clang  10.0.0git
Driver.cpp
Go to the documentation of this file.
1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Driver/Driver.h"
10 #include "InputInfo.h"
11 #include "ToolChains/AIX.h"
12 #include "ToolChains/AMDGPU.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Ananas.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/Clang.h"
17 #include "ToolChains/CloudABI.h"
18 #include "ToolChains/Contiki.h"
20 #include "ToolChains/Cuda.h"
21 #include "ToolChains/Darwin.h"
22 #include "ToolChains/DragonFly.h"
23 #include "ToolChains/FreeBSD.h"
24 #include "ToolChains/Fuchsia.h"
25 #include "ToolChains/Gnu.h"
26 #include "ToolChains/HIP.h"
27 #include "ToolChains/Haiku.h"
28 #include "ToolChains/Hexagon.h"
29 #include "ToolChains/Hurd.h"
30 #include "ToolChains/Lanai.h"
31 #include "ToolChains/Linux.h"
32 #include "ToolChains/MSP430.h"
33 #include "ToolChains/MSVC.h"
34 #include "ToolChains/MinGW.h"
35 #include "ToolChains/Minix.h"
36 #include "ToolChains/MipsLinux.h"
37 #include "ToolChains/Myriad.h"
38 #include "ToolChains/NaCl.h"
39 #include "ToolChains/NetBSD.h"
40 #include "ToolChains/OpenBSD.h"
41 #include "ToolChains/PS4CPU.h"
42 #include "ToolChains/PPCLinux.h"
44 #include "ToolChains/Solaris.h"
45 #include "ToolChains/TCE.h"
46 #include "ToolChains/WebAssembly.h"
47 #include "ToolChains/XCore.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/Config/config.h"
50 #include "clang/Driver/Action.h"
53 #include "clang/Driver/Job.h"
54 #include "clang/Driver/Options.h"
56 #include "clang/Driver/Tool.h"
57 #include "clang/Driver/ToolChain.h"
58 #include "llvm/ADT/ArrayRef.h"
59 #include "llvm/ADT/STLExtras.h"
60 #include "llvm/ADT/SmallSet.h"
61 #include "llvm/ADT/StringExtras.h"
62 #include "llvm/ADT/StringSet.h"
63 #include "llvm/ADT/StringSwitch.h"
64 #include "llvm/Config/llvm-config.h"
65 #include "llvm/Option/Arg.h"
66 #include "llvm/Option/ArgList.h"
67 #include "llvm/Option/OptSpecifier.h"
68 #include "llvm/Option/OptTable.h"
69 #include "llvm/Option/Option.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/FileSystem.h"
73 #include "llvm/Support/FormatVariadic.h"
74 #include "llvm/Support/Path.h"
75 #include "llvm/Support/PrettyStackTrace.h"
76 #include "llvm/Support/Process.h"
77 #include "llvm/Support/Program.h"
78 #include "llvm/Support/StringSaver.h"
79 #include "llvm/Support/TargetRegistry.h"
80 #include "llvm/Support/VirtualFileSystem.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include <map>
83 #include <memory>
84 #include <utility>
85 #if LLVM_ON_UNIX
86 #include <unistd.h> // getpid
87 #include <sysexits.h> // EX_IOERR
88 #endif
89 
90 using namespace clang::driver;
91 using namespace clang;
92 using namespace llvm::opt;
93 
94 // static
95 std::string Driver::GetResourcesPath(StringRef BinaryPath,
96  StringRef CustomResourceDir) {
97  // Since the resource directory is embedded in the module hash, it's important
98  // that all places that need it call this function, so that they get the
99  // exact same string ("a/../b/" and "b/" get different hashes, for example).
100 
101  // Dir is bin/ or lib/, depending on where BinaryPath is.
102  std::string Dir = llvm::sys::path::parent_path(BinaryPath);
103 
104  SmallString<128> P(Dir);
105  if (CustomResourceDir != "") {
106  llvm::sys::path::append(P, CustomResourceDir);
107  } else {
108  // On Windows, libclang.dll is in bin/.
109  // On non-Windows, libclang.so/.dylib is in lib/.
110  // With a static-library build of libclang, LibClangPath will contain the
111  // path of the embedding binary, which for LLVM binaries will be in bin/.
112  // ../lib gets us to lib/ in both cases.
113  P = llvm::sys::path::parent_path(Dir);
114  llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
115  CLANG_VERSION_STRING);
116  }
117 
118  return P.str();
119 }
120 
121 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
122  DiagnosticsEngine &Diags,
124  : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
125  SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None),
126  ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
127  DriverTitle("clang LLVM compiler"), CCPrintOptionsFilename(nullptr),
128  CCPrintHeadersFilename(nullptr), CCLogDiagnosticsFilename(nullptr),
129  CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false),
130  CCLogDiagnostics(false), CCGenDiagnostics(false),
131  TargetTriple(TargetTriple), CCCGenericGCCName(""), Saver(Alloc),
132  CheckInputsExist(true), GenReproducer(false),
133  SuppressMissingInputWarning(false) {
134 
135  // Provide a sane fallback if no VFS is specified.
136  if (!this->VFS)
137  this->VFS = llvm::vfs::getRealFileSystem();
138 
139  Name = llvm::sys::path::filename(ClangExecutable);
140  Dir = llvm::sys::path::parent_path(ClangExecutable);
141  InstalledDir = Dir; // Provide a sensible default installed dir.
142 
143 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
144  SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
145 #endif
146 #if defined(CLANG_CONFIG_FILE_USER_DIR)
147  UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
148 #endif
149 
150  // Compute the path to the resource directory.
151  ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
152 }
153 
154 void Driver::ParseDriverMode(StringRef ProgramName,
155  ArrayRef<const char *> Args) {
156  if (ClangNameParts.isEmpty())
158  setDriverModeFromOption(ClangNameParts.DriverMode);
159 
160  for (const char *ArgPtr : Args) {
161  // Ignore nullptrs, they are the response file's EOL markers.
162  if (ArgPtr == nullptr)
163  continue;
164  const StringRef Arg = ArgPtr;
165  setDriverModeFromOption(Arg);
166  }
167 }
168 
169 void Driver::setDriverModeFromOption(StringRef Opt) {
170  const std::string OptName =
171  getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
172  if (!Opt.startswith(OptName))
173  return;
174  StringRef Value = Opt.drop_front(OptName.size());
175 
176  if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
177  .Case("gcc", GCCMode)
178  .Case("g++", GXXMode)
179  .Case("cpp", CPPMode)
180  .Case("cl", CLMode)
181  .Case("flang", FlangMode)
182  .Default(None))
183  Mode = *M;
184  else
185  Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
186 }
187 
189  bool IsClCompatMode,
190  bool &ContainsError) {
191  llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
192  ContainsError = false;
193 
194  unsigned IncludedFlagsBitmask;
195  unsigned ExcludedFlagsBitmask;
196  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
197  getIncludeExcludeOptionFlagMasks(IsClCompatMode);
198 
199  unsigned MissingArgIndex, MissingArgCount;
200  InputArgList Args =
201  getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
202  IncludedFlagsBitmask, ExcludedFlagsBitmask);
203 
204  // Check for missing argument error.
205  if (MissingArgCount) {
206  Diag(diag::err_drv_missing_argument)
207  << Args.getArgString(MissingArgIndex) << MissingArgCount;
208  ContainsError |=
209  Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
211  }
212 
213  // Check for unsupported options.
214  for (const Arg *A : Args) {
215  if (A->getOption().hasFlag(options::Unsupported)) {
216  unsigned DiagID;
217  auto ArgString = A->getAsString(Args);
218  std::string Nearest;
219  if (getOpts().findNearest(
220  ArgString, Nearest, IncludedFlagsBitmask,
221  ExcludedFlagsBitmask | options::Unsupported) > 1) {
222  DiagID = diag::err_drv_unsupported_opt;
223  Diag(DiagID) << ArgString;
224  } else {
225  DiagID = diag::err_drv_unsupported_opt_with_suggestion;
226  Diag(DiagID) << ArgString << Nearest;
227  }
228  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
230  continue;
231  }
232 
233  // Warn about -mcpu= without an argument.
234  if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
235  Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
236  ContainsError |= Diags.getDiagnosticLevel(
237  diag::warn_drv_empty_joined_argument,
239  }
240  }
241 
242  for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
243  unsigned DiagID;
244  auto ArgString = A->getAsString(Args);
245  std::string Nearest;
246  if (getOpts().findNearest(
247  ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
248  DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
249  : diag::err_drv_unknown_argument;
250  Diags.Report(DiagID) << ArgString;
251  } else {
252  DiagID = IsCLMode()
253  ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
254  : diag::err_drv_unknown_argument_with_suggestion;
255  Diags.Report(DiagID) << ArgString << Nearest;
256  }
257  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
259  }
260 
261  return Args;
262 }
263 
264 // Determine which compilation mode we are in. We look for options which
265 // affect the phase, starting with the earliest phases, and record which
266 // option we used to determine the final phase.
267 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
268  Arg **FinalPhaseArg) const {
269  Arg *PhaseArg = nullptr;
270  phases::ID FinalPhase;
271 
272  // -{E,EP,P,M,MM} only run the preprocessor.
273  if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
274  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
275  (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
276  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
277  FinalPhase = phases::Preprocess;
278 
279  // --precompile only runs up to precompilation.
280  } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
281  FinalPhase = phases::Precompile;
282 
283  // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
284  } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
285  (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
286  (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
287  (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
288  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
289  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
290  (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
291  (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
292  (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
293  FinalPhase = phases::Compile;
294 
295  // -S only runs up to the backend.
296  } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
297  FinalPhase = phases::Backend;
298 
299  // -c compilation only runs up to the assembler.
300  } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
301  FinalPhase = phases::Assemble;
302 
303  // Otherwise do everything.
304  } else
305  FinalPhase = phases::Link;
306 
307  if (FinalPhaseArg)
308  *FinalPhaseArg = PhaseArg;
309 
310  return FinalPhase;
311 }
312 
313 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
314  StringRef Value, bool Claim = true) {
315  Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
316  Args.getBaseArgs().MakeIndex(Value), Value.data());
317  Args.AddSynthesizedArg(A);
318  if (Claim)
319  A->claim();
320  return A;
321 }
322 
323 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
324  const llvm::opt::OptTable &Opts = getOpts();
325  DerivedArgList *DAL = new DerivedArgList(Args);
326 
327  bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
328  bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
329  bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
330  for (Arg *A : Args) {
331  // Unfortunately, we have to parse some forwarding options (-Xassembler,
332  // -Xlinker, -Xpreprocessor) because we either integrate their functionality
333  // (assembler and preprocessor), or bypass a previous driver ('collect2').
334 
335  // Rewrite linker options, to replace --no-demangle with a custom internal
336  // option.
337  if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
338  A->getOption().matches(options::OPT_Xlinker)) &&
339  A->containsValue("--no-demangle")) {
340  // Add the rewritten no-demangle argument.
341  DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
342 
343  // Add the remaining values as Xlinker arguments.
344  for (StringRef Val : A->getValues())
345  if (Val != "--no-demangle")
346  DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
347 
348  continue;
349  }
350 
351  // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
352  // some build systems. We don't try to be complete here because we don't
353  // care to encourage this usage model.
354  if (A->getOption().matches(options::OPT_Wp_COMMA) &&
355  (A->getValue(0) == StringRef("-MD") ||
356  A->getValue(0) == StringRef("-MMD"))) {
357  // Rewrite to -MD/-MMD along with -MF.
358  if (A->getValue(0) == StringRef("-MD"))
359  DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
360  else
361  DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
362  if (A->getNumValues() == 2)
363  DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
364  continue;
365  }
366 
367  // Rewrite reserved library names.
368  if (A->getOption().matches(options::OPT_l)) {
369  StringRef Value = A->getValue();
370 
371  // Rewrite unless -nostdlib is present.
372  if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
373  Value == "stdc++") {
374  DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
375  continue;
376  }
377 
378  // Rewrite unconditionally.
379  if (Value == "cc_kext") {
380  DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
381  continue;
382  }
383  }
384 
385  // Pick up inputs via the -- option.
386  if (A->getOption().matches(options::OPT__DASH_DASH)) {
387  A->claim();
388  for (StringRef Val : A->getValues())
389  DAL->append(MakeInputArg(*DAL, Opts, Val, false));
390  continue;
391  }
392 
393  DAL->append(A);
394  }
395 
396  // Enforce -static if -miamcu is present.
397  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
398  DAL->AddFlagArg(0, Opts.getOption(options::OPT_static));
399 
400 // Add a default value of -mlinker-version=, if one was given and the user
401 // didn't specify one.
402 #if defined(HOST_LINK_VERSION)
403  if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
404  strlen(HOST_LINK_VERSION) > 0) {
405  DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
406  HOST_LINK_VERSION);
407  DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
408  }
409 #endif
410 
411  return DAL;
412 }
413 
414 /// Compute target triple from args.
415 ///
416 /// This routine provides the logic to compute a target triple from various
417 /// args passed to the driver and the default triple string.
418 static llvm::Triple computeTargetTriple(const Driver &D,
419  StringRef TargetTriple,
420  const ArgList &Args,
421  StringRef DarwinArchName = "") {
422  // FIXME: Already done in Compilation *Driver::BuildCompilation
423  if (const Arg *A = Args.getLastArg(options::OPT_target))
424  TargetTriple = A->getValue();
425 
426  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
427 
428  // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
429  // -gnu* only, and we can not change this, so we have to detect that case as
430  // being the Hurd OS.
431  if (TargetTriple.find("-unknown-gnu") != StringRef::npos ||
432  TargetTriple.find("-pc-gnu") != StringRef::npos)
433  Target.setOSName("hurd");
434 
435  // Handle Apple-specific options available here.
436  if (Target.isOSBinFormatMachO()) {
437  // If an explicit Darwin arch name is given, that trumps all.
438  if (!DarwinArchName.empty()) {
439  tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
440  return Target;
441  }
442 
443  // Handle the Darwin '-arch' flag.
444  if (Arg *A = Args.getLastArg(options::OPT_arch)) {
445  StringRef ArchName = A->getValue();
447  }
448  }
449 
450  // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
451  // '-mbig-endian'/'-EB'.
452  if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
453  options::OPT_mbig_endian)) {
454  if (A->getOption().matches(options::OPT_mlittle_endian)) {
455  llvm::Triple LE = Target.getLittleEndianArchVariant();
456  if (LE.getArch() != llvm::Triple::UnknownArch)
457  Target = std::move(LE);
458  } else {
459  llvm::Triple BE = Target.getBigEndianArchVariant();
460  if (BE.getArch() != llvm::Triple::UnknownArch)
461  Target = std::move(BE);
462  }
463  }
464 
465  // Skip further flag support on OSes which don't support '-m32' or '-m64'.
466  if (Target.getArch() == llvm::Triple::tce ||
467  Target.getOS() == llvm::Triple::Minix)
468  return Target;
469 
470  // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
471  Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
472  options::OPT_m32, options::OPT_m16);
473  if (A) {
474  llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
475 
476  if (A->getOption().matches(options::OPT_m64)) {
477  AT = Target.get64BitArchVariant().getArch();
478  if (Target.getEnvironment() == llvm::Triple::GNUX32)
479  Target.setEnvironment(llvm::Triple::GNU);
480  } else if (A->getOption().matches(options::OPT_mx32) &&
481  Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
482  AT = llvm::Triple::x86_64;
483  Target.setEnvironment(llvm::Triple::GNUX32);
484  } else if (A->getOption().matches(options::OPT_m32)) {
485  AT = Target.get32BitArchVariant().getArch();
486  if (Target.getEnvironment() == llvm::Triple::GNUX32)
487  Target.setEnvironment(llvm::Triple::GNU);
488  } else if (A->getOption().matches(options::OPT_m16) &&
489  Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
490  AT = llvm::Triple::x86;
491  Target.setEnvironment(llvm::Triple::CODE16);
492  }
493 
494  if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
495  Target.setArch(AT);
496  }
497 
498  // Handle -miamcu flag.
499  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
500  if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
501  D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
502  << Target.str();
503 
504  if (A && !A->getOption().matches(options::OPT_m32))
505  D.Diag(diag::err_drv_argument_not_allowed_with)
506  << "-miamcu" << A->getBaseArg().getAsString(Args);
507 
508  Target.setArch(llvm::Triple::x86);
509  Target.setArchName("i586");
510  Target.setEnvironment(llvm::Triple::UnknownEnvironment);
511  Target.setEnvironmentName("");
512  Target.setOS(llvm::Triple::ELFIAMCU);
513  Target.setVendor(llvm::Triple::UnknownVendor);
514  Target.setVendorName("intel");
515  }
516 
517  // If target is MIPS adjust the target triple
518  // accordingly to provided ABI name.
519  A = Args.getLastArg(options::OPT_mabi_EQ);
520  if (A && Target.isMIPS()) {
521  StringRef ABIName = A->getValue();
522  if (ABIName == "32") {
523  Target = Target.get32BitArchVariant();
524  if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
525  Target.getEnvironment() == llvm::Triple::GNUABIN32)
526  Target.setEnvironment(llvm::Triple::GNU);
527  } else if (ABIName == "n32") {
528  Target = Target.get64BitArchVariant();
529  if (Target.getEnvironment() == llvm::Triple::GNU ||
530  Target.getEnvironment() == llvm::Triple::GNUABI64)
531  Target.setEnvironment(llvm::Triple::GNUABIN32);
532  } else if (ABIName == "64") {
533  Target = Target.get64BitArchVariant();
534  if (Target.getEnvironment() == llvm::Triple::GNU ||
535  Target.getEnvironment() == llvm::Triple::GNUABIN32)
536  Target.setEnvironment(llvm::Triple::GNUABI64);
537  }
538  }
539 
540  // If target is RISC-V adjust the target triple according to
541  // provided architecture name
542  A = Args.getLastArg(options::OPT_march_EQ);
543  if (A && Target.isRISCV()) {
544  StringRef ArchName = A->getValue();
545  if (ArchName.startswith_lower("rv32"))
546  Target.setArch(llvm::Triple::riscv32);
547  else if (ArchName.startswith_lower("rv64"))
548  Target.setArch(llvm::Triple::riscv64);
549  }
550 
551  return Target;
552 }
553 
554 // Parse the LTO options and record the type of LTO compilation
555 // based on which -f(no-)?lto(=.*)? option occurs last.
556 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
557  LTOMode = LTOK_None;
558  if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
559  options::OPT_fno_lto, false))
560  return;
561 
562  StringRef LTOName("full");
563 
564  const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
565  if (A)
566  LTOName = A->getValue();
567 
568  LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
569  .Case("full", LTOK_Full)
570  .Case("thin", LTOK_Thin)
571  .Default(LTOK_Unknown);
572 
573  if (LTOMode == LTOK_Unknown) {
574  assert(A);
575  Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
576  << A->getValue();
577  }
578 }
579 
580 /// Compute the desired OpenMP runtime from the flags provided.
582  StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
583 
584  const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
585  if (A)
586  RuntimeName = A->getValue();
587 
588  auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
589  .Case("libomp", OMPRT_OMP)
590  .Case("libgomp", OMPRT_GOMP)
591  .Case("libiomp5", OMPRT_IOMP5)
592  .Default(OMPRT_Unknown);
593 
594  if (RT == OMPRT_Unknown) {
595  if (A)
596  Diag(diag::err_drv_unsupported_option_argument)
597  << A->getOption().getName() << A->getValue();
598  else
599  // FIXME: We could use a nicer diagnostic here.
600  Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
601  }
602 
603  return RT;
604 }
605 
607  InputList &Inputs) {
608 
609  //
610  // CUDA/HIP
611  //
612  // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
613  // or HIP type. However, mixed CUDA/HIP compilation is not supported.
614  bool IsCuda =
615  llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
616  return types::isCuda(I.first);
617  });
618  bool IsHIP =
619  llvm::any_of(Inputs,
620  [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
621  return types::isHIP(I.first);
622  }) ||
623  C.getInputArgs().hasArg(options::OPT_hip_link);
624  if (IsCuda && IsHIP) {
625  Diag(clang::diag::err_drv_mix_cuda_hip);
626  return;
627  }
628  if (IsCuda) {
630  const llvm::Triple &HostTriple = HostTC->getTriple();
631  StringRef DeviceTripleStr;
632  auto OFK = Action::OFK_Cuda;
633  DeviceTripleStr =
634  HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
635  llvm::Triple CudaTriple(DeviceTripleStr);
636  // Use the CUDA and host triples as the key into the ToolChains map,
637  // because the device toolchain we create depends on both.
638  auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
639  if (!CudaTC) {
640  CudaTC = std::make_unique<toolchains::CudaToolChain>(
641  *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
642  }
643  C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
644  } else if (IsHIP) {
646  const llvm::Triple &HostTriple = HostTC->getTriple();
647  StringRef DeviceTripleStr;
648  auto OFK = Action::OFK_HIP;
649  DeviceTripleStr = "amdgcn-amd-amdhsa";
650  llvm::Triple HIPTriple(DeviceTripleStr);
651  // Use the HIP and host triples as the key into the ToolChains map,
652  // because the device toolchain we create depends on both.
653  auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
654  if (!HIPTC) {
655  HIPTC = std::make_unique<toolchains::HIPToolChain>(
656  *this, HIPTriple, *HostTC, C.getInputArgs());
657  }
658  C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
659  }
660 
661  //
662  // OpenMP
663  //
664  // We need to generate an OpenMP toolchain if the user specified targets with
665  // the -fopenmp-targets option.
666  if (Arg *OpenMPTargets =
667  C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
668  if (OpenMPTargets->getNumValues()) {
669  // We expect that -fopenmp-targets is always used in conjunction with the
670  // option -fopenmp specifying a valid runtime with offloading support,
671  // i.e. libomp or libiomp.
672  bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
673  options::OPT_fopenmp, options::OPT_fopenmp_EQ,
674  options::OPT_fno_openmp, false);
675  if (HasValidOpenMPRuntime) {
677  HasValidOpenMPRuntime =
678  OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
679  }
680 
681  if (HasValidOpenMPRuntime) {
682  llvm::StringMap<const char *> FoundNormalizedTriples;
683  for (const char *Val : OpenMPTargets->getValues()) {
684  llvm::Triple TT(Val);
685  std::string NormalizedName = TT.normalize();
686 
687  // Make sure we don't have a duplicate triple.
688  auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
689  if (Duplicate != FoundNormalizedTriples.end()) {
690  Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
691  << Val << Duplicate->second;
692  continue;
693  }
694 
695  // Store the current triple so that we can check for duplicates in the
696  // following iterations.
697  FoundNormalizedTriples[NormalizedName] = Val;
698 
699  // If the specified target is invalid, emit a diagnostic.
700  if (TT.getArch() == llvm::Triple::UnknownArch)
701  Diag(clang::diag::err_drv_invalid_omp_target) << Val;
702  else {
703  const ToolChain *TC;
704  // CUDA toolchains have to be selected differently. They pair host
705  // and device in their implementation.
706  if (TT.isNVPTX()) {
707  const ToolChain *HostTC =
709  assert(HostTC && "Host toolchain should be always defined.");
710  auto &CudaTC =
711  ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
712  if (!CudaTC)
713  CudaTC = std::make_unique<toolchains::CudaToolChain>(
714  *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
715  TC = CudaTC.get();
716  } else
717  TC = &getToolChain(C.getInputArgs(), TT);
719  }
720  }
721  } else
722  Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
723  } else
724  Diag(clang::diag::warn_drv_empty_joined_argument)
725  << OpenMPTargets->getAsString(C.getInputArgs());
726  }
727 
728  //
729  // TODO: Add support for other offloading programming models here.
730  //
731 }
732 
733 /// Looks the given directories for the specified file.
734 ///
735 /// \param[out] FilePath File path, if the file was found.
736 /// \param[in] Dirs Directories used for the search.
737 /// \param[in] FileName Name of the file to search for.
738 /// \return True if file was found.
739 ///
740 /// Looks for file specified by FileName sequentially in directories specified
741 /// by Dirs.
742 ///
743 static bool searchForFile(SmallVectorImpl<char> &FilePath,
745  StringRef FileName) {
746  SmallString<128> WPath;
747  for (const std::string &Dir : Dirs) {
748  if (Dir.empty())
749  continue;
750  WPath.clear();
751  llvm::sys::path::append(WPath, Dir, FileName);
752  llvm::sys::path::native(WPath);
753  if (llvm::sys::fs::is_regular_file(WPath)) {
754  FilePath = std::move(WPath);
755  return true;
756  }
757  }
758  return false;
759 }
760 
761 bool Driver::readConfigFile(StringRef FileName) {
762  // Try reading the given file.
764  if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
765  Diag(diag::err_drv_cannot_read_config_file) << FileName;
766  return true;
767  }
768 
769  // Read options from config file.
770  llvm::SmallString<128> CfgFileName(FileName);
771  llvm::sys::path::native(CfgFileName);
772  ConfigFile = CfgFileName.str();
773  bool ContainErrors;
774  CfgOptions = std::make_unique<InputArgList>(
775  ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
776  if (ContainErrors) {
777  CfgOptions.reset();
778  return true;
779  }
780 
781  if (CfgOptions->hasArg(options::OPT_config)) {
782  CfgOptions.reset();
783  Diag(diag::err_drv_nested_config_file);
784  return true;
785  }
786 
787  // Claim all arguments that come from a configuration file so that the driver
788  // does not warn on any that is unused.
789  for (Arg *A : *CfgOptions)
790  A->claim();
791  return false;
792 }
793 
794 bool Driver::loadConfigFile() {
795  std::string CfgFileName;
796  bool FileSpecifiedExplicitly = false;
797 
798  // Process options that change search path for config files.
799  if (CLOptions) {
800  if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
801  SmallString<128> CfgDir;
802  CfgDir.append(
803  CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
804  if (!CfgDir.empty()) {
805  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
806  SystemConfigDir.clear();
807  else
808  SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
809  }
810  }
811  if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
812  SmallString<128> CfgDir;
813  CfgDir.append(
814  CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
815  if (!CfgDir.empty()) {
816  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
817  UserConfigDir.clear();
818  else
819  UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
820  }
821  }
822  }
823 
824  // First try to find config file specified in command line.
825  if (CLOptions) {
826  std::vector<std::string> ConfigFiles =
827  CLOptions->getAllArgValues(options::OPT_config);
828  if (ConfigFiles.size() > 1) {
829  Diag(diag::err_drv_duplicate_config);
830  return true;
831  }
832 
833  if (!ConfigFiles.empty()) {
834  CfgFileName = ConfigFiles.front();
835  assert(!CfgFileName.empty());
836 
837  // If argument contains directory separator, treat it as a path to
838  // configuration file.
839  if (llvm::sys::path::has_parent_path(CfgFileName)) {
840  SmallString<128> CfgFilePath;
841  if (llvm::sys::path::is_relative(CfgFileName))
842  llvm::sys::fs::current_path(CfgFilePath);
843  llvm::sys::path::append(CfgFilePath, CfgFileName);
844  if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
845  Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
846  return true;
847  }
848  return readConfigFile(CfgFilePath);
849  }
850 
851  FileSpecifiedExplicitly = true;
852  }
853  }
854 
855  // If config file is not specified explicitly, try to deduce configuration
856  // from executable name. For instance, an executable 'armv7l-clang' will
857  // search for config file 'armv7l-clang.cfg'.
858  if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
860 
861  if (CfgFileName.empty())
862  return false;
863 
864  // Determine architecture part of the file name, if it is present.
865  StringRef CfgFileArch = CfgFileName;
866  size_t ArchPrefixLen = CfgFileArch.find('-');
867  if (ArchPrefixLen == StringRef::npos)
868  ArchPrefixLen = CfgFileArch.size();
869  llvm::Triple CfgTriple;
870  CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
871  CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
872  if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
873  ArchPrefixLen = 0;
874 
875  if (!StringRef(CfgFileName).endswith(".cfg"))
876  CfgFileName += ".cfg";
877 
878  // If config file starts with architecture name and command line options
879  // redefine architecture (with options like -m32 -LE etc), try finding new
880  // config file with that architecture.
881  SmallString<128> FixedConfigFile;
882  size_t FixedArchPrefixLen = 0;
883  if (ArchPrefixLen) {
884  // Get architecture name from config file name like 'i386.cfg' or
885  // 'armv7l-clang.cfg'.
886  // Check if command line options changes effective triple.
887  llvm::Triple EffectiveTriple = computeTargetTriple(*this,
888  CfgTriple.getTriple(), *CLOptions);
889  if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
890  FixedConfigFile = EffectiveTriple.getArchName();
891  FixedArchPrefixLen = FixedConfigFile.size();
892  // Append the rest of original file name so that file name transforms
893  // like: i386-clang.cfg -> x86_64-clang.cfg.
894  if (ArchPrefixLen < CfgFileName.size())
895  FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
896  }
897  }
898 
899  // Prepare list of directories where config file is searched for.
900  SmallVector<std::string, 3> CfgFileSearchDirs;
901  CfgFileSearchDirs.push_back(UserConfigDir);
902  CfgFileSearchDirs.push_back(SystemConfigDir);
903  CfgFileSearchDirs.push_back(Dir);
904 
905  // Try to find config file. First try file with corrected architecture.
906  llvm::SmallString<128> CfgFilePath;
907  if (!FixedConfigFile.empty()) {
908  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
909  return readConfigFile(CfgFilePath);
910  // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
911  FixedConfigFile.resize(FixedArchPrefixLen);
912  FixedConfigFile.append(".cfg");
913  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
914  return readConfigFile(CfgFilePath);
915  }
916 
917  // Then try original file name.
918  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
919  return readConfigFile(CfgFilePath);
920 
921  // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
922  if (!ClangNameParts.ModeSuffix.empty() &&
923  !ClangNameParts.TargetPrefix.empty()) {
924  CfgFileName.assign(ClangNameParts.TargetPrefix);
925  CfgFileName.append(".cfg");
926  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
927  return readConfigFile(CfgFilePath);
928  }
929 
930  // Report error but only if config file was specified explicitly, by option
931  // --config. If it was deduced from executable name, it is not an error.
932  if (FileSpecifiedExplicitly) {
933  Diag(diag::err_drv_config_file_not_found) << CfgFileName;
934  for (const std::string &SearchDir : CfgFileSearchDirs)
935  if (!SearchDir.empty())
936  Diag(diag::note_drv_config_file_searched_in) << SearchDir;
937  return true;
938  }
939 
940  return false;
941 }
942 
944  llvm::PrettyStackTraceString CrashInfo("Compilation construction");
945 
946  // FIXME: Handle environment options which affect driver behavior, somewhere
947  // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
948 
949  if (Optional<std::string> CompilerPathValue =
950  llvm::sys::Process::GetEnv("COMPILER_PATH")) {
951  StringRef CompilerPath = *CompilerPathValue;
952  while (!CompilerPath.empty()) {
953  std::pair<StringRef, StringRef> Split =
954  CompilerPath.split(llvm::sys::EnvPathSeparator);
955  PrefixDirs.push_back(Split.first);
956  CompilerPath = Split.second;
957  }
958  }
959 
960  // We look for the driver mode option early, because the mode can affect
961  // how other options are parsed.
962  ParseDriverMode(ClangExecutable, ArgList.slice(1));
963 
964  // FIXME: What are we going to do with -V and -b?
965 
966  // Arguments specified in command line.
967  bool ContainsError;
968  CLOptions = std::make_unique<InputArgList>(
969  ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
970 
971  // Try parsing configuration file.
972  if (!ContainsError)
973  ContainsError = loadConfigFile();
974  bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
975 
976  // All arguments, from both config file and command line.
977  InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
978  : std::move(*CLOptions));
979 
980  // The args for config files or /clang: flags belong to different InputArgList
981  // objects than Args. This copies an Arg from one of those other InputArgLists
982  // to the ownership of Args.
983  auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
984  unsigned Index = Args.MakeIndex(Opt->getSpelling());
985  Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(),
986  Index, BaseArg);
987  Copy->getValues() = Opt->getValues();
988  if (Opt->isClaimed())
989  Copy->claim();
990  Args.append(Copy);
991  };
992 
993  if (HasConfigFile)
994  for (auto *Opt : *CLOptions) {
995  if (Opt->getOption().matches(options::OPT_config))
996  continue;
997  const Arg *BaseArg = &Opt->getBaseArg();
998  if (BaseArg == Opt)
999  BaseArg = nullptr;
1000  appendOneArg(Opt, BaseArg);
1001  }
1002 
1003  // In CL mode, look for any pass-through arguments
1004  if (IsCLMode() && !ContainsError) {
1005  SmallVector<const char *, 16> CLModePassThroughArgList;
1006  for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1007  A->claim();
1008  CLModePassThroughArgList.push_back(A->getValue());
1009  }
1010 
1011  if (!CLModePassThroughArgList.empty()) {
1012  // Parse any pass through args using default clang processing rather
1013  // than clang-cl processing.
1014  auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1015  ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1016 
1017  if (!ContainsError)
1018  for (auto *Opt : *CLModePassThroughOptions) {
1019  appendOneArg(Opt, nullptr);
1020  }
1021  }
1022  }
1023 
1024  // Check for working directory option before accessing any files
1025  if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1026  if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1027  Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1028 
1029  // FIXME: This stuff needs to go into the Compilation, not the driver.
1030  bool CCCPrintPhases;
1031 
1032  // Silence driver warnings if requested
1033  Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1034 
1035  // -no-canonical-prefixes is used very early in main.
1036  Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1037 
1038  // f(no-)integated-cc1 is also used very early in main.
1039  Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1040  Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1041 
1042  // Ignore -pipe.
1043  Args.ClaimAllArgs(options::OPT_pipe);
1044 
1045  // Extract -ccc args.
1046  //
1047  // FIXME: We need to figure out where this behavior should live. Most of it
1048  // should be outside in the client; the parts that aren't should have proper
1049  // options, either by introducing new ones or by overloading gcc ones like -V
1050  // or -b.
1051  CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1052  CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1053  if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1054  CCCGenericGCCName = A->getValue();
1055  GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1056  options::OPT_fno_crash_diagnostics,
1057  !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1058  // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1059  // and getToolChain is const.
1060  if (IsCLMode()) {
1061  // clang-cl targets MSVC-style Win32.
1062  llvm::Triple T(TargetTriple);
1063  T.setOS(llvm::Triple::Win32);
1064  T.setVendor(llvm::Triple::PC);
1065  T.setEnvironment(llvm::Triple::MSVC);
1066  T.setObjectFormat(llvm::Triple::COFF);
1067  TargetTriple = T.str();
1068  }
1069  if (const Arg *A = Args.getLastArg(options::OPT_target))
1070  TargetTriple = A->getValue();
1071  if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1072  Dir = InstalledDir = A->getValue();
1073  for (const Arg *A : Args.filtered(options::OPT_B)) {
1074  A->claim();
1075  PrefixDirs.push_back(A->getValue(0));
1076  }
1077  if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1078  SysRoot = A->getValue();
1079  if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1080  DyldPrefix = A->getValue();
1081 
1082  if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1083  ResourceDir = A->getValue();
1084 
1085  if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1086  SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1087  .Case("cwd", SaveTempsCwd)
1088  .Case("obj", SaveTempsObj)
1089  .Default(SaveTempsCwd);
1090  }
1091 
1092  setLTOMode(Args);
1093 
1094  // Process -fembed-bitcode= flags.
1095  if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1096  StringRef Name = A->getValue();
1097  unsigned Model = llvm::StringSwitch<unsigned>(Name)
1098  .Case("off", EmbedNone)
1099  .Case("all", EmbedBitcode)
1100  .Case("bitcode", EmbedBitcode)
1101  .Case("marker", EmbedMarker)
1102  .Default(~0U);
1103  if (Model == ~0U) {
1104  Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1105  << Name;
1106  } else
1107  BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1108  }
1109 
1110  std::unique_ptr<llvm::opt::InputArgList> UArgs =
1111  std::make_unique<InputArgList>(std::move(Args));
1112 
1113  // Perform the default argument translations.
1114  DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1115 
1116  // Owned by the host.
1117  const ToolChain &TC = getToolChain(
1118  *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1119 
1120  // The compilation takes ownership of Args.
1121  Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1122  ContainsError);
1123 
1124  if (!HandleImmediateArgs(*C))
1125  return C;
1126 
1127  // Construct the list of inputs.
1128  InputList Inputs;
1129  BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1130 
1131  // Populate the tool chains for the offloading devices, if any.
1133 
1134  // Construct the list of abstract actions to perform for this compilation. On
1135  // MachO targets this uses the driver-driver and universal actions.
1136  if (TC.getTriple().isOSBinFormatMachO())
1137  BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1138  else
1139  BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1140 
1141  if (CCCPrintPhases) {
1142  PrintActions(*C);
1143  return C;
1144  }
1145 
1146  BuildJobs(*C);
1147 
1148  return C;
1149 }
1150 
1151 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1152  llvm::opt::ArgStringList ASL;
1153  for (const auto *A : Args)
1154  A->render(Args, ASL);
1155 
1156  for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1157  if (I != ASL.begin())
1158  OS << ' ';
1159  Command::printArg(OS, *I, true);
1160  }
1161  OS << '\n';
1162 }
1163 
1164 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1165  SmallString<128> &CrashDiagDir) {
1166  using namespace llvm::sys;
1167  assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1168  "Only knows about .crash files on Darwin");
1169 
1170  // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1171  // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1172  // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1173  path::home_directory(CrashDiagDir);
1174  if (CrashDiagDir.startswith("/var/root"))
1175  CrashDiagDir = "/";
1176  path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1177  int PID =
1178 #if LLVM_ON_UNIX
1179  getpid();
1180 #else
1181  0;
1182 #endif
1183  std::error_code EC;
1184  fs::file_status FileStatus;
1185  TimePoint<> LastAccessTime;
1186  SmallString<128> CrashFilePath;
1187  // Lookup the .crash files and get the one generated by a subprocess spawned
1188  // by this driver invocation.
1189  for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1190  File != FileEnd && !EC; File.increment(EC)) {
1191  StringRef FileName = path::filename(File->path());
1192  if (!FileName.startswith(Name))
1193  continue;
1194  if (fs::status(File->path(), FileStatus))
1195  continue;
1196  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1197  llvm::MemoryBuffer::getFile(File->path());
1198  if (!CrashFile)
1199  continue;
1200  // The first line should start with "Process:", otherwise this isn't a real
1201  // .crash file.
1202  StringRef Data = CrashFile.get()->getBuffer();
1203  if (!Data.startswith("Process:"))
1204  continue;
1205  // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1206  size_t ParentProcPos = Data.find("Parent Process:");
1207  if (ParentProcPos == StringRef::npos)
1208  continue;
1209  size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1210  if (LineEnd == StringRef::npos)
1211  continue;
1212  StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1213  int OpenBracket = -1, CloseBracket = -1;
1214  for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1215  if (ParentProcess[i] == '[')
1216  OpenBracket = i;
1217  if (ParentProcess[i] == ']')
1218  CloseBracket = i;
1219  }
1220  // Extract the parent process PID from the .crash file and check whether
1221  // it matches this driver invocation pid.
1222  int CrashPID;
1223  if (OpenBracket < 0 || CloseBracket < 0 ||
1224  ParentProcess.slice(OpenBracket + 1, CloseBracket)
1225  .getAsInteger(10, CrashPID) || CrashPID != PID) {
1226  continue;
1227  }
1228 
1229  // Found a .crash file matching the driver pid. To avoid getting an older
1230  // and misleading crash file, continue looking for the most recent.
1231  // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1232  // multiple crashes poiting to the same parent process. Since the driver
1233  // does not collect pid information for the dispatched invocation there's
1234  // currently no way to distinguish among them.
1235  const auto FileAccessTime = FileStatus.getLastModificationTime();
1236  if (FileAccessTime > LastAccessTime) {
1237  CrashFilePath.assign(File->path());
1238  LastAccessTime = FileAccessTime;
1239  }
1240  }
1241 
1242  // If found, copy it over to the location of other reproducer files.
1243  if (!CrashFilePath.empty()) {
1244  EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1245  if (EC)
1246  return false;
1247  return true;
1248  }
1249 
1250  return false;
1251 }
1252 
1253 // When clang crashes, produce diagnostic information including the fully
1254 // preprocessed source file(s). Request that the developer attach the
1255 // diagnostic information to a bug report.
1257  Compilation &C, const Command &FailingCommand,
1258  StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1259  if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1260  return;
1261 
1262  // Don't try to generate diagnostics for link or dsymutil jobs.
1263  if (FailingCommand.getCreator().isLinkJob() ||
1264  FailingCommand.getCreator().isDsymutilJob())
1265  return;
1266 
1267  // Print the version of the compiler.
1268  PrintVersion(C, llvm::errs());
1269 
1270  Diag(clang::diag::note_drv_command_failed_diag_msg)
1271  << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the "
1272  "crash backtrace, preprocessed source, and associated run script.";
1273 
1274  // Suppress driver output and emit preprocessor output to temp file.
1275  Mode = CPPMode;
1276  CCGenDiagnostics = true;
1277 
1278  // Save the original job command(s).
1279  Command Cmd = FailingCommand;
1280 
1281  // Keep track of whether we produce any errors while trying to produce
1282  // preprocessed sources.
1283  DiagnosticErrorTrap Trap(Diags);
1284 
1285  // Suppress tool output.
1287 
1288  // Construct the list of inputs.
1289  InputList Inputs;
1290  BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1291 
1292  for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1293  bool IgnoreInput = false;
1294 
1295  // Ignore input from stdin or any inputs that cannot be preprocessed.
1296  // Check type first as not all linker inputs have a value.
1297  if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1298  IgnoreInput = true;
1299  } else if (!strcmp(it->second->getValue(), "-")) {
1300  Diag(clang::diag::note_drv_command_failed_diag_msg)
1301  << "Error generating preprocessed source(s) - "
1302  "ignoring input from stdin.";
1303  IgnoreInput = true;
1304  }
1305 
1306  if (IgnoreInput) {
1307  it = Inputs.erase(it);
1308  ie = Inputs.end();
1309  } else {
1310  ++it;
1311  }
1312  }
1313 
1314  if (Inputs.empty()) {
1315  Diag(clang::diag::note_drv_command_failed_diag_msg)
1316  << "Error generating preprocessed source(s) - "
1317  "no preprocessable inputs.";
1318  return;
1319  }
1320 
1321  // Don't attempt to generate preprocessed files if multiple -arch options are
1322  // used, unless they're all duplicates.
1323  llvm::StringSet<> ArchNames;
1324  for (const Arg *A : C.getArgs()) {
1325  if (A->getOption().matches(options::OPT_arch)) {
1326  StringRef ArchName = A->getValue();
1327  ArchNames.insert(ArchName);
1328  }
1329  }
1330  if (ArchNames.size() > 1) {
1331  Diag(clang::diag::note_drv_command_failed_diag_msg)
1332  << "Error generating preprocessed source(s) - cannot generate "
1333  "preprocessed source with multiple -arch options.";
1334  return;
1335  }
1336 
1337  // Construct the list of abstract actions to perform for this compilation. On
1338  // Darwin OSes this uses the driver-driver and builds universal actions.
1339  const ToolChain &TC = C.getDefaultToolChain();
1340  if (TC.getTriple().isOSBinFormatMachO())
1341  BuildUniversalActions(C, TC, Inputs);
1342  else
1343  BuildActions(C, C.getArgs(), Inputs, C.getActions());
1344 
1345  BuildJobs(C);
1346 
1347  // If there were errors building the compilation, quit now.
1348  if (Trap.hasErrorOccurred()) {
1349  Diag(clang::diag::note_drv_command_failed_diag_msg)
1350  << "Error generating preprocessed source(s).";
1351  return;
1352  }
1353 
1354  // Generate preprocessed output.
1355  SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1356  C.ExecuteJobs(C.getJobs(), FailingCommands);
1357 
1358  // If any of the preprocessing commands failed, clean up and exit.
1359  if (!FailingCommands.empty()) {
1360  Diag(clang::diag::note_drv_command_failed_diag_msg)
1361  << "Error generating preprocessed source(s).";
1362  return;
1363  }
1364 
1365  const ArgStringList &TempFiles = C.getTempFiles();
1366  if (TempFiles.empty()) {
1367  Diag(clang::diag::note_drv_command_failed_diag_msg)
1368  << "Error generating preprocessed source(s).";
1369  return;
1370  }
1371 
1372  Diag(clang::diag::note_drv_command_failed_diag_msg)
1373  << "\n********************\n\n"
1374  "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1375  "Preprocessed source(s) and associated run script(s) are located at:";
1376 
1377  SmallString<128> VFS;
1378  SmallString<128> ReproCrashFilename;
1379  for (const char *TempFile : TempFiles) {
1380  Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1381  if (Report)
1382  Report->TemporaryFiles.push_back(TempFile);
1383  if (ReproCrashFilename.empty()) {
1384  ReproCrashFilename = TempFile;
1385  llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1386  }
1387  if (StringRef(TempFile).endswith(".cache")) {
1388  // In some cases (modules) we'll dump extra data to help with reproducing
1389  // the crash into a directory next to the output.
1390  VFS = llvm::sys::path::filename(TempFile);
1391  llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1392  }
1393  }
1394 
1395  // Assume associated files are based off of the first temporary file.
1396  CrashReportInfo CrashInfo(TempFiles[0], VFS);
1397 
1398  llvm::SmallString<128> Script(CrashInfo.Filename);
1399  llvm::sys::path::replace_extension(Script, "sh");
1400  std::error_code EC;
1401  llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew);
1402  if (EC) {
1403  Diag(clang::diag::note_drv_command_failed_diag_msg)
1404  << "Error generating run script: " << Script << " " << EC.message();
1405  } else {
1406  ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1407  << "# Driver args: ";
1408  printArgList(ScriptOS, C.getInputArgs());
1409  ScriptOS << "# Original command: ";
1410  Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1411  Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1412  if (!AdditionalInformation.empty())
1413  ScriptOS << "\n# Additional information: " << AdditionalInformation
1414  << "\n";
1415  if (Report)
1416  Report->TemporaryFiles.push_back(Script.str());
1417  Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1418  }
1419 
1420  // On darwin, provide information about the .crash diagnostic report.
1421  if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1422  SmallString<128> CrashDiagDir;
1423  if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1424  Diag(clang::diag::note_drv_command_failed_diag_msg)
1425  << ReproCrashFilename.str();
1426  } else { // Suggest a directory for the user to look for .crash files.
1427  llvm::sys::path::append(CrashDiagDir, Name);
1428  CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1429  Diag(clang::diag::note_drv_command_failed_diag_msg)
1430  << "Crash backtrace is located in";
1431  Diag(clang::diag::note_drv_command_failed_diag_msg)
1432  << CrashDiagDir.str();
1433  Diag(clang::diag::note_drv_command_failed_diag_msg)
1434  << "(choose the .crash file that corresponds to your crash)";
1435  }
1436  }
1437 
1438  for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
1439  options::OPT_frewrite_map_file_EQ))
1440  Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1441 
1442  Diag(clang::diag::note_drv_command_failed_diag_msg)
1443  << "\n\n********************";
1444 }
1445 
1446 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1447  // Since commandLineFitsWithinSystemLimits() may underestimate system's
1448  // capacity if the tool does not support response files, there is a chance/
1449  // that things will just work without a response file, so we silently just
1450  // skip it.
1452  llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1453  Cmd.getArguments()))
1454  return;
1455 
1456  std::string TmpName = GetTemporaryPath("response", "txt");
1457  Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1458 }
1459 
1461  Compilation &C,
1462  SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1463  // Just print if -### was present.
1464  if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1465  C.getJobs().Print(llvm::errs(), "\n", true);
1466  return 0;
1467  }
1468 
1469  // If there were errors building the compilation, quit now.
1470  if (Diags.hasErrorOccurred())
1471  return 1;
1472 
1473  // Set up response file names for each command, if necessary
1474  for (auto &Job : C.getJobs())
1475  setUpResponseFiles(C, Job);
1476 
1477  C.ExecuteJobs(C.getJobs(), FailingCommands);
1478 
1479  // If the command succeeded, we are done.
1480  if (FailingCommands.empty())
1481  return 0;
1482 
1483  // Otherwise, remove result files and print extra information about abnormal
1484  // failures.
1485  int Res = 0;
1486  for (const auto &CmdPair : FailingCommands) {
1487  int CommandRes = CmdPair.first;
1488  const Command *FailingCommand = CmdPair.second;
1489 
1490  // Remove result files if we're not saving temps.
1491  if (!isSaveTempsEnabled()) {
1492  const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1493  C.CleanupFileMap(C.getResultFiles(), JA, true);
1494 
1495  // Failure result files are valid unless we crashed.
1496  if (CommandRes < 0)
1497  C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1498  }
1499 
1500 #if LLVM_ON_UNIX
1501  // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1502  // for SIGPIPE. Do not print diagnostics for this case.
1503  if (CommandRes == EX_IOERR) {
1504  Res = CommandRes;
1505  continue;
1506  }
1507 #endif
1508 
1509  // Print extra information about abnormal failures, if possible.
1510  //
1511  // This is ad-hoc, but we don't want to be excessively noisy. If the result
1512  // status was 1, assume the command failed normally. In particular, if it
1513  // was the compiler then assume it gave a reasonable error code. Failures
1514  // in other tools are less common, and they generally have worse
1515  // diagnostics, so always print the diagnostic there.
1516  const Tool &FailingTool = FailingCommand->getCreator();
1517 
1518  if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1519  // FIXME: See FIXME above regarding result code interpretation.
1520  if (CommandRes < 0)
1521  Diag(clang::diag::err_drv_command_signalled)
1522  << FailingTool.getShortName();
1523  else
1524  Diag(clang::diag::err_drv_command_failed)
1525  << FailingTool.getShortName() << CommandRes;
1526  }
1527  }
1528  return Res;
1529 }
1530 
1531 void Driver::PrintHelp(bool ShowHidden) const {
1532  unsigned IncludedFlagsBitmask;
1533  unsigned ExcludedFlagsBitmask;
1534  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1535  getIncludeExcludeOptionFlagMasks(IsCLMode());
1536 
1537  ExcludedFlagsBitmask |= options::NoDriverOption;
1538  if (!ShowHidden)
1539  ExcludedFlagsBitmask |= HelpHidden;
1540 
1541  std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1542  getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1543  IncludedFlagsBitmask, ExcludedFlagsBitmask,
1544  /*ShowAllAliases=*/false);
1545 }
1546 
1547 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1548  // FIXME: The following handlers should use a callback mechanism, we don't
1549  // know what the client would like to do.
1550  OS << getClangFullVersion() << '\n';
1551  const ToolChain &TC = C.getDefaultToolChain();
1552  OS << "Target: " << TC.getTripleString() << '\n';
1553 
1554  // Print the threading model.
1555  if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1556  // Don't print if the ToolChain would have barfed on it already
1557  if (TC.isThreadModelSupported(A->getValue()))
1558  OS << "Thread model: " << A->getValue();
1559  } else
1560  OS << "Thread model: " << TC.getThreadModel();
1561  OS << '\n';
1562 
1563  // Print out the install directory.
1564  OS << "InstalledDir: " << InstalledDir << '\n';
1565 
1566  // If configuration file was used, print its path.
1567  if (!ConfigFile.empty())
1568  OS << "Configuration file: " << ConfigFile << '\n';
1569 }
1570 
1571 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1572 /// option.
1573 static void PrintDiagnosticCategories(raw_ostream &OS) {
1574  // Skip the empty category.
1575  for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1576  ++i)
1577  OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1578 }
1579 
1580 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1581  if (PassedFlags == "")
1582  return;
1583  // Print out all options that start with a given argument. This is used for
1584  // shell autocompletion.
1585  std::vector<std::string> SuggestedCompletions;
1586  std::vector<std::string> Flags;
1587 
1588  unsigned short DisableFlags =
1590 
1591  // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1592  // because the latter indicates that the user put space before pushing tab
1593  // which should end up in a file completion.
1594  const bool HasSpace = PassedFlags.endswith(",");
1595 
1596  // Parse PassedFlags by "," as all the command-line flags are passed to this
1597  // function separated by ","
1598  StringRef TargetFlags = PassedFlags;
1599  while (TargetFlags != "") {
1600  StringRef CurFlag;
1601  std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1602  Flags.push_back(std::string(CurFlag));
1603  }
1604 
1605  // We want to show cc1-only options only when clang is invoked with -cc1 or
1606  // -Xclang.
1607  if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1608  DisableFlags &= ~options::NoDriverOption;
1609 
1610  const llvm::opt::OptTable &Opts = getOpts();
1611  StringRef Cur;
1612  Cur = Flags.at(Flags.size() - 1);
1613  StringRef Prev;
1614  if (Flags.size() >= 2) {
1615  Prev = Flags.at(Flags.size() - 2);
1616  SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
1617  }
1618 
1619  if (SuggestedCompletions.empty())
1620  SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
1621 
1622  // If Flags were empty, it means the user typed `clang [tab]` where we should
1623  // list all possible flags. If there was no value completion and the user
1624  // pressed tab after a space, we should fall back to a file completion.
1625  // We're printing a newline to be consistent with what we print at the end of
1626  // this function.
1627  if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1628  llvm::outs() << '\n';
1629  return;
1630  }
1631 
1632  // When flag ends with '=' and there was no value completion, return empty
1633  // string and fall back to the file autocompletion.
1634  if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1635  // If the flag is in the form of "--autocomplete=-foo",
1636  // we were requested to print out all option names that start with "-foo".
1637  // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1638  SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
1639 
1640  // We have to query the -W flags manually as they're not in the OptTable.
1641  // TODO: Find a good way to add them to OptTable instead and them remove
1642  // this code.
1643  for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1644  if (S.startswith(Cur))
1645  SuggestedCompletions.push_back(S);
1646  }
1647 
1648  // Sort the autocomplete candidates so that shells print them out in a
1649  // deterministic order. We could sort in any way, but we chose
1650  // case-insensitive sorting for consistency with the -help option
1651  // which prints out options in the case-insensitive alphabetical order.
1652  llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1653  if (int X = A.compare_lower(B))
1654  return X < 0;
1655  return A.compare(B) > 0;
1656  });
1657 
1658  llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1659 }
1660 
1662  // The order these options are handled in gcc is all over the place, but we
1663  // don't expect inconsistencies w.r.t. that to matter in practice.
1664 
1665  if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1666  llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1667  return false;
1668  }
1669 
1670  if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1671  // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1672  // return an answer which matches our definition of __VERSION__.
1673  llvm::outs() << CLANG_VERSION_STRING << "\n";
1674  return false;
1675  }
1676 
1677  if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1678  PrintDiagnosticCategories(llvm::outs());
1679  return false;
1680  }
1681 
1682  if (C.getArgs().hasArg(options::OPT_help) ||
1683  C.getArgs().hasArg(options::OPT__help_hidden)) {
1684  PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1685  return false;
1686  }
1687 
1688  if (C.getArgs().hasArg(options::OPT__version)) {
1689  // Follow gcc behavior and use stdout for --version and stderr for -v.
1690  PrintVersion(C, llvm::outs());
1691  return false;
1692  }
1693 
1694  if (C.getArgs().hasArg(options::OPT_v) ||
1695  C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1696  C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1697  PrintVersion(C, llvm::errs());
1698  SuppressMissingInputWarning = true;
1699  }
1700 
1701  if (C.getArgs().hasArg(options::OPT_v)) {
1702  if (!SystemConfigDir.empty())
1703  llvm::errs() << "System configuration file directory: "
1704  << SystemConfigDir << "\n";
1705  if (!UserConfigDir.empty())
1706  llvm::errs() << "User configuration file directory: "
1707  << UserConfigDir << "\n";
1708  }
1709 
1710  const ToolChain &TC = C.getDefaultToolChain();
1711 
1712  if (C.getArgs().hasArg(options::OPT_v))
1713  TC.printVerboseInfo(llvm::errs());
1714 
1715  if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1716  llvm::outs() << ResourceDir << '\n';
1717  return false;
1718  }
1719 
1720  if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1721  llvm::outs() << "programs: =";
1722  bool separator = false;
1723  for (const std::string &Path : TC.getProgramPaths()) {
1724  if (separator)
1725  llvm::outs() << llvm::sys::EnvPathSeparator;
1726  llvm::outs() << Path;
1727  separator = true;
1728  }
1729  llvm::outs() << "\n";
1730  llvm::outs() << "libraries: =" << ResourceDir;
1731 
1732  StringRef sysroot = C.getSysRoot();
1733 
1734  for (const std::string &Path : TC.getFilePaths()) {
1735  // Always print a separator. ResourceDir was the first item shown.
1736  llvm::outs() << llvm::sys::EnvPathSeparator;
1737  // Interpretation of leading '=' is needed only for NetBSD.
1738  if (Path[0] == '=')
1739  llvm::outs() << sysroot << Path.substr(1);
1740  else
1741  llvm::outs() << Path;
1742  }
1743  llvm::outs() << "\n";
1744  return false;
1745  }
1746 
1747  // FIXME: The following handlers should use a callback mechanism, we don't
1748  // know what the client would like to do.
1749  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1750  llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1751  return false;
1752  }
1753 
1754  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1755  StringRef ProgName = A->getValue();
1756 
1757  // Null program name cannot have a path.
1758  if (! ProgName.empty())
1759  llvm::outs() << GetProgramPath(ProgName, TC);
1760 
1761  llvm::outs() << "\n";
1762  return false;
1763  }
1764 
1765  if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1766  StringRef PassedFlags = A->getValue();
1767  HandleAutocompletions(PassedFlags);
1768  return false;
1769  }
1770 
1771  if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1773  const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1774  RegisterEffectiveTriple TripleRAII(TC, Triple);
1775  switch (RLT) {
1777  llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1778  break;
1779  case ToolChain::RLT_Libgcc:
1780  llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1781  break;
1782  }
1783  return false;
1784  }
1785 
1786  if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1787  for (const Multilib &Multilib : TC.getMultilibs())
1788  llvm::outs() << Multilib << "\n";
1789  return false;
1790  }
1791 
1792  if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1793  const Multilib &Multilib = TC.getMultilib();
1794  if (Multilib.gccSuffix().empty())
1795  llvm::outs() << ".\n";
1796  else {
1797  StringRef Suffix(Multilib.gccSuffix());
1798  assert(Suffix.front() == '/');
1799  llvm::outs() << Suffix.substr(1) << "\n";
1800  }
1801  return false;
1802  }
1803 
1804  if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1805  llvm::outs() << TC.getTripleString() << "\n";
1806  return false;
1807  }
1808 
1809  if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1810  const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1811  llvm::outs() << Triple.getTriple() << "\n";
1812  return false;
1813  }
1814 
1815  return true;
1816 }
1817 
1818 enum {
1822 };
1823 
1824 // Display an action graph human-readably. Action A is the "sink" node
1825 // and latest-occuring action. Traversal is in pre-order, visiting the
1826 // inputs to each action before printing the action itself.
1827 static unsigned PrintActions1(const Compilation &C, Action *A,
1828  std::map<Action *, unsigned> &Ids,
1829  Twine Indent = {}, int Kind = TopLevelAction) {
1830  if (Ids.count(A)) // A was already visited.
1831  return Ids[A];
1832 
1833  std::string str;
1834  llvm::raw_string_ostream os(str);
1835 
1836  auto getSibIndent = [](int K) -> Twine {
1837  return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : "";
1838  };
1839 
1840  Twine SibIndent = Indent + getSibIndent(Kind);
1841  int SibKind = HeadSibAction;
1842  os << Action::getClassName(A->getKind()) << ", ";
1843  if (InputAction *IA = dyn_cast<InputAction>(A)) {
1844  os << "\"" << IA->getInputArg().getValue() << "\"";
1845  } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1846  os << '"' << BIA->getArchName() << '"' << ", {"
1847  << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
1848  } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1849  bool IsFirst = true;
1850  OA->doOnEachDependence(
1851  [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1852  // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1853  // sm_35 this will generate:
1854  // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1855  // (nvptx64-nvidia-cuda:sm_35) {#ID}
1856  if (!IsFirst)
1857  os << ", ";
1858  os << '"';
1859  if (TC)
1860  os << A->getOffloadingKindPrefix();
1861  else
1862  os << "host";
1863  os << " (";
1864  os << TC->getTriple().normalize();
1865 
1866  if (BoundArch)
1867  os << ":" << BoundArch;
1868  os << ")";
1869  os << '"';
1870  os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
1871  IsFirst = false;
1872  SibKind = OtherSibAction;
1873  });
1874  } else {
1875  const ActionList *AL = &A->getInputs();
1876 
1877  if (AL->size()) {
1878  const char *Prefix = "{";
1879  for (Action *PreRequisite : *AL) {
1880  os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
1881  Prefix = ", ";
1882  SibKind = OtherSibAction;
1883  }
1884  os << "}";
1885  } else
1886  os << "{}";
1887  }
1888 
1889  // Append offload info for all options other than the offloading action
1890  // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
1891  std::string offload_str;
1892  llvm::raw_string_ostream offload_os(offload_str);
1893  if (!isa<OffloadAction>(A)) {
1894  auto S = A->getOffloadingKindPrefix();
1895  if (!S.empty()) {
1896  offload_os << ", (" << S;
1897  if (A->getOffloadingArch())
1898  offload_os << ", " << A->getOffloadingArch();
1899  offload_os << ")";
1900  }
1901  }
1902 
1903  auto getSelfIndent = [](int K) -> Twine {
1904  return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
1905  };
1906 
1907  unsigned Id = Ids.size();
1908  Ids[A] = Id;
1909  llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
1910  << types::getTypeName(A->getType()) << offload_os.str() << "\n";
1911 
1912  return Id;
1913 }
1914 
1915 // Print the action graphs in a compilation C.
1916 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
1917 void Driver::PrintActions(const Compilation &C) const {
1918  std::map<Action *, unsigned> Ids;
1919  for (Action *A : C.getActions())
1920  PrintActions1(C, A, Ids);
1921 }
1922 
1923 /// Check whether the given input tree contains any compilation or
1924 /// assembly actions.
1926  if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
1927  isa<AssembleJobAction>(A))
1928  return true;
1929 
1930  for (const Action *Input : A->inputs())
1932  return true;
1933 
1934  return false;
1935 }
1936 
1938  const InputList &BAInputs) const {
1939  DerivedArgList &Args = C.getArgs();
1940  ActionList &Actions = C.getActions();
1941  llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
1942  // Collect the list of architectures. Duplicates are allowed, but should only
1943  // be handled once (in the order seen).
1944  llvm::StringSet<> ArchNames;
1946  for (Arg *A : Args) {
1947  if (A->getOption().matches(options::OPT_arch)) {
1948  // Validate the option here; we don't save the type here because its
1949  // particular spelling may participate in other driver choices.
1950  llvm::Triple::ArchType Arch =
1952  if (Arch == llvm::Triple::UnknownArch) {
1953  Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
1954  continue;
1955  }
1956 
1957  A->claim();
1958  if (ArchNames.insert(A->getValue()).second)
1959  Archs.push_back(A->getValue());
1960  }
1961  }
1962 
1963  // When there is no explicit arch for this platform, make sure we still bind
1964  // the architecture (to the default) so that -Xarch_ is handled correctly.
1965  if (!Archs.size())
1966  Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
1967 
1968  ActionList SingleActions;
1969  BuildActions(C, Args, BAInputs, SingleActions);
1970 
1971  // Add in arch bindings for every top level action, as well as lipo and
1972  // dsymutil steps if needed.
1973  for (Action* Act : SingleActions) {
1974  // Make sure we can lipo this kind of output. If not (and it is an actual
1975  // output) then we disallow, since we can't create an output file with the
1976  // right name without overwriting it. We could remove this oddity by just
1977  // changing the output names to include the arch, which would also fix
1978  // -save-temps. Compatibility wins for now.
1979 
1980  if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
1981  Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
1982  << types::getTypeName(Act->getType());
1983 
1984  ActionList Inputs;
1985  for (unsigned i = 0, e = Archs.size(); i != e; ++i)
1986  Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
1987 
1988  // Lipo if necessary, we do it this way because we need to set the arch flag
1989  // so that -Xarch_ gets overwritten.
1990  if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
1991  Actions.append(Inputs.begin(), Inputs.end());
1992  else
1993  Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
1994 
1995  // Handle debug info queries.
1996  Arg *A = Args.getLastArg(options::OPT_g_Group);
1997  bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
1998  !A->getOption().matches(options::OPT_gstabs);
1999  if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2000  ContainsCompileOrAssembleAction(Actions.back())) {
2001 
2002  // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2003  // have a compile input. We need to run 'dsymutil' ourselves in such cases
2004  // because the debug info will refer to a temporary object file which
2005  // will be removed at the end of the compilation process.
2006  if (Act->getType() == types::TY_Image) {
2007  ActionList Inputs;
2008  Inputs.push_back(Actions.back());
2009  Actions.pop_back();
2010  Actions.push_back(
2011  C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2012  }
2013 
2014  // Verify the debug info output.
2015  if (Args.hasArg(options::OPT_verify_debug_info)) {
2016  Action* LastAction = Actions.back();
2017  Actions.pop_back();
2018  Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2019  LastAction, types::TY_Nothing));
2020  }
2021  }
2022  }
2023 }
2024 
2025 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2026  types::ID Ty, bool TypoCorrect) const {
2027  if (!getCheckInputsExist())
2028  return true;
2029 
2030  // stdin always exists.
2031  if (Value == "-")
2032  return true;
2033 
2034  if (getVFS().exists(Value))
2035  return true;
2036 
2037  if (IsCLMode()) {
2038  if (!llvm::sys::path::is_absolute(Twine(Value)) &&
2039  llvm::sys::Process::FindInEnvPath("LIB", Value))
2040  return true;
2041 
2042  if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
2043  // Arguments to the /link flag might cause the linker to search for object
2044  // and library files in paths we don't know about. Don't error in such
2045  // cases.
2046  return true;
2047  }
2048  }
2049 
2050  if (TypoCorrect) {
2051  // Check if the filename is a typo for an option flag. OptTable thinks
2052  // that all args that are not known options and that start with / are
2053  // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2054  // the option `/diagnostics:caret` than a reference to a file in the root
2055  // directory.
2056  unsigned IncludedFlagsBitmask;
2057  unsigned ExcludedFlagsBitmask;
2058  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2059  getIncludeExcludeOptionFlagMasks(IsCLMode());
2060  std::string Nearest;
2061  if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2062  ExcludedFlagsBitmask) <= 1) {
2063  Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2064  << Value << Nearest;
2065  return false;
2066  }
2067  }
2068 
2069  Diag(clang::diag::err_drv_no_such_file) << Value;
2070  return false;
2071 }
2072 
2073 // Construct a the list of inputs and their types.
2074 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2075  InputList &Inputs) const {
2076  const llvm::opt::OptTable &Opts = getOpts();
2077  // Track the current user specified (-x) input. We also explicitly track the
2078  // argument used to set the type; we only want to claim the type when we
2079  // actually use it, so we warn about unused -x arguments.
2080  types::ID InputType = types::TY_Nothing;
2081  Arg *InputTypeArg = nullptr;
2082 
2083  // The last /TC or /TP option sets the input type to C or C++ globally.
2084  if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2085  options::OPT__SLASH_TP)) {
2086  InputTypeArg = TCTP;
2087  InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2088  ? types::TY_C
2089  : types::TY_CXX;
2090 
2091  Arg *Previous = nullptr;
2092  bool ShowNote = false;
2093  for (Arg *A :
2094  Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2095  if (Previous) {
2096  Diag(clang::diag::warn_drv_overriding_flag_option)
2097  << Previous->getSpelling() << A->getSpelling();
2098  ShowNote = true;
2099  }
2100  Previous = A;
2101  }
2102  if (ShowNote)
2103  Diag(clang::diag::note_drv_t_option_is_global);
2104 
2105  // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2106  assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2107  }
2108 
2109  for (Arg *A : Args) {
2110  if (A->getOption().getKind() == Option::InputClass) {
2111  const char *Value = A->getValue();
2113 
2114  // Infer the input type if necessary.
2115  if (InputType == types::TY_Nothing) {
2116  // If there was an explicit arg for this, claim it.
2117  if (InputTypeArg)
2118  InputTypeArg->claim();
2119 
2120  // stdin must be handled specially.
2121  if (memcmp(Value, "-", 2) == 0) {
2122  // If running with -E, treat as a C input (this changes the builtin
2123  // macros, for example). This may be overridden by -ObjC below.
2124  //
2125  // Otherwise emit an error but still use a valid type to avoid
2126  // spurious errors (e.g., no inputs).
2127  if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2128  Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2129  : clang::diag::err_drv_unknown_stdin_type);
2130  Ty = types::TY_C;
2131  } else {
2132  // Otherwise lookup by extension.
2133  // Fallback is C if invoked as C preprocessor, C++ if invoked with
2134  // clang-cl /E, or Object otherwise.
2135  // We use a host hook here because Darwin at least has its own
2136  // idea of what .s is.
2137  if (const char *Ext = strrchr(Value, '.'))
2138  Ty = TC.LookupTypeForExtension(Ext + 1);
2139 
2140  if (Ty == types::TY_INVALID) {
2141  if (CCCIsCPP())
2142  Ty = types::TY_C;
2143  else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E))
2144  Ty = types::TY_CXX;
2145  else
2146  Ty = types::TY_Object;
2147  }
2148 
2149  // If the driver is invoked as C++ compiler (like clang++ or c++) it
2150  // should autodetect some input files as C++ for g++ compatibility.
2151  if (CCCIsCXX()) {
2152  types::ID OldTy = Ty;
2154 
2155  if (Ty != OldTy)
2156  Diag(clang::diag::warn_drv_treating_input_as_cxx)
2157  << getTypeName(OldTy) << getTypeName(Ty);
2158  }
2159 
2160  // If running with -fthinlto-index=, extensions that normally identify
2161  // native object files actually identify LLVM bitcode files.
2162  if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2163  Ty == types::TY_Object)
2164  Ty = types::TY_LLVM_BC;
2165  }
2166 
2167  // -ObjC and -ObjC++ override the default language, but only for "source
2168  // files". We just treat everything that isn't a linker input as a
2169  // source file.
2170  //
2171  // FIXME: Clean this up if we move the phase sequence into the type.
2172  if (Ty != types::TY_Object) {
2173  if (Args.hasArg(options::OPT_ObjC))
2174  Ty = types::TY_ObjC;
2175  else if (Args.hasArg(options::OPT_ObjCXX))
2176  Ty = types::TY_ObjCXX;
2177  }
2178  } else {
2179  assert(InputTypeArg && "InputType set w/o InputTypeArg");
2180  if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2181  // If emulating cl.exe, make sure that /TC and /TP don't affect input
2182  // object files.
2183  const char *Ext = strrchr(Value, '.');
2184  if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2185  Ty = types::TY_Object;
2186  }
2187  if (Ty == types::TY_INVALID) {
2188  Ty = InputType;
2189  InputTypeArg->claim();
2190  }
2191  }
2192 
2193  if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2194  Inputs.push_back(std::make_pair(Ty, A));
2195 
2196  } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2197  StringRef Value = A->getValue();
2198  if (DiagnoseInputExistence(Args, Value, types::TY_C,
2199  /*TypoCorrect=*/false)) {
2200  Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2201  Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2202  }
2203  A->claim();
2204  } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2205  StringRef Value = A->getValue();
2206  if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2207  /*TypoCorrect=*/false)) {
2208  Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2209  Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2210  }
2211  A->claim();
2212  } else if (A->getOption().hasFlag(options::LinkerInput)) {
2213  // Just treat as object type, we could make a special type for this if
2214  // necessary.
2215  Inputs.push_back(std::make_pair(types::TY_Object, A));
2216 
2217  } else if (A->getOption().matches(options::OPT_x)) {
2218  InputTypeArg = A;
2219  InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2220  A->claim();
2221 
2222  // Follow gcc behavior and treat as linker input for invalid -x
2223  // options. Its not clear why we shouldn't just revert to unknown; but
2224  // this isn't very important, we might as well be bug compatible.
2225  if (!InputType) {
2226  Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2227  InputType = types::TY_Object;
2228  }
2229  } else if (A->getOption().getID() == options::OPT_U) {
2230  assert(A->getNumValues() == 1 && "The /U option has one value.");
2231  StringRef Val = A->getValue(0);
2232  if (Val.find_first_of("/\\") != StringRef::npos) {
2233  // Warn about e.g. "/Users/me/myfile.c".
2234  Diag(diag::warn_slash_u_filename) << Val;
2235  Diag(diag::note_use_dashdash);
2236  }
2237  }
2238  }
2239  if (CCCIsCPP() && Inputs.empty()) {
2240  // If called as standalone preprocessor, stdin is processed
2241  // if no other input is present.
2242  Arg *A = MakeInputArg(Args, Opts, "-");
2243  Inputs.push_back(std::make_pair(types::TY_C, A));
2244  }
2245 }
2246 
2247 namespace {
2248 /// Provides a convenient interface for different programming models to generate
2249 /// the required device actions.
2250 class OffloadingActionBuilder final {
2251  /// Flag used to trace errors in the builder.
2252  bool IsValid = false;
2253 
2254  /// The compilation that is using this builder.
2255  Compilation &C;
2256 
2257  /// Map between an input argument and the offload kinds used to process it.
2258  std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2259 
2260  /// Builder interface. It doesn't build anything or keep any state.
2261  class DeviceActionBuilder {
2262  public:
2263  typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2264 
2265  enum ActionBuilderReturnCode {
2266  // The builder acted successfully on the current action.
2267  ABRT_Success,
2268  // The builder didn't have to act on the current action.
2269  ABRT_Inactive,
2270  // The builder was successful and requested the host action to not be
2271  // generated.
2272  ABRT_Ignore_Host,
2273  };
2274 
2275  protected:
2276  /// Compilation associated with this builder.
2277  Compilation &C;
2278 
2279  /// Tool chains associated with this builder. The same programming
2280  /// model may have associated one or more tool chains.
2282 
2283  /// The derived arguments associated with this builder.
2284  DerivedArgList &Args;
2285 
2286  /// The inputs associated with this builder.
2287  const Driver::InputList &Inputs;
2288 
2289  /// The associated offload kind.
2290  Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2291 
2292  public:
2293  DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2294  const Driver::InputList &Inputs,
2295  Action::OffloadKind AssociatedOffloadKind)
2296  : C(C), Args(Args), Inputs(Inputs),
2297  AssociatedOffloadKind(AssociatedOffloadKind) {}
2298  virtual ~DeviceActionBuilder() {}
2299 
2300  /// Fill up the array \a DA with all the device dependences that should be
2301  /// added to the provided host action \a HostAction. By default it is
2302  /// inactive.
2303  virtual ActionBuilderReturnCode
2304  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2305  phases::ID CurPhase, phases::ID FinalPhase,
2306  PhasesTy &Phases) {
2307  return ABRT_Inactive;
2308  }
2309 
2310  /// Update the state to include the provided host action \a HostAction as a
2311  /// dependency of the current device action. By default it is inactive.
2312  virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2313  return ABRT_Inactive;
2314  }
2315 
2316  /// Append top level actions generated by the builder.
2317  virtual void appendTopLevelActions(ActionList &AL) {}
2318 
2319  /// Append linker actions generated by the builder.
2320  virtual void appendLinkActions(ActionList &AL) {}
2321 
2322  /// Append linker actions generated by the builder.
2323  virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2324 
2325  /// Initialize the builder. Return true if any initialization errors are
2326  /// found.
2327  virtual bool initialize() { return false; }
2328 
2329  /// Return true if the builder can use bundling/unbundling.
2330  virtual bool canUseBundlerUnbundler() const { return false; }
2331 
2332  /// Return true if this builder is valid. We have a valid builder if we have
2333  /// associated device tool chains.
2334  bool isValid() { return !ToolChains.empty(); }
2335 
2336  /// Return the associated offload kind.
2337  Action::OffloadKind getAssociatedOffloadKind() {
2338  return AssociatedOffloadKind;
2339  }
2340  };
2341 
2342  /// Base class for CUDA/HIP action builder. It injects device code in
2343  /// the host backend action.
2344  class CudaActionBuilderBase : public DeviceActionBuilder {
2345  protected:
2346  /// Flags to signal if the user requested host-only or device-only
2347  /// compilation.
2348  bool CompileHostOnly = false;
2349  bool CompileDeviceOnly = false;
2350  bool EmitLLVM = false;
2351  bool EmitAsm = false;
2352 
2353  /// List of GPU architectures to use in this compilation.
2354  SmallVector<CudaArch, 4> GpuArchList;
2355 
2356  /// The CUDA actions for the current input.
2357  ActionList CudaDeviceActions;
2358 
2359  /// The CUDA fat binary if it was generated for the current input.
2360  Action *CudaFatBinary = nullptr;
2361 
2362  /// Flag that is set to true if this builder acted on the current input.
2363  bool IsActive = false;
2364 
2365  /// Flag for -fgpu-rdc.
2366  bool Relocatable = false;
2367 
2368  /// Default GPU architecture if there's no one specified.
2369  CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2370 
2371  public:
2372  CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2373  const Driver::InputList &Inputs,
2374  Action::OffloadKind OFKind)
2375  : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2376 
2377  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2378  // While generating code for CUDA, we only depend on the host input action
2379  // to trigger the creation of all the CUDA device actions.
2380 
2381  // If we are dealing with an input action, replicate it for each GPU
2382  // architecture. If we are in host-only mode we return 'success' so that
2383  // the host uses the CUDA offload kind.
2384  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2385  assert(!GpuArchList.empty() &&
2386  "We should have at least one GPU architecture.");
2387 
2388  // If the host input is not CUDA or HIP, we don't need to bother about
2389  // this input.
2390  if (IA->getType() != types::TY_CUDA &&
2391  IA->getType() != types::TY_HIP) {
2392  // The builder will ignore this input.
2393  IsActive = false;
2394  return ABRT_Inactive;
2395  }
2396 
2397  // Set the flag to true, so that the builder acts on the current input.
2398  IsActive = true;
2399 
2400  if (CompileHostOnly)
2401  return ABRT_Success;
2402 
2403  // Replicate inputs for each GPU architecture.
2404  auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2405  : types::TY_CUDA_DEVICE;
2406  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2407  CudaDeviceActions.push_back(
2408  C.MakeAction<InputAction>(IA->getInputArg(), Ty));
2409  }
2410 
2411  return ABRT_Success;
2412  }
2413 
2414  // If this is an unbundling action use it as is for each CUDA toolchain.
2415  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2416 
2417  // If -fgpu-rdc is disabled, should not unbundle since there is no
2418  // device code to link.
2419  if (!Relocatable)
2420  return ABRT_Inactive;
2421 
2422  CudaDeviceActions.clear();
2423  auto *IA = cast<InputAction>(UA->getInputs().back());
2424  std::string FileName = IA->getInputArg().getAsString(Args);
2425  // Check if the type of the file is the same as the action. Do not
2426  // unbundle it if it is not. Do not unbundle .so files, for example,
2427  // which are not object files.
2428  if (IA->getType() == types::TY_Object &&
2429  (!llvm::sys::path::has_extension(FileName) ||
2431  llvm::sys::path::extension(FileName).drop_front()) !=
2432  types::TY_Object))
2433  return ABRT_Inactive;
2434 
2435  for (auto Arch : GpuArchList) {
2436  CudaDeviceActions.push_back(UA);
2437  UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch),
2438  AssociatedOffloadKind);
2439  }
2440  return ABRT_Success;
2441  }
2442 
2443  return IsActive ? ABRT_Success : ABRT_Inactive;
2444  }
2445 
2446  void appendTopLevelActions(ActionList &AL) override {
2447  // Utility to append actions to the top level list.
2448  auto AddTopLevel = [&](Action *A, CudaArch BoundArch) {
2450  Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch),
2451  AssociatedOffloadKind);
2452  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2453  };
2454 
2455  // If we have a fat binary, add it to the list.
2456  if (CudaFatBinary) {
2457  AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN);
2458  CudaDeviceActions.clear();
2459  CudaFatBinary = nullptr;
2460  return;
2461  }
2462 
2463  if (CudaDeviceActions.empty())
2464  return;
2465 
2466  // If we have CUDA actions at this point, that's because we have a have
2467  // partial compilation, so we should have an action for each GPU
2468  // architecture.
2469  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2470  "Expecting one action per GPU architecture.");
2471  assert(ToolChains.size() == 1 &&
2472  "Expecting to have a sing CUDA toolchain.");
2473  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2474  AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2475 
2476  CudaDeviceActions.clear();
2477  }
2478 
2479  bool initialize() override {
2480  assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2481  AssociatedOffloadKind == Action::OFK_HIP);
2482 
2483  // We don't need to support CUDA.
2484  if (AssociatedOffloadKind == Action::OFK_Cuda &&
2486  return false;
2487 
2488  // We don't need to support HIP.
2489  if (AssociatedOffloadKind == Action::OFK_HIP &&
2491  return false;
2492 
2493  Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2494  options::OPT_fno_gpu_rdc, /*Default=*/false);
2495 
2497  assert(HostTC && "No toolchain for host compilation.");
2498  if (HostTC->getTriple().isNVPTX() ||
2499  HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2500  // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2501  // an error and abort pipeline construction early so we don't trip
2502  // asserts that assume device-side compilation.
2503  C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2504  << HostTC->getTriple().getArchName();
2505  return true;
2506  }
2507 
2508  ToolChains.push_back(
2509  AssociatedOffloadKind == Action::OFK_Cuda
2512 
2513  Arg *PartialCompilationArg = Args.getLastArg(
2514  options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2515  options::OPT_cuda_compile_host_device);
2516  CompileHostOnly = PartialCompilationArg &&
2517  PartialCompilationArg->getOption().matches(
2518  options::OPT_cuda_host_only);
2519  CompileDeviceOnly = PartialCompilationArg &&
2520  PartialCompilationArg->getOption().matches(
2521  options::OPT_cuda_device_only);
2522  EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
2523  EmitAsm = Args.getLastArg(options::OPT_S);
2524 
2525  // Collect all cuda_gpu_arch parameters, removing duplicates.
2526  std::set<CudaArch> GpuArchs;
2527  bool Error = false;
2528  for (Arg *A : Args) {
2529  if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) ||
2530  A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)))
2531  continue;
2532  A->claim();
2533 
2534  const StringRef ArchStr = A->getValue();
2535  if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) &&
2536  ArchStr == "all") {
2537  GpuArchs.clear();
2538  continue;
2539  }
2540  CudaArch Arch = StringToCudaArch(ArchStr);
2541  if (Arch == CudaArch::UNKNOWN) {
2542  C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2543  Error = true;
2544  } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ))
2545  GpuArchs.insert(Arch);
2546  else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))
2547  GpuArchs.erase(Arch);
2548  else
2549  llvm_unreachable("Unexpected option.");
2550  }
2551 
2552  // Collect list of GPUs remaining in the set.
2553  for (CudaArch Arch : GpuArchs)
2554  GpuArchList.push_back(Arch);
2555 
2556  // Default to sm_20 which is the lowest common denominator for
2557  // supported GPUs. sm_20 code should work correctly, if
2558  // suboptimally, on all newer GPUs.
2559  if (GpuArchList.empty())
2560  GpuArchList.push_back(DefaultCudaArch);
2561 
2562  return Error;
2563  }
2564  };
2565 
2566  /// \brief CUDA action builder. It injects device code in the host backend
2567  /// action.
2568  class CudaActionBuilder final : public CudaActionBuilderBase {
2569  public:
2570  CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2571  const Driver::InputList &Inputs)
2572  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
2573  DefaultCudaArch = CudaArch::SM_20;
2574  }
2575 
2576  ActionBuilderReturnCode
2577  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2578  phases::ID CurPhase, phases::ID FinalPhase,
2579  PhasesTy &Phases) override {
2580  if (!IsActive)
2581  return ABRT_Inactive;
2582 
2583  // If we don't have more CUDA actions, we don't have any dependences to
2584  // create for the host.
2585  if (CudaDeviceActions.empty())
2586  return ABRT_Success;
2587 
2588  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2589  "Expecting one action per GPU architecture.");
2590  assert(!CompileHostOnly &&
2591  "Not expecting CUDA actions in host-only compilation.");
2592 
2593  // If we are generating code for the device or we are in a backend phase,
2594  // we attempt to generate the fat binary. We compile each arch to ptx and
2595  // assemble to cubin, then feed the cubin *and* the ptx into a device
2596  // "link" action, which uses fatbinary to combine these cubins into one
2597  // fatbin. The fatbin is then an input to the host action if not in
2598  // device-only mode.
2599  if (CompileDeviceOnly || CurPhase == phases::Backend) {
2600  ActionList DeviceActions;
2601  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2602  // Produce the device action from the current phase up to the assemble
2603  // phase.
2604  for (auto Ph : Phases) {
2605  // Skip the phases that were already dealt with.
2606  if (Ph < CurPhase)
2607  continue;
2608  // We have to be consistent with the host final phase.
2609  if (Ph > FinalPhase)
2610  break;
2611 
2612  CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2613  C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2614 
2615  if (Ph == phases::Assemble)
2616  break;
2617  }
2618 
2619  // If we didn't reach the assemble phase, we can't generate the fat
2620  // binary. We don't need to generate the fat binary if we are not in
2621  // device-only mode.
2622  if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2623  CompileDeviceOnly)
2624  continue;
2625 
2626  Action *AssembleAction = CudaDeviceActions[I];
2627  assert(AssembleAction->getType() == types::TY_Object);
2628  assert(AssembleAction->getInputs().size() == 1);
2629 
2630  Action *BackendAction = AssembleAction->getInputs()[0];
2631  assert(BackendAction->getType() == types::TY_PP_Asm);
2632 
2633  for (auto &A : {AssembleAction, BackendAction}) {
2635  DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]),
2637  DeviceActions.push_back(
2638  C.MakeAction<OffloadAction>(DDep, A->getType()));
2639  }
2640  }
2641 
2642  // We generate the fat binary if we have device input actions.
2643  if (!DeviceActions.empty()) {
2644  CudaFatBinary =
2645  C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2646 
2647  if (!CompileDeviceOnly) {
2648  DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2650  // Clear the fat binary, it is already a dependence to an host
2651  // action.
2652  CudaFatBinary = nullptr;
2653  }
2654 
2655  // Remove the CUDA actions as they are already connected to an host
2656  // action or fat binary.
2657  CudaDeviceActions.clear();
2658  }
2659 
2660  // We avoid creating host action in device-only mode.
2661  return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2662  } else if (CurPhase > phases::Backend) {
2663  // If we are past the backend phase and still have a device action, we
2664  // don't have to do anything as this action is already a device
2665  // top-level action.
2666  return ABRT_Success;
2667  }
2668 
2669  assert(CurPhase < phases::Backend && "Generating single CUDA "
2670  "instructions should only occur "
2671  "before the backend phase!");
2672 
2673  // By default, we produce an action for each device arch.
2674  for (Action *&A : CudaDeviceActions)
2675  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2676 
2677  return ABRT_Success;
2678  }
2679  };
2680  /// \brief HIP action builder. It injects device code in the host backend
2681  /// action.
2682  class HIPActionBuilder final : public CudaActionBuilderBase {
2683  /// The linker inputs obtained for each device arch.
2684  SmallVector<ActionList, 8> DeviceLinkerInputs;
2685 
2686  public:
2687  HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2688  const Driver::InputList &Inputs)
2689  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
2690  DefaultCudaArch = CudaArch::GFX803;
2691  }
2692 
2693  bool canUseBundlerUnbundler() const override { return true; }
2694 
2695  ActionBuilderReturnCode
2696  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2697  phases::ID CurPhase, phases::ID FinalPhase,
2698  PhasesTy &Phases) override {
2699  // amdgcn does not support linking of object files, therefore we skip
2700  // backend and assemble phases to output LLVM IR. Except for generating
2701  // non-relocatable device coee, where we generate fat binary for device
2702  // code and pass to host in Backend phase.
2703  if (CudaDeviceActions.empty() ||
2704  (CurPhase == phases::Backend && Relocatable) ||
2705  CurPhase == phases::Assemble)
2706  return ABRT_Success;
2707 
2708  assert(((CurPhase == phases::Link && Relocatable) ||
2709  CudaDeviceActions.size() == GpuArchList.size()) &&
2710  "Expecting one action per GPU architecture.");
2711  assert(!CompileHostOnly &&
2712  "Not expecting CUDA actions in host-only compilation.");
2713 
2714  if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
2715  !EmitAsm) {
2716  // If we are in backend phase, we attempt to generate the fat binary.
2717  // We compile each arch to IR and use a link action to generate code
2718  // object containing ISA. Then we use a special "link" action to create
2719  // a fat binary containing all the code objects for different GPU's.
2720  // The fat binary is then an input to the host action.
2721  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2722  // Create a link action to link device IR with device library
2723  // and generate ISA.
2724  ActionList AL;
2725  AL.push_back(CudaDeviceActions[I]);
2726  CudaDeviceActions[I] =
2727  C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2728 
2729  // OffloadingActionBuilder propagates device arch until an offload
2730  // action. Since the next action for creating fatbin does
2731  // not have device arch, whereas the above link action and its input
2732  // have device arch, an offload action is needed to stop the null
2733  // device arch of the next action being propagated to the above link
2734  // action.
2736  DDep.add(*CudaDeviceActions[I], *ToolChains.front(),
2737  CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2738  CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
2739  DDep, CudaDeviceActions[I]->getType());
2740  }
2741  // Create HIP fat binary with a special "link" action.
2742  CudaFatBinary =
2743  C.MakeAction<LinkJobAction>(CudaDeviceActions,
2744  types::TY_HIP_FATBIN);
2745 
2746  if (!CompileDeviceOnly) {
2747  DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2748  AssociatedOffloadKind);
2749  // Clear the fat binary, it is already a dependence to an host
2750  // action.
2751  CudaFatBinary = nullptr;
2752  }
2753 
2754  // Remove the CUDA actions as they are already connected to an host
2755  // action or fat binary.
2756  CudaDeviceActions.clear();
2757 
2758  return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2759  } else if (CurPhase == phases::Link) {
2760  // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
2761  // This happens to each device action originated from each input file.
2762  // Later on, device actions in DeviceLinkerInputs are used to create
2763  // device link actions in appendLinkDependences and the created device
2764  // link actions are passed to the offload action as device dependence.
2765  DeviceLinkerInputs.resize(CudaDeviceActions.size());
2766  auto LI = DeviceLinkerInputs.begin();
2767  for (auto *A : CudaDeviceActions) {
2768  LI->push_back(A);
2769  ++LI;
2770  }
2771 
2772  // We will pass the device action as a host dependence, so we don't
2773  // need to do anything else with them.
2774  CudaDeviceActions.clear();
2775  return ABRT_Success;
2776  }
2777 
2778  // By default, we produce an action for each device arch.
2779  for (Action *&A : CudaDeviceActions)
2780  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
2781  AssociatedOffloadKind);
2782 
2783  return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host
2784  : ABRT_Success;
2785  }
2786 
2787  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2788  // Append a new link action for each device.
2789  unsigned I = 0;
2790  for (auto &LI : DeviceLinkerInputs) {
2791  auto *DeviceLinkAction =
2792  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2793  DA.add(*DeviceLinkAction, *ToolChains[0],
2794  CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2795  ++I;
2796  }
2797  }
2798  };
2799 
2800  /// OpenMP action builder. The host bitcode is passed to the device frontend
2801  /// and all the device linked images are passed to the host link phase.
2802  class OpenMPActionBuilder final : public DeviceActionBuilder {
2803  /// The OpenMP actions for the current input.
2804  ActionList OpenMPDeviceActions;
2805 
2806  /// The linker inputs obtained for each toolchain.
2807  SmallVector<ActionList, 8> DeviceLinkerInputs;
2808 
2809  public:
2810  OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
2811  const Driver::InputList &Inputs)
2812  : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
2813 
2814  ActionBuilderReturnCode
2815  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2816  phases::ID CurPhase, phases::ID FinalPhase,
2817  PhasesTy &Phases) override {
2818  if (OpenMPDeviceActions.empty())
2819  return ABRT_Inactive;
2820 
2821  // We should always have an action for each input.
2822  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2823  "Number of OpenMP actions and toolchains do not match.");
2824 
2825  // The host only depends on device action in the linking phase, when all
2826  // the device images have to be embedded in the host image.
2827  if (CurPhase == phases::Link) {
2828  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2829  "Toolchains and linker inputs sizes do not match.");
2830  auto LI = DeviceLinkerInputs.begin();
2831  for (auto *A : OpenMPDeviceActions) {
2832  LI->push_back(A);
2833  ++LI;
2834  }
2835 
2836  // We passed the device action as a host dependence, so we don't need to
2837  // do anything else with them.
2838  OpenMPDeviceActions.clear();
2839  return ABRT_Success;
2840  }
2841 
2842  // By default, we produce an action for each device arch.
2843  for (Action *&A : OpenMPDeviceActions)
2844  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2845 
2846  return ABRT_Success;
2847  }
2848 
2849  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2850 
2851  // If this is an input action replicate it for each OpenMP toolchain.
2852  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2853  OpenMPDeviceActions.clear();
2854  for (unsigned I = 0; I < ToolChains.size(); ++I)
2855  OpenMPDeviceActions.push_back(
2856  C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
2857  return ABRT_Success;
2858  }
2859 
2860  // If this is an unbundling action use it as is for each OpenMP toolchain.
2861  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2862  OpenMPDeviceActions.clear();
2863  auto *IA = cast<InputAction>(UA->getInputs().back());
2864  std::string FileName = IA->getInputArg().getAsString(Args);
2865  // Check if the type of the file is the same as the action. Do not
2866  // unbundle it if it is not. Do not unbundle .so files, for example,
2867  // which are not object files.
2868  if (IA->getType() == types::TY_Object &&
2869  (!llvm::sys::path::has_extension(FileName) ||
2871  llvm::sys::path::extension(FileName).drop_front()) !=
2872  types::TY_Object))
2873  return ABRT_Inactive;
2874  for (unsigned I = 0; I < ToolChains.size(); ++I) {
2875  OpenMPDeviceActions.push_back(UA);
2876  UA->registerDependentActionInfo(
2877  ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
2878  }
2879  return ABRT_Success;
2880  }
2881 
2882  // When generating code for OpenMP we use the host compile phase result as
2883  // a dependence to the device compile phase so that it can learn what
2884  // declarations should be emitted. However, this is not the only use for
2885  // the host action, so we prevent it from being collapsed.
2886  if (isa<CompileJobAction>(HostAction)) {
2888  assert(ToolChains.size() == OpenMPDeviceActions.size() &&
2889  "Toolchains and device action sizes do not match.");
2891  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2892  /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2893  auto TC = ToolChains.begin();
2894  for (Action *&A : OpenMPDeviceActions) {
2895  assert(isa<CompileJobAction>(A));
2897  DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2898  A = C.MakeAction<OffloadAction>(HDep, DDep);
2899  ++TC;
2900  }
2901  }
2902  return ABRT_Success;
2903  }
2904 
2905  void appendTopLevelActions(ActionList &AL) override {
2906  if (OpenMPDeviceActions.empty())
2907  return;
2908 
2909  // We should always have an action for each input.
2910  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2911  "Number of OpenMP actions and toolchains do not match.");
2912 
2913  // Append all device actions followed by the proper offload action.
2914  auto TI = ToolChains.begin();
2915  for (auto *A : OpenMPDeviceActions) {
2917  Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2918  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2919  ++TI;
2920  }
2921  // We no longer need the action stored in this builder.
2922  OpenMPDeviceActions.clear();
2923  }
2924 
2925  void appendLinkActions(ActionList &AL) override {
2926  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2927  "Toolchains and linker inputs sizes do not match.");
2928 
2929  // Append a new link action for each device.
2930  auto TC = ToolChains.begin();
2931  for (auto &LI : DeviceLinkerInputs) {
2932  auto *DeviceLinkAction =
2933  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2934  OffloadAction::DeviceDependences DeviceLinkDeps;
2935  DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
2937  AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
2938  DeviceLinkAction->getType()));
2939  ++TC;
2940  }
2941  DeviceLinkerInputs.clear();
2942  }
2943 
2944  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
2945 
2946  bool initialize() override {
2947  // Get the OpenMP toolchains. If we don't get any, the action builder will
2948  // know there is nothing to do related to OpenMP offloading.
2949  auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
2950  for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
2951  ++TI)
2952  ToolChains.push_back(TI->second);
2953 
2954  DeviceLinkerInputs.resize(ToolChains.size());
2955  return false;
2956  }
2957 
2958  bool canUseBundlerUnbundler() const override {
2959  // OpenMP should use bundled files whenever possible.
2960  return true;
2961  }
2962  };
2963 
2964  ///
2965  /// TODO: Add the implementation for other specialized builders here.
2966  ///
2967 
2968  /// Specialized builders being used by this offloading action builder.
2969  SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
2970 
2971  /// Flag set to true if all valid builders allow file bundling/unbundling.
2972  bool CanUseBundler;
2973 
2974 public:
2975  OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
2976  const Driver::InputList &Inputs)
2977  : C(C) {
2978  // Create a specialized builder for each device toolchain.
2979 
2980  IsValid = true;
2981 
2982  // Create a specialized builder for CUDA.
2983  SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
2984 
2985  // Create a specialized builder for HIP.
2986  SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
2987 
2988  // Create a specialized builder for OpenMP.
2989  SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
2990 
2991  //
2992  // TODO: Build other specialized builders here.
2993  //
2994 
2995  // Initialize all the builders, keeping track of errors. If all valid
2996  // builders agree that we can use bundling, set the flag to true.
2997  unsigned ValidBuilders = 0u;
2998  unsigned ValidBuildersSupportingBundling = 0u;
2999  for (auto *SB : SpecializedBuilders) {
3000  IsValid = IsValid && !SB->initialize();
3001 
3002  // Update the counters if the builder is valid.
3003  if (SB->isValid()) {
3004  ++ValidBuilders;
3005  if (SB->canUseBundlerUnbundler())
3006  ++ValidBuildersSupportingBundling;
3007  }
3008  }
3009  CanUseBundler =
3010  ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3011  }
3012 
3013  ~OffloadingActionBuilder() {
3014  for (auto *SB : SpecializedBuilders)
3015  delete SB;
3016  }
3017 
3018  /// Generate an action that adds device dependences (if any) to a host action.
3019  /// If no device dependence actions exist, just return the host action \a
3020  /// HostAction. If an error is found or if no builder requires the host action
3021  /// to be generated, return nullptr.
3022  Action *
3023  addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3024  phases::ID CurPhase, phases::ID FinalPhase,
3025  DeviceActionBuilder::PhasesTy &Phases) {
3026  if (!IsValid)
3027  return nullptr;
3028 
3029  if (SpecializedBuilders.empty())
3030  return HostAction;
3031 
3032  assert(HostAction && "Invalid host action!");
3033 
3035  // Check if all the programming models agree we should not emit the host
3036  // action. Also, keep track of the offloading kinds employed.
3037  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3038  unsigned InactiveBuilders = 0u;
3039  unsigned IgnoringBuilders = 0u;
3040  for (auto *SB : SpecializedBuilders) {
3041  if (!SB->isValid()) {
3042  ++InactiveBuilders;
3043  continue;
3044  }
3045 
3046  auto RetCode =
3047  SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3048 
3049  // If the builder explicitly says the host action should be ignored,
3050  // we need to increment the variable that tracks the builders that request
3051  // the host object to be ignored.
3052  if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3053  ++IgnoringBuilders;
3054 
3055  // Unless the builder was inactive for this action, we have to record the
3056  // offload kind because the host will have to use it.
3057  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3058  OffloadKind |= SB->getAssociatedOffloadKind();
3059  }
3060 
3061  // If all builders agree that the host object should be ignored, just return
3062  // nullptr.
3063  if (IgnoringBuilders &&
3064  SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3065  return nullptr;
3066 
3067  if (DDeps.getActions().empty())
3068  return HostAction;
3069 
3070  // We have dependences we need to bundle together. We use an offload action
3071  // for that.
3073  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3074  /*BoundArch=*/nullptr, DDeps);
3075  return C.MakeAction<OffloadAction>(HDep, DDeps);
3076  }
3077 
3078  /// Generate an action that adds a host dependence to a device action. The
3079  /// results will be kept in this action builder. Return true if an error was
3080  /// found.
3081  bool addHostDependenceToDeviceActions(Action *&HostAction,
3082  const Arg *InputArg) {
3083  if (!IsValid)
3084  return true;
3085 
3086  // If we are supporting bundling/unbundling and the current action is an
3087  // input action of non-source file, we replace the host action by the
3088  // unbundling action. The bundler tool has the logic to detect if an input
3089  // is a bundle or not and if the input is not a bundle it assumes it is a
3090  // host file. Therefore it is safe to create an unbundling action even if
3091  // the input is not a bundle.
3092  if (CanUseBundler && isa<InputAction>(HostAction) &&
3093  InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3094  !types::isSrcFile(HostAction->getType())) {
3095  auto UnbundlingHostAction =
3096  C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3097  UnbundlingHostAction->registerDependentActionInfo(
3099  /*BoundArch=*/StringRef(), Action::OFK_Host);
3100  HostAction = UnbundlingHostAction;
3101  }
3102 
3103  assert(HostAction && "Invalid host action!");
3104 
3105  // Register the offload kinds that are used.
3106  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3107  for (auto *SB : SpecializedBuilders) {
3108  if (!SB->isValid())
3109  continue;
3110 
3111  auto RetCode = SB->addDeviceDepences(HostAction);
3112 
3113  // Host dependences for device actions are not compatible with that same
3114  // action being ignored.
3115  assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3116  "Host dependence not expected to be ignored.!");
3117 
3118  // Unless the builder was inactive for this action, we have to record the
3119  // offload kind because the host will have to use it.
3120  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3121  OffloadKind |= SB->getAssociatedOffloadKind();
3122  }
3123 
3124  // Do not use unbundler if the Host does not depend on device action.
3125  if (OffloadKind == Action::OFK_None && CanUseBundler)
3126  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3127  HostAction = UA->getInputs().back();
3128 
3129  return false;
3130  }
3131 
3132  /// Add the offloading top level actions to the provided action list. This
3133  /// function can replace the host action by a bundling action if the
3134  /// programming models allow it.
3135  bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3136  const Arg *InputArg) {
3137  // Get the device actions to be appended.
3138  ActionList OffloadAL;
3139  for (auto *SB : SpecializedBuilders) {
3140  if (!SB->isValid())
3141  continue;
3142  SB->appendTopLevelActions(OffloadAL);
3143  }
3144 
3145  // If we can use the bundler, replace the host action by the bundling one in
3146  // the resulting list. Otherwise, just append the device actions. For
3147  // device only compilation, HostAction is a null pointer, therefore only do
3148  // this when HostAction is not a null pointer.
3149  if (CanUseBundler && HostAction &&
3150  HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3151  // Add the host action to the list in order to create the bundling action.
3152  OffloadAL.push_back(HostAction);
3153 
3154  // We expect that the host action was just appended to the action list
3155  // before this method was called.
3156  assert(HostAction == AL.back() && "Host action not in the list??");
3157  HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3158  AL.back() = HostAction;
3159  } else
3160  AL.append(OffloadAL.begin(), OffloadAL.end());
3161 
3162  // Propagate to the current host action (if any) the offload information
3163  // associated with the current input.
3164  if (HostAction)
3165  HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3166  /*BoundArch=*/nullptr);
3167  return false;
3168  }
3169 
3170  Action* makeHostLinkAction() {
3171  // Build a list of device linking actions.
3172  ActionList DeviceAL;
3173  for (DeviceActionBuilder *SB : SpecializedBuilders) {
3174  if (!SB->isValid())
3175  continue;
3176  SB->appendLinkActions(DeviceAL);
3177  }
3178 
3179  if (DeviceAL.empty())
3180  return nullptr;
3181 
3182  // Create wrapper bitcode from the result of device link actions and compile
3183  // it to an object which will be added to the host link command.
3184  auto *BC = C.MakeAction<OffloadWrapperJobAction>(DeviceAL, types::TY_LLVM_BC);
3185  auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm);
3186  return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object);
3187  }
3188 
3189  /// Processes the host linker action. This currently consists of replacing it
3190  /// with an offload action if there are device link objects and propagate to
3191  /// the host action all the offload kinds used in the current compilation. The
3192  /// resulting action is returned.
3193  Action *processHostLinkAction(Action *HostAction) {
3194  // Add all the dependences from the device linking actions.
3196  for (auto *SB : SpecializedBuilders) {
3197  if (!SB->isValid())
3198  continue;
3199 
3200  SB->appendLinkDependences(DDeps);
3201  }
3202 
3203  // Calculate all the offload kinds used in the current compilation.
3204  unsigned ActiveOffloadKinds = 0u;
3205  for (auto &I : InputArgToOffloadKindMap)
3206  ActiveOffloadKinds |= I.second;
3207 
3208  // If we don't have device dependencies, we don't have to create an offload
3209  // action.
3210  if (DDeps.getActions().empty()) {
3211  // Propagate all the active kinds to host action. Given that it is a link
3212  // action it is assumed to depend on all actions generated so far.
3213  HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3214  /*BoundArch=*/nullptr);
3215  return HostAction;
3216  }
3217 
3218  // Create the offload action with all dependences. When an offload action
3219  // is created the kinds are propagated to the host action, so we don't have
3220  // to do that explicitly here.
3222  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3223  /*BoundArch*/ nullptr, ActiveOffloadKinds);
3224  return C.MakeAction<OffloadAction>(HDep, DDeps);
3225  }
3226 };
3227 } // anonymous namespace.
3228 
3229 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3230  const InputList &Inputs,
3231  ActionList &Actions) const {
3232 
3233  // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3234  Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3235  Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3236  if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3237  Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3238  Args.eraseArg(options::OPT__SLASH_Yc);
3239  Args.eraseArg(options::OPT__SLASH_Yu);
3240  YcArg = YuArg = nullptr;
3241  }
3242  if (YcArg && Inputs.size() > 1) {
3243  Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3244  Args.eraseArg(options::OPT__SLASH_Yc);
3245  YcArg = nullptr;
3246  }
3247 
3248  Arg *FinalPhaseArg;
3249  phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3250 
3251  if (FinalPhase == phases::Link) {
3252  if (Args.hasArg(options::OPT_emit_llvm))
3253  Diag(clang::diag::err_drv_emit_llvm_link);
3254  if (IsCLMode() && LTOMode != LTOK_None &&
3255  !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
3256  Diag(clang::diag::err_drv_lto_without_lld);
3257  }
3258 
3259  if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3260  // If only preprocessing or /Y- is used, all pch handling is disabled.
3261  // Rather than check for it everywhere, just remove clang-cl pch-related
3262  // flags here.
3263  Args.eraseArg(options::OPT__SLASH_Fp);
3264  Args.eraseArg(options::OPT__SLASH_Yc);
3265  Args.eraseArg(options::OPT__SLASH_Yu);
3266  YcArg = YuArg = nullptr;
3267  }
3268 
3269  unsigned LastPLSize = 0;
3270  for (auto &I : Inputs) {
3271  types::ID InputType = I.first;
3272  const Arg *InputArg = I.second;
3273 
3275  types::getCompilationPhases(InputType, PL);
3276  LastPLSize = PL.size();
3277 
3278  // If the first step comes after the final phase we are doing as part of
3279  // this compilation, warn the user about it.
3280  phases::ID InitialPhase = PL[0];
3281  if (InitialPhase > FinalPhase) {
3282  if (InputArg->isClaimed())
3283  continue;
3284 
3285  // Claim here to avoid the more general unused warning.
3286  InputArg->claim();
3287 
3288  // Suppress all unused style warnings with -Qunused-arguments
3289  if (Args.hasArg(options::OPT_Qunused_arguments))
3290  continue;
3291 
3292  // Special case when final phase determined by binary name, rather than
3293  // by a command-line argument with a corresponding Arg.
3294  if (CCCIsCPP())
3295  Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3296  << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3297  // Special case '-E' warning on a previously preprocessed file to make
3298  // more sense.
3299  else if (InitialPhase == phases::Compile &&
3300  (Args.getLastArg(options::OPT__SLASH_EP,
3301  options::OPT__SLASH_P) ||
3302  Args.getLastArg(options::OPT_E) ||
3303  Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
3304  getPreprocessedType(InputType) == types::TY_INVALID)
3305  Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3306  << InputArg->getAsString(Args) << !!FinalPhaseArg
3307  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3308  else
3309  Diag(clang::diag::warn_drv_input_file_unused)
3310  << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3311  << !!FinalPhaseArg
3312  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3313  continue;
3314  }
3315 
3316  if (YcArg) {
3317  // Add a separate precompile phase for the compile phase.
3318  if (FinalPhase >= phases::Compile) {
3319  const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3321  types::getCompilationPhases(HeaderType, PCHPL);
3322  // Build the pipeline for the pch file.
3323  Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
3324  for (phases::ID Phase : PCHPL)
3325  ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3326  assert(ClangClPch);
3327  Actions.push_back(ClangClPch);
3328  // The driver currently exits after the first failed command. This
3329  // relies on that behavior, to make sure if the pch generation fails,
3330  // the main compilation won't run.
3331  // FIXME: If the main compilation fails, the PCH generation should
3332  // probably not be considered successful either.
3333  }
3334  }
3335  }
3336 
3337  // If we are linking, claim any options which are obviously only used for
3338  // compilation.
3339  // FIXME: Understand why the last Phase List length is used here.
3340  if (FinalPhase == phases::Link && LastPLSize == 1) {
3341  Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3342  Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3343  }
3344 }
3345 
3346 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3347  const InputList &Inputs, ActionList &Actions) const {
3348  llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3349 
3350  if (!SuppressMissingInputWarning && Inputs.empty()) {
3351  Diag(clang::diag::err_drv_no_input_files);
3352  return;
3353  }
3354 
3355  // Reject -Z* at the top level, these options should never have been exposed
3356  // by gcc.
3357  if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3358  Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3359 
3360  // Diagnose misuse of /Fo.
3361  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3362  StringRef V = A->getValue();
3363  if (Inputs.size() > 1 && !V.empty() &&
3364  !llvm::sys::path::is_separator(V.back())) {
3365  // Check whether /Fo tries to name an output file for multiple inputs.
3366  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3367  << A->getSpelling() << V;
3368  Args.eraseArg(options::OPT__SLASH_Fo);
3369  }
3370  }
3371 
3372  // Diagnose misuse of /Fa.
3373  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3374  StringRef V = A->getValue();
3375  if (Inputs.size() > 1 && !V.empty() &&
3376  !llvm::sys::path::is_separator(V.back())) {
3377  // Check whether /Fa tries to name an asm file for multiple inputs.
3378  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3379  << A->getSpelling() << V;
3380  Args.eraseArg(options::OPT__SLASH_Fa);
3381  }
3382  }
3383 
3384  // Diagnose misuse of /o.
3385  if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3386  if (A->getValue()[0] == '\0') {
3387  // It has to have a value.
3388  Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3389  Args.eraseArg(options::OPT__SLASH_o);
3390  }
3391  }
3392 
3393  handleArguments(C, Args, Inputs, Actions);
3394 
3395  // Builder to be used to build offloading actions.
3396  OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3397 
3398  // Construct the actions to perform.
3399  HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3400  ActionList LinkerInputs;
3401  ActionList MergerInputs;
3402 
3403  for (auto &I : Inputs) {
3404  types::ID InputType = I.first;
3405  const Arg *InputArg = I.second;
3406 
3408  types::getCompilationPhases(*this, Args, InputType, PL);
3409  if (PL.empty())
3410  continue;
3411 
3413  types::getCompilationPhases(InputType, FullPL);
3414 
3415  // Build the pipeline for this file.
3416  Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3417 
3418  // Use the current host action in any of the offloading actions, if
3419  // required.
3420  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3421  break;
3422 
3423  for (phases::ID Phase : PL) {
3424 
3425  // Add any offload action the host action depends on.
3426  Current = OffloadBuilder.addDeviceDependencesToHostAction(
3427  Current, InputArg, Phase, PL.back(), FullPL);
3428  if (!Current)
3429  break;
3430 
3431  // Queue linker inputs.
3432  if (Phase == phases::Link) {
3433  assert(Phase == PL.back() && "linking must be final compilation step.");
3434  LinkerInputs.push_back(Current);
3435  Current = nullptr;
3436  break;
3437  }
3438 
3439  // TODO: Consider removing this because the merged may not end up being
3440  // the final Phase in the pipeline. Perhaps the merged could just merge
3441  // and then pass an artifact of some sort to the Link Phase.
3442  // Queue merger inputs.
3443  if (Phase == phases::IfsMerge) {
3444  assert(Phase == PL.back() && "merging must be final compilation step.");
3445  MergerInputs.push_back(Current);
3446  Current = nullptr;
3447  break;
3448  }
3449 
3450  // Each precompiled header file after a module file action is a module
3451  // header of that same module file, rather than being compiled to a
3452  // separate PCH.
3453  if (Phase == phases::Precompile && HeaderModuleAction &&
3454  getPrecompiledType(InputType) == types::TY_PCH) {
3455  HeaderModuleAction->addModuleHeaderInput(Current);
3456  Current = nullptr;
3457  break;
3458  }
3459 
3460  // FIXME: Should we include any prior module file outputs as inputs of
3461  // later actions in the same command line?
3462 
3463  // Otherwise construct the appropriate action.
3464  Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3465 
3466  // We didn't create a new action, so we will just move to the next phase.
3467  if (NewCurrent == Current)
3468  continue;
3469 
3470  if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3471  HeaderModuleAction = HMA;
3472 
3473  Current = NewCurrent;
3474 
3475  // Use the current host action in any of the offloading actions, if
3476  // required.
3477  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3478  break;
3479 
3480  if (Current->getType() == types::TY_Nothing)
3481  break;
3482  }
3483 
3484  // If we ended with something, add to the output list.
3485  if (Current)
3486  Actions.push_back(Current);
3487 
3488  // Add any top level actions generated for offloading.
3489  OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3490  }
3491 
3492  // Add a link action if necessary.
3493  if (!LinkerInputs.empty()) {
3494  if (Action *Wrapper = OffloadBuilder.makeHostLinkAction())
3495  LinkerInputs.push_back(Wrapper);
3496  Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3497  LA = OffloadBuilder.processHostLinkAction(LA);
3498  Actions.push_back(LA);
3499  }
3500 
3501  // Add an interface stubs merge action if necessary.
3502  if (!MergerInputs.empty())
3503  Actions.push_back(
3504  C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3505 
3506  if (Args.hasArg(options::OPT_emit_interface_stubs)) {
3508  if (Args.hasArg(options::OPT_c)) {
3510  types::getCompilationPhases(types::TY_IFS_CPP, CompilePhaseList);
3511  llvm::copy_if(CompilePhaseList, std::back_inserter(PhaseList),
3512  [&](phases::ID Phase) { return Phase <= phases::Compile; });
3513  } else {
3514  types::getCompilationPhases(types::TY_IFS_CPP, PhaseList);
3515  }
3516 
3517  ActionList MergerInputs;
3518 
3519  for (auto &I : Inputs) {
3520  types::ID InputType = I.first;
3521  const Arg *InputArg = I.second;
3522 
3523  // Currently clang and the llvm assembler do not support generating symbol
3524  // stubs from assembly, so we skip the input on asm files. For ifs files
3525  // we rely on the normal pipeline setup in the pipeline setup code above.
3526  if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
3527  InputType == types::TY_Asm)
3528  continue;
3529 
3530  Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3531 
3532  for (auto Phase : PhaseList) {
3533  switch (Phase) {
3534  default:
3535  llvm_unreachable(
3536  "IFS Pipeline can only consist of Compile followed by IfsMerge.");
3537  case phases::Compile: {
3538  // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
3539  // files where the .o file is located. The compile action can not
3540  // handle this.
3541  if (InputType == types::TY_Object)
3542  break;
3543 
3544  Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
3545  break;
3546  }
3547  case phases::IfsMerge: {
3548  assert(Phase == PhaseList.back() &&
3549  "merging must be final compilation step.");
3550  MergerInputs.push_back(Current);
3551  Current = nullptr;
3552  break;
3553  }
3554  }
3555  }
3556 
3557  // If we ended with something, add to the output list.
3558  if (Current)
3559  Actions.push_back(Current);
3560  }
3561 
3562  // Add an interface stubs merge action if necessary.
3563  if (!MergerInputs.empty())
3564  Actions.push_back(
3565  C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3566  }
3567 
3568  // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
3569  // Compile phase that prints out supported cpu models and quits.
3570  if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
3571  // Use the -mcpu=? flag as the dummy input to cc1.
3572  Actions.clear();
3573  Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
3574  Actions.push_back(
3575  C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
3576  for (auto &I : Inputs)
3577  I.second->claim();
3578  }
3579 
3580  // Claim ignored clang-cl options.
3581  Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3582 
3583  // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3584  // to non-CUDA compilations and should not trigger warnings there.
3585  Args.ClaimAllArgs(options::OPT_cuda_host_only);
3586  Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3587 }
3588 
3590  Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3591  Action::OffloadKind TargetDeviceOffloadKind) const {
3592  llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3593 
3594  // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3595  // encode this in the steps because the intermediate type depends on
3596  // arguments. Just special case here.
3597  if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3598  return Input;
3599 
3600  // Build the appropriate action.
3601  switch (Phase) {
3602  case phases::Link:
3603  llvm_unreachable("link action invalid here.");
3604  case phases::IfsMerge:
3605  llvm_unreachable("ifsmerge action invalid here.");
3606  case phases::Preprocess: {
3607  types::ID OutputTy;
3608  // -M and -MM specify the dependency file name by altering the output type,
3609  // -if -MD and -MMD are not specified.
3610  if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
3611  !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
3612  OutputTy = types::TY_Dependencies;
3613  } else {
3614  OutputTy = Input->getType();
3615  if (!Args.hasFlag(options::OPT_frewrite_includes,
3616  options::OPT_fno_rewrite_includes, false) &&
3617  !Args.hasFlag(options::OPT_frewrite_imports,
3618  options::OPT_fno_rewrite_imports, false) &&
3620  OutputTy = types::getPreprocessedType(OutputTy);
3621  assert(OutputTy != types::TY_INVALID &&
3622  "Cannot preprocess this input type!");
3623  }
3624  return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3625  }
3626  case phases::Precompile: {
3627  types::ID OutputTy = getPrecompiledType(Input->getType());
3628  assert(OutputTy != types::TY_INVALID &&
3629  "Cannot precompile this input type!");
3630 
3631  // If we're given a module name, precompile header file inputs as a
3632  // module, not as a precompiled header.
3633  const char *ModName = nullptr;
3634  if (OutputTy == types::TY_PCH) {
3635  if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3636  ModName = A->getValue();
3637  if (ModName)
3638  OutputTy = types::TY_ModuleFile;
3639  }
3640 
3641  if (Args.hasArg(options::OPT_fsyntax_only)) {
3642  // Syntax checks should not emit a PCH file
3643  OutputTy = types::TY_Nothing;
3644  }
3645 
3646  if (ModName)
3647  return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3648  ModName);
3649  return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3650  }
3651  case phases::Compile: {
3652  if (Args.hasArg(options::OPT_fsyntax_only))
3653  return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3654  if (Args.hasArg(options::OPT_rewrite_objc))
3655  return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3656  if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3657  return C.MakeAction<CompileJobAction>(Input,
3658  types::TY_RewrittenLegacyObjC);
3659  if (Args.hasArg(options::OPT__analyze))
3660  return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3661  if (Args.hasArg(options::OPT__migrate))
3662  return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3663  if (Args.hasArg(options::OPT_emit_ast))
3664  return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3665  if (Args.hasArg(options::OPT_module_file_info))
3666  return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3667  if (Args.hasArg(options::OPT_verify_pch))
3668  return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3669  return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3670  }
3671  case phases::Backend: {
3672  if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3673  types::ID Output =
3674  Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3675  return C.MakeAction<BackendJobAction>(Input, Output);
3676  }
3677  if (Args.hasArg(options::OPT_emit_llvm)) {
3678  types::ID Output =
3679  Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3680  return C.MakeAction<BackendJobAction>(Input, Output);
3681  }
3682  return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3683  }
3684  case phases::Assemble:
3685  return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3686  }
3687 
3688  llvm_unreachable("invalid phase in ConstructPhaseAction");
3689 }
3690 
3692  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3693 
3694  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3695 
3696  // It is an error to provide a -o option if we are making multiple output
3697  // files. There are exceptions:
3698  //
3699  // IfsMergeJob: when generating interface stubs enabled we want to be able to
3700  // generate the stub file at the same time that we generate the real
3701  // library/a.out. So when a .o, .so, etc are the output, with clang interface
3702  // stubs there will also be a .ifs and .ifso at the same location.
3703  //
3704  // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
3705  // and -c is passed, we still want to be able to generate a .ifs file while
3706  // we are also generating .o files. So we allow more than one output file in
3707  // this case as well.
3708  //
3709  if (FinalOutput) {
3710  unsigned NumOutputs = 0;
3711  unsigned NumIfsOutputs = 0;
3712  for (const Action *A : C.getActions())
3713  if (A->getType() != types::TY_Nothing &&
3714  !(A->getKind() == Action::IfsMergeJobClass ||
3715  (A->getType() == clang::driver::types::TY_IFS_CPP &&
3717  0 == NumIfsOutputs++) ||
3718  (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
3719  A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
3720  ++NumOutputs;
3721 
3722  if (NumOutputs > 1) {
3723  Diag(clang::diag::err_drv_output_argument_with_multiple_files);
3724  FinalOutput = nullptr;
3725  }
3726  }
3727 
3728  // Collect the list of architectures.
3729  llvm::StringSet<> ArchNames;
3730  if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
3731  for (const Arg *A : C.getArgs())
3732  if (A->getOption().matches(options::OPT_arch))
3733  ArchNames.insert(A->getValue());
3734 
3735  // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
3736  std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
3737  for (Action *A : C.getActions()) {
3738  // If we are linking an image for multiple archs then the linker wants
3739  // -arch_multiple and -final_output <final image name>. Unfortunately, this
3740  // doesn't fit in cleanly because we have to pass this information down.
3741  //
3742  // FIXME: This is a hack; find a cleaner way to integrate this into the
3743  // process.
3744  const char *LinkingOutput = nullptr;
3745  if (isa<LipoJobAction>(A)) {
3746  if (FinalOutput)
3747  LinkingOutput = FinalOutput->getValue();
3748  else
3749  LinkingOutput = getDefaultImageName();
3750  }
3751 
3753  /*BoundArch*/ StringRef(),
3754  /*AtTopLevel*/ true,
3755  /*MultipleArchs*/ ArchNames.size() > 1,
3756  /*LinkingOutput*/ LinkingOutput, CachedResults,
3757  /*TargetDeviceOffloadKind*/ Action::OFK_None);
3758  }
3759 
3760  // If we have more than one job, then disable integrated-cc1 for now.
3761  if (C.getJobs().size() > 1)
3762  for (auto &J : C.getJobs())
3763  J.InProcess = false;
3764 
3765  // If the user passed -Qunused-arguments or there were errors, don't warn
3766  // about any unused arguments.
3767  if (Diags.hasErrorOccurred() ||
3768  C.getArgs().hasArg(options::OPT_Qunused_arguments))
3769  return;
3770 
3771  // Claim -### here.
3772  (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
3773 
3774  // Claim --driver-mode, --rsp-quoting, it was handled earlier.
3775  (void)C.getArgs().hasArg(options::OPT_driver_mode);
3776  (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
3777 
3778  for (Arg *A : C.getArgs()) {
3779  // FIXME: It would be nice to be able to send the argument to the
3780  // DiagnosticsEngine, so that extra values, position, and so on could be
3781  // printed.
3782  if (!A->isClaimed()) {
3783  if (A->getOption().hasFlag(options::NoArgumentUnused))
3784  continue;
3785 
3786  // Suppress the warning automatically if this is just a flag, and it is an
3787  // instance of an argument we already claimed.
3788  const Option &Opt = A->getOption();
3789  if (Opt.getKind() == Option::FlagClass) {
3790  bool DuplicateClaimed = false;
3791 
3792  for (const Arg *AA : C.getArgs().filtered(&Opt)) {
3793  if (AA->isClaimed()) {
3794  DuplicateClaimed = true;
3795  break;
3796  }
3797  }
3798 
3799  if (DuplicateClaimed)
3800  continue;
3801  }
3802 
3803  // In clang-cl, don't mention unknown arguments here since they have
3804  // already been warned about.
3805  if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
3806  Diag(clang::diag::warn_drv_unused_argument)
3807  << A->getAsString(C.getArgs());
3808  }
3809  }
3810 }
3811 
3812 namespace {
3813 /// Utility class to control the collapse of dependent actions and select the
3814 /// tools accordingly.
3815 class ToolSelector final {
3816  /// The tool chain this selector refers to.
3817  const ToolChain &TC;
3818 
3819  /// The compilation this selector refers to.
3820  const Compilation &C;
3821 
3822  /// The base action this selector refers to.
3823  const JobAction *BaseAction;
3824 
3825  /// Set to true if the current toolchain refers to host actions.
3826  bool IsHostSelector;
3827 
3828  /// Set to true if save-temps and embed-bitcode functionalities are active.
3829  bool SaveTemps;
3830  bool EmbedBitcode;
3831 
3832  /// Get previous dependent action or null if that does not exist. If
3833  /// \a CanBeCollapsed is false, that action must be legal to collapse or
3834  /// null will be returned.
3835  const JobAction *getPrevDependentAction(const ActionList &Inputs,
3836  ActionList &SavedOffloadAction,
3837  bool CanBeCollapsed = true) {
3838  // An option can be collapsed only if it has a single input.
3839  if (Inputs.size() != 1)
3840  return nullptr;
3841 
3842  Action *CurAction = *Inputs.begin();
3843  if (CanBeCollapsed &&
3845  return nullptr;
3846 
3847  // If the input action is an offload action. Look through it and save any
3848  // offload action that can be dropped in the event of a collapse.
3849  if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
3850  // If the dependent action is a device action, we will attempt to collapse
3851  // only with other device actions. Otherwise, we would do the same but
3852  // with host actions only.
3853  if (!IsHostSelector) {
3854  if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
3855  CurAction =
3856  OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
3857  if (CanBeCollapsed &&
3859  return nullptr;
3860  SavedOffloadAction.push_back(OA);
3861  return dyn_cast<JobAction>(CurAction);
3862  }
3863  } else if (OA->hasHostDependence()) {
3864  CurAction = OA->getHostDependence();
3865  if (CanBeCollapsed &&
3867  return nullptr;
3868  SavedOffloadAction.push_back(OA);
3869  return dyn_cast<JobAction>(CurAction);
3870  }
3871  return nullptr;
3872  }
3873 
3874  return dyn_cast<JobAction>(CurAction);
3875  }
3876 
3877  /// Return true if an assemble action can be collapsed.
3878  bool canCollapseAssembleAction() const {
3879  return TC.useIntegratedAs() && !SaveTemps &&
3880  !C.getArgs().hasArg(options::OPT_via_file_asm) &&
3881  !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
3882  !C.getArgs().hasArg(options::OPT__SLASH_Fa);
3883  }
3884 
3885  /// Return true if a preprocessor action can be collapsed.
3886  bool canCollapsePreprocessorAction() const {
3887  return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
3888  !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
3889  !C.getArgs().hasArg(options::OPT_rewrite_objc);
3890  }
3891 
3892  /// Struct that relates an action with the offload actions that would be
3893  /// collapsed with it.
3894  struct JobActionInfo final {
3895  /// The action this info refers to.
3896  const JobAction *JA = nullptr;
3897  /// The offload actions we need to take care off if this action is
3898  /// collapsed.
3899  ActionList SavedOffloadAction;
3900  };
3901 
3902  /// Append collapsed offload actions from the give nnumber of elements in the
3903  /// action info array.
3904  static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
3905  ArrayRef<JobActionInfo> &ActionInfo,
3906  unsigned ElementNum) {
3907  assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
3908  for (unsigned I = 0; I < ElementNum; ++I)
3909  CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
3910  ActionInfo[I].SavedOffloadAction.end());
3911  }
3912 
3913  /// Functions that attempt to perform the combining. They detect if that is
3914  /// legal, and if so they update the inputs \a Inputs and the offload action
3915  /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
3916  /// the combined action is returned. If the combining is not legal or if the
3917  /// tool does not exist, null is returned.
3918  /// Currently three kinds of collapsing are supported:
3919  /// - Assemble + Backend + Compile;
3920  /// - Assemble + Backend ;
3921  /// - Backend + Compile.
3922  const Tool *
3923  combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3924  ActionList &Inputs,
3925  ActionList &CollapsedOffloadAction) {
3926  if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
3927  return nullptr;
3928  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3929  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3930  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
3931  if (!AJ || !BJ || !CJ)
3932  return nullptr;
3933 
3934  // Get compiler tool.
3935  const Tool *T = TC.SelectTool(*CJ);
3936  if (!T)
3937  return nullptr;
3938 
3939  // When using -fembed-bitcode, it is required to have the same tool (clang)
3940  // for both CompilerJA and BackendJA. Otherwise, combine two stages.
3941  if (EmbedBitcode) {
3942  const Tool *BT = TC.SelectTool(*BJ);
3943  if (BT == T)
3944  return nullptr;
3945  }
3946 
3947  if (!T->hasIntegratedAssembler())
3948  return nullptr;
3949 
3950  Inputs = CJ->getInputs();
3951  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3952  /*NumElements=*/3);
3953  return T;
3954  }
3955  const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
3956  ActionList &Inputs,
3957  ActionList &CollapsedOffloadAction) {
3958  if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
3959  return nullptr;
3960  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3961  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3962  if (!AJ || !BJ)
3963  return nullptr;
3964 
3965  // Get backend tool.
3966  const Tool *T = TC.SelectTool(*BJ);
3967  if (!T)
3968  return nullptr;
3969 
3970  if (!T->hasIntegratedAssembler())
3971  return nullptr;
3972 
3973  Inputs = BJ->getInputs();
3974  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3975  /*NumElements=*/2);
3976  return T;
3977  }
3978  const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3979  ActionList &Inputs,
3980  ActionList &CollapsedOffloadAction) {
3981  if (ActionInfo.size() < 2)
3982  return nullptr;
3983  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
3984  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
3985  if (!BJ || !CJ)
3986  return nullptr;
3987 
3988  // Check if the initial input (to the compile job or its predessor if one
3989  // exists) is LLVM bitcode. In that case, no preprocessor step is required
3990  // and we can still collapse the compile and backend jobs when we have
3991  // -save-temps. I.e. there is no need for a separate compile job just to
3992  // emit unoptimized bitcode.
3993  bool InputIsBitcode = true;
3994  for (size_t i = 1; i < ActionInfo.size(); i++)
3995  if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
3996  ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
3997  InputIsBitcode = false;
3998  break;
3999  }
4000  if (!InputIsBitcode && !canCollapsePreprocessorAction())
4001  return nullptr;
4002 
4003  // Get compiler tool.
4004  const Tool *T = TC.SelectTool(*CJ);
4005  if (!T)
4006  return nullptr;
4007 
4008  if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
4009  return nullptr;
4010 
4011  Inputs = CJ->getInputs();
4012  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4013  /*NumElements=*/2);
4014  return T;
4015  }
4016 
4017  /// Updates the inputs if the obtained tool supports combining with
4018  /// preprocessor action, and the current input is indeed a preprocessor
4019  /// action. If combining results in the collapse of offloading actions, those
4020  /// are appended to \a CollapsedOffloadAction.
4021  void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
4022  ActionList &CollapsedOffloadAction) {
4023  if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
4024  return;
4025 
4026  // Attempt to get a preprocessor action dependence.
4027  ActionList PreprocessJobOffloadActions;
4028  ActionList NewInputs;
4029  for (Action *A : Inputs) {
4030  auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
4031  if (!PJ || !isa<PreprocessJobAction>(PJ)) {
4032  NewInputs.push_back(A);
4033  continue;
4034  }
4035 
4036  // This is legal to combine. Append any offload action we found and add the
4037  // current input to preprocessor inputs.
4038  CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
4039  PreprocessJobOffloadActions.end());
4040  NewInputs.append(PJ->input_begin(), PJ->input_end());
4041  }
4042  Inputs = NewInputs;
4043  }
4044 
4045 public:
4046  ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
4047  const Compilation &C, bool SaveTemps, bool EmbedBitcode)
4048  : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
4049  EmbedBitcode(EmbedBitcode) {
4050  assert(BaseAction && "Invalid base action.");
4051  IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
4052  }
4053 
4054  /// Check if a chain of actions can be combined and return the tool that can
4055  /// handle the combination of actions. The pointer to the current inputs \a
4056  /// Inputs and the list of offload actions \a CollapsedOffloadActions
4057  /// connected to collapsed actions are updated accordingly. The latter enables
4058  /// the caller of the selector to process them afterwards instead of just
4059  /// dropping them. If no suitable tool is found, null will be returned.
4060  const Tool *getTool(ActionList &Inputs,
4061  ActionList &CollapsedOffloadAction) {
4062  //
4063  // Get the largest chain of actions that we could combine.
4064  //
4065 
4066  SmallVector<JobActionInfo, 5> ActionChain(1);
4067  ActionChain.back().JA = BaseAction;
4068  while (ActionChain.back().JA) {
4069  const Action *CurAction = ActionChain.back().JA;
4070 
4071  // Grow the chain by one element.
4072  ActionChain.resize(ActionChain.size() + 1);
4073  JobActionInfo &AI = ActionChain.back();
4074 
4075  // Attempt to fill it with the
4076  AI.JA =
4077  getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
4078  }
4079 
4080  // Pop the last action info as it could not be filled.
4081  ActionChain.pop_back();
4082 
4083  //
4084  // Attempt to combine actions. If all combining attempts failed, just return
4085  // the tool of the provided action. At the end we attempt to combine the
4086  // action with any preprocessor action it may depend on.
4087  //
4088 
4089  const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
4090  CollapsedOffloadAction);
4091  if (!T)
4092  T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
4093  if (!T)
4094  T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
4095  if (!T) {
4096  Inputs = BaseAction->getInputs();
4097  T = TC.SelectTool(*BaseAction);
4098  }
4099 
4100  combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
4101  return T;
4102  }
4103 };
4104 }
4105 
4106 /// Return a string that uniquely identifies the result of a job. The bound arch
4107 /// is not necessarily represented in the toolchain's triple -- for example,
4108 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
4109 /// Also, we need to add the offloading device kind, as the same tool chain can
4110 /// be used for host and device for some programming models, e.g. OpenMP.
4111 static std::string GetTriplePlusArchString(const ToolChain *TC,
4112  StringRef BoundArch,
4113  Action::OffloadKind OffloadKind) {
4114  std::string TriplePlusArch = TC->getTriple().normalize();
4115  if (!BoundArch.empty()) {
4116  TriplePlusArch += "-";
4117  TriplePlusArch += BoundArch;
4118  }
4119  TriplePlusArch += "-";
4120  TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
4121  return TriplePlusArch;
4122 }
4123 
4125  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4126  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4127  std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
4128  Action::OffloadKind TargetDeviceOffloadKind) const {
4129  std::pair<const Action *, std::string> ActionTC = {
4130  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4131  auto CachedResult = CachedResults.find(ActionTC);
4132  if (CachedResult != CachedResults.end()) {
4133  return CachedResult->second;
4134  }
4135  InputInfo Result = BuildJobsForActionNoCache(
4136  C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
4137  CachedResults, TargetDeviceOffloadKind);
4138  CachedResults[ActionTC] = Result;
4139  return Result;
4140 }
4141 
4142 InputInfo Driver::BuildJobsForActionNoCache(
4143  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4144  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4145  std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
4146  Action::OffloadKind TargetDeviceOffloadKind) const {
4147  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4148 
4149  InputInfoList OffloadDependencesInputInfo;
4150  bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
4151  if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
4152  // The 'Darwin' toolchain is initialized only when its arguments are
4153  // computed. Get the default arguments for OFK_None to ensure that
4154  // initialization is performed before processing the offload action.
4155  // FIXME: Remove when darwin's toolchain is initialized during construction.
4156  C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
4157 
4158  // The offload action is expected to be used in four different situations.
4159  //
4160  // a) Set a toolchain/architecture/kind for a host action:
4161  // Host Action 1 -> OffloadAction -> Host Action 2
4162  //
4163  // b) Set a toolchain/architecture/kind for a device action;
4164  // Device Action 1 -> OffloadAction -> Device Action 2
4165  //
4166  // c) Specify a device dependence to a host action;
4167  // Device Action 1 _
4168  // \
4169  // Host Action 1 ---> OffloadAction -> Host Action 2
4170  //
4171  // d) Specify a host dependence to a device action.
4172  // Host Action 1 _
4173  // \
4174  // Device Action 1 ---> OffloadAction -> Device Action 2
4175  //
4176  // For a) and b), we just return the job generated for the dependence. For
4177  // c) and d) we override the current action with the host/device dependence
4178  // if the current toolchain is host/device and set the offload dependences
4179  // info with the jobs obtained from the device/host dependence(s).
4180 
4181  // If there is a single device option, just generate the job for it.
4182  if (OA->hasSingleDeviceDependence()) {
4183  InputInfo DevA;
4184  OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
4185  const char *DepBoundArch) {
4186  DevA =
4187  BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
4188  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
4189  CachedResults, DepA->getOffloadingDeviceKind());
4190  });
4191  return DevA;
4192  }
4193 
4194  // If 'Action 2' is host, we generate jobs for the device dependences and
4195  // override the current action with the host dependence. Otherwise, we
4196  // generate the host dependences and override the action with the device
4197  // dependence. The dependences can't therefore be a top-level action.
4198  OA->doOnEachDependence(
4199  /*IsHostDependence=*/BuildingForOffloadDevice,
4200  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4201  OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4202  C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
4203  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
4204  DepA->getOffloadingDeviceKind()));
4205  });
4206 
4207  A = BuildingForOffloadDevice
4208  ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
4209  : OA->getHostDependence();
4210  }
4211 
4212  if (const InputAction *IA = dyn_cast<InputAction>(A)) {
4213  // FIXME: It would be nice to not claim this here; maybe the old scheme of
4214  // just using Args was better?
4215  const Arg &Input = IA->getInputArg();
4216  Input.claim();
4217  if (Input.getOption().matches(options::OPT_INPUT)) {
4218  const char *Name = Input.getValue();
4219  return InputInfo(A, Name, /* _BaseInput = */ Name);
4220  }
4221  return InputInfo(A, &Input, /* _BaseInput = */ "");
4222  }
4223 
4224  if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
4225  const ToolChain *TC;
4226  StringRef ArchName = BAA->getArchName();
4227 
4228  if (!ArchName.empty())
4229  TC = &getToolChain(C.getArgs(),
4230  computeTargetTriple(*this, TargetTriple,
4231  C.getArgs(), ArchName));
4232  else
4233  TC = &C.getDefaultToolChain();
4234 
4235  return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
4236  MultipleArchs, LinkingOutput, CachedResults,
4237  TargetDeviceOffloadKind);
4238  }
4239 
4240 
4241  ActionList Inputs = A->getInputs();
4242 
4243  const JobAction *JA = cast<JobAction>(A);
4244  ActionList CollapsedOffloadActions;
4245 
4246  ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
4248  const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
4249 
4250  if (!T)
4251  return InputInfo();
4252 
4253  // If we've collapsed action list that contained OffloadAction we
4254  // need to build jobs for host/device-side inputs it may have held.
4255  for (const auto *OA : CollapsedOffloadActions)
4256  cast<OffloadAction>(OA)->doOnEachDependence(
4257  /*IsHostDependence=*/BuildingForOffloadDevice,
4258  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4259  OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4260  C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4261  /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4262  DepA->getOffloadingDeviceKind()));
4263  });
4264 
4265  // Only use pipes when there is exactly one input.
4266  InputInfoList InputInfos;
4267  for (const Action *Input : Inputs) {
4268  // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4269  // shouldn't get temporary output names.
4270  // FIXME: Clean this up.
4271  bool SubJobAtTopLevel =
4272  AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
4273  InputInfos.push_back(BuildJobsForAction(
4274  C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
4275  CachedResults, A->getOffloadingDeviceKind()));
4276  }
4277 
4278  // Always use the first input as the base input.
4279  const char *BaseInput = InputInfos[0].getBaseInput();
4280 
4281  // ... except dsymutil actions, which use their actual input as the base
4282  // input.
4283  if (JA->getType() == types::TY_dSYM)
4284  BaseInput = InputInfos[0].getFilename();
4285 
4286  // ... and in header module compilations, which use the module name.
4287  if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4288  BaseInput = ModuleJA->getModuleName();
4289 
4290  // Append outputs of offload device jobs to the input list
4291  if (!OffloadDependencesInputInfo.empty())
4292  InputInfos.append(OffloadDependencesInputInfo.begin(),
4293  OffloadDependencesInputInfo.end());
4294 
4295  // Set the effective triple of the toolchain for the duration of this job.
4296  llvm::Triple EffectiveTriple;
4297  const ToolChain &ToolTC = T->getToolChain();
4298  const ArgList &Args =
4299  C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4300  if (InputInfos.size() != 1) {
4301  EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4302  } else {
4303  // Pass along the input type if it can be unambiguously determined.
4304  EffectiveTriple = llvm::Triple(
4305  ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4306  }
4307  RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4308 
4309  // Determine the place to write output to, if any.
4310  InputInfo Result;
4311  InputInfoList UnbundlingResults;
4312  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4313  // If we have an unbundling job, we need to create results for all the
4314  // outputs. We also update the results cache so that other actions using
4315  // this unbundling action can get the right results.
4316  for (auto &UI : UA->getDependentActionsInfo()) {
4317  assert(UI.DependentOffloadKind != Action::OFK_None &&
4318  "Unbundling with no offloading??");
4319 
4320  // Unbundling actions are never at the top level. When we generate the
4321  // offloading prefix, we also do that for the host file because the
4322  // unbundling action does not change the type of the output which can
4323  // cause a overwrite.
4324  std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4325  UI.DependentOffloadKind,
4326  UI.DependentToolChain->getTriple().normalize(),
4327  /*CreatePrefixForHost=*/true);
4328  auto CurI = InputInfo(
4329  UA,
4330  GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4331  /*AtTopLevel=*/false,
4332  MultipleArchs ||
4333  UI.DependentOffloadKind == Action::OFK_HIP,
4334  OffloadingPrefix),
4335  BaseInput);
4336  // Save the unbundling result.
4337  UnbundlingResults.push_back(CurI);
4338 
4339  // Get the unique string identifier for this dependence and cache the
4340  // result.
4341  StringRef Arch;
4342  if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4343  if (UI.DependentOffloadKind == Action::OFK_Host)
4344  Arch = StringRef();
4345  else
4346  Arch = UI.DependentBoundArch;
4347  } else
4348  Arch = BoundArch;
4349 
4350  CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
4351  UI.DependentOffloadKind)}] =
4352  CurI;
4353  }
4354 
4355  // Now that we have all the results generated, select the one that should be
4356  // returned for the current depending action.
4357  std::pair<const Action *, std::string> ActionTC = {
4358  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4359  assert(CachedResults.find(ActionTC) != CachedResults.end() &&
4360  "Result does not exist??");
4361  Result = CachedResults[ActionTC];
4362  } else if (JA->getType() == types::TY_Nothing)
4363  Result = InputInfo(A, BaseInput);
4364  else {
4365  // We only have to generate a prefix for the host if this is not a top-level
4366  // action.
4367  std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4368  A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
4369  /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
4370  !AtTopLevel);
4371  if (isa<OffloadWrapperJobAction>(JA)) {
4372  OffloadingPrefix += "-wrapper";
4373  if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4374  BaseInput = FinalOutput->getValue();
4375  else
4376  BaseInput = getDefaultImageName();
4377  }
4378  Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
4379  AtTopLevel, MultipleArchs,
4380  OffloadingPrefix),
4381  BaseInput);
4382  }
4383 
4385  llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
4386  << " - \"" << T->getName() << "\", inputs: [";
4387  for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
4388  llvm::errs() << InputInfos[i].getAsString();
4389  if (i + 1 != e)
4390  llvm::errs() << ", ";
4391  }
4392  if (UnbundlingResults.empty())
4393  llvm::errs() << "], output: " << Result.getAsString() << "\n";
4394  else {
4395  llvm::errs() << "], outputs: [";
4396  for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
4397  llvm::errs() << UnbundlingResults[i].getAsString();
4398  if (i + 1 != e)
4399  llvm::errs() << ", ";
4400  }
4401  llvm::errs() << "] \n";
4402  }
4403  } else {
4404  if (UnbundlingResults.empty())
4405  T->ConstructJob(
4406  C, *JA, Result, InputInfos,
4407  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4408  LinkingOutput);
4409  else
4411  C, *JA, UnbundlingResults, InputInfos,
4412  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4413  LinkingOutput);
4414  }
4415  return Result;
4416 }
4417 
4418 const char *Driver::getDefaultImageName() const {
4419  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
4420  return Target.isOSWindows() ? "a.exe" : "a.out";
4421 }
4422 
4423 /// Create output filename based on ArgValue, which could either be a
4424 /// full filename, filename without extension, or a directory. If ArgValue
4425 /// does not provide a filename, then use BaseName, and use the extension
4426 /// suitable for FileType.
4427 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
4428  StringRef BaseName,
4429  types::ID FileType) {
4430  SmallString<128> Filename = ArgValue;
4431 
4432  if (ArgValue.empty()) {
4433  // If the argument is empty, output to BaseName in the current dir.
4434  Filename = BaseName;
4435  } else if (llvm::sys::path::is_separator(Filename.back())) {
4436  // If the argument is a directory, output to BaseName in that dir.
4437  llvm::sys::path::append(Filename, BaseName);
4438  }
4439 
4440  if (!llvm::sys::path::has_extension(ArgValue)) {
4441  // If the argument didn't provide an extension, then set it.
4442  const char *Extension = types::getTypeTempSuffix(FileType, true);
4443 
4444  if (FileType == types::TY_Image &&
4445  Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4446  // The output file is a dll.
4447  Extension = "dll";
4448  }
4449 
4450  llvm::sys::path::replace_extension(Filename, Extension);
4451  }
4452 
4453  return Args.MakeArgString(Filename.c_str());
4454 }
4455 
4457  const char *BaseInput,
4458  StringRef BoundArch, bool AtTopLevel,
4459  bool MultipleArchs,
4460  StringRef OffloadingPrefix) const {
4461  llvm::PrettyStackTraceString CrashInfo("Computing output path");
4462  // Output to a user requested destination?
4463  if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4464  if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4465  return C.addResultFile(FinalOutput->getValue(), &JA);
4466  }
4467 
4468  // For /P, preprocess to file named after BaseInput.
4469  if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4470  assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4471  StringRef BaseName = llvm::sys::path::filename(BaseInput);
4472  StringRef NameArg;
4473  if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4474  NameArg = A->getValue();
4475  return C.addResultFile(
4476  MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4477  &JA);
4478  }
4479 
4480  // Default to writing to stdout?
4481  if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA))
4482  return "-";
4483 
4484  // Is this the assembly listing for /FA?
4485  if (JA.getType() == types::TY_PP_Asm &&
4486  (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4487  C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4488  // Use /Fa and the input filename to determine the asm file name.
4489  StringRef BaseName = llvm::sys::path::filename(BaseInput);
4490  StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4491  return C.addResultFile(
4492  MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4493  &JA);
4494  }
4495 
4496  // Output to a temporary file?
4497  if ((!AtTopLevel && !isSaveTempsEnabled() &&
4498  !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4499  CCGenDiagnostics) {
4500  StringRef Name = llvm::sys::path::filename(BaseInput);
4501  std::pair<StringRef, StringRef> Split = Name.split('.');
4502  SmallString<128> TmpName;
4503  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4504  Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4505  if (CCGenDiagnostics && A) {
4506  SmallString<128> CrashDirectory(A->getValue());
4507  if (!getVFS().exists(CrashDirectory))
4508  llvm::sys::fs::create_directories(CrashDirectory);
4509  llvm::sys::path::append(CrashDirectory, Split.first);
4510  const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4511  std::error_code EC = llvm::sys::fs::createUniqueFile(
4512  CrashDirectory + Middle + Suffix, TmpName);
4513  if (EC) {
4514  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4515  return "";
4516  }
4517  } else {
4518  TmpName = GetTemporaryPath(Split.first, Suffix);
4519  }
4520  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4521  }
4522 
4523  SmallString<128> BasePath(BaseInput);
4524  StringRef BaseName;
4525 
4526  // Dsymutil actions should use the full path.
4527  if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4528  BaseName = BasePath;
4529  else
4530  BaseName = llvm::sys::path::filename(BasePath);
4531 
4532  // Determine what the derived output name should be.
4533  const char *NamedOutput;
4534 
4535  if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4536  C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4537  // The /Fo or /o flag decides the object filename.
4538  StringRef Val =
4539  C.getArgs()
4540  .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4541  ->getValue();
4542  NamedOutput =
4543  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4544  } else if (JA.getType() == types::TY_Image &&
4545  C.getArgs().hasArg(options::OPT__SLASH_Fe,
4546  options::OPT__SLASH_o)) {
4547  // The /Fe or /o flag names the linked file.
4548  StringRef Val =
4549  C.getArgs()
4550  .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4551  ->getValue();
4552  NamedOutput =
4553  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4554  } else if (JA.getType() == types::TY_Image) {
4555  if (IsCLMode()) {
4556  // clang-cl uses BaseName for the executable name.
4557  NamedOutput =
4558  MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4559  } else {
4561  // HIP image for device compilation with -fno-gpu-rdc is per compilation
4562  // unit.
4563  bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
4564  !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
4565  options::OPT_fno_gpu_rdc, false);
4566  if (IsHIPNoRDC) {
4567  Output = BaseName;
4568  llvm::sys::path::replace_extension(Output, "");
4569  }
4570  Output += OffloadingPrefix;
4571  if (MultipleArchs && !BoundArch.empty()) {
4572  Output += "-";
4573  Output.append(BoundArch);
4574  }
4575  if (IsHIPNoRDC)
4576  Output += ".out";
4577  NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4578  }
4579  } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4580  NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4581  } else {
4582  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4583  assert(Suffix && "All types used for output should have a suffix.");
4584 
4585  std::string::size_type End = std::string::npos;
4587  End = BaseName.rfind('.');
4588  SmallString<128> Suffixed(BaseName.substr(0, End));
4589  Suffixed += OffloadingPrefix;
4590  if (MultipleArchs && !BoundArch.empty()) {
4591  Suffixed += "-";
4592  Suffixed.append(BoundArch);
4593  }
4594  // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
4595  // the unoptimized bitcode so that it does not get overwritten by the ".bc"
4596  // optimized bitcode output.
4597  if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) &&
4598  JA.getType() == types::TY_LLVM_BC)
4599  Suffixed += ".tmp";
4600  Suffixed += '.';
4601  Suffixed += Suffix;
4602  NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
4603  }
4604 
4605  // Prepend object file path if -save-temps=obj
4606  if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
4607  JA.getType() != types::TY_PCH) {
4608  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4609  SmallString<128> TempPath(FinalOutput->getValue());
4610  llvm::sys::path::remove_filename(TempPath);
4611  StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
4612  llvm::sys::path::append(TempPath, OutputFileName);
4613  NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
4614  }
4615 
4616  // If we're saving temps and the temp file conflicts with the input file,
4617  // then avoid overwriting input file.
4618  if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
4619  bool SameFile = false;
4620  SmallString<256> Result;
4621  llvm::sys::fs::current_path(Result);
4622  llvm::sys::path::append(Result, BaseName);
4623  llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
4624  // Must share the same path to conflict.
4625  if (SameFile) {
4626  StringRef Name = llvm::sys::path::filename(BaseInput);
4627  std::pair<StringRef, StringRef> Split = Name.split('.');
4628  std::string TmpName = GetTemporaryPath(
4629  Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
4630  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4631  }
4632  }
4633 
4634  // As an annoying special case, PCH generation doesn't strip the pathname.
4635  if (JA.getType() == types::TY_PCH && !IsCLMode()) {
4636  llvm::sys::path::remove_filename(BasePath);
4637  if (BasePath.empty())
4638  BasePath = NamedOutput;
4639  else
4640  llvm::sys::path::append(BasePath, NamedOutput);
4641  return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
4642  } else {
4643  return C.addResultFile(NamedOutput, &JA);
4644  }
4645 }
4646 
4647 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
4648  // Search for Name in a list of paths.
4649  auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
4651  // Respect a limited subset of the '-Bprefix' functionality in GCC by
4652  // attempting to use this prefix when looking for file paths.
4653  for (const auto &Dir : P) {
4654  if (Dir.empty())
4655  continue;
4656  SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4657  llvm::sys::path::append(P, Name);
4658  if (llvm::sys::fs::exists(Twine(P)))
4659  return P.str().str();
4660  }
4661  return None;
4662  };
4663 
4664  if (auto P = SearchPaths(PrefixDirs))
4665  return *P;
4666 
4668  llvm::sys::path::append(R, Name);
4669  if (llvm::sys::fs::exists(Twine(R)))
4670  return R.str();
4671 
4673  llvm::sys::path::append(P, Name);
4674  if (llvm::sys::fs::exists(Twine(P)))
4675  return P.str();
4676 
4677  SmallString<128> D(Dir);
4678  llvm::sys::path::append(D, "..", Name);
4679  if (llvm::sys::fs::exists(Twine(D)))
4680  return D.str();
4681 
4682  if (auto P = SearchPaths(TC.getLibraryPaths()))
4683  return *P;
4684 
4685  if (auto P = SearchPaths(TC.getFilePaths()))
4686  return *P;
4687 
4688  return Name;
4689 }
4690 
4691 void Driver::generatePrefixedToolNames(
4692  StringRef Tool, const ToolChain &TC,
4693  SmallVectorImpl<std::string> &Names) const {
4694  // FIXME: Needs a better variable than TargetTriple
4695  Names.emplace_back((TargetTriple + "-" + Tool).str());
4696  Names.emplace_back(Tool);
4697 
4698  // Allow the discovery of tools prefixed with LLVM's default target triple.
4699  std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
4700  if (DefaultTargetTriple != TargetTriple)
4701  Names.emplace_back((DefaultTargetTriple + "-" + Tool).str());
4702 }
4703 
4705  ArrayRef<std::string> Names) {
4706  for (const auto &Name : Names) {
4707  llvm::sys::path::append(Dir, Name);
4708  if (llvm::sys::fs::can_execute(Twine(Dir)))
4709  return true;
4710  llvm::sys::path::remove_filename(Dir);
4711  }
4712  return false;
4713 }
4714 
4715 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
4716  SmallVector<std::string, 2> TargetSpecificExecutables;
4717  generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
4718 
4719  // Respect a limited subset of the '-Bprefix' functionality in GCC by
4720  // attempting to use this prefix when looking for program paths.
4721  for (const auto &PrefixDir : PrefixDirs) {
4722  if (llvm::sys::fs::is_directory(PrefixDir)) {
4723  SmallString<128> P(PrefixDir);
4724  if (ScanDirForExecutable(P, TargetSpecificExecutables))
4725  return P.str();
4726  } else {
4727  SmallString<128> P((PrefixDir + Name).str());
4728  if (llvm::sys::fs::can_execute(Twine(P)))
4729  return P.str();
4730  }
4731  }
4732 
4733  const ToolChain::path_list &List = TC.getProgramPaths();
4734  for (const auto &Path : List) {
4735  SmallString<128> P(Path);
4736  if (ScanDirForExecutable(P, TargetSpecificExecutables))
4737  return P.str();
4738  }
4739 
4740  // If all else failed, search the path.
4741  for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
4742  if (llvm::ErrorOr<std::string> P =
4743  llvm::sys::findProgramByName(TargetSpecificExecutable))
4744  return *P;
4745 
4746  return Name;
4747 }
4748 
4749 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
4750  SmallString<128> Path;
4751  std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
4752  if (EC) {
4753  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4754  return "";
4755  }
4756 
4757  return Path.str();
4758 }
4759 
4760 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
4761  SmallString<128> Path;
4762  std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
4763  if (EC) {
4764  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4765  return "";
4766  }
4767 
4768  return Path.str();
4769 }
4770 
4771 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
4772  SmallString<128> Output;
4773  if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
4774  // FIXME: If anybody needs it, implement this obscure rule:
4775  // "If you specify a directory without a file name, the default file name
4776  // is VCx0.pch., where x is the major version of Visual C++ in use."
4777  Output = FpArg->getValue();
4778 
4779  // "If you do not specify an extension as part of the path name, an
4780  // extension of .pch is assumed. "
4781  if (!llvm::sys::path::has_extension(Output))
4782  Output += ".pch";
4783  } else {
4784  if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
4785  Output = YcArg->getValue();
4786  if (Output.empty())
4787  Output = BaseName;
4788  llvm::sys::path::replace_extension(Output, ".pch");
4789  }
4790  return Output.str();
4791 }
4792 
4793 const ToolChain &Driver::getToolChain(const ArgList &Args,
4794  const llvm::Triple &Target) const {
4795 
4796  auto &TC = ToolChains[Target.str()];
4797  if (!TC) {
4798  switch (Target.getOS()) {
4799  case llvm::Triple::AIX:
4800  TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
4801  break;
4802  case llvm::Triple::Haiku:
4803  TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
4804  break;
4805  case llvm::Triple::Ananas:
4806  TC = std::make_unique<toolchains::Ananas>(*this, Target, Args);
4807  break;
4808  case llvm::Triple::CloudABI:
4809  TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args);
4810  break;
4811  case llvm::Triple::Darwin:
4812  case llvm::Triple::MacOSX:
4813  case llvm::Triple::IOS:
4814  case llvm::Triple::TvOS:
4815  case llvm::Triple::WatchOS:
4816  TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
4817  break;
4818  case llvm::Triple::DragonFly:
4819  TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
4820  break;
4821  case llvm::Triple::OpenBSD:
4822  TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
4823  break;
4824  case llvm::Triple::NetBSD:
4825  TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
4826  break;
4827  case llvm::Triple::FreeBSD:
4828  TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
4829  break;
4830  case llvm::Triple::Minix:
4831  TC = std::make_unique<toolchains::Minix>(*this, Target, Args);
4832  break;
4833  case llvm::Triple::Linux:
4834  case llvm::Triple::ELFIAMCU:
4835  if (Target.getArch() == llvm::Triple::hexagon)
4836  TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
4837  Args);
4838  else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
4839  !Target.hasEnvironment())
4840  TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
4841  Args);
4842  else if (Target.getArch() == llvm::Triple::ppc ||
4843  Target.getArch() == llvm::Triple::ppc64 ||
4844  Target.getArch() == llvm::Triple::ppc64le)
4845  TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
4846  Args);
4847  else
4848  TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
4849  break;
4850  case llvm::Triple::NaCl:
4851  TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
4852  break;
4853  case llvm::Triple::Fuchsia:
4854  TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
4855  break;
4856  case llvm::Triple::Solaris:
4857  TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
4858  break;
4859  case llvm::Triple::AMDHSA:
4860  case llvm::Triple::AMDPAL:
4861  case llvm::Triple::Mesa3D:
4862  TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
4863  break;
4864  case llvm::Triple::Win32:
4865  switch (Target.getEnvironment()) {
4866  default:
4867  if (Target.isOSBinFormatELF())
4868  TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4869  else if (Target.isOSBinFormatMachO())
4870  TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
4871  else
4872  TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4873  break;
4874  case llvm::Triple::GNU:
4875  TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
4876  break;
4877  case llvm::Triple::Itanium:
4878  TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
4879  Args);
4880  break;
4881  case llvm::Triple::MSVC:
4882  case llvm::Triple::UnknownEnvironment:
4883  if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4884  .startswith_lower("bfd"))
4885  TC = std::make_unique<toolchains::CrossWindowsToolChain>(
4886  *this, Target, Args);
4887  else
4888  TC =
4889  std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
4890  break;
4891  }
4892  break;
4893  case llvm::Triple::PS4:
4894  TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
4895  break;
4896  case llvm::Triple::Contiki:
4897  TC = std::make_unique<toolchains::Contiki>(*this, Target, Args);
4898  break;
4899  case llvm::Triple::Hurd:
4900  TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
4901  break;
4902  default:
4903  // Of these targets, Hexagon is the only one that might have
4904  // an OS of Linux, in which case it got handled above already.
4905  switch (Target.getArch()) {
4906  case llvm::Triple::tce:
4907  TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
4908  break;
4909  case llvm::Triple::tcele:
4910  TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
4911  break;
4912  case llvm::Triple::hexagon:
4913  TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
4914  Args);
4915  break;
4916  case llvm::Triple::lanai:
4917  TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
4918  break;
4919  case llvm::Triple::xcore:
4920  TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
4921  break;
4922  case llvm::Triple::wasm32:
4923  case llvm::Triple::wasm64:
4924  TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
4925  break;
4926  case llvm::Triple::avr:
4927  TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
4928  break;
4929  case llvm::Triple::msp430:
4930  TC =
4931  std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
4932  break;
4933  case llvm::Triple::riscv32:
4934  case llvm::Triple::riscv64:
4935  TC = std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
4936  break;
4937  default:
4938  if (Target.getVendor() == llvm::Triple::Myriad)
4939  TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target,
4940  Args);
4941  else if (toolchains::BareMetal::handlesTarget(Target))
4942  TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
4943  else if (Target.isOSBinFormatELF())
4944  TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4945  else if (Target.isOSBinFormatMachO())
4946  TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
4947  else
4948  TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4949  }
4950  }
4951  }
4952 
4953  // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA
4954  // compiles always need two toolchains, the CUDA toolchain and the host
4955  // toolchain. So the only valid way to create a CUDA toolchain is via
4956  // CreateOffloadingDeviceToolChains.
4957 
4958  return *TC;
4959 }
4960 
4962  // Say "no" if there is not exactly one input of a type clang understands.
4963  if (JA.size() != 1 ||
4964  !types::isAcceptedByClang((*JA.input_begin())->getType()))
4965  return false;
4966 
4967  // And say "no" if this is not a kind of action clang understands.
4968  if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
4969  !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
4970  return false;
4971 
4972  return true;
4973 }
4974 
4976  // Say "no" if there is not exactly one input of a type flang understands.
4977  if (JA.size() != 1 ||
4978  !types::isFortran((*JA.input_begin())->getType()))
4979  return false;
4980 
4981  // And say "no" if this is not a kind of action flang understands.
4982  if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
4983  return false;
4984 
4985  return true;
4986 }
4987 
4988 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
4989 /// grouped values as integers. Numbers which are not provided are set to 0.
4990 ///
4991 /// \return True if the entire string was parsed (9.2), or all groups were
4992 /// parsed (10.3.5extrastuff).
4993 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
4994  unsigned &Micro, bool &HadExtra) {
4995  HadExtra = false;
4996 
4997  Major = Minor = Micro = 0;
4998  if (Str.empty())
4999  return false;
5000 
5001  if (Str.consumeInteger(10, Major))
5002  return false;
5003  if (Str.empty())
5004  return true;
5005  if (Str[0] != '.')
5006  return false;
5007 
5008  Str = Str.drop_front(1);
5009 
5010  if (Str.consumeInteger(10, Minor))
5011  return false;
5012  if (Str.empty())
5013  return true;
5014  if (Str[0] != '.')
5015  return false;
5016  Str = Str.drop_front(1);
5017 
5018  if (Str.consumeInteger(10, Micro))
5019  return false;
5020  if (!Str.empty())
5021  HadExtra = true;
5022  return true;
5023 }
5024 
5025 /// Parse digits from a string \p Str and fulfill \p Digits with
5026 /// the parsed numbers. This method assumes that the max number of
5027 /// digits to look for is equal to Digits.size().
5028 ///
5029 /// \return True if the entire string was parsed and there are
5030 /// no extra characters remaining at the end.
5031 bool Driver::GetReleaseVersion(StringRef Str,
5032  MutableArrayRef<unsigned> Digits) {
5033  if (Str.empty())
5034  return false;
5035 
5036  unsigned CurDigit = 0;
5037  while (CurDigit < Digits.size()) {
5038  unsigned Digit;
5039  if (Str.consumeInteger(10, Digit))
5040  return false;
5041  Digits[CurDigit] = Digit;
5042  if (Str.empty())
5043  return true;
5044  if (Str[0] != '.')
5045  return false;
5046  Str = Str.drop_front(1);
5047  CurDigit++;
5048  }
5049 
5050  // More digits than requested, bail out...
5051  return false;
5052 }
5053 
5054 std::pair<unsigned, unsigned>
5055 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
5056  unsigned IncludedFlagsBitmask = 0;
5057  unsigned ExcludedFlagsBitmask = options::NoDriverOption;
5058 
5059  if (IsClCompatMode) {
5060  // Include CL and Core options.
5061  IncludedFlagsBitmask |= options::CLOption;
5062  IncludedFlagsBitmask |= options::CoreOption;
5063  } else {
5064  ExcludedFlagsBitmask |= options::CLOption;
5065  }
5066 
5067  return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
5068 }
5069 
5070 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
5071  return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
5072 }
5073 
5074 bool clang::driver::willEmitRemarks(const ArgList &Args) {
5075  // -fsave-optimization-record enables it.
5076  if (Args.hasFlag(options::OPT_fsave_optimization_record,
5077  options::OPT_fno_save_optimization_record, false))
5078  return true;
5079 
5080  // -fsave-optimization-record=<format> enables it as well.
5081  if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
5082  options::OPT_fno_save_optimization_record, false))
5083  return true;
5084 
5085  // -foptimization-record-file alone enables it too.
5086  if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
5087  options::OPT_fno_save_optimization_record, false))
5088  return true;
5089 
5090  // -foptimization-record-passes alone enables it too.
5091  if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
5092  options::OPT_fno_save_optimization_record, false))
5093  return true;
5094  return false;
5095 }
StringRef getSysRoot() const
Returns the sysroot path.
static bool GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, unsigned &Micro, bool &HadExtra)
GetReleaseVersion - Parse (([0-9]+)(.
Definition: Driver.cpp:4993
ID
ID - Ordered values for successive stages in the compilation process which interact with user options...
Definition: Phases.h:17
static bool ContainsCompileOrAssembleAction(const Action *A)
Check whether the given input tree contains any compilation or assembly actions.
Definition: Driver.cpp:1925
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
bool isCollapsingWithNextDependentActionLegal() const
Return true if this function can be collapsed with others.
Definition: Action.h:164
const llvm::opt::ArgStringList & getTempFiles() const
Definition: Compilation.h:207
std::string ModeSuffix
Driver mode part of the executable name, as g++.
Definition: ToolChain.h:66
CudaArch
Definition: Cuda.h:36
const char * CudaArchToString(CudaArch A)
Definition: Cuda.cpp:48
OpenMPRuntimeKind getOpenMPRuntime(const llvm::opt::ArgList &Args) const
Compute the desired OpenMP runtime from the flags provided.
Definition: Driver.cpp:581
bool ShouldUseFlangCompiler(const JobAction &JA) const
ShouldUseFlangCompiler - Should the flang compiler be used to handle this action. ...
Definition: Driver.cpp:4975
std::string getClangFullVersion()
Retrieves a string representing the complete clang version, which includes the clang version number...
Definition: Version.cpp:117
prefix_list PrefixDirs
Definition: Driver.h:145
std::string GetTemporaryPath(StringRef Prefix, StringRef Suffix) const
GetTemporaryPath - Return the pathname of a temporary file to use as part of compilation; the file wi...
Definition: Driver.cpp:4749
const MultilibSet & getMultilibs() const
Definition: ToolChain.h:243
StringRef getArchName() const
Definition: ToolChain.h:216
T * MakeAction(Args &&... Arg)
Creates a new Action owned by this Compilation.
Definition: Compilation.h:196
bool canLipoType(ID Id)
canLipoType - Is this type acceptable as the output of a universal build (currently, just the Nothing, Image, and Object types).
Definition: Types.cpp:112
Set a ToolChain&#39;s effective triple.
Definition: ToolChain.h:613
const char * getTypeTempSuffix(ID Id, bool CLMode=false)
getTypeTempSuffix - Return the suffix to use when creating a temp file of this type, or null if unspecified.
Definition: Types.cpp:67
static unsigned PrintActions1(const Compilation &C, Action *A, std::map< Action *, unsigned > &Ids, Twine Indent={}, int Kind=TopLevelAction)
Definition: Driver.cpp:1827
void BuildInputs(const ToolChain &TC, llvm::opt::DerivedArgList &Args, InputList &Inputs) const
BuildInputs - Construct the list of inputs and their types from the given arguments.
Definition: Driver.cpp:2074
StringRef P
void setResponseFile(const char *FileName)
Set to pass arguments via a response file when launching the command.
Definition: Job.cpp:306
bool isUsingLTO() const
Returns true if we are performing any kind of LTO.
Definition: Driver.h:554
virtual std::string getThreadModel() const
getThreadModel() - Which thread model does this target use?
Definition: ToolChain.h:483
virtual void ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const =0
ConstructJob - Construct jobs to perform the action JA, writing to Output and with Inputs...
input_range inputs()
Definition: Action.h:151
virtual bool isLinkJob() const
Definition: Tool.h:88
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1300
std::string GetProgramPath(StringRef Name, const ToolChain &TC) const
GetProgramPath - Lookup Name in the list of program search paths.
Definition: Driver.cpp:4715
virtual bool isThreadModelSupported(const StringRef Model) const
isThreadModelSupported() - Does this target support a thread model?
Definition: ToolChain.cpp:594
std::string DyldPrefix
Dynamic loader prefix, if present.
Definition: Driver.h:151
virtual void printVerboseInfo(raw_ostream &OS) const
Dispatch to the specific toolchain for verbose printing.
Definition: ToolChain.h:316
static StringRef getCategoryNameFromID(unsigned CategoryID)
Given a category ID, return the name of the category.
DiagnosticBuilder Diag(unsigned DiagID) const
Definition: Driver.h:109
InputInfo BuildJobsForAction(Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, std::map< std::pair< const Action *, std::string >, InputInfo > &CachedResults, Action::OffloadKind TargetDeviceOffloadKind) const
BuildJobsForAction - Construct the jobs to perform for the action A and return an InputInfo for the r...
Definition: Driver.cpp:4124
static ParsedClangName getTargetAndModeFromProgramName(StringRef ProgName)
Return any implicit target and/or mode flag for an invocation of the compiler driver as ProgName...
Definition: ToolChain.cpp:206
ResponseFileSupport getResponseFilesSupport() const
Returns the level of support for response files of this tool, whether it accepts arguments to be pass...
Definition: Tool.h:92
CudaArch StringToCudaArch(llvm::StringRef S)
Definition: Cuda.cpp:128
Type used to communicate device actions.
Definition: Action.h:255
const char * getClassName() const
Definition: Action.h:139
RAII class that determines when any errors have occurred between the time the instance was created an...
Definition: Diagnostic.h:1009
virtual void ConstructJobMultipleOutputs(Compilation &C, const JobAction &JA, const InputInfoList &Outputs, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const
Construct jobs to perform the action JA, writing to the Outputs and with Inputs, and add the jobs to ...
Definition: Tool.cpp:25
void registerDependentActionInfo(const ToolChain *TC, StringRef BoundArch, OffloadKind Kind)
Register information about a dependent action.
Definition: Action.h:614
const ArgStringMap & getFailureResultFiles() const
Definition: Compilation.h:211
float __ovld __cnfn normalize(float p)
Returns a vector in the same direction as p but with a length of 1.
const llvm::opt::DerivedArgList & getArgsForToolChain(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind)
getArgsForToolChain - Return the derived argument list for the tool chain TC (or the default tool cha...
Definition: Compilation.cpp:62
const Multilib & getMultilib() const
Definition: ToolChain.h:245
void addOffloadDeviceToolChain(const ToolChain *DeviceToolChain, Action::OffloadKind OffloadKind)
Definition: Compilation.h:173
Compilation * BuildCompilation(ArrayRef< const char *> Args)
BuildCompilation - Construct a compilation object for a command line argument vector.
Definition: Driver.cpp:943
std::string TargetPrefix
Target part of the executable name, as i686-linux-android.
Definition: ToolChain.h:63
path_list & getProgramPaths()
Definition: ToolChain.h:240
Contains the files in the compilation diagnostic report generated by generateCompilationDiagnostics.
Definition: Driver.h:439
static bool ScanDirForExecutable(SmallString< 128 > &Dir, ArrayRef< std::string > Names)
Definition: Driver.cpp:4704
Definition: Format.h:2445
ActionList & getInputs()
Definition: Action.h:144
std::string Dir
The path the driver executable was in, as invoked from the command line.
Definition: Driver.h:120
ID lookupCXXTypeForCType(ID Id)
lookupCXXTypeForCType - Lookup CXX input type that corresponds to given C type (used for clang++ emul...
Definition: Types.cpp:360
__DEVICE__ int max(int __a, int __b)
const std::string & gccSuffix() const
Get the detected GCC installation path suffix for the multi-arch target variant.
Definition: Multilib.h:45
Type used to communicate host actions.
Definition: Action.h:296
static unsigned getNumberOfCategories()
Return the number of diagnostic categories.
BackendAction
Definition: BackendUtil.h:30
std::string GetClPchPath(Compilation &C, StringRef BaseName) const
Return the pathname of the pch file in clang-cl mode.
Definition: Driver.cpp:4771
Action - Represent an abstract compilation step to perform.
Definition: Action.h:47
std::string getTripleString() const
Definition: ToolChain.h:224
bool HandleImmediateArgs(const Compilation &C)
HandleImmediateArgs - Handle any arguments which should be treated before building actions or binding...
Definition: Driver.cpp:1661
InputInfo - Wrapper for information about an input source.
Definition: InputInfo.h:22
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
types::ID getType() const
Definition: Action.h:142
static Arg * MakeInputArg(DerivedArgList &Args, const OptTable &Opts, StringRef Value, bool Claim=true)
Definition: Driver.cpp:313
bool isOptimizationLevelFast(const llvm::opt::ArgList &Args)
path_list & getFilePaths()
Definition: ToolChain.h:237
CompileCommand Cmd
llvm::Error Error
The LLVM OpenMP runtime.
Definition: Driver.h:95
OffloadKind getOffloadingDeviceKind() const
Definition: Action.h:198
virtual bool isDsymutilJob() const
Definition: Tool.h:89
Driver - Encapsulate logic for constructing compilation processes from a set of gcc-driver-like comma...
Definition: Driver.h:59
An unknown OpenMP runtime.
Definition: Driver.h:91
const llvm::opt::InputArgList & getInputArgs() const
Definition: Compilation.h:184
input_iterator input_begin()
Definition: Action.h:149
llvm::vfs::FileSystem & getVFS() const
Definition: Driver.h:319
bool isHIP(ID Id)
isHIP - Is this a HIP input.
Definition: Types.cpp:203
bool hasOffloadToolChain() const
Return true if an offloading tool chain of a given kind exists.
Definition: Compilation.h:155
ID getPreprocessedType(ID Id)
getPreprocessedType - Get the ID of the type for this input when it has been preprocessed, or INVALID if this input is not preprocessed.
Definition: Types.cpp:47
StringRef Filename
Definition: Format.cpp:1825
void add(Action &A, const ToolChain &TC, const char *BoundArch, OffloadKind OKind)
Add a action along with the associated toolchain, bound arch, and offload kind.
Definition: Action.cpp:290
void PrintActions(const Compilation &C) const
PrintActions - Print the list of actions.
Definition: Driver.cpp:1917
const ToolChain & getDefaultToolChain() const
Definition: Compilation.h:135
const ArgStringMap & getResultFiles() const
Definition: Compilation.h:209
unsigned GenReproducer
Force clang to emit reproducer for driver invocation.
Definition: Driver.h:244
ID lookupHeaderTypeForSourceType(ID Id)
Lookup header file input type that corresponds to given source file type (used for clang-cl emulation...
Definition: Types.cpp:376
const char * getTypeName(ID Id)
getTypeName - Return the name of the type for Id.
Definition: Types.cpp:43
std::string getAsString() const
getAsString - Return a string name for this input, for debugging.
Definition: InputInfo.h:94
ActionClass getKind() const
Definition: Action.h:141
std::string GetTemporaryDirectory(StringRef Prefix) const
GetTemporaryDirectory - Return the pathname of a temporary directory to use as part of compilation; t...
Definition: Driver.cpp:4760
SourceLocation End
const char * getPhaseName(ID Id)
Definition: Phases.cpp:15
int Id
Definition: ASTDiff.cpp:190
const Tool & getCreator() const
getCreator - Return the Tool which caused the creation of this job.
Definition: Job.h:110
StateNode * Previous
bool isSaveTempsObj() const
Definition: Driver.h:348
#define V(N, I)
Definition: ASTContext.h:2941
Defines version macros and version-related utility functions for Clang.
bool IsCLMode() const
Whether the driver should follow cl.exe like behavior.
Definition: Driver.h:182
static std::string GetResourcesPath(StringRef BinaryPath, StringRef CustomResourceDir="")
Takes the path to a binary that&#39;s either in bin/ or lib/ and returns the path to clang&#39;s resource dir...
Definition: Driver.cpp:95
virtual types::ID LookupTypeForExtension(StringRef Ext) const
LookupTypeForExtension - Return the default language type to use for the given extension.
Definition: ToolChain.cpp:552
llvm::opt::InputArgList ParseArgStrings(ArrayRef< const char *> Args, bool IsClCompatMode, bool &ContainsError)
ParseArgStrings - Parse the given list of strings into an ArgList.
Definition: Driver.cpp:188
This corresponds to a single GCC Multilib, or a segment of one controlled by a command line flag...
Definition: Multilib.h:28
static std::string GetTriplePlusArchString(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind OffloadKind)
Return a string that uniquely identifies the result of a job.
Definition: Driver.cpp:4111
void HandleAutocompletions(StringRef PassedFlags) const
HandleAutocompletions - Handle –autocomplete by searching and printing possible flags, descriptions, and its arguments.
Definition: Driver.cpp:1580
void getCompilationPhases(ID Id, llvm::SmallVectorImpl< phases::ID > &Phases)
getCompilationPhases - Get the list of compilation phases (&#39;Phases&#39;) to be done for type &#39;Id&#39;...
Definition: Types.cpp:305
void BuildUniversalActions(Compilation &C, const ToolChain &TC, const InputList &BAInputs) const
BuildUniversalActions - Construct the list of actions to perform for the given arguments, which may require a universal build.
Definition: Driver.cpp:1937
size_type size() const
Definition: Action.h:147
void setCannotBeCollapsedWithNextDependentAction()
Mark this action as not legal to collapse.
Definition: Action.h:159
Action * ConstructPhaseAction(Compilation &C, const llvm::opt::ArgList &Args, phases::ID Phase, Action *Input, Action::OffloadKind TargetDeviceOffloadKind=Action::OFK_None) const
ConstructAction - Construct the appropriate action to do for Phase on the Input, taking in to account...
Definition: Driver.cpp:3589
llvm::Triple::ArchType getArchTypeForMachOArchName(StringRef Str)
Definition: Darwin.cpp:35
const ActionList & getActions() const
Get each of the individual arrays.
Definition: Action.h:286
const_offload_toolchains_range getOffloadToolChains() const
Definition: Compilation.h:150
static void PrintDiagnosticCategories(raw_ostream &OS)
PrintDiagnosticCategories - Implement the –print-diagnostic-categories option.
Definition: Driver.cpp:1573
void Print(llvm::raw_ostream &OS, const char *Terminator, bool Quote, CrashReportInfo *CrashInfo=nullptr) const
Definition: Job.cpp:492
path_list & getLibraryPaths()
Definition: ToolChain.h:234
void PrintHelp(bool ShowHidden) const
PrintHelp - Print the help text.
Definition: Driver.cpp:1531
virtual bool canEmitIR() const
Definition: Tool.h:86
static void printArg(llvm::raw_ostream &OS, StringRef Arg, bool Quote)
Print a command argument, and optionally quote it.
Definition: Job.cpp:103
#define false
Definition: stdbool.h:17
virtual bool hasIntegratedCPP() const =0
Kind
void generateCompilationDiagnostics(Compilation &C, const Command &FailingCommand, StringRef AdditionalInformation="", CompilationDiagnosticReport *GeneratedReport=nullptr)
generateCompilationDiagnostics - Generate diagnostics information including preprocessed source file(...
Definition: Driver.cpp:1256
virtual std::string getCompilerRT(const llvm::opt::ArgList &Args, StringRef Component, FileType Type=ToolChain::FT_Static) const
Definition: ToolChain.cpp:391
bool embedBitcodeInObject() const
Definition: Driver.h:351
Encodes a location in the source.
const llvm::opt::DerivedArgList & getArgs() const
Definition: Compilation.h:186
bool hasErrorOccurred() const
Determine whether any errors have occurred since this object instance was created.
Definition: Diagnostic.h:1020
Command - An executable path/name and argument vector to execute.
Definition: Job.h:41
bool isCuda(ID Id)
isCuda - Is this a CUDA input.
Definition: Types.cpp:191
bool DiagnoseInputExistence(const llvm::opt::DerivedArgList &Args, StringRef Value, types::ID Ty, bool TypoCorrect) const
Check that the file referenced by Value exists.
Definition: Driver.cpp:2025
The legacy name for the LLVM OpenMP runtime from when it was the Intel OpenMP runtime.
Definition: Driver.h:105
std::string InstalledDir
The path to the installed clang directory, if any.
Definition: Driver.h:129
bool CCCIsCXX() const
Whether the driver should follow g++ like behavior.
Definition: Driver.h:173
const char * addResultFile(const char *Name, const JobAction *JA)
addResultFile - Add a file to remove on failure, and returns its argument.
Definition: Compilation.h:239
bool isSaveTempsEnabled() const
Definition: Driver.h:347
static std::vector< std::string > getDiagnosticFlags()
Get the string of all diagnostic flags.
std::string UserConfigDir
User directory for config files.
Definition: Driver.h:138
bool isAcceptedByClang(ID Id)
isAcceptedByClang - Can clang handle this input type.
Definition: Types.cpp:119
virtual bool hasIntegratedAssembler() const
Definition: Tool.h:85
An offload action combines host or/and device actions according to the programming model implementati...
Definition: Action.h:249
const char * getDefaultImageName() const
Returns the default name for linked images (e.g., "a.out").
Definition: Driver.cpp:4418
virtual RuntimeLibType GetRuntimeLibType(const llvm::opt::ArgList &Args) const
Definition: ToolChain.cpp:755
void ExecuteJobs(const JobList &Jobs, SmallVectorImpl< std::pair< int, const Command *>> &FailingCommands) const
ExecuteJob - Execute a single job.
const char * getShortName() const
Definition: Tool.h:81
void setIgnoreAllWarnings(bool Val)
When set to true, any unmapped warnings are ignored.
Definition: Diagnostic.h:594
static bool searchForFile(SmallVectorImpl< char > &FilePath, ArrayRef< std::string > Dirs, StringRef FileName)
Looks the given directories for the specified file.
Definition: Driver.cpp:743
unsigned getOffloadingHostActiveKinds() const
Definition: Action.h:194
void EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf)
const Action & getSource() const
getSource - Return the Action which caused the creation of this job.
Definition: Job.h:107
Dataflow Directional Tag Classes.
Level getDiagnosticLevel(unsigned DiagID, SourceLocation Loc) const
Based on the way the client configured the DiagnosticsEngine object, classify the specified diagnosti...
Definition: Diagnostic.h:840
const char * getExecutable() const
Definition: Job.h:127
unsigned CCCPrintBindings
Only print tool bindings, don&#39;t build any jobs.
Definition: Driver.h:189
static llvm::Triple computeTargetTriple(const Driver &D, StringRef TargetTriple, const ArgList &Args, StringRef DarwinArchName="")
Compute target triple from args.
Definition: Driver.cpp:418
virtual std::string ComputeEffectiveClangTriple(const llvm::opt::ArgList &Args, types::ID InputType=types::TY_INVALID) const
ComputeEffectiveClangTriple - Return the Clang triple to use for this target, which may take into acc...
Definition: ToolChain.cpp:732
const llvm::opt::ArgStringList & getArguments() const
Definition: Job.h:129
virtual bool hasGoodDiagnostics() const
Does this tool have "good" standardized diagnostics, or should the driver add an additional "command ...
Definition: Tool.h:116
std::string SysRoot
sysroot, if present
Definition: Driver.h:148
Tool - Information on a specific compilation tool.
Definition: Tool.h:33
void setTripleTypeForMachOArchName(llvm::Triple &T, StringRef Str)
Definition: Darwin.cpp:71
std::string Name
The name the driver was invoked as.
Definition: Driver.h:116
static bool handlesTarget(const llvm::Triple &Triple)
Definition: BareMetal.cpp:59
The GNU OpenMP runtime.
Definition: Driver.h:100
llvm::SmallVector< std::string, 4 > TemporaryFiles
Definition: Driver.h:440
int ExecuteCompilation(Compilation &C, SmallVectorImpl< std::pair< int, const Command *> > &FailingCommands)
ExecuteCompilation - Execute the compilation according to the command line arguments and return an ap...
Definition: Driver.cpp:1460
ActionList & getActions()
Definition: Compilation.h:190
ParsedClangName ClangNameParts
Target and driver mode components extracted from clang executable name.
Definition: Driver.h:126
bool getCheckInputsExist() const
Definition: Driver.h:321
std::string ClangExecutable
The original path to the clang executable.
Definition: Driver.h:123
size_type size() const
Definition: Job.h:214
void BuildJobs(Compilation &C) const
BuildJobs - Bind actions to concrete tools and translate arguments to form the list of jobs to run...
Definition: Driver.cpp:3691
ID getPrecompiledType(ID Id)
getPrecompiledType - Get the ID of the type for this input when it has been precompiled, or INVALID if this input is not precompiled.
Definition: Types.cpp:59
bool ShouldUseClangCompiler(const JobAction &JA) const
ShouldUseClangCompiler - Should the clang compiler be used to handle this action. ...
Definition: Driver.cpp:4961
StringRef getDefaultUniversalArchName() const
Provide the default architecture name (as expected by -arch) for this toolchain.
Definition: ToolChain.cpp:228
Compilation - A set of tasks to perform for a single driver invocation.
Definition: Compilation.h:45
void BuildActions(Compilation &C, llvm::opt::DerivedArgList &Args, const InputList &Inputs, ActionList &Actions) const
BuildActions - Construct the list of actions to perform for the given arguments, which are only done ...
Definition: Driver.cpp:3346
const Driver & getDriver() const
Definition: Compilation.h:133
const llvm::Triple & getTriple() const
Definition: ToolChain.h:201
static StringRef GetOffloadKindName(OffloadKind Kind)
Return a string containing a offload kind name.
Definition: Action.cpp:146
std::string GetFilePath(StringRef Name, const ToolChain &TC) const
GetFilePath - Lookup Name in the list of file search paths.
Definition: Driver.cpp:4647
static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args)
Definition: Driver.cpp:1151
ID lookupTypeForExtension(llvm::StringRef Ext)
lookupTypeForExtension - Lookup the type to use for the file extension Ext.
Definition: Types.cpp:229
clang::driver::toolchains::AIX AIX
Definition: AIX.cpp:17
const ToolChain & getToolChain() const
Definition: Tool.h:83
bool CleanupFileMap(const ArgStringMap &Files, const JobAction *JA, bool IssueErrors=false) const
CleanupFileMap - Remove the files in the given map.
virtual std::string getCompilerRTPath() const
Definition: ToolChain.cpp:381
X
Add a minimal nested name specifier fixit hint to allow lookup of a tag name from an outer enclosing ...
Definition: SemaDecl.cpp:14781
bool willEmitRemarks(const llvm::opt::ArgList &Args)
Driver(StringRef ClangExecutable, StringRef TargetTriple, DiagnosticsEngine &Diags, IntrusiveRefCntPtr< llvm::vfs::FileSystem > VFS=nullptr)
Definition: Driver.cpp:121
void propagateHostOffloadInfo(unsigned OKinds, const char *OArch)
Append the host offload info of this action and propagate it to its dependences.
Definition: Action.cpp:69
static std::string GetOffloadingFileNamePrefix(OffloadKind Kind, StringRef NormalizedTriple, bool CreatePrefixForHost=false)
Return a string that can be used as prefix in order to generate unique files for each offloading kind...
Definition: Action.cpp:130
void ParseDriverMode(StringRef ProgramName, ArrayRef< const char *> Args)
ParseDriverMode - Look for and handle the driver mode option in Args.
Definition: Driver.cpp:154
bool LE(InterpState &S, CodePtr OpPC)
Definition: Interp.h:237
const char * getName() const
Definition: Tool.h:79
const llvm::opt::OptTable & getOpts() const
Definition: Driver.h:315
virtual Tool * SelectTool(const JobAction &JA) const
Choose a tool to use to handle the action JA.
Definition: ToolChain.cpp:503
const char * addTempFile(const char *Name)
addTempFile - Add a file to remove on exit, and returns its argument.
Definition: Compilation.h:232
std::string getOffloadingKindPrefix() const
Return a string containing the offload kind of the action.
Definition: Action.cpp:91
const ToolChain * getSingleOffloadToolChain() const
Return an offload toolchain of the provided kind.
Definition: Compilation.h:163
std::string DriverTitle
Driver title to use with help.
Definition: Driver.h:154
static const char * MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, StringRef BaseName, types::ID FileType)
Create output filename based on ArgValue, which could either be a full filename, filename without ext...
Definition: Driver.cpp:4427
void initialize(TemplateInstantiationCallbackPtrs &Callbacks, const Sema &TheSema)
bool CCCIsCPP() const
Whether the driver is just the preprocessor.
Definition: Driver.h:176
raw_ostream & Indent(raw_ostream &Out, const unsigned int Space, bool IsDot)
Definition: JsonSupport.h:20
void PrintVersion(const Compilation &C, raw_ostream &OS) const
PrintVersion - Print the driver version.
Definition: Driver.cpp:1547
void CreateOffloadingDeviceToolChains(Compilation &C, InputList &Inputs)
CreateOffloadingDeviceToolChains - create all the toolchains required to support offloading devices g...
Definition: Driver.cpp:606
bool appendSuffixForType(ID Id)
appendSuffixForType - When generating outputs of this type, should the suffix be appended (instead of...
Definition: Types.cpp:107
ID lookupTypeForTypeSpecifier(const char *Name)
lookupTypeForTypSpecifier - Lookup the type to use for a user specified type name.
Definition: Types.cpp:291
const char * GetNamedOutputPath(Compilation &C, const JobAction &JA, const char *BaseInput, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, StringRef NormalizedTriple) const
GetNamedOutputPath - Return the name to use for the output of the action JA.
Definition: Driver.cpp:4456
#define true
Definition: stdbool.h:16
void initCompilationForDiagnostics()
initCompilationForDiagnostics - Remove stale state and suppress output so compilation can be reexecut...
bool isSrcFile(ID Id)
isSrcFile - Is this a source file, i.e.
Definition: Types.cpp:225
bool isFortran(ID Id)
isFortran - Is this a Fortran input.
Definition: Types.cpp:215
const char * DriverMode
Corresponding driver mode argument, as &#39;–driver-mode=g++&#39;.
Definition: ToolChain.h:69
const char * getOffloadingArch() const
Definition: Action.h:199
virtual void Print(llvm::raw_ostream &OS, const char *Terminator, bool Quote, CrashReportInfo *CrashInfo=nullptr) const
Definition: Job.cpp:216
unsigned CCGenDiagnostics
Whether the driver is generating diagnostics for debugging purposes.
Definition: Driver.h:205
std::string SystemConfigDir
System directory for config files.
Definition: Driver.h:135
ToolChain - Access to tools for a single platform.
Definition: ToolChain.h:88
std::string ResourceDir
The path to the compiler resource directory.
Definition: Driver.h:132