2856  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2857  "cannot mangle this dependent template specialization type yet");
2858  Diags.Report(Range.getBegin(), DiagID)
2859  << Range;
2860 }
2861 
2862 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
2863  SourceRange Range) {
2864  DiagnosticsEngine &Diags = Context.getDiags();
2865  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2866  "cannot mangle this pack expansion yet");
2867  Diags.Report(Range.getBegin(), DiagID)
2868  << Range;
2869 }
2870 
2871 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
2872  SourceRange Range) {
2873  DiagnosticsEngine &Diags = Context.getDiags();
2874  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2875  "cannot mangle this typeof(type) yet");
2876  Diags.Report(Range.getBegin(), DiagID)
2877  << Range;
2878 }
2879 
2880 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
2881  SourceRange Range) {
2882  DiagnosticsEngine &Diags = Context.getDiags();
2883  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2884  "cannot mangle this typeof(expression) yet");
2885  Diags.Report(Range.getBegin(), DiagID)
2886  << Range;
2887 }
2888 
2889 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
2890  SourceRange Range) {
2891  DiagnosticsEngine &Diags = Context.getDiags();
2892  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2893  "cannot mangle this decltype() yet");
2894  Diags.Report(Range.getBegin(), DiagID)
2895  << Range;
2896 }
2897 
2898 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
2899  Qualifiers, SourceRange Range) {
2900  DiagnosticsEngine &Diags = Context.getDiags();
2901  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2902  "cannot mangle this unary transform type yet");
2903  Diags.Report(Range.getBegin(), DiagID)
2904  << Range;
2905 }
2906 
2907 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
2908  SourceRange Range) {
2909  assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2910 
2911  DiagnosticsEngine &Diags = Context.getDiags();
2912  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2913  "cannot mangle this 'auto' type yet");
2914  Diags.Report(Range.getBegin(), DiagID)
2915  << Range;
2916 }
2917 
2918 void MicrosoftCXXNameMangler::mangleType(
2920  assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2921 
2922  DiagnosticsEngine &Diags = Context.getDiags();
2923  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2924  "cannot mangle this deduced class template specialization type yet");
2925  Diags.Report(Range.getBegin(), DiagID)
2926  << Range;
2927 }
2928 
2929 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
2930  SourceRange Range) {
2931  QualType ValueType = T->getValueType();
2932 
2933  llvm::SmallString<64> TemplateMangling;
2934  llvm::raw_svector_ostream Stream(TemplateMangling);
2935  MicrosoftCXXNameMangler Extra(Context, Stream);
2936  Stream << "?$";
2937  Extra.mangleSourceName("_Atomic");
2938  Extra.mangleType(ValueType, Range, QMM_Escape);
2939 
2940  mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
2941 }
2942 
2943 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers,
2944  SourceRange Range) {
2945  DiagnosticsEngine &Diags = Context.getDiags();
2946  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2947  "cannot mangle this OpenCL pipe type yet");
2948  Diags.Report(Range.getBegin(), DiagID)
2949  << Range;
2950 }
2951 
2952 void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
2953  raw_ostream &Out) {
2954  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2955  "Invalid mangleName() call, argument is not a variable or function!");
2956  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2957  "Invalid mangleName() call on 'structor decl!");
2958 
2959  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2960  getASTContext().getSourceManager(),
2961  "Mangling declaration");
2962 
2963  msvc_hashing_ostream MHO(Out);
2964  MicrosoftCXXNameMangler Mangler(*this, MHO);
2965  return Mangler.mangle(D);
2966 }
2967 
2968 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
2969 // <virtual-adjustment>
2970 // <no-adjustment> ::= A # private near
2971 // ::= B # private far
2972 // ::= I # protected near
2973 // ::= J # protected far
2974 // ::= Q # public near
2975 // ::= R # public far
2976 // <static-adjustment> ::= G <static-offset> # private near
2977 // ::= H <static-offset> # private far
2978 // ::= O <static-offset> # protected near
2979 // ::= P <static-offset> # protected far
2980 // ::= W <static-offset> # public near
2981 // ::= X <static-offset> # public far
2982 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
2983 // ::= $1 <virtual-shift> <static-offset> # private far
2984 // ::= $2 <virtual-shift> <static-offset> # protected near
2985 // ::= $3 <virtual-shift> <static-offset> # protected far
2986 // ::= $4 <virtual-shift> <static-offset> # public near
2987 // ::= $5 <virtual-shift> <static-offset> # public far
2988 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift>
2989 // <vtordisp-shift> ::= <offset-to-vtordisp>
2990 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset>
2991 // <offset-to-vtordisp>
2993  const ThisAdjustment &Adjustment,
2994  MicrosoftCXXNameMangler &Mangler,
2995  raw_ostream &Out) {
2996  if (!Adjustment.Virtual.isEmpty()) {
2997  Out << '$';
2998  char AccessSpec;
2999  switch (AS) {
3000  case AS_none:
3001  llvm_unreachable("Unsupported access specifier");
3002  case AS_private:
3003  AccessSpec = '0';
3004  break;
3005  case AS_protected:
3006  AccessSpec = '2';
3007  break;
3008  case AS_public:
3009  AccessSpec = '4';
3010  }
3011  if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
3012  Out << 'R' << AccessSpec;
3013  Mangler.mangleNumber(
3014  static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
3015  Mangler.mangleNumber(
3016  static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
3017  Mangler.mangleNumber(
3018  static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
3019  Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
3020  } else {
3021  Out << AccessSpec;
3022  Mangler.mangleNumber(
3023  static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
3024  Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
3025  }
3026  } else if (Adjustment.NonVirtual != 0) {
3027  switch (AS) {
3028  case AS_none:
3029  llvm_unreachable("Unsupported access specifier");
3030  case AS_private:
3031  Out << 'G';
3032  break;
3033  case AS_protected:
3034  Out << 'O';
3035  break;
3036  case AS_public:
3037  Out << 'W';
3038  }
3039  Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
3040  } else {
3041  switch (AS) {
3042  case AS_none:
3043  llvm_unreachable("Unsupported access specifier");
3044  case AS_private:
3045  Out << 'A';
3046  break;
3047  case AS_protected:
3048  Out << 'I';
3049  break;
3050  case AS_public:
3051  Out << 'Q';
3052  }
3053  }
3054 }
3055 
3056 void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(
3057  const CXXMethodDecl *MD, const MethodVFTableLocation &ML,
3058  raw_ostream &Out) {
3059  msvc_hashing_ostream MHO(Out);
3060  MicrosoftCXXNameMangler Mangler(*this, MHO);
3061  Mangler.getStream() << '?';
3062  Mangler.mangleVirtualMemPtrThunk(MD, ML);
3063 }
3064 
3065 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3066  const ThunkInfo &Thunk,
3067  raw_ostream &Out) {
3068  msvc_hashing_ostream MHO(Out);
3069  MicrosoftCXXNameMangler Mangler(*this, MHO);
3070  Mangler.getStream() << '?';
3071  Mangler.mangleName(MD);
3072 
3073  // Usually the thunk uses the access specifier of the new method, but if this
3074  // is a covariant return thunk, then MSVC always uses the public access
3075  // specifier, and we do the same.
3076  AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public;
3077  mangleThunkThisAdjustment(AS, Thunk.This, Mangler, MHO);
3078 
3079  if (!Thunk.Return.isEmpty())
3080  assert(Thunk.Method != nullptr &&
3081  "Thunk info should hold the overridee decl");
3082 
3083  const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
3084  Mangler.mangleFunctionType(
3085  DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
3086 }
3087 
3088 void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
3089  const CXXDestructorDecl *DD, CXXDtorType Type,
3090  const ThisAdjustment &Adjustment, raw_ostream &Out) {
3091  // FIXME: Actually, the dtor thunk should be emitted for vector deleting
3092  // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
3093  // mangling manually until we support both deleting dtor types.
3094  assert(Type == Dtor_Deleting);
3095  msvc_hashing_ostream MHO(Out);
3096  MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type);
3097  Mangler.getStream() << "??_E";
3098  Mangler.mangleName(DD->getParent());
3099  mangleThunkThisAdjustment(DD->getAccess(), Adjustment, Mangler, MHO);
3100  Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
3101 }
3102 
3103 void MicrosoftMangleContextImpl::mangleCXXVFTable(
3104  const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3105  raw_ostream &Out) {
3106  // <mangled-name> ::= ?_7 <class-name> <storage-class>
3107  // <cvr-qualifiers> [<name>] @
3108  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3109  // is always '6' for vftables.
3110  msvc_hashing_ostream MHO(Out);
3111  MicrosoftCXXNameMangler Mangler(*this, MHO);
3112  if (Derived->hasAttr<DLLImportAttr>())
3113  Mangler.getStream() << "??_S";
3114  else
3115  Mangler.getStream() << "??_7";
3116  Mangler.mangleName(Derived);
3117  Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
3118  for (const CXXRecordDecl *RD : BasePath)
3119  Mangler.mangleName(RD);
3120  Mangler.getStream() << '@';
3121 }
3122 
3123 void MicrosoftMangleContextImpl::mangleCXXVBTable(
3124  const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3125  raw_ostream &Out) {
3126  // <mangled-name> ::= ?_8 <class-name> <storage-class>
3127  // <cvr-qualifiers> [<name>] @
3128  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3129  // is always '7' for vbtables.
3130  msvc_hashing_ostream MHO(Out);
3131  MicrosoftCXXNameMangler Mangler(*this, MHO);
3132  Mangler.getStream() << "??_8";
3133  Mangler.mangleName(Derived);
3134  Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const.
3135  for (const CXXRecordDecl *RD : BasePath)
3136  Mangler.mangleName(RD);
3137  Mangler.getStream() << '@';
3138 }
3139 
3140 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
3141  msvc_hashing_ostream MHO(Out);
3142  MicrosoftCXXNameMangler Mangler(*this, MHO);
3143  Mangler.getStream() << "??_R0";
3144  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3145  Mangler.getStream() << "@8";
3146 }
3147 
3148 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
3149  raw_ostream &Out) {
3150  MicrosoftCXXNameMangler Mangler(*this, Out);
3151  Mangler.getStream() << '.';
3152  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3153 }
3154 
3155 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap(
3156  const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) {
3157  msvc_hashing_ostream MHO(Out);
3158  MicrosoftCXXNameMangler Mangler(*this, MHO);
3159  Mangler.getStream() << "??_K";
3160  Mangler.mangleName(SrcRD);
3161  Mangler.getStream() << "$C";
3162  Mangler.mangleName(DstRD);
3163 }
3164 
3165 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst,
3166  bool IsVolatile,
3167  bool IsUnaligned,
3168  uint32_t NumEntries,
3169  raw_ostream &Out) {
3170  msvc_hashing_ostream MHO(Out);
3171  MicrosoftCXXNameMangler Mangler(*this, MHO);
3172  Mangler.getStream() << "_TI";
3173  if (IsConst)
3174  Mangler.getStream() << 'C';
3175  if (IsVolatile)
3176  Mangler.getStream() << 'V';
3177  if (IsUnaligned)
3178  Mangler.getStream() << 'U';
3179  Mangler.getStream() << NumEntries;
3180  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3181 }
3182 
3183 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
3184  QualType T, uint32_t NumEntries, raw_ostream &Out) {
3185  msvc_hashing_ostream MHO(Out);
3186  MicrosoftCXXNameMangler Mangler(*this, MHO);
3187  Mangler.getStream() << "_CTA";
3188  Mangler.getStream() << NumEntries;
3189  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3190 }
3191 
3192 void MicrosoftMangleContextImpl::mangleCXXCatchableType(
3193  QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
3194  uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
3195  raw_ostream &Out) {
3196  MicrosoftCXXNameMangler Mangler(*this, Out);
3197  Mangler.getStream() << "_CT";
3198 
3199  llvm::SmallString<64> RTTIMangling;
3200  {
3201  llvm::raw_svector_ostream Stream(RTTIMangling);
3202  msvc_hashing_ostream MHO(Stream);
3203  mangleCXXRTTI(T, MHO);
3204  }
3205  Mangler.getStream() << RTTIMangling;
3206 
3207  // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but
3208  // both older and newer versions include it.
3209  // FIXME: It is known that the Ctor is present in 2013, and in 2017.7
3210  // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4
3211  // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914?
3212  // Or 1912, 1913 aleady?).
3213  bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC(
3214  LangOptions::MSVC2015) &&
3215  !getASTContext().getLangOpts().isCompatibleWithMSVC(
3216  LangOptions::MSVC2017_7);
3217  llvm::SmallString<64> CopyCtorMangling;
3218  if (!OmitCopyCtor && CD) {
3219  llvm::raw_svector_ostream Stream(CopyCtorMangling);
3220  msvc_hashing_ostream MHO(Stream);
3221  mangleCXXCtor(CD, CT, MHO);
3222  }
3223  Mangler.getStream() << CopyCtorMangling;
3224 
3225  Mangler.getStream() << Size;
3226  if (VBPtrOffset == -1) {
3227  if (NVOffset) {
3228  Mangler.getStream() << NVOffset;
3229  }
3230  } else {
3231  Mangler.getStream() << NVOffset;
3232  Mangler.getStream() << VBPtrOffset;
3233  Mangler.getStream() << VBIndex;
3234  }
3235 }
3236 
3237 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
3238  const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
3239  uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
3240  msvc_hashing_ostream MHO(Out);
3241  MicrosoftCXXNameMangler Mangler(*this, MHO);
3242  Mangler.getStream() << "??_R1";
3243  Mangler.mangleNumber(NVOffset);
3244  Mangler.mangleNumber(VBPtrOffset);
3245  Mangler.mangleNumber(VBTableOffset);
3246  Mangler.mangleNumber(Flags);
3247  Mangler.mangleName(Derived);
3248  Mangler.getStream() << "8";
3249 }
3250 
3251 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
3252  const CXXRecordDecl *Derived, raw_ostream &Out) {
3253  msvc_hashing_ostream MHO(Out);
3254  MicrosoftCXXNameMangler Mangler(*this, MHO);
3255  Mangler.getStream() << "??_R2";
3256  Mangler.mangleName(Derived);
3257  Mangler.getStream() << "8";
3258 }
3259 
3260 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
3261  const CXXRecordDecl *Derived, raw_ostream &Out) {
3262  msvc_hashing_ostream MHO(Out);
3263  MicrosoftCXXNameMangler Mangler(*this, MHO);
3264  Mangler.getStream() << "??_R3";
3265  Mangler.mangleName(Derived);
3266  Mangler.getStream() << "8";
3267 }
3268 
3269 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
3270  const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3271  raw_ostream &Out) {
3272  // <mangled-name> ::= ?_R4 <class-name> <storage-class>
3273  // <cvr-qualifiers> [<name>] @
3274  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3275  // is always '6' for vftables.
3276  llvm::SmallString<64> VFTableMangling;
3277  llvm::raw_svector_ostream Stream(VFTableMangling);
3278  mangleCXXVFTable(Derived, BasePath, Stream);
3279 
3280  if (VFTableMangling.startswith("??@")) {
3281  assert(VFTableMangling.endswith("@"));
3282  Out << VFTableMangling << "??_R4@";
3283  return;
3284  }
3285 
3286  assert(VFTableMangling.startswith("??_7") ||
3287  VFTableMangling.startswith("??_S"));
3288 
3289  Out << "??_R4" << StringRef(VFTableMangling).drop_front(4);
3290 }
3291 
3292 void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
3293  const NamedDecl *EnclosingDecl, raw_ostream &Out) {
3294  msvc_hashing_ostream MHO(Out);
3295  MicrosoftCXXNameMangler Mangler(*this, MHO);
3296  // The function body is in the same comdat as the function with the handler,
3297  // so the numbering here doesn't have to be the same across TUs.
3298  //
3299  // <mangled-name> ::= ?filt$ <filter-number> @0
3300  Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
3301  Mangler.mangleName(EnclosingDecl);
3302 }
3303 
3304 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
3305  const NamedDecl *EnclosingDecl, raw_ostream &Out) {
3306  msvc_hashing_ostream MHO(Out);
3307  MicrosoftCXXNameMangler Mangler(*this, MHO);
3308  // The function body is in the same comdat as the function with the handler,
3309  // so the numbering here doesn't have to be the same across TUs.
3310  //
3311  // <mangled-name> ::= ?fin$ <filter-number> @0
3312  Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
3313  Mangler.mangleName(EnclosingDecl);
3314 }
3315 
3316 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
3317  // This is just a made up unique string for the purposes of tbaa. undname
3318  // does *not* know how to demangle it.
3319  MicrosoftCXXNameMangler Mangler(*this, Out);
3320  Mangler.getStream() << '?';
3321  Mangler.mangleType(T, SourceRange());
3322 }
3323 
3324 void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
3325  CXXCtorType Type,
3326  raw_ostream &Out) {
3327  msvc_hashing_ostream MHO(Out);
3328  MicrosoftCXXNameMangler mangler(*this, MHO, D, Type);
3329  mangler.mangle(D);
3330 }
3331 
3332 void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
3333  CXXDtorType Type,
3334  raw_ostream &Out) {
3335  msvc_hashing_ostream MHO(Out);
3336  MicrosoftCXXNameMangler mangler(*this, MHO, D, Type);
3337  mangler.mangle(D);
3338 }
3339 
3340 void MicrosoftMangleContextImpl::mangleReferenceTemporary(
3341  const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) {
3342  msvc_hashing_ostream MHO(Out);
3343  MicrosoftCXXNameMangler Mangler(*this, MHO);
3344 
3345  Mangler.getStream() << "?$RT" << ManglingNumber << '@';
3346  Mangler.mangle(VD, "");
3347 }
3348 
3349 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
3350  const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
3351  msvc_hashing_ostream MHO(Out);
3352  MicrosoftCXXNameMangler Mangler(*this, MHO);
3353 
3354  Mangler.getStream() << "?$TSS" << GuardNum << '@';
3355  Mangler.mangleNestedName(VD);
3356  Mangler.getStream() << "@4HA";
3357 }
3358 
3359 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
3360  raw_ostream &Out) {
3361  // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
3362  // ::= ?__J <postfix> @5 <scope-depth>
3363  // ::= ?$S <guard-num> @ <postfix> @4IA
3364 
3365  // The first mangling is what MSVC uses to guard static locals in inline
3366  // functions. It uses a different mangling in external functions to support
3367  // guarding more than 32 variables. MSVC rejects inline functions with more
3368  // than 32 static locals. We don't fully implement the second mangling
3369  // because those guards are not externally visible, and instead use LLVM's
3370  // default renaming when creating a new guard variable.
3371  msvc_hashing_ostream MHO(Out);
3372  MicrosoftCXXNameMangler Mangler(*this, MHO);
3373 
3374  bool Visible = VD->isExternallyVisible();
3375  if (Visible) {
3376  Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B");
3377  } else {
3378  Mangler.getStream() << "?$S1@";
3379  }
3380  unsigned ScopeDepth = 0;
3381  if (Visible && !getNextDiscriminator(VD, ScopeDepth))
3382  // If we do not have a discriminator and are emitting a guard variable for
3383  // use at global scope, then mangling the nested name will not be enough to
3384  // remove ambiguities.
3385  Mangler.mangle(VD, "");
3386  else
3387  Mangler.mangleNestedName(VD);
3388  Mangler.getStream() << (Visible ? "@5" : "@4IA");
3389  if (ScopeDepth)
3390  Mangler.mangleNumber(ScopeDepth);
3391 }
3392 
3393 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
3394  char CharCode,
3395  raw_ostream &Out) {
3396  msvc_hashing_ostream MHO(Out);
3397  MicrosoftCXXNameMangler Mangler(*this, MHO);
3398  Mangler.getStream() << "??__" << CharCode;
3399  if (D->isStaticDataMember()) {
3400  Mangler.getStream() << '?';
3401  Mangler.mangleName(D);
3402  Mangler.mangleVariableEncoding(D);
3403  Mangler.getStream() << "@@";
3404  } else {
3405  Mangler.mangleName(D);
3406  }
3407  // This is the function class mangling. These stubs are global, non-variadic,
3408  // cdecl functions that return void and take no args.
3409  Mangler.getStream() << "YAXXZ";
3410 }
3411 
3412 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
3413  raw_ostream &Out) {
3414  // <initializer-name> ::= ?__E <name> YAXXZ
3415  mangleInitFiniStub(D, 'E', Out);
3416 }
3417 
3418 void
3419 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3420  raw_ostream &Out) {
3421  // <destructor-name> ::= ?__F <name> YAXXZ
3422  mangleInitFiniStub(D, 'F', Out);
3423 }
3424 
3425 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
3426  raw_ostream &Out) {
3427  // <char-type> ::= 0 # char, char16_t, char32_t
3428  // # (little endian char data in mangling)
3429  // ::= 1 # wchar_t (big endian char data in mangling)
3430  //
3431  // <literal-length> ::= <non-negative integer> # the length of the literal
3432  //
3433  // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including
3434  // # trailing null bytes
3435  //
3436  // <encoded-string> ::= <simple character> # uninteresting character
3437  // ::= '?$' <hex digit> <hex digit> # these two nibbles
3438  // # encode the byte for the
3439  // # character
3440  // ::= '?' [a-z] # \xe1 - \xfa
3441  // ::= '?' [A-Z] # \xc1 - \xda
3442  // ::= '?' [0-9] # [,/\:. \n\t'-]
3443  //
3444  // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
3445  // <encoded-string> '@'
3446  MicrosoftCXXNameMangler Mangler(*this, Out);
3447  Mangler.getStream() << "??_C@_";
3448 
3449  // The actual string length might be different from that of the string literal
3450  // in cases like:
3451  // char foo[3] = "foobar";
3452  // char bar[42] = "foobar";
3453  // Where it is truncated or zero-padded to fit the array. This is the length
3454  // used for mangling, and any trailing null-bytes also need to be mangled.
3455  unsigned StringLength = getASTContext()
3456  .getAsConstantArrayType(SL->getType())
3457  ->getSize()
3458  .getZExtValue();
3459  unsigned StringByteLength = StringLength * SL->getCharByteWidth();
3460 
3461  // <char-type>: The "kind" of string literal is encoded into the mangled name.
3462  if (SL->isWide())
3463  Mangler.getStream() << '1';
3464  else
3465  Mangler.getStream() << '0';
3466 
3467  // <literal-length>: The next part of the mangled name consists of the length
3468  // of the string in bytes.
3469  Mangler.mangleNumber(StringByteLength);
3470 
3471  auto GetLittleEndianByte = [&SL](unsigned Index) {
3472  unsigned CharByteWidth = SL->getCharByteWidth();
3473  if (Index / CharByteWidth >= SL->getLength())
3474  return static_cast<char>(0);
3475  uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
3476  unsigned OffsetInCodeUnit = Index % CharByteWidth;
3477  return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
3478  };
3479 
3480  auto GetBigEndianByte = [&SL](unsigned Index) {
3481  unsigned CharByteWidth = SL->getCharByteWidth();
3482  if (Index / CharByteWidth >= SL->getLength())
3483  return static_cast<char>(0);
3484  uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
3485  unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
3486  return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
3487  };
3488 
3489  // CRC all the bytes of the StringLiteral.
3490  llvm::JamCRC JC;
3491  for (unsigned I = 0, E = StringByteLength; I != E; ++I)
3492  JC.update(GetLittleEndianByte(I));
3493 
3494  // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
3495  // scheme.
3496  Mangler.mangleNumber(JC.getCRC());
3497 
3498  // <encoded-string>: The mangled name also contains the first 32 bytes
3499  // (including null-terminator bytes) of the encoded StringLiteral.
3500  // Each character is encoded by splitting them into bytes and then encoding
3501  // the constituent bytes.
3502  auto MangleByte = [&Mangler](char Byte) {
3503  // There are five different manglings for characters:
3504  // - [a-zA-Z0-9_$]: A one-to-one mapping.
3505  // - ?[a-z]: The range from \xe1 to \xfa.
3506  // - ?[A-Z]: The range from \xc1 to \xda.
3507  // - ?[0-9]: The set of [,/\:. \n\t'-].
3508  // - ?$XX: A fallback which maps nibbles.
3509  if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
3510  Mangler.getStream() << Byte;
3511  } else if (isLetter(Byte & 0x7f)) {
3512  Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
3513  } else {
3514  const char SpecialChars[] = {',', '/', '\\', ':', '.',
3515  ' ', '\n', '\t', '\'', '-'};
3516  const char *Pos = llvm::find(SpecialChars, Byte);
3517  if (Pos != std::end(SpecialChars)) {
3518  Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
3519  } else {
3520  Mangler.getStream() << "?$";
3521  Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
3522  Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
3523  }
3524  }
3525  };
3526 
3527  // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead.
3528  unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U;
3529  unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength);
3530  for (unsigned I = 0; I != NumBytesToMangle; ++I) {
3531  if (SL->isWide())
3532  MangleByte(GetBigEndianByte(I));
3533  else
3534  MangleByte(GetLittleEndianByte(I));
3535  }
3536 
3537  Mangler.getStream() << '@';
3538 }
3539 
3542  return new MicrosoftMangleContextImpl(Context, Diags);
3543 }
Defines the clang::ASTContext interface.
QualType getDeducedType() const
Get the type deduced for this placeholder type, or null if it&#39;s either not been deduced or was deduce...
Definition: Type.h:4859
Represents a function declaration or definition.
Definition: Decl.h:1783
StringRef Identifier
Definition: Format.cpp:1833
void removeUnaligned()
Definition: Type.h:303
StringRef getName(const PrintingPolicy &Policy) const
Definition: Type.cpp:2761
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2614
RefQualifierKind getRefQualifier() const
Retrieve the ref-qualifier associated with this function type.
Definition: Type.h:4112
QualType getPointeeType() const
Definition: Type.h:2627
Represents the dependent type named by a dependently-scoped typename using declaration, e.g.
Definition: Type.h:4210
A (possibly-)qualified type.
Definition: Type.h:654
bool isBlockPointerType() const
Definition: Type.h:6512
bool isArrayType() const
Definition: Type.h:6570
bool isMemberPointerType() const
Definition: Type.h:6552
bool isCompatibleWithMSVC(MSVCMajorVersion MajorVersion) const
Definition: LangOptions.h:331
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition: Decl.cpp:3075
static void mangleThunkThisAdjustment(AccessSpecifier AS, const ThisAdjustment &Adjustment, MicrosoftCXXNameMangler &Mangler, raw_ostream &Out)
ArrayRef< TemplateArgument > getPackAsArray() const
Return the array of arguments in this template argument pack.
Definition: TemplateBase.h:365
QualType getDesugaredType(const ASTContext &Context) const
Return the specified type with any "sugar" removed from the type.
Definition: Type.h:954
Specialize PointerLikeTypeTraits to allow LazyGenerationalUpdatePtr to be placed into a PointerUnion...
Definition: Dominators.h:30
Kind getKind() const
Definition: Type.h:2495
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3422
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:557
Represents a qualified type name for which the type name is dependent.
Definition: Type.h:5368
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:299
bool isEmpty() const
Definition: ABI.h:86
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
bool isVariadic() const
Whether this function prototype is variadic.
Definition: Type.h:4086
bool isVirtual() const
Definition: DeclCXX.h:1976
Defines the C++ template declaration subclasses.
StringRef P
OverloadedOperatorKind getCXXOverloadedOperator() const
If this name is the name of an overloadable operator in C++ (e.g., operator+), retrieve the kind of o...
NamedDecl * getTemplatedDecl() const
Get the underlying, templated declaration.
Definition: DeclTemplate.h:434
Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained by a type-constraint.
Definition: Type.h:4874
The base class of the type hierarchy.
Definition: Type.h:1450
int64_t NonVirtual
The non-virtual adjustment from the derived object to its nearest virtual base.
Definition: ABI.h:110
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1300
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2889
Represent a C++ namespace.
Definition: Decl.h:497
NamedDecl * getParam(unsigned Idx)
Definition: DeclTemplate.h:138
QualType withConst() const
Definition: Type.h:826
AccessSpecifier
A C++ access specifier (public, private, protected), plus the special value "none" which means differ...
Definition: Specifiers.h:113
QualType getValueType() const
Gets the type contained by this atomic type, i.e.
Definition: Type.h:6140
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2383
Default closure variant of a ctor.
Definition: ABI.h:29
QualType getElementType() const
Definition: Type.h:2910
Represents a variable declaration or definition.
Definition: Decl.h:820
unsigned getNumParams() const
Definition: Type.h:3964
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:7002
The "union" keyword.
Definition: Type.h:5195
LangAS
Defines the address space values used by the address space qualifier of QualType. ...
Definition: AddressSpaces.h:25
Represents a C++17 deduced template specialization type.
Definition: Type.h:4940
A this pointer adjustment.
Definition: ABI.h:107
The "__interface" keyword.
Definition: Type.h:5192
Represents a variable template specialization, which refers to a variable template with a given set o...
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:138
const CXXMethodDecl * Method
Holds a pointer to the overridden method this thunk is for, if needed by the ABI to distinguish diffe...
Definition: ABI.h:190
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:69
Represents a parameter to a function.
Definition: Decl.h:1595
Defines the clang::Expr interface and subclasses for C++ expressions.
QualType getIntegralType() const
Retrieve the type of the integral value.
Definition: TemplateBase.h:314
The collection of all-type qualifiers we support.
Definition: Type.h:143
bool isVariableArrayType() const
Definition: Type.h:6582
PipeType - OpenCL20.
Definition: Type.h:6159
bool isDependentSizedArrayType() const
Definition: Type.h:6586
const char * getStmtClassName() const
Definition: Stmt.cpp:76
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:244
int32_t VBOffsetOffset
The offset (in bytes) of the vbase offset in the vbtable.
Definition: ABI.h:131
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:272
Linkage getFormalLinkage() const
Get the linkage from a semantic point of view.
Definition: Decl.h:353
One of these records is kept for each identifier that is lexed.
Represents a class template specialization, which refers to a class template with a given set of temp...
Represents a class type in Objective C.
Definition: Type.h:5694
QualType getPointeeType() const
Definition: Type.h:2731
Expr * getAsExpr() const
Retrieve the template argument as an expression.
Definition: TemplateBase.h:329
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:168
TemplateDecl * getAsTemplateDecl() const
Retrieve the underlying template declaration that this template name refers to, if known...
LLVM_READONLY bool isLetter(unsigned char c)
Return true if this character is an ASCII letter: [a-zA-Z].
Definition: CharInfo.h:111
NameKind getNameKind() const
Determine what kind of name this is.
bool isNamespace() const
Definition: DeclBase.h:1868
unsigned getFunctionScopeIndex() const
Returns the index of this parameter in its prototype or method scope.
Definition: Decl.h:1652
bool isReferenceType() const
Definition: Type.h:6516
bool addressSpaceMapManglingFor(LangAS AS) const
Definition: ASTContext.h:2573
Represents the result of substituting a set of types for a template type parameter pack...
Definition: Type.h:4784
The this pointer adjustment as well as an optional return adjustment for a thunk. ...
Definition: ABI.h:178
unsigned getCharByteWidth() const
Definition: Expr.h:1824
QualType getParamTypeForDecl() const
Definition: TemplateBase.h:268
Qualifiers getLocalQualifiers() const
Retrieve the set of qualifiers local to this particular QualType instance, not including any qualifie...
Definition: Type.h:6275
An rvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2815
unsigned getLength() const
Definition: Expr.h:1823
An lvalue ref-qualifier was provided (&).
Definition: Type.h:1406
TagKind getTagKind() const
Definition: Decl.h:3398
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
ArrayRef< QualType > getTypeArgs() const
Retrieve the type arguments of this object type (semantically).
Definition: Type.cpp:716
bool hasAddressSpace() const
Definition: Type.h:358
QualType getNullPtrType() const
Retrieve the type for null non-type template argument.
Definition: TemplateBase.h:274
Deleting dtor.
Definition: ABI.h:34
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
Represents a typeof (or typeof) expression (a GCC extension).
Definition: Type.h:4300
MSInheritanceModel
Assigned inheritance model for a class in the MS C++ ABI.
Definition: Specifiers.h:359
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:671
LangAS getAddressSpace() const
Definition: Type.h:359
const Type * getClass() const
Definition: Type.h:2867
llvm::Error Error
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition: DeclCXX.h:960
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:6256
Enums/classes describing ABI related information about constructors, destructors and thunks...
Represents an Objective-C protocol declaration.
Definition: DeclObjC.h:2078
bool isInstance() const
Definition: DeclCXX.h:1959
void * getAsOpaquePtr() const
Definition: Type.h:699
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface...
Definition: Type.h:5930
bool hasConst() const
Definition: Type.h:260
Expr * getSizeExpr() const
Definition: Type.h:3115
Represents an extended vector type where either the type or size is dependent.
Definition: Type.h:3195
CXXRecordDecl * getMostRecentNonInjectedDecl()
Definition: DeclCXX.h:518
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3653
Represents a K&R-style &#39;int foo()&#39; function, which has no information available about its arguments...
Definition: Type.h:3717
bool isExternC() const
Determines whether this variable is a variable with external, C linkage.
Definition: Decl.cpp:2076
unsigned getLambdaManglingNumber() const
If this is the closure type of a lambda expression, retrieve the number to be used for name mangling ...
Definition: DeclCXX.h:1705
bool hasAttr() const
Definition: DeclBase.h:542
QualType getBaseType() const
Gets the base type of this object type.
Definition: Type.h:5757
bool inheritanceModelHasVBTableOffsetField(MSInheritanceModel Inheritance)
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1690
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3754
Represents a ValueDecl that came out of a declarator.
Definition: Decl.h:671
qual_range quals() const
Definition: Type.h:5594
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
ValueDecl * getAsDecl() const
Retrieve the declaration for a declaration non-type template argument.
Definition: TemplateBase.h:263
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:38
Represents an array type in C++ whose size is a value-dependent expression.
Definition: Type.h:3093
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:421
CXXDtorType
C++ destructor types.
Definition: ABI.h:33
QualType getElementType() const
Definition: Type.h:2567
Represents a block literal declaration, which is like an unnamed FunctionDecl.
Definition: Decl.h:4037
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:619
This represents one expression.
Definition: Expr.h:108
QualType getPointeeType() const
Definition: Type.h:2771
const FileEntry * getFileEntryForID(FileID FID) const
Returns the FileEntry record for the provided FileID.
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:7067
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2649
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition: Decl.cpp:3669
ObjCLifetime getObjCLifetime() const
Definition: Type.h:333
DeclContext * getDeclContext()
Definition: DeclBase.h:438
uint32_t getCodeUnit(size_t i) const
Definition: Expr.h:1809
TLSKind getTLSKind() const
Definition: Decl.cpp:1998
Represents the type decltype(expr) (C++11).
Definition: Type.h:4370
AutoType * getContainedAutoType() const
Get the AutoType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.h:2251
IdentifierInfo * getAsIdentifierInfo() const
Retrieve the IdentifierInfo * stored in this declaration name, or null if this declaration name isn&#39;t...
Base object dtor.
Definition: ABI.h:36
QualType getType() const
Definition: Expr.h:137
bool isFunctionOrMethod() const
Definition: DeclBase.h:1836
bool isWide() const
Definition: Expr.h:1831
A unary type transform, which is a type constructed from another.
Definition: Type.h:4413
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1784
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:2046
Represents a GCC generic vector type.
Definition: Type.h:3235
An lvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2797
CharUnits getVBPtrOffset() const
getVBPtrOffset - Get the offset for virtual base table pointer.
Definition: RecordLayout.h:305
static const TemplateDecl * isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs)
The result type of a method or function.
bool isObjCClass() const
Definition: Type.h:5763
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:719
The COMDAT used for dtors.
Definition: ABI.h:37
const SourceManager & SM
Definition: Format.cpp:1685
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:265
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:40
decl_type * getFirstDecl()
Return the first declaration of this declaration or itself if this is the only declaration.
Definition: Redeclarable.h:215
struct clang::ThisAdjustment::VirtualAdjustment::@138 Microsoft
The "struct" keyword.
Definition: Type.h:5189
QualType getCanonicalType() const
Definition: Type.h:6295
bool isSpecialized() const
Determine whether this object type is "specialized", meaning that it has type arguments.
Definition: Type.cpp:698
Encodes a location in the source.
ObjCInterfaceDecl * getDecl() const
Get the declaration of this interface.
Definition: Type.h:5908
QualType getReturnType() const
Definition: Type.h:3680
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4521
llvm::APSInt APSInt
Represents typeof(type), a GCC extension.
Definition: Type.h:4343
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:5894
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3219
LanguageLinkage
Describes the different kinds of language linkage (C++ [dcl.link]) that an entity may have...
Definition: Linkage.h:64
QualType getElementType() const
Definition: Type.h:3270
Represents a vector type where either the type or size is dependent.
Definition: Type.h:3312
Cached information about one file (either on disk or in the virtual file system). ...
Definition: FileManager.h:78
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1931
TypedefNameDecl * getTypedefNameForUnnamedTagDecl(const TagDecl *TD)
No ref-qualifier was provided.
Definition: Type.h:1403
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2422
This file defines OpenMP nodes for declarative directives.
Qualifiers getMethodQuals() const
Definition: Type.h:4104
bool hasRestrict() const
Definition: Type.h:270
Qualifiers withoutObjCLifetime() const
Definition: Type.h:321
bool isAnyPointerType() const
Definition: Type.h:6508
RefQualifierKind
The kind of C++11 ref-qualifier associated with a function type.
Definition: Type.h:1401
llvm::APInt APInt
Definition: Integral.h:27
unsigned getCustomDiagID(Level L, const char(&FormatString)[N])
Return an ID for a diagnostic with the specified format string and level.
Definition: Diagnostic.h:782
TypeClass getTypeClass() const
Definition: Type.h:1876
Complete object dtor.
Definition: ABI.h:35
llvm::APSInt getAsIntegral() const
Retrieve the template argument as an integral value.
Definition: TemplateBase.h:300
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:2020
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1409
SourceRange getBracketsRange() const
Definition: Type.h:3121
bool isPtrSizeAddressSpace(LangAS AS)
Definition: AddressSpaces.h:76
Represents a pointer type decayed from an array or function type.
Definition: Type.h:2699
CXXCtorType
C++ constructor types.
Definition: ABI.h:24
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:224
The injected class name of a C++ class template or class template partial specialization.
Definition: Type.h:5133
Represents a pack expansion of types.
Definition: Type.h:5511
StringRef getName() const
Return the actual identifier string.
Base class for declarations which introduce a typedef-name.
Definition: Decl.h:3071
Represents a template argument.
Definition: TemplateBase.h:50
Optional< types::ID > Type
TagTypeKind
The kind of a tag type.
Definition: Type.h:5187
bool isObjCId() const
Definition: Type.h:5759
Dataflow Directional Tag Classes.
ThisAdjustment This
The this pointer adjustment.
Definition: ABI.h:180
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1271
uint64_t Index
Method&#39;s index in the vftable.
The base class of all kinds of template declarations (e.g., class, function, etc.).
Definition: DeclTemplate.h:402
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:21
bool isRecord() const
Definition: DeclBase.h:1863
AccessSpecifier getAccess() const
Definition: DeclBase.h:473
A decomposition declaration.
Definition: DeclCXX.h:3869
FileID getMainFileID() const
Returns the FileID of the main source file.
std::unique_ptr< DiagnosticConsumer > create(StringRef OutputFile, DiagnosticOptions *Diags, bool MergeChildRecords=false)
Returns a DiagnosticConsumer that serializes diagnostics to a bitcode file.
The name of a declaration.
const CXXRecordDecl * getParent() const
Return the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2046
bool isBooleanType() const
Definition: Type.h:6894
LLVM_READONLY bool isIdentifierBody(unsigned char c, bool AllowDollar=false)
Returns true if this is a body character of a C identifier, which is [a-zA-Z0-9_].
Definition: CharInfo.h:58
bool isKindOfType() const
Whether this ia a "__kindof" type (semantically).
Definition: Type.cpp:734
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2833
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
bool hasObjCLifetime() const
Definition: Type.h:332
union clang::ThisAdjustment::VirtualAdjustment Virtual
Represents a pointer to an Objective C object.
Definition: Type.h:5951
Pointer to a block type.
Definition: Type.h:2716
Not an overloaded operator.
Definition: OperatorKinds.h:22
bool isIncompleteArrayType() const
Definition: Type.h:6578
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4495
Complex values, per C99 6.2.5p11.
Definition: Type.h:2554
Indicates that the tracking object is a descendant of a referenced-counted OSObject, used in the Darwin kernel.
CanThrowResult canThrow() const
Determine whether this function type has a non-throwing exception specification.
Definition: Type.cpp:3098
T * getAttr() const
Definition: DeclBase.h:538
const llvm::APInt & getSize() const
Definition: Type.h:2958
bool isFunctionType() const
Definition: Type.h:6500
bool isStaticLocal() const
Returns true if a variable with function scope is a static local variable.
Definition: Decl.h:1069
ExtVectorType - Extended vector type.
Definition: Type.h:3354
DeclaratorDecl * getDeclaratorForUnnamedTagDecl(const TagDecl *TD)
DeclContext * getRedeclContext()
getRedeclContext - Retrieve the context in which an entity conflicts with other entities of the same ...
Definition: DeclBase.cpp:1747
ReturnAdjustment Return
The return adjustment.
Definition: ABI.h:183
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition: Linkage.h:31
The "class" keyword.
Definition: Type.h:5198
bool isConstantArrayType() const
Definition: Type.h:6574
SourceManager & getSourceManager()
Definition: ASTContext.h:679
A template argument list.
Definition: DeclTemplate.h:239
StringRef getUuidStr() const
Definition: ExprCXX.h:1057
ArgKind getKind() const
Return the kind of stored template argument.
Definition: TemplateBase.h:234
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
QualType getParamType(unsigned i) const
Definition: Type.h:3966
CallingConv getCallConv() const
Definition: Type.h:3690
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:6336
TypedefNameDecl * getTypedefNameForAnonDecl() const
Definition: Decl.h:3429
bool hasUnaligned() const
Definition: Type.h:299
Represents a C++ struct/union/class.
Definition: DeclCXX.h:253
Represents a template specialization type whose template cannot be resolved, e.g. ...
Definition: Type.h:5420
bool isVoidType() const
Definition: Type.h:6777
Represents a C array with an unspecified size.
Definition: Type.h:2995
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:6283
int32_t VtordispOffset
The offset of the vtordisp (in bytes), relative to the ECX.
Definition: ABI.h:124
The "enum" keyword.
Definition: Type.h:5201
static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target)
This class is used for builtin types like &#39;int&#39;.
Definition: Type.h:2465
bool qual_empty() const
Definition: Type.h:5598
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:263
__DEVICE__ int min(int __a, int __b)
bool inheritanceModelHasNVOffsetField(bool IsMemberFunction, MSInheritanceModel Inheritance)
Copying closure variant of a ctor.
Definition: ABI.h:28
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1711
Defines the clang::TargetInfo interface.
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:3868
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:250
bool hasVolatile() const
Definition: Type.h:265
unsigned getNumElements() const
Definition: Type.h:3271
QualType getAsType() const
Retrieve the type for a type template argument.
Definition: TemplateBase.h:256
MethodVFTableLocation getMethodVFTableLocation(GlobalDecl GD)
Represents an extended address space qualifier where the input address space value is dependent...
Definition: Type.h:3153
Represents a type template specialization; the template must be a class template, a type alias templa...
Definition: Type.h:4996
bool isPointerType() const
Definition: Type.h:6504
bool Null(InterpState &S, CodePtr OpPC)
Definition: Interp.h:818
bool isStaticDataMember() const
Determines whether this is a static data member.
Definition: Decl.h:1144
IdentifierInfo * getCXXLiteralIdentifier() const
If this name is the name of a literal operator, retrieve the identifier associated with it...
QualType getType() const
Definition: Decl.h:630
A trivial tuple used to represent a source range.
FunctionDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:3158
This represents a decl that may have a name.
Definition: Decl.h:223
bool isTranslationUnit() const
Definition: DeclBase.h:1859
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:3039
A Microsoft C++ __uuidof expression, which gets the _GUID that corresponds to the supplied type or ex...
Definition: ExprCXX.h:1000
bool nullFieldOffsetIsZero() const
In the Microsoft C++ ABI, use zero for the field offset of a null data member pointer if we can guara...
TemplateName getAsTemplate() const
Retrieve the template name for a template name argument.
Definition: TemplateBase.h:280
unsigned getTargetAddressSpace(QualType T) const
Definition: ASTContext.h:2557
Expr * IgnoreParenNoopCasts(const ASTContext &Ctx) LLVM_READONLY
Skip past any parenthese and casts which do not change the value (including ptr->int casts of the sam...
Definition: Expr.cpp:3022
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition: Decl.cpp:3242
SourceLocation getBegin() const
MSInheritanceModel getMSInheritanceModel() const
Returns the inheritance model used for this record.
int32_t VBPtrOffset
The offset of the vbptr of the derived class (in bytes), relative to the ECX after vtordisp adjustmen...
Definition: ABI.h:128
const LangOptions & getLangOpts() const
Definition: ASTContext.h:724
bool inheritanceModelHasVBPtrOffsetField(MSInheritanceModel Inheritance)
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2935
This class handles loading and caching of source files into memory.
bool hasLinkage() const
Determine whether this declaration has linkage.
Definition: Decl.cpp:1772
SourceLocation getLocation() const
Definition: DeclBase.h:429
QualType getPointeeType() const
Definition: Type.h:2853
bool isExternallyVisible() const
Definition: Decl.h:362
PrettyStackTraceDecl - If a crash occurs, indicate that it happened when doing something to a specifi...
Definition: DeclBase.h:1178
QualType getPointeeType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5967