clang  10.0.0git
SemaLookup.cpp
Go to the documentation of this file.
1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements name lookup for C, C++, Objective-C, and
10 // Objective-C++.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/ModuleLoader.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/Sema.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/TinyPtrVector.h"
41 #include "llvm/ADT/edit_distance.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include <algorithm>
44 #include <iterator>
45 #include <list>
46 #include <set>
47 #include <utility>
48 #include <vector>
49 
50 #include "OpenCLBuiltins.inc"
51 
52 using namespace clang;
53 using namespace sema;
54 
55 namespace {
56  class UnqualUsingEntry {
57  const DeclContext *Nominated;
58  const DeclContext *CommonAncestor;
59 
60  public:
61  UnqualUsingEntry(const DeclContext *Nominated,
62  const DeclContext *CommonAncestor)
63  : Nominated(Nominated), CommonAncestor(CommonAncestor) {
64  }
65 
66  const DeclContext *getCommonAncestor() const {
67  return CommonAncestor;
68  }
69 
70  const DeclContext *getNominatedNamespace() const {
71  return Nominated;
72  }
73 
74  // Sort by the pointer value of the common ancestor.
75  struct Comparator {
76  bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
77  return L.getCommonAncestor() < R.getCommonAncestor();
78  }
79 
80  bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
81  return E.getCommonAncestor() < DC;
82  }
83 
84  bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
85  return DC < E.getCommonAncestor();
86  }
87  };
88  };
89 
90  /// A collection of using directives, as used by C++ unqualified
91  /// lookup.
92  class UnqualUsingDirectiveSet {
93  Sema &SemaRef;
94 
95  typedef SmallVector<UnqualUsingEntry, 8> ListTy;
96 
97  ListTy list;
98  llvm::SmallPtrSet<DeclContext*, 8> visited;
99 
100  public:
101  UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
102 
103  void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
104  // C++ [namespace.udir]p1:
105  // During unqualified name lookup, the names appear as if they
106  // were declared in the nearest enclosing namespace which contains
107  // both the using-directive and the nominated namespace.
108  DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
109  assert(InnermostFileDC && InnermostFileDC->isFileContext());
110 
111  for (; S; S = S->getParent()) {
112  // C++ [namespace.udir]p1:
113  // A using-directive shall not appear in class scope, but may
114  // appear in namespace scope or in block scope.
115  DeclContext *Ctx = S->getEntity();
116  if (Ctx && Ctx->isFileContext()) {
117  visit(Ctx, Ctx);
118  } else if (!Ctx || Ctx->isFunctionOrMethod()) {
119  for (auto *I : S->using_directives())
120  if (SemaRef.isVisible(I))
121  visit(I, InnermostFileDC);
122  }
123  }
124  }
125 
126  // Visits a context and collect all of its using directives
127  // recursively. Treats all using directives as if they were
128  // declared in the context.
129  //
130  // A given context is only every visited once, so it is important
131  // that contexts be visited from the inside out in order to get
132  // the effective DCs right.
133  void visit(DeclContext *DC, DeclContext *EffectiveDC) {
134  if (!visited.insert(DC).second)
135  return;
136 
137  addUsingDirectives(DC, EffectiveDC);
138  }
139 
140  // Visits a using directive and collects all of its using
141  // directives recursively. Treats all using directives as if they
142  // were declared in the effective DC.
143  void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
145  if (!visited.insert(NS).second)
146  return;
147 
148  addUsingDirective(UD, EffectiveDC);
149  addUsingDirectives(NS, EffectiveDC);
150  }
151 
152  // Adds all the using directives in a context (and those nominated
153  // by its using directives, transitively) as if they appeared in
154  // the given effective context.
155  void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
157  while (true) {
158  for (auto UD : DC->using_directives()) {
160  if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
161  addUsingDirective(UD, EffectiveDC);
162  queue.push_back(NS);
163  }
164  }
165 
166  if (queue.empty())
167  return;
168 
169  DC = queue.pop_back_val();
170  }
171  }
172 
173  // Add a using directive as if it had been declared in the given
174  // context. This helps implement C++ [namespace.udir]p3:
175  // The using-directive is transitive: if a scope contains a
176  // using-directive that nominates a second namespace that itself
177  // contains using-directives, the effect is as if the
178  // using-directives from the second namespace also appeared in
179  // the first.
180  void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
181  // Find the common ancestor between the effective context and
182  // the nominated namespace.
183  DeclContext *Common = UD->getNominatedNamespace();
184  while (!Common->Encloses(EffectiveDC))
185  Common = Common->getParent();
186  Common = Common->getPrimaryContext();
187 
188  list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
189  }
190 
191  void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
192 
193  typedef ListTy::const_iterator const_iterator;
194 
195  const_iterator begin() const { return list.begin(); }
196  const_iterator end() const { return list.end(); }
197 
198  llvm::iterator_range<const_iterator>
199  getNamespacesFor(DeclContext *DC) const {
200  return llvm::make_range(std::equal_range(begin(), end(),
201  DC->getPrimaryContext(),
202  UnqualUsingEntry::Comparator()));
203  }
204  };
205 } // end anonymous namespace
206 
207 // Retrieve the set of identifier namespaces that correspond to a
208 // specific kind of name lookup.
209 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
210  bool CPlusPlus,
211  bool Redeclaration) {
212  unsigned IDNS = 0;
213  switch (NameKind) {
218  IDNS = Decl::IDNS_Ordinary;
219  if (CPlusPlus) {
221  if (Redeclaration)
223  }
224  if (Redeclaration)
225  IDNS |= Decl::IDNS_LocalExtern;
226  break;
227 
229  // Operator lookup is its own crazy thing; it is not the same
230  // as (e.g.) looking up an operator name for redeclaration.
231  assert(!Redeclaration && "cannot do redeclaration operator lookup");
233  break;
234 
235  case Sema::LookupTagName:
236  if (CPlusPlus) {
237  IDNS = Decl::IDNS_Type;
238 
239  // When looking for a redeclaration of a tag name, we add:
240  // 1) TagFriend to find undeclared friend decls
241  // 2) Namespace because they can't "overload" with tag decls.
242  // 3) Tag because it includes class templates, which can't
243  // "overload" with tag decls.
244  if (Redeclaration)
246  } else {
247  IDNS = Decl::IDNS_Tag;
248  }
249  break;
250 
251  case Sema::LookupLabel:
252  IDNS = Decl::IDNS_Label;
253  break;
254 
256  IDNS = Decl::IDNS_Member;
257  if (CPlusPlus)
259  break;
260 
263  break;
264 
266  IDNS = Decl::IDNS_Namespace;
267  break;
268 
270  assert(Redeclaration && "should only be used for redecl lookup");
274  break;
275 
278  break;
279 
282  break;
283 
285  IDNS = Decl::IDNS_OMPMapper;
286  break;
287 
288  case Sema::LookupAnyName:
291  | Decl::IDNS_Type;
292  break;
293  }
294  return IDNS;
295 }
296 
297 void LookupResult::configure() {
298  IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
299  isForRedeclaration());
300 
301  // If we're looking for one of the allocation or deallocation
302  // operators, make sure that the implicitly-declared new and delete
303  // operators can be found.
304  switch (NameInfo.getName().getCXXOverloadedOperator()) {
305  case OO_New:
306  case OO_Delete:
307  case OO_Array_New:
308  case OO_Array_Delete:
309  getSema().DeclareGlobalNewDelete();
310  break;
311 
312  default:
313  break;
314  }
315 
316  // Compiler builtins are always visible, regardless of where they end
317  // up being declared.
318  if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
319  if (unsigned BuiltinID = Id->getBuiltinID()) {
320  if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
321  AllowHidden = true;
322  }
323  }
324 }
325 
326 bool LookupResult::sanity() const {
327  // This function is never called by NDEBUG builds.
328  assert(ResultKind != NotFound || Decls.size() == 0);
329  assert(ResultKind != Found || Decls.size() == 1);
330  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
331  (Decls.size() == 1 &&
332  isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
333  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
334  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
335  (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
336  Ambiguity == AmbiguousBaseSubobjectTypes)));
337  assert((Paths != nullptr) == (ResultKind == Ambiguous &&
338  (Ambiguity == AmbiguousBaseSubobjectTypes ||
339  Ambiguity == AmbiguousBaseSubobjects)));
340  return true;
341 }
342 
343 // Necessary because CXXBasePaths is not complete in Sema.h
344 void LookupResult::deletePaths(CXXBasePaths *Paths) {
345  delete Paths;
346 }
347 
348 /// Get a representative context for a declaration such that two declarations
349 /// will have the same context if they were found within the same scope.
351  // For function-local declarations, use that function as the context. This
352  // doesn't account for scopes within the function; the caller must deal with
353  // those.
355  if (DC->isFunctionOrMethod())
356  return DC;
357 
358  // Otherwise, look at the semantic context of the declaration. The
359  // declaration must have been found there.
360  return D->getDeclContext()->getRedeclContext();
361 }
362 
363 /// Determine whether \p D is a better lookup result than \p Existing,
364 /// given that they declare the same entity.
366  NamedDecl *D, NamedDecl *Existing) {
367  // When looking up redeclarations of a using declaration, prefer a using
368  // shadow declaration over any other declaration of the same entity.
369  if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
370  !isa<UsingShadowDecl>(Existing))
371  return true;
372 
373  auto *DUnderlying = D->getUnderlyingDecl();
374  auto *EUnderlying = Existing->getUnderlyingDecl();
375 
376  // If they have different underlying declarations, prefer a typedef over the
377  // original type (this happens when two type declarations denote the same
378  // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
379  // might carry additional semantic information, such as an alignment override.
380  // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
381  // declaration over a typedef.
382  if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
383  assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
384  bool HaveTag = isa<TagDecl>(EUnderlying);
385  bool WantTag = Kind == Sema::LookupTagName;
386  return HaveTag != WantTag;
387  }
388 
389  // Pick the function with more default arguments.
390  // FIXME: In the presence of ambiguous default arguments, we should keep both,
391  // so we can diagnose the ambiguity if the default argument is needed.
392  // See C++ [over.match.best]p3.
393  if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
394  auto *EFD = cast<FunctionDecl>(EUnderlying);
395  unsigned DMin = DFD->getMinRequiredArguments();
396  unsigned EMin = EFD->getMinRequiredArguments();
397  // If D has more default arguments, it is preferred.
398  if (DMin != EMin)
399  return DMin < EMin;
400  // FIXME: When we track visibility for default function arguments, check
401  // that we pick the declaration with more visible default arguments.
402  }
403 
404  // Pick the template with more default template arguments.
405  if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
406  auto *ETD = cast<TemplateDecl>(EUnderlying);
407  unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
408  unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
409  // If D has more default arguments, it is preferred. Note that default
410  // arguments (and their visibility) is monotonically increasing across the
411  // redeclaration chain, so this is a quick proxy for "is more recent".
412  if (DMin != EMin)
413  return DMin < EMin;
414  // If D has more *visible* default arguments, it is preferred. Note, an
415  // earlier default argument being visible does not imply that a later
416  // default argument is visible, so we can't just check the first one.
417  for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
418  I != N; ++I) {
420  ETD->getTemplateParameters()->getParam(I)) &&
422  DTD->getTemplateParameters()->getParam(I)))
423  return true;
424  }
425  }
426 
427  // VarDecl can have incomplete array types, prefer the one with more complete
428  // array type.
429  if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
430  VarDecl *EVD = cast<VarDecl>(EUnderlying);
431  if (EVD->getType()->isIncompleteType() &&
432  !DVD->getType()->isIncompleteType()) {
433  // Prefer the decl with a more complete type if visible.
434  return S.isVisible(DVD);
435  }
436  return false; // Avoid picking up a newer decl, just because it was newer.
437  }
438 
439  // For most kinds of declaration, it doesn't really matter which one we pick.
440  if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
441  // If the existing declaration is hidden, prefer the new one. Otherwise,
442  // keep what we've got.
443  return !S.isVisible(Existing);
444  }
445 
446  // Pick the newer declaration; it might have a more precise type.
447  for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
448  Prev = Prev->getPreviousDecl())
449  if (Prev == EUnderlying)
450  return true;
451  return false;
452 }
453 
454 /// Determine whether \p D can hide a tag declaration.
455 static bool canHideTag(NamedDecl *D) {
456  // C++ [basic.scope.declarative]p4:
457  // Given a set of declarations in a single declarative region [...]
458  // exactly one declaration shall declare a class name or enumeration name
459  // that is not a typedef name and the other declarations shall all refer to
460  // the same variable, non-static data member, or enumerator, or all refer
461  // to functions and function templates; in this case the class name or
462  // enumeration name is hidden.
463  // C++ [basic.scope.hiding]p2:
464  // A class name or enumeration name can be hidden by the name of a
465  // variable, data member, function, or enumerator declared in the same
466  // scope.
467  // An UnresolvedUsingValueDecl always instantiates to one of these.
468  D = D->getUnderlyingDecl();
469  return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
470  isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
471  isa<UnresolvedUsingValueDecl>(D);
472 }
473 
474 /// Resolves the result kind of this lookup.
476  unsigned N = Decls.size();
477 
478  // Fast case: no possible ambiguity.
479  if (N == 0) {
480  assert(ResultKind == NotFound ||
481  ResultKind == NotFoundInCurrentInstantiation);
482  return;
483  }
484 
485  // If there's a single decl, we need to examine it to decide what
486  // kind of lookup this is.
487  if (N == 1) {
488  NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
489  if (isa<FunctionTemplateDecl>(D))
490  ResultKind = FoundOverloaded;
491  else if (isa<UnresolvedUsingValueDecl>(D))
492  ResultKind = FoundUnresolvedValue;
493  return;
494  }
495 
496  // Don't do any extra resolution if we've already resolved as ambiguous.
497  if (ResultKind == Ambiguous) return;
498 
499  llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
500  llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
501 
502  bool Ambiguous = false;
503  bool HasTag = false, HasFunction = false;
504  bool HasFunctionTemplate = false, HasUnresolved = false;
505  NamedDecl *HasNonFunction = nullptr;
506 
507  llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
508 
509  unsigned UniqueTagIndex = 0;
510 
511  unsigned I = 0;
512  while (I < N) {
513  NamedDecl *D = Decls[I]->getUnderlyingDecl();
514  D = cast<NamedDecl>(D->getCanonicalDecl());
515 
516  // Ignore an invalid declaration unless it's the only one left.
517  if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
518  Decls[I] = Decls[--N];
519  continue;
520  }
521 
522  llvm::Optional<unsigned> ExistingI;
523 
524  // Redeclarations of types via typedef can occur both within a scope
525  // and, through using declarations and directives, across scopes. There is
526  // no ambiguity if they all refer to the same type, so unique based on the
527  // canonical type.
528  if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
529  QualType T = getSema().Context.getTypeDeclType(TD);
530  auto UniqueResult = UniqueTypes.insert(
531  std::make_pair(getSema().Context.getCanonicalType(T), I));
532  if (!UniqueResult.second) {
533  // The type is not unique.
534  ExistingI = UniqueResult.first->second;
535  }
536  }
537 
538  // For non-type declarations, check for a prior lookup result naming this
539  // canonical declaration.
540  if (!ExistingI) {
541  auto UniqueResult = Unique.insert(std::make_pair(D, I));
542  if (!UniqueResult.second) {
543  // We've seen this entity before.
544  ExistingI = UniqueResult.first->second;
545  }
546  }
547 
548  if (ExistingI) {
549  // This is not a unique lookup result. Pick one of the results and
550  // discard the other.
551  if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
552  Decls[*ExistingI]))
553  Decls[*ExistingI] = Decls[I];
554  Decls[I] = Decls[--N];
555  continue;
556  }
557 
558  // Otherwise, do some decl type analysis and then continue.
559 
560  if (isa<UnresolvedUsingValueDecl>(D)) {
561  HasUnresolved = true;
562  } else if (isa<TagDecl>(D)) {
563  if (HasTag)
564  Ambiguous = true;
565  UniqueTagIndex = I;
566  HasTag = true;
567  } else if (isa<FunctionTemplateDecl>(D)) {
568  HasFunction = true;
569  HasFunctionTemplate = true;
570  } else if (isa<FunctionDecl>(D)) {
571  HasFunction = true;
572  } else {
573  if (HasNonFunction) {
574  // If we're about to create an ambiguity between two declarations that
575  // are equivalent, but one is an internal linkage declaration from one
576  // module and the other is an internal linkage declaration from another
577  // module, just skip it.
578  if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
579  D)) {
580  EquivalentNonFunctions.push_back(D);
581  Decls[I] = Decls[--N];
582  continue;
583  }
584 
585  Ambiguous = true;
586  }
587  HasNonFunction = D;
588  }
589  I++;
590  }
591 
592  // C++ [basic.scope.hiding]p2:
593  // A class name or enumeration name can be hidden by the name of
594  // an object, function, or enumerator declared in the same
595  // scope. If a class or enumeration name and an object, function,
596  // or enumerator are declared in the same scope (in any order)
597  // with the same name, the class or enumeration name is hidden
598  // wherever the object, function, or enumerator name is visible.
599  // But it's still an error if there are distinct tag types found,
600  // even if they're not visible. (ref?)
601  if (N > 1 && HideTags && HasTag && !Ambiguous &&
602  (HasFunction || HasNonFunction || HasUnresolved)) {
603  NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
604  if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
605  getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
606  getContextForScopeMatching(OtherDecl)) &&
607  canHideTag(OtherDecl))
608  Decls[UniqueTagIndex] = Decls[--N];
609  else
610  Ambiguous = true;
611  }
612 
613  // FIXME: This diagnostic should really be delayed until we're done with
614  // the lookup result, in case the ambiguity is resolved by the caller.
615  if (!EquivalentNonFunctions.empty() && !Ambiguous)
616  getSema().diagnoseEquivalentInternalLinkageDeclarations(
617  getNameLoc(), HasNonFunction, EquivalentNonFunctions);
618 
619  Decls.set_size(N);
620 
621  if (HasNonFunction && (HasFunction || HasUnresolved))
622  Ambiguous = true;
623 
624  if (Ambiguous)
625  setAmbiguous(LookupResult::AmbiguousReference);
626  else if (HasUnresolved)
628  else if (N > 1 || HasFunctionTemplate)
629  ResultKind = LookupResult::FoundOverloaded;
630  else
631  ResultKind = LookupResult::Found;
632 }
633 
634 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
636  for (I = P.begin(), E = P.end(); I != E; ++I)
637  for (DeclContext::lookup_iterator DI = I->Decls.begin(),
638  DE = I->Decls.end(); DI != DE; ++DI)
639  addDecl(*DI);
640 }
641 
643  Paths = new CXXBasePaths;
644  Paths->swap(P);
645  addDeclsFromBasePaths(*Paths);
646  resolveKind();
647  setAmbiguous(AmbiguousBaseSubobjects);
648 }
649 
651  Paths = new CXXBasePaths;
652  Paths->swap(P);
653  addDeclsFromBasePaths(*Paths);
654  resolveKind();
655  setAmbiguous(AmbiguousBaseSubobjectTypes);
656 }
657 
658 void LookupResult::print(raw_ostream &Out) {
659  Out << Decls.size() << " result(s)";
660  if (isAmbiguous()) Out << ", ambiguous";
661  if (Paths) Out << ", base paths present";
662 
663  for (iterator I = begin(), E = end(); I != E; ++I) {
664  Out << "\n";
665  (*I)->print(Out, 2);
666  }
667 }
668 
669 LLVM_DUMP_METHOD void LookupResult::dump() {
670  llvm::errs() << "lookup results for " << getLookupName().getAsString()
671  << ":\n";
672  for (NamedDecl *D : *this)
673  D->dump();
674 }
675 
676 /// Get the QualType instances of the return type and arguments for an OpenCL
677 /// builtin function signature.
678 /// \param Context (in) The Context instance.
679 /// \param OpenCLBuiltin (in) The signature currently handled.
680 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
681 /// type used as return type or as argument.
682 /// Only meaningful for generic types, otherwise equals 1.
683 /// \param RetTypes (out) List of the possible return types.
684 /// \param ArgTypes (out) List of the possible argument types. For each
685 /// argument, ArgTypes contains QualTypes for the Cartesian product
686 /// of (vector sizes) x (types) .
688  ASTContext &Context, const OpenCLBuiltinStruct &OpenCLBuiltin,
689  unsigned &GenTypeMaxCnt, SmallVector<QualType, 1> &RetTypes,
690  SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
691  // Get the QualType instances of the return types.
692  unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
693  OCL2Qual(Context, TypeTable[Sig], RetTypes);
694  GenTypeMaxCnt = RetTypes.size();
695 
696  // Get the QualType instances of the arguments.
697  // First type is the return type, skip it.
698  for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
700  OCL2Qual(Context,
701  TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], Ty);
702  GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
703  ArgTypes.push_back(std::move(Ty));
704  }
705 }
706 
707 /// Create a list of the candidate function overloads for an OpenCL builtin
708 /// function.
709 /// \param Context (in) The ASTContext instance.
710 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
711 /// type used as return type or as argument.
712 /// Only meaningful for generic types, otherwise equals 1.
713 /// \param FunctionList (out) List of FunctionTypes.
714 /// \param RetTypes (in) List of the possible return types.
715 /// \param ArgTypes (in) List of the possible types for the arguments.
717  ASTContext &Context, unsigned GenTypeMaxCnt,
718  std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
719  SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
721  PI.Variadic = false;
722 
723  // Create FunctionTypes for each (gen)type.
724  for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
725  SmallVector<QualType, 5> ArgList;
726 
727  for (unsigned A = 0; A < ArgTypes.size(); A++) {
728  // Builtins such as "max" have an "sgentype" argument that represents
729  // the corresponding scalar type of a gentype. The number of gentypes
730  // must be a multiple of the number of sgentypes.
731  assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
732  "argument type count not compatible with gentype type count");
733  unsigned Idx = IGenType % ArgTypes[A].size();
734  ArgList.push_back(ArgTypes[A][Idx]);
735  }
736 
737  FunctionList.push_back(Context.getFunctionType(
738  RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
739  }
740 }
741 
742 /// Add extensions to the function declaration.
743 /// \param S (in/out) The Sema instance.
744 /// \param BIDecl (in) Description of the builtin.
745 /// \param FDecl (in/out) FunctionDecl instance.
746 static void AddOpenCLExtensions(Sema &S, const OpenCLBuiltinStruct &BIDecl,
747  FunctionDecl *FDecl) {
748  // Fetch extension associated with a function prototype.
749  StringRef E = FunctionExtensionTable[BIDecl.Extension];
750  if (E != "")
751  S.setOpenCLExtensionForDecl(FDecl, E);
752 }
753 
754 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a
755 /// non-null <Index, Len> pair, then the name is referencing an OpenCL
756 /// builtin function. Add all candidate signatures to the LookUpResult.
757 ///
758 /// \param S (in) The Sema instance.
759 /// \param LR (inout) The LookupResult instance.
760 /// \param II (in) The identifier being resolved.
761 /// \param FctIndex (in) Starting index in the BuiltinTable.
762 /// \param Len (in) The signature list has Len elements.
764  IdentifierInfo *II,
765  const unsigned FctIndex,
766  const unsigned Len) {
767  // The builtin function declaration uses generic types (gentype).
768  bool HasGenType = false;
769 
770  // Maximum number of types contained in a generic type used as return type or
771  // as argument. Only meaningful for generic types, otherwise equals 1.
772  unsigned GenTypeMaxCnt;
773 
774  for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
775  const OpenCLBuiltinStruct &OpenCLBuiltin =
776  BuiltinTable[FctIndex + SignatureIndex];
777  ASTContext &Context = S.Context;
778 
779  // Ignore this BIF if its version does not match the language options.
780  unsigned OpenCLVersion = Context.getLangOpts().OpenCLVersion;
781  if (Context.getLangOpts().OpenCLCPlusPlus)
782  OpenCLVersion = 200;
783  if (OpenCLVersion < OpenCLBuiltin.MinVersion)
784  continue;
785  if ((OpenCLBuiltin.MaxVersion != 0) &&
786  (OpenCLVersion >= OpenCLBuiltin.MaxVersion))
787  continue;
788 
789  SmallVector<QualType, 1> RetTypes;
791 
792  // Obtain QualType lists for the function signature.
793  GetQualTypesForOpenCLBuiltin(Context, OpenCLBuiltin, GenTypeMaxCnt,
794  RetTypes, ArgTypes);
795  if (GenTypeMaxCnt > 1) {
796  HasGenType = true;
797  }
798 
799  // Create function overload for each type combination.
800  std::vector<QualType> FunctionList;
801  GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
802  ArgTypes);
803 
804  SourceLocation Loc = LR.getNameLoc();
806  FunctionDecl *NewOpenCLBuiltin;
807 
808  for (unsigned Index = 0; Index < GenTypeMaxCnt; Index++) {
809  NewOpenCLBuiltin = FunctionDecl::Create(
810  Context, Parent, Loc, Loc, II, FunctionList[Index],
811  /*TInfo=*/nullptr, SC_Extern, false,
812  FunctionList[Index]->isFunctionProtoType());
813  NewOpenCLBuiltin->setImplicit();
814 
815  // Create Decl objects for each parameter, adding them to the
816  // FunctionDecl.
817  if (const FunctionProtoType *FP =
818  dyn_cast<FunctionProtoType>(FunctionList[Index])) {
820  for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
822  Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
823  nullptr, FP->getParamType(IParm),
824  /*TInfo=*/nullptr, SC_None, nullptr);
825  Parm->setScopeInfo(0, IParm);
826  ParmList.push_back(Parm);
827  }
828  NewOpenCLBuiltin->setParams(ParmList);
829  }
830 
831  // Add function attributes.
832  if (OpenCLBuiltin.IsPure)
833  NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
834  if (OpenCLBuiltin.IsConst)
835  NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
836  if (OpenCLBuiltin.IsConv)
837  NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
838 
839  if (!S.getLangOpts().OpenCLCPlusPlus)
840  NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
841 
842  AddOpenCLExtensions(S, OpenCLBuiltin, NewOpenCLBuiltin);
843 
844  LR.addDecl(NewOpenCLBuiltin);
845  }
846  }
847 
848  // If we added overloads, need to resolve the lookup result.
849  if (Len > 1 || HasGenType)
850  LR.resolveKind();
851 }
852 
853 /// Lookup a builtin function, when name lookup would otherwise
854 /// fail.
856  Sema::LookupNameKind NameKind = R.getLookupKind();
857 
858  // If we didn't find a use of this identifier, and if the identifier
859  // corresponds to a compiler builtin, create the decl object for the builtin
860  // now, injecting it into translation unit scope, and return it.
861  if (NameKind == Sema::LookupOrdinaryName ||
864  if (II) {
865  if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
866  if (II == getASTContext().getMakeIntegerSeqName()) {
867  R.addDecl(getASTContext().getMakeIntegerSeqDecl());
868  return true;
869  } else if (II == getASTContext().getTypePackElementName()) {
870  R.addDecl(getASTContext().getTypePackElementDecl());
871  return true;
872  }
873  }
874 
875  // Check if this is an OpenCL Builtin, and if so, insert its overloads.
876  if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
877  auto Index = isOpenCLBuiltin(II->getName());
878  if (Index.first) {
879  InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
880  Index.second);
881  return true;
882  }
883  }
884 
885  // If this is a builtin on this (or all) targets, create the decl.
886  if (unsigned BuiltinID = II->getBuiltinID()) {
887  // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
888  // library functions like 'malloc'. Instead, we'll just error.
889  if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
890  Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
891  return false;
892 
893  if (NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II,
894  BuiltinID, TUScope,
895  R.isForRedeclaration(),
896  R.getNameLoc())) {
897  R.addDecl(D);
898  return true;
899  }
900  }
901  }
902  }
903 
904  return false;
905 }
906 
907 /// Determine whether we can declare a special member function within
908 /// the class at this point.
910  // We need to have a definition for the class.
911  if (!Class->getDefinition() || Class->isDependentContext())
912  return false;
913 
914  // We can't be in the middle of defining the class.
915  return !Class->isBeingDefined();
916 }
917 
920  return;
921 
922  // If the default constructor has not yet been declared, do so now.
923  if (Class->needsImplicitDefaultConstructor())
924  DeclareImplicitDefaultConstructor(Class);
925 
926  // If the copy constructor has not yet been declared, do so now.
927  if (Class->needsImplicitCopyConstructor())
928  DeclareImplicitCopyConstructor(Class);
929 
930  // If the copy assignment operator has not yet been declared, do so now.
931  if (Class->needsImplicitCopyAssignment())
932  DeclareImplicitCopyAssignment(Class);
933 
934  if (getLangOpts().CPlusPlus11) {
935  // If the move constructor has not yet been declared, do so now.
936  if (Class->needsImplicitMoveConstructor())
937  DeclareImplicitMoveConstructor(Class);
938 
939  // If the move assignment operator has not yet been declared, do so now.
940  if (Class->needsImplicitMoveAssignment())
941  DeclareImplicitMoveAssignment(Class);
942  }
943 
944  // If the destructor has not yet been declared, do so now.
945  if (Class->needsImplicitDestructor())
946  DeclareImplicitDestructor(Class);
947 }
948 
949 /// Determine whether this is the name of an implicitly-declared
950 /// special member function.
952  switch (Name.getNameKind()) {
955  return true;
956 
958  return Name.getCXXOverloadedOperator() == OO_Equal;
959 
960  default:
961  break;
962  }
963 
964  return false;
965 }
966 
967 /// If there are any implicit member functions with the given name
968 /// that need to be declared in the given declaration context, do so.
970  DeclarationName Name,
971  SourceLocation Loc,
972  const DeclContext *DC) {
973  if (!DC)
974  return;
975 
976  switch (Name.getNameKind()) {
978  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
979  if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
980  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
981  if (Record->needsImplicitDefaultConstructor())
983  if (Record->needsImplicitCopyConstructor())
985  if (S.getLangOpts().CPlusPlus11 &&
986  Record->needsImplicitMoveConstructor())
988  }
989  break;
990 
992  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
993  if (Record->getDefinition() && Record->needsImplicitDestructor() &&
995  S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
996  break;
997 
999  if (Name.getCXXOverloadedOperator() != OO_Equal)
1000  break;
1001 
1002  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1003  if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1004  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1005  if (Record->needsImplicitCopyAssignment())
1007  if (S.getLangOpts().CPlusPlus11 &&
1008  Record->needsImplicitMoveAssignment())
1010  }
1011  }
1012  break;
1013 
1016  break;
1017 
1018  default:
1019  break;
1020  }
1021 }
1022 
1023 // Adds all qualifying matches for a name within a decl context to the
1024 // given lookup result. Returns true if any matches were found.
1025 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1026  bool Found = false;
1027 
1028  // Lazily declare C++ special member functions.
1029  if (S.getLangOpts().CPlusPlus)
1031  DC);
1032 
1033  // Perform lookup into this declaration context.
1035  for (NamedDecl *D : DR) {
1036  if ((D = R.getAcceptableDecl(D))) {
1037  R.addDecl(D);
1038  Found = true;
1039  }
1040  }
1041 
1042  if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1043  return true;
1044 
1045  if (R.getLookupName().getNameKind()
1048  !isa<CXXRecordDecl>(DC))
1049  return Found;
1050 
1051  // C++ [temp.mem]p6:
1052  // A specialization of a conversion function template is not found by
1053  // name lookup. Instead, any conversion function templates visible in the
1054  // context of the use are considered. [...]
1055  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1056  if (!Record->isCompleteDefinition())
1057  return Found;
1058 
1059  // For conversion operators, 'operator auto' should only match
1060  // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
1061  // as a candidate for template substitution.
1062  auto *ContainedDeducedType =
1064  if (R.getLookupName().getNameKind() ==
1066  ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1067  return Found;
1068 
1070  UEnd = Record->conversion_end(); U != UEnd; ++U) {
1071  FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1072  if (!ConvTemplate)
1073  continue;
1074 
1075  // When we're performing lookup for the purposes of redeclaration, just
1076  // add the conversion function template. When we deduce template
1077  // arguments for specializations, we'll end up unifying the return
1078  // type of the new declaration with the type of the function template.
1079  if (R.isForRedeclaration()) {
1080  R.addDecl(ConvTemplate);
1081  Found = true;
1082  continue;
1083  }
1084 
1085  // C++ [temp.mem]p6:
1086  // [...] For each such operator, if argument deduction succeeds
1087  // (14.9.2.3), the resulting specialization is used as if found by
1088  // name lookup.
1089  //
1090  // When referencing a conversion function for any purpose other than
1091  // a redeclaration (such that we'll be building an expression with the
1092  // result), perform template argument deduction and place the
1093  // specialization into the result set. We do this to avoid forcing all
1094  // callers to perform special deduction for conversion functions.
1096  FunctionDecl *Specialization = nullptr;
1097 
1098  const FunctionProtoType *ConvProto
1099  = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1100  assert(ConvProto && "Nonsensical conversion function template type");
1101 
1102  // Compute the type of the function that we would expect the conversion
1103  // function to have, if it were to match the name given.
1104  // FIXME: Calling convention!
1106  EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1107  EPI.ExceptionSpec = EST_None;
1110  None, EPI);
1111 
1112  // Perform template argument deduction against the type that we would
1113  // expect the function to have.
1114  if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1115  Specialization, Info)
1116  == Sema::TDK_Success) {
1117  R.addDecl(Specialization);
1118  Found = true;
1119  }
1120  }
1121 
1122  return Found;
1123 }
1124 
1125 // Performs C++ unqualified lookup into the given file context.
1126 static bool
1128  DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
1129 
1130  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1131 
1132  // Perform direct name lookup into the LookupCtx.
1133  bool Found = LookupDirect(S, R, NS);
1134 
1135  // Perform direct name lookup into the namespaces nominated by the
1136  // using directives whose common ancestor is this namespace.
1137  for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1138  if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1139  Found = true;
1140 
1141  R.resolveKind();
1142 
1143  return Found;
1144 }
1145 
1147  if (DeclContext *Ctx = S->getEntity())
1148  return Ctx->isFileContext();
1149  return false;
1150 }
1151 
1152 // Find the next outer declaration context from this scope. This
1153 // routine actually returns the semantic outer context, which may
1154 // differ from the lexical context (encoded directly in the Scope
1155 // stack) when we are parsing a member of a class template. In this
1156 // case, the second element of the pair will be true, to indicate that
1157 // name lookup should continue searching in this semantic context when
1158 // it leaves the current template parameter scope.
1159 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
1160  DeclContext *DC = S->getEntity();
1161  DeclContext *Lexical = nullptr;
1162  for (Scope *OuterS = S->getParent(); OuterS;
1163  OuterS = OuterS->getParent()) {
1164  if (OuterS->getEntity()) {
1165  Lexical = OuterS->getEntity();
1166  break;
1167  }
1168  }
1169 
1170  // C++ [temp.local]p8:
1171  // In the definition of a member of a class template that appears
1172  // outside of the namespace containing the class template
1173  // definition, the name of a template-parameter hides the name of
1174  // a member of this namespace.
1175  //
1176  // Example:
1177  //
1178  // namespace N {
1179  // class C { };
1180  //
1181  // template<class T> class B {
1182  // void f(T);
1183  // };
1184  // }
1185  //
1186  // template<class C> void N::B<C>::f(C) {
1187  // C b; // C is the template parameter, not N::C
1188  // }
1189  //
1190  // In this example, the lexical context we return is the
1191  // TranslationUnit, while the semantic context is the namespace N.
1192  if (!Lexical || !DC || !S->getParent() ||
1194  return std::make_pair(Lexical, false);
1195 
1196  // Find the outermost template parameter scope.
1197  // For the example, this is the scope for the template parameters of
1198  // template<class C>.
1199  Scope *OutermostTemplateScope = S->getParent();
1200  while (OutermostTemplateScope->getParent() &&
1201  OutermostTemplateScope->getParent()->isTemplateParamScope())
1202  OutermostTemplateScope = OutermostTemplateScope->getParent();
1203 
1204  // Find the namespace context in which the original scope occurs. In
1205  // the example, this is namespace N.
1206  DeclContext *Semantic = DC;
1207  while (!Semantic->isFileContext())
1208  Semantic = Semantic->getParent();
1209 
1210  // Find the declaration context just outside of the template
1211  // parameter scope. This is the context in which the template is
1212  // being lexically declaration (a namespace context). In the
1213  // example, this is the global scope.
1214  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1215  Lexical->Encloses(Semantic))
1216  return std::make_pair(Semantic, true);
1217 
1218  return std::make_pair(Lexical, false);
1219 }
1220 
1221 namespace {
1222 /// An RAII object to specify that we want to find block scope extern
1223 /// declarations.
1224 struct FindLocalExternScope {
1225  FindLocalExternScope(LookupResult &R)
1226  : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1230  }
1231  void restore() {
1232  R.setFindLocalExtern(OldFindLocalExtern);
1233  }
1234  ~FindLocalExternScope() {
1235  restore();
1236  }
1237  LookupResult &R;
1238  bool OldFindLocalExtern;
1239 };
1240 } // end anonymous namespace
1241 
1242 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1243  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1244 
1245  DeclarationName Name = R.getLookupName();
1246  Sema::LookupNameKind NameKind = R.getLookupKind();
1247 
1248  // If this is the name of an implicitly-declared special member function,
1249  // go through the scope stack to implicitly declare
1251  for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1252  if (DeclContext *DC = PreS->getEntity())
1253  DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1254  }
1255 
1256  // Implicitly declare member functions with the name we're looking for, if in
1257  // fact we are in a scope where it matters.
1258 
1259  Scope *Initial = S;
1261  I = IdResolver.begin(Name),
1262  IEnd = IdResolver.end();
1263 
1264  // First we lookup local scope.
1265  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1266  // ...During unqualified name lookup (3.4.1), the names appear as if
1267  // they were declared in the nearest enclosing namespace which contains
1268  // both the using-directive and the nominated namespace.
1269  // [Note: in this context, "contains" means "contains directly or
1270  // indirectly".
1271  //
1272  // For example:
1273  // namespace A { int i; }
1274  // void foo() {
1275  // int i;
1276  // {
1277  // using namespace A;
1278  // ++i; // finds local 'i', A::i appears at global scope
1279  // }
1280  // }
1281  //
1282  UnqualUsingDirectiveSet UDirs(*this);
1283  bool VisitedUsingDirectives = false;
1284  bool LeftStartingScope = false;
1285  DeclContext *OutsideOfTemplateParamDC = nullptr;
1286 
1287  // When performing a scope lookup, we want to find local extern decls.
1288  FindLocalExternScope FindLocals(R);
1289 
1290  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1291  DeclContext *Ctx = S->getEntity();
1292  bool SearchNamespaceScope = true;
1293  // Check whether the IdResolver has anything in this scope.
1294  for (; I != IEnd && S->isDeclScope(*I); ++I) {
1295  if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1296  if (NameKind == LookupRedeclarationWithLinkage &&
1297  !(*I)->isTemplateParameter()) {
1298  // If it's a template parameter, we still find it, so we can diagnose
1299  // the invalid redeclaration.
1300 
1301  // Determine whether this (or a previous) declaration is
1302  // out-of-scope.
1303  if (!LeftStartingScope && !Initial->isDeclScope(*I))
1304  LeftStartingScope = true;
1305 
1306  // If we found something outside of our starting scope that
1307  // does not have linkage, skip it.
1308  if (LeftStartingScope && !((*I)->hasLinkage())) {
1309  R.setShadowed();
1310  continue;
1311  }
1312  } else {
1313  // We found something in this scope, we should not look at the
1314  // namespace scope
1315  SearchNamespaceScope = false;
1316  }
1317  R.addDecl(ND);
1318  }
1319  }
1320  if (!SearchNamespaceScope) {
1321  R.resolveKind();
1322  if (S->isClassScope())
1323  if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1324  R.setNamingClass(Record);
1325  return true;
1326  }
1327 
1328  if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1329  // C++11 [class.friend]p11:
1330  // If a friend declaration appears in a local class and the name
1331  // specified is an unqualified name, a prior declaration is
1332  // looked up without considering scopes that are outside the
1333  // innermost enclosing non-class scope.
1334  return false;
1335  }
1336 
1337  if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1338  S->getParent() && !S->getParent()->isTemplateParamScope()) {
1339  // We've just searched the last template parameter scope and
1340  // found nothing, so look into the contexts between the
1341  // lexical and semantic declaration contexts returned by
1342  // findOuterContext(). This implements the name lookup behavior
1343  // of C++ [temp.local]p8.
1344  Ctx = OutsideOfTemplateParamDC;
1345  OutsideOfTemplateParamDC = nullptr;
1346  }
1347 
1348  if (Ctx) {
1349  DeclContext *OuterCtx;
1350  bool SearchAfterTemplateScope;
1351  std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1352  if (SearchAfterTemplateScope)
1353  OutsideOfTemplateParamDC = OuterCtx;
1354 
1355  for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1356  // We do not directly look into transparent contexts, since
1357  // those entities will be found in the nearest enclosing
1358  // non-transparent context.
1359  if (Ctx->isTransparentContext())
1360  continue;
1361 
1362  // We do not look directly into function or method contexts,
1363  // since all of the local variables and parameters of the
1364  // function/method are present within the Scope.
1365  if (Ctx->isFunctionOrMethod()) {
1366  // If we have an Objective-C instance method, look for ivars
1367  // in the corresponding interface.
1368  if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1369  if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1370  if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1371  ObjCInterfaceDecl *ClassDeclared;
1372  if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1373  Name.getAsIdentifierInfo(),
1374  ClassDeclared)) {
1375  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1376  R.addDecl(ND);
1377  R.resolveKind();
1378  return true;
1379  }
1380  }
1381  }
1382  }
1383 
1384  continue;
1385  }
1386 
1387  // If this is a file context, we need to perform unqualified name
1388  // lookup considering using directives.
1389  if (Ctx->isFileContext()) {
1390  // If we haven't handled using directives yet, do so now.
1391  if (!VisitedUsingDirectives) {
1392  // Add using directives from this context up to the top level.
1393  for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1394  if (UCtx->isTransparentContext())
1395  continue;
1396 
1397  UDirs.visit(UCtx, UCtx);
1398  }
1399 
1400  // Find the innermost file scope, so we can add using directives
1401  // from local scopes.
1402  Scope *InnermostFileScope = S;
1403  while (InnermostFileScope &&
1404  !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1405  InnermostFileScope = InnermostFileScope->getParent();
1406  UDirs.visitScopeChain(Initial, InnermostFileScope);
1407 
1408  UDirs.done();
1409 
1410  VisitedUsingDirectives = true;
1411  }
1412 
1413  if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1414  R.resolveKind();
1415  return true;
1416  }
1417 
1418  continue;
1419  }
1420 
1421  // Perform qualified name lookup into this context.
1422  // FIXME: In some cases, we know that every name that could be found by
1423  // this qualified name lookup will also be on the identifier chain. For
1424  // example, inside a class without any base classes, we never need to
1425  // perform qualified lookup because all of the members are on top of the
1426  // identifier chain.
1427  if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1428  return true;
1429  }
1430  }
1431  }
1432 
1433  // Stop if we ran out of scopes.
1434  // FIXME: This really, really shouldn't be happening.
1435  if (!S) return false;
1436 
1437  // If we are looking for members, no need to look into global/namespace scope.
1438  if (NameKind == LookupMemberName)
1439  return false;
1440 
1441  // Collect UsingDirectiveDecls in all scopes, and recursively all
1442  // nominated namespaces by those using-directives.
1443  //
1444  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1445  // don't build it for each lookup!
1446  if (!VisitedUsingDirectives) {
1447  UDirs.visitScopeChain(Initial, S);
1448  UDirs.done();
1449  }
1450 
1451  // If we're not performing redeclaration lookup, do not look for local
1452  // extern declarations outside of a function scope.
1453  if (!R.isForRedeclaration())
1454  FindLocals.restore();
1455 
1456  // Lookup namespace scope, and global scope.
1457  // Unqualified name lookup in C++ requires looking into scopes
1458  // that aren't strictly lexical, and therefore we walk through the
1459  // context as well as walking through the scopes.
1460  for (; S; S = S->getParent()) {
1461  // Check whether the IdResolver has anything in this scope.
1462  bool Found = false;
1463  for (; I != IEnd && S->isDeclScope(*I); ++I) {
1464  if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1465  // We found something. Look for anything else in our scope
1466  // with this same name and in an acceptable identifier
1467  // namespace, so that we can construct an overload set if we
1468  // need to.
1469  Found = true;
1470  R.addDecl(ND);
1471  }
1472  }
1473 
1474  if (Found && S->isTemplateParamScope()) {
1475  R.resolveKind();
1476  return true;
1477  }
1478 
1479  DeclContext *Ctx = S->getEntity();
1480  if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1481  S->getParent() && !S->getParent()->isTemplateParamScope()) {
1482  // We've just searched the last template parameter scope and
1483  // found nothing, so look into the contexts between the
1484  // lexical and semantic declaration contexts returned by
1485  // findOuterContext(). This implements the name lookup behavior
1486  // of C++ [temp.local]p8.
1487  Ctx = OutsideOfTemplateParamDC;
1488  OutsideOfTemplateParamDC = nullptr;
1489  }
1490 
1491  if (Ctx) {
1492  DeclContext *OuterCtx;
1493  bool SearchAfterTemplateScope;
1494  std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1495  if (SearchAfterTemplateScope)
1496  OutsideOfTemplateParamDC = OuterCtx;
1497 
1498  for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1499  // We do not directly look into transparent contexts, since
1500  // those entities will be found in the nearest enclosing
1501  // non-transparent context.
1502  if (Ctx->isTransparentContext())
1503  continue;
1504 
1505  // If we have a context, and it's not a context stashed in the
1506  // template parameter scope for an out-of-line definition, also
1507  // look into that context.
1508  if (!(Found && S->isTemplateParamScope())) {
1509  assert(Ctx->isFileContext() &&
1510  "We should have been looking only at file context here already.");
1511 
1512  // Look into context considering using-directives.
1513  if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1514  Found = true;
1515  }
1516 
1517  if (Found) {
1518  R.resolveKind();
1519  return true;
1520  }
1521 
1522  if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1523  return false;
1524  }
1525  }
1526 
1527  if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1528  return false;
1529  }
1530 
1531  return !R.empty();
1532 }
1533 
1535  if (auto *M = getCurrentModule())
1536  Context.mergeDefinitionIntoModule(ND, M);
1537  else
1538  // We're not building a module; just make the definition visible.
1540 
1541  // If ND is a template declaration, make the template parameters
1542  // visible too. They're not (necessarily) within a mergeable DeclContext.
1543  if (auto *TD = dyn_cast<TemplateDecl>(ND))
1544  for (auto *Param : *TD->getTemplateParameters())
1545  makeMergedDefinitionVisible(Param);
1546 }
1547 
1548 /// Find the module in which the given declaration was defined.
1549 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1550  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1551  // If this function was instantiated from a template, the defining module is
1552  // the module containing the pattern.
1553  if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1554  Entity = Pattern;
1555  } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1556  if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1557  Entity = Pattern;
1558  } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1559  if (auto *Pattern = ED->getTemplateInstantiationPattern())
1560  Entity = Pattern;
1561  } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1562  if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1563  Entity = Pattern;
1564  }
1565 
1566  // Walk up to the containing context. That might also have been instantiated
1567  // from a template.
1568  DeclContext *Context = Entity->getLexicalDeclContext();
1569  if (Context->isFileContext())
1570  return S.getOwningModule(Entity);
1571  return getDefiningModule(S, cast<Decl>(Context));
1572 }
1573 
1575  unsigned N = CodeSynthesisContexts.size();
1576  for (unsigned I = CodeSynthesisContextLookupModules.size();
1577  I != N; ++I) {
1578  Module *M = CodeSynthesisContexts[I].Entity ?
1579  getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1580  nullptr;
1581  if (M && !LookupModulesCache.insert(M).second)
1582  M = nullptr;
1583  CodeSynthesisContextLookupModules.push_back(M);
1584  }
1585  return LookupModulesCache;
1586 }
1587 
1588 /// Determine whether the module M is part of the current module from the
1589 /// perspective of a module-private visibility check.
1590 static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
1591  // If M is the global module fragment of a module that we've not yet finished
1592  // parsing, then it must be part of the current module.
1593  return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
1594  (M->Kind == Module::GlobalModuleFragment && !M->Parent);
1595 }
1596 
1598  for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1599  if (isModuleVisible(Merged))
1600  return true;
1601  return false;
1602 }
1603 
1605  for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1606  if (isInCurrentModule(Merged, getLangOpts()))
1607  return true;
1608  return false;
1609 }
1610 
1611 template<typename ParmDecl>
1612 static bool
1613 hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1615  if (!D->hasDefaultArgument())
1616  return false;
1617 
1618  while (D) {
1619  auto &DefaultArg = D->getDefaultArgStorage();
1620  if (!DefaultArg.isInherited() && S.isVisible(D))
1621  return true;
1622 
1623  if (!DefaultArg.isInherited() && Modules) {
1624  auto *NonConstD = const_cast<ParmDecl*>(D);
1625  Modules->push_back(S.getOwningModule(NonConstD));
1626  }
1627 
1628  // If there was a previous default argument, maybe its parameter is visible.
1629  D = DefaultArg.getInheritedFrom();
1630  }
1631  return false;
1632 }
1633 
1636  if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1637  return ::hasVisibleDefaultArgument(*this, P, Modules);
1638  if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1639  return ::hasVisibleDefaultArgument(*this, P, Modules);
1640  return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1641  Modules);
1642 }
1643 
1644 template<typename Filter>
1645 static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1647  Filter F) {
1648  bool HasFilteredRedecls = false;
1649 
1650  for (auto *Redecl : D->redecls()) {
1651  auto *R = cast<NamedDecl>(Redecl);
1652  if (!F(R))
1653  continue;
1654 
1655  if (S.isVisible(R))
1656  return true;
1657 
1658  HasFilteredRedecls = true;
1659 
1660  if (Modules)
1661  Modules->push_back(R->getOwningModule());
1662  }
1663 
1664  // Only return false if there is at least one redecl that is not filtered out.
1665  if (HasFilteredRedecls)
1666  return false;
1667 
1668  return true;
1669 }
1670 
1672  const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1673  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1674  if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1675  return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1676  if (auto *FD = dyn_cast<FunctionDecl>(D))
1677  return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1678  if (auto *VD = dyn_cast<VarDecl>(D))
1679  return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1680  llvm_unreachable("unknown explicit specialization kind");
1681  });
1682 }
1683 
1685  const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1686  assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1687  "not a member specialization");
1688  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1689  // If the specialization is declared at namespace scope, then it's a member
1690  // specialization declaration. If it's lexically inside the class
1691  // definition then it was instantiated.
1692  //
1693  // FIXME: This is a hack. There should be a better way to determine this.
1694  // FIXME: What about MS-style explicit specializations declared within a
1695  // class definition?
1696  return D->getLexicalDeclContext()->isFileContext();
1697  });
1698 }
1699 
1700 /// Determine whether a declaration is visible to name lookup.
1701 ///
1702 /// This routine determines whether the declaration D is visible in the current
1703 /// lookup context, taking into account the current template instantiation
1704 /// stack. During template instantiation, a declaration is visible if it is
1705 /// visible from a module containing any entity on the template instantiation
1706 /// path (by instantiating a template, you allow it to see the declarations that
1707 /// your module can see, including those later on in your module).
1708 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1709  assert(D->isHidden() && "should not call this: not in slow case");
1710 
1711  Module *DeclModule = SemaRef.getOwningModule(D);
1712  assert(DeclModule && "hidden decl has no owning module");
1713 
1714  // If the owning module is visible, the decl is visible.
1715  if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
1716  return true;
1717 
1718  // Determine whether a decl context is a file context for the purpose of
1719  // visibility. This looks through some (export and linkage spec) transparent
1720  // contexts, but not others (enums).
1721  auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1722  return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1723  isa<ExportDecl>(DC);
1724  };
1725 
1726  // If this declaration is not at namespace scope
1727  // then it is visible if its lexical parent has a visible definition.
1729  if (DC && !IsEffectivelyFileContext(DC)) {
1730  // For a parameter, check whether our current template declaration's
1731  // lexical context is visible, not whether there's some other visible
1732  // definition of it, because parameters aren't "within" the definition.
1733  //
1734  // In C++ we need to check for a visible definition due to ODR merging,
1735  // and in C we must not because each declaration of a function gets its own
1736  // set of declarations for tags in prototype scope.
1737  bool VisibleWithinParent;
1738  if (D->isTemplateParameter()) {
1739  bool SearchDefinitions = true;
1740  if (const auto *DCD = dyn_cast<Decl>(DC)) {
1741  if (const auto *TD = DCD->getDescribedTemplate()) {
1742  TemplateParameterList *TPL = TD->getTemplateParameters();
1743  auto Index = getDepthAndIndex(D).second;
1744  SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1745  }
1746  }
1747  if (SearchDefinitions)
1748  VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1749  else
1750  VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1751  } else if (isa<ParmVarDecl>(D) ||
1752  (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1753  VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1754  else if (D->isModulePrivate()) {
1755  // A module-private declaration is only visible if an enclosing lexical
1756  // parent was merged with another definition in the current module.
1757  VisibleWithinParent = false;
1758  do {
1759  if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1760  VisibleWithinParent = true;
1761  break;
1762  }
1763  DC = DC->getLexicalParent();
1764  } while (!IsEffectivelyFileContext(DC));
1765  } else {
1766  VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1767  }
1768 
1769  if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1770  // FIXME: Do something better in this case.
1771  !SemaRef.getLangOpts().ModulesLocalVisibility) {
1772  // Cache the fact that this declaration is implicitly visible because
1773  // its parent has a visible definition.
1775  }
1776  return VisibleWithinParent;
1777  }
1778 
1779  return false;
1780 }
1781 
1782 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1783  // The module might be ordinarily visible. For a module-private query, that
1784  // means it is part of the current module. For any other query, that means it
1785  // is in our visible module set.
1786  if (ModulePrivate) {
1787  if (isInCurrentModule(M, getLangOpts()))
1788  return true;
1789  } else {
1790  if (VisibleModules.isVisible(M))
1791  return true;
1792  }
1793 
1794  // Otherwise, it might be visible by virtue of the query being within a
1795  // template instantiation or similar that is permitted to look inside M.
1796 
1797  // Find the extra places where we need to look.
1798  const auto &LookupModules = getLookupModules();
1799  if (LookupModules.empty())
1800  return false;
1801 
1802  // If our lookup set contains the module, it's visible.
1803  if (LookupModules.count(M))
1804  return true;
1805 
1806  // For a module-private query, that's everywhere we get to look.
1807  if (ModulePrivate)
1808  return false;
1809 
1810  // Check whether M is transitively exported to an import of the lookup set.
1811  return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1812  return LookupM->isModuleVisible(M);
1813  });
1814 }
1815 
1816 bool Sema::isVisibleSlow(const NamedDecl *D) {
1817  return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1818 }
1819 
1820 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1821  // FIXME: If there are both visible and hidden declarations, we need to take
1822  // into account whether redeclaration is possible. Example:
1823  //
1824  // Non-imported module:
1825  // int f(T); // #1
1826  // Some TU:
1827  // static int f(U); // #2, not a redeclaration of #1
1828  // int f(T); // #3, finds both, should link with #1 if T != U, but
1829  // // with #2 if T == U; neither should be ambiguous.
1830  for (auto *D : R) {
1831  if (isVisible(D))
1832  return true;
1833  assert(D->isExternallyDeclarable() &&
1834  "should not have hidden, non-externally-declarable result here");
1835  }
1836 
1837  // This function is called once "New" is essentially complete, but before a
1838  // previous declaration is attached. We can't query the linkage of "New" in
1839  // general, because attaching the previous declaration can change the
1840  // linkage of New to match the previous declaration.
1841  //
1842  // However, because we've just determined that there is no *visible* prior
1843  // declaration, we can compute the linkage here. There are two possibilities:
1844  //
1845  // * This is not a redeclaration; it's safe to compute the linkage now.
1846  //
1847  // * This is a redeclaration of a prior declaration that is externally
1848  // redeclarable. In that case, the linkage of the declaration is not
1849  // changed by attaching the prior declaration, because both are externally
1850  // declarable (and thus ExternalLinkage or VisibleNoLinkage).
1851  //
1852  // FIXME: This is subtle and fragile.
1853  return New->isExternallyDeclarable();
1854 }
1855 
1856 /// Retrieve the visible declaration corresponding to D, if any.
1857 ///
1858 /// This routine determines whether the declaration D is visible in the current
1859 /// module, with the current imports. If not, it checks whether any
1860 /// redeclaration of D is visible, and if so, returns that declaration.
1861 ///
1862 /// \returns D, or a visible previous declaration of D, whichever is more recent
1863 /// and visible. If no declaration of D is visible, returns null.
1865  unsigned IDNS) {
1866  assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1867 
1868  for (auto RD : D->redecls()) {
1869  // Don't bother with extra checks if we already know this one isn't visible.
1870  if (RD == D)
1871  continue;
1872 
1873  auto ND = cast<NamedDecl>(RD);
1874  // FIXME: This is wrong in the case where the previous declaration is not
1875  // visible in the same scope as D. This needs to be done much more
1876  // carefully.
1877  if (ND->isInIdentifierNamespace(IDNS) &&
1878  LookupResult::isVisible(SemaRef, ND))
1879  return ND;
1880  }
1881 
1882  return nullptr;
1883 }
1884 
1887  assert(!isVisible(D) && "not in slow case");
1888  return hasVisibleDeclarationImpl(*this, D, Modules,
1889  [](const NamedDecl *) { return true; });
1890 }
1891 
1892 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1893  if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1894  // Namespaces are a bit of a special case: we expect there to be a lot of
1895  // redeclarations of some namespaces, all declarations of a namespace are
1896  // essentially interchangeable, all declarations are found by name lookup
1897  // if any is, and namespaces are never looked up during template
1898  // instantiation. So we benefit from caching the check in this case, and
1899  // it is correct to do so.
1900  auto *Key = ND->getCanonicalDecl();
1901  if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1902  return Acceptable;
1903  auto *Acceptable = isVisible(getSema(), Key)
1904  ? Key
1905  : findAcceptableDecl(getSema(), Key, IDNS);
1906  if (Acceptable)
1907  getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1908  return Acceptable;
1909  }
1910 
1911  return findAcceptableDecl(getSema(), D, IDNS);
1912 }
1913 
1914 /// Perform unqualified name lookup starting from a given
1915 /// scope.
1916 ///
1917 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1918 /// used to find names within the current scope. For example, 'x' in
1919 /// @code
1920 /// int x;
1921 /// int f() {
1922 /// return x; // unqualified name look finds 'x' in the global scope
1923 /// }
1924 /// @endcode
1925 ///
1926 /// Different lookup criteria can find different names. For example, a
1927 /// particular scope can have both a struct and a function of the same
1928 /// name, and each can be found by certain lookup criteria. For more
1929 /// information about lookup criteria, see the documentation for the
1930 /// class LookupCriteria.
1931 ///
1932 /// @param S The scope from which unqualified name lookup will
1933 /// begin. If the lookup criteria permits, name lookup may also search
1934 /// in the parent scopes.
1935 ///
1936 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1937 /// look up and the lookup kind), and is updated with the results of lookup
1938 /// including zero or more declarations and possibly additional information
1939 /// used to diagnose ambiguities.
1940 ///
1941 /// @returns \c true if lookup succeeded and false otherwise.
1942 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1943  DeclarationName Name = R.getLookupName();
1944  if (!Name) return false;
1945 
1946  LookupNameKind NameKind = R.getLookupKind();
1947 
1948  if (!getLangOpts().CPlusPlus) {
1949  // Unqualified name lookup in C/Objective-C is purely lexical, so
1950  // search in the declarations attached to the name.
1951  if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1952  // Find the nearest non-transparent declaration scope.
1953  while (!(S->getFlags() & Scope::DeclScope) ||
1954  (S->getEntity() && S->getEntity()->isTransparentContext()))
1955  S = S->getParent();
1956  }
1957 
1958  // When performing a scope lookup, we want to find local extern decls.
1959  FindLocalExternScope FindLocals(R);
1960 
1961  // Scan up the scope chain looking for a decl that matches this
1962  // identifier that is in the appropriate namespace. This search
1963  // should not take long, as shadowing of names is uncommon, and
1964  // deep shadowing is extremely uncommon.
1965  bool LeftStartingScope = false;
1966 
1967  for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1968  IEnd = IdResolver.end();
1969  I != IEnd; ++I)
1970  if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1971  if (NameKind == LookupRedeclarationWithLinkage) {
1972  // Determine whether this (or a previous) declaration is
1973  // out-of-scope.
1974  if (!LeftStartingScope && !S->isDeclScope(*I))
1975  LeftStartingScope = true;
1976 
1977  // If we found something outside of our starting scope that
1978  // does not have linkage, skip it.
1979  if (LeftStartingScope && !((*I)->hasLinkage())) {
1980  R.setShadowed();
1981  continue;
1982  }
1983  }
1984  else if (NameKind == LookupObjCImplicitSelfParam &&
1985  !isa<ImplicitParamDecl>(*I))
1986  continue;
1987 
1988  R.addDecl(D);
1989 
1990  // Check whether there are any other declarations with the same name
1991  // and in the same scope.
1992  if (I != IEnd) {
1993  // Find the scope in which this declaration was declared (if it
1994  // actually exists in a Scope).
1995  while (S && !S->isDeclScope(D))
1996  S = S->getParent();
1997 
1998  // If the scope containing the declaration is the translation unit,
1999  // then we'll need to perform our checks based on the matching
2000  // DeclContexts rather than matching scopes.
2002  S = nullptr;
2003 
2004  // Compute the DeclContext, if we need it.
2005  DeclContext *DC = nullptr;
2006  if (!S)
2007  DC = (*I)->getDeclContext()->getRedeclContext();
2008 
2009  IdentifierResolver::iterator LastI = I;
2010  for (++LastI; LastI != IEnd; ++LastI) {
2011  if (S) {
2012  // Match based on scope.
2013  if (!S->isDeclScope(*LastI))
2014  break;
2015  } else {
2016  // Match based on DeclContext.
2017  DeclContext *LastDC
2018  = (*LastI)->getDeclContext()->getRedeclContext();
2019  if (!LastDC->Equals(DC))
2020  break;
2021  }
2022 
2023  // If the declaration is in the right namespace and visible, add it.
2024  if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2025  R.addDecl(LastD);
2026  }
2027 
2028  R.resolveKind();
2029  }
2030 
2031  return true;
2032  }
2033  } else {
2034  // Perform C++ unqualified name lookup.
2035  if (CppLookupName(R, S))
2036  return true;
2037  }
2038 
2039  // If we didn't find a use of this identifier, and if the identifier
2040  // corresponds to a compiler builtin, create the decl object for the builtin
2041  // now, injecting it into translation unit scope, and return it.
2042  if (AllowBuiltinCreation && LookupBuiltin(R))
2043  return true;
2044 
2045  // If we didn't find a use of this identifier, the ExternalSource
2046  // may be able to handle the situation.
2047  // Note: some lookup failures are expected!
2048  // See e.g. R.isForRedeclaration().
2049  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2050 }
2051 
2052 /// Perform qualified name lookup in the namespaces nominated by
2053 /// using directives by the given context.
2054 ///
2055 /// C++98 [namespace.qual]p2:
2056 /// Given X::m (where X is a user-declared namespace), or given \::m
2057 /// (where X is the global namespace), let S be the set of all
2058 /// declarations of m in X and in the transitive closure of all
2059 /// namespaces nominated by using-directives in X and its used
2060 /// namespaces, except that using-directives are ignored in any
2061 /// namespace, including X, directly containing one or more
2062 /// declarations of m. No namespace is searched more than once in
2063 /// the lookup of a name. If S is the empty set, the program is
2064 /// ill-formed. Otherwise, if S has exactly one member, or if the
2065 /// context of the reference is a using-declaration
2066 /// (namespace.udecl), S is the required set of declarations of
2067 /// m. Otherwise if the use of m is not one that allows a unique
2068 /// declaration to be chosen from S, the program is ill-formed.
2069 ///
2070 /// C++98 [namespace.qual]p5:
2071 /// During the lookup of a qualified namespace member name, if the
2072 /// lookup finds more than one declaration of the member, and if one
2073 /// declaration introduces a class name or enumeration name and the
2074 /// other declarations either introduce the same object, the same
2075 /// enumerator or a set of functions, the non-type name hides the
2076 /// class or enumeration name if and only if the declarations are
2077 /// from the same namespace; otherwise (the declarations are from
2078 /// different namespaces), the program is ill-formed.
2080  DeclContext *StartDC) {
2081  assert(StartDC->isFileContext() && "start context is not a file context");
2082 
2083  // We have not yet looked into these namespaces, much less added
2084  // their "using-children" to the queue.
2086 
2087  // We have at least added all these contexts to the queue.
2088  llvm::SmallPtrSet<DeclContext*, 8> Visited;
2089  Visited.insert(StartDC);
2090 
2091  // We have already looked into the initial namespace; seed the queue
2092  // with its using-children.
2093  for (auto *I : StartDC->using_directives()) {
2094  NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2095  if (S.isVisible(I) && Visited.insert(ND).second)
2096  Queue.push_back(ND);
2097  }
2098 
2099  // The easiest way to implement the restriction in [namespace.qual]p5
2100  // is to check whether any of the individual results found a tag
2101  // and, if so, to declare an ambiguity if the final result is not
2102  // a tag.
2103  bool FoundTag = false;
2104  bool FoundNonTag = false;
2105 
2107 
2108  bool Found = false;
2109  while (!Queue.empty()) {
2110  NamespaceDecl *ND = Queue.pop_back_val();
2111 
2112  // We go through some convolutions here to avoid copying results
2113  // between LookupResults.
2114  bool UseLocal = !R.empty();
2115  LookupResult &DirectR = UseLocal ? LocalR : R;
2116  bool FoundDirect = LookupDirect(S, DirectR, ND);
2117 
2118  if (FoundDirect) {
2119  // First do any local hiding.
2120  DirectR.resolveKind();
2121 
2122  // If the local result is a tag, remember that.
2123  if (DirectR.isSingleTagDecl())
2124  FoundTag = true;
2125  else
2126  FoundNonTag = true;
2127 
2128  // Append the local results to the total results if necessary.
2129  if (UseLocal) {
2130  R.addAllDecls(LocalR);
2131  LocalR.clear();
2132  }
2133  }
2134 
2135  // If we find names in this namespace, ignore its using directives.
2136  if (FoundDirect) {
2137  Found = true;
2138  continue;
2139  }
2140 
2141  for (auto I : ND->using_directives()) {
2142  NamespaceDecl *Nom = I->getNominatedNamespace();
2143  if (S.isVisible(I) && Visited.insert(Nom).second)
2144  Queue.push_back(Nom);
2145  }
2146  }
2147 
2148  if (Found) {
2149  if (FoundTag && FoundNonTag)
2151  else
2152  R.resolveKind();
2153  }
2154 
2155  return Found;
2156 }
2157 
2158 /// Callback that looks for any member of a class with the given name.
2160  CXXBasePath &Path, DeclarationName Name) {
2161  RecordDecl *BaseRecord = Specifier->getType()->castAs<RecordType>()->getDecl();
2162 
2163  Path.Decls = BaseRecord->lookup(Name);
2164  return !Path.Decls.empty();
2165 }
2166 
2167 /// Determine whether the given set of member declarations contains only
2168 /// static members, nested types, and enumerators.
2169 template<typename InputIterator>
2170 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
2171  Decl *D = (*First)->getUnderlyingDecl();
2172  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
2173  return true;
2174 
2175  if (isa<CXXMethodDecl>(D)) {
2176  // Determine whether all of the methods are static.
2177  bool AllMethodsAreStatic = true;
2178  for(; First != Last; ++First) {
2179  D = (*First)->getUnderlyingDecl();
2180 
2181  if (!isa<CXXMethodDecl>(D)) {
2182  assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
2183  break;
2184  }
2185 
2186  if (!cast<CXXMethodDecl>(D)->isStatic()) {
2187  AllMethodsAreStatic = false;
2188  break;
2189  }
2190  }
2191 
2192  if (AllMethodsAreStatic)
2193  return true;
2194  }
2195 
2196  return false;
2197 }
2198 
2199 /// Perform qualified name lookup into a given context.
2200 ///
2201 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2202 /// names when the context of those names is explicit specified, e.g.,
2203 /// "std::vector" or "x->member", or as part of unqualified name lookup.
2204 ///
2205 /// Different lookup criteria can find different names. For example, a
2206 /// particular scope can have both a struct and a function of the same
2207 /// name, and each can be found by certain lookup criteria. For more
2208 /// information about lookup criteria, see the documentation for the
2209 /// class LookupCriteria.
2210 ///
2211 /// \param R captures both the lookup criteria and any lookup results found.
2212 ///
2213 /// \param LookupCtx The context in which qualified name lookup will
2214 /// search. If the lookup criteria permits, name lookup may also search
2215 /// in the parent contexts or (for C++ classes) base classes.
2216 ///
2217 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2218 /// occurs as part of unqualified name lookup.
2219 ///
2220 /// \returns true if lookup succeeded, false if it failed.
2222  bool InUnqualifiedLookup) {
2223  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2224 
2225  if (!R.getLookupName())
2226  return false;
2227 
2228  // Make sure that the declaration context is complete.
2229  assert((!isa<TagDecl>(LookupCtx) ||
2230  LookupCtx->isDependentContext() ||
2231  cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2232  cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2233  "Declaration context must already be complete!");
2234 
2235  struct QualifiedLookupInScope {
2236  bool oldVal;
2237  DeclContext *Context;
2238  // Set flag in DeclContext informing debugger that we're looking for qualified name
2239  QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2240  oldVal = ctx->setUseQualifiedLookup();
2241  }
2242  ~QualifiedLookupInScope() {
2243  Context->setUseQualifiedLookup(oldVal);
2244  }
2245  } QL(LookupCtx);
2246 
2247  if (LookupDirect(*this, R, LookupCtx)) {
2248  R.resolveKind();
2249  if (isa<CXXRecordDecl>(LookupCtx))
2250  R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2251  return true;
2252  }
2253 
2254  // Don't descend into implied contexts for redeclarations.
2255  // C++98 [namespace.qual]p6:
2256  // In a declaration for a namespace member in which the
2257  // declarator-id is a qualified-id, given that the qualified-id
2258  // for the namespace member has the form
2259  // nested-name-specifier unqualified-id
2260  // the unqualified-id shall name a member of the namespace
2261  // designated by the nested-name-specifier.
2262  // See also [class.mfct]p5 and [class.static.data]p2.
2263  if (R.isForRedeclaration())
2264  return false;
2265 
2266  // If this is a namespace, look it up in the implied namespaces.
2267  if (LookupCtx->isFileContext())
2268  return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2269 
2270  // If this isn't a C++ class, we aren't allowed to look into base
2271  // classes, we're done.
2272  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2273  if (!LookupRec || !LookupRec->getDefinition())
2274  return false;
2275 
2276  // If we're performing qualified name lookup into a dependent class,
2277  // then we are actually looking into a current instantiation. If we have any
2278  // dependent base classes, then we either have to delay lookup until
2279  // template instantiation time (at which point all bases will be available)
2280  // or we have to fail.
2281  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2282  LookupRec->hasAnyDependentBases()) {
2284  return false;
2285  }
2286 
2287  // Perform lookup into our base classes.
2288  CXXBasePaths Paths;
2289  Paths.setOrigin(LookupRec);
2290 
2291  // Look for this member in our base classes
2292  bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2293  DeclarationName Name) = nullptr;
2294  switch (R.getLookupKind()) {
2295  case LookupObjCImplicitSelfParam:
2296  case LookupOrdinaryName:
2297  case LookupMemberName:
2298  case LookupRedeclarationWithLinkage:
2299  case LookupLocalFriendName:
2300  BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2301  break;
2302 
2303  case LookupTagName:
2304  BaseCallback = &CXXRecordDecl::FindTagMember;
2305  break;
2306 
2307  case LookupAnyName:
2308  BaseCallback = &LookupAnyMember;
2309  break;
2310 
2311  case LookupOMPReductionName:
2312  BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2313  break;
2314 
2315  case LookupOMPMapperName:
2316  BaseCallback = &CXXRecordDecl::FindOMPMapperMember;
2317  break;
2318 
2319  case LookupUsingDeclName:
2320  // This lookup is for redeclarations only.
2321 
2322  case LookupOperatorName:
2323  case LookupNamespaceName:
2324  case LookupObjCProtocolName:
2325  case LookupLabel:
2326  // These lookups will never find a member in a C++ class (or base class).
2327  return false;
2328 
2329  case LookupNestedNameSpecifierName:
2331  break;
2332  }
2333 
2334  DeclarationName Name = R.getLookupName();
2335  if (!LookupRec->lookupInBases(
2336  [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2337  return BaseCallback(Specifier, Path, Name);
2338  },
2339  Paths))
2340  return false;
2341 
2342  R.setNamingClass(LookupRec);
2343 
2344  // C++ [class.member.lookup]p2:
2345  // [...] If the resulting set of declarations are not all from
2346  // sub-objects of the same type, or the set has a nonstatic member
2347  // and includes members from distinct sub-objects, there is an
2348  // ambiguity and the program is ill-formed. Otherwise that set is
2349  // the result of the lookup.
2350  QualType SubobjectType;
2351  int SubobjectNumber = 0;
2352  AccessSpecifier SubobjectAccess = AS_none;
2353 
2354  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2355  Path != PathEnd; ++Path) {
2356  const CXXBasePathElement &PathElement = Path->back();
2357 
2358  // Pick the best (i.e. most permissive i.e. numerically lowest) access
2359  // across all paths.
2360  SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2361 
2362  // Determine whether we're looking at a distinct sub-object or not.
2363  if (SubobjectType.isNull()) {
2364  // This is the first subobject we've looked at. Record its type.
2365  SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2366  SubobjectNumber = PathElement.SubobjectNumber;
2367  continue;
2368  }
2369 
2370  if (SubobjectType
2371  != Context.getCanonicalType(PathElement.Base->getType())) {
2372  // We found members of the given name in two subobjects of
2373  // different types. If the declaration sets aren't the same, this
2374  // lookup is ambiguous.
2375  if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2376  CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2377  DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2378  DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2379 
2380  // Get the decl that we should use for deduplicating this lookup.
2381  auto GetRepresentativeDecl = [&](NamedDecl *D) -> Decl * {
2382  // C++ [temp.local]p3:
2383  // A lookup that finds an injected-class-name (10.2) can result in
2384  // an ambiguity in certain cases (for example, if it is found in
2385  // more than one base class). If all of the injected-class-names
2386  // that are found refer to specializations of the same class
2387  // template, and if the name is used as a template-name, the
2388  // reference refers to the class template itself and not a
2389  // specialization thereof, and is not ambiguous.
2390  if (R.isTemplateNameLookup())
2391  if (auto *TD = getAsTemplateNameDecl(D))
2392  D = TD;
2393  return D->getUnderlyingDecl()->getCanonicalDecl();
2394  };
2395 
2396  while (FirstD != FirstPath->Decls.end() &&
2397  CurrentD != Path->Decls.end()) {
2398  if (GetRepresentativeDecl(*FirstD) !=
2399  GetRepresentativeDecl(*CurrentD))
2400  break;
2401 
2402  ++FirstD;
2403  ++CurrentD;
2404  }
2405 
2406  if (FirstD == FirstPath->Decls.end() &&
2407  CurrentD == Path->Decls.end())
2408  continue;
2409  }
2410 
2412  return true;
2413  }
2414 
2415  if (SubobjectNumber != PathElement.SubobjectNumber) {
2416  // We have a different subobject of the same type.
2417 
2418  // C++ [class.member.lookup]p5:
2419  // A static member, a nested type or an enumerator defined in
2420  // a base class T can unambiguously be found even if an object
2421  // has more than one base class subobject of type T.
2422  if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2423  continue;
2424 
2425  // We have found a nonstatic member name in multiple, distinct
2426  // subobjects. Name lookup is ambiguous.
2427  R.setAmbiguousBaseSubobjects(Paths);
2428  return true;
2429  }
2430  }
2431 
2432  // Lookup in a base class succeeded; return these results.
2433 
2434  for (auto *D : Paths.front().Decls) {
2435  AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2436  D->getAccess());
2437  R.addDecl(D, AS);
2438  }
2439  R.resolveKind();
2440  return true;
2441 }
2442 
2443 /// Performs qualified name lookup or special type of lookup for
2444 /// "__super::" scope specifier.
2445 ///
2446 /// This routine is a convenience overload meant to be called from contexts
2447 /// that need to perform a qualified name lookup with an optional C++ scope
2448 /// specifier that might require special kind of lookup.
2449 ///
2450 /// \param R captures both the lookup criteria and any lookup results found.
2451 ///
2452 /// \param LookupCtx The context in which qualified name lookup will
2453 /// search.
2454 ///
2455 /// \param SS An optional C++ scope-specifier.
2456 ///
2457 /// \returns true if lookup succeeded, false if it failed.
2459  CXXScopeSpec &SS) {
2460  auto *NNS = SS.getScopeRep();
2461  if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2462  return LookupInSuper(R, NNS->getAsRecordDecl());
2463  else
2464 
2465  return LookupQualifiedName(R, LookupCtx);
2466 }
2467 
2468 /// Performs name lookup for a name that was parsed in the
2469 /// source code, and may contain a C++ scope specifier.
2470 ///
2471 /// This routine is a convenience routine meant to be called from
2472 /// contexts that receive a name and an optional C++ scope specifier
2473 /// (e.g., "N::M::x"). It will then perform either qualified or
2474 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2475 /// respectively) on the given name and return those results. It will
2476 /// perform a special type of lookup for "__super::" scope specifier.
2477 ///
2478 /// @param S The scope from which unqualified name lookup will
2479 /// begin.
2480 ///
2481 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2482 ///
2483 /// @param EnteringContext Indicates whether we are going to enter the
2484 /// context of the scope-specifier SS (if present).
2485 ///
2486 /// @returns True if any decls were found (but possibly ambiguous)
2488  bool AllowBuiltinCreation, bool EnteringContext) {
2489  if (SS && SS->isInvalid()) {
2490  // When the scope specifier is invalid, don't even look for
2491  // anything.
2492  return false;
2493  }
2494 
2495  if (SS && SS->isSet()) {
2496  NestedNameSpecifier *NNS = SS->getScopeRep();
2497  if (NNS->getKind() == NestedNameSpecifier::Super)
2498  return LookupInSuper(R, NNS->getAsRecordDecl());
2499 
2500  if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2501  // We have resolved the scope specifier to a particular declaration
2502  // contex, and will perform name lookup in that context.
2503  if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2504  return false;
2505 
2506  R.setContextRange(SS->getRange());
2507  return LookupQualifiedName(R, DC);
2508  }
2509 
2510  // We could not resolve the scope specified to a specific declaration
2511  // context, which means that SS refers to an unknown specialization.
2512  // Name lookup can't find anything in this case.
2514  R.setContextRange(SS->getRange());
2515  return false;
2516  }
2517 
2518  // Perform unqualified name lookup starting in the given scope.
2519  return LookupName(R, S, AllowBuiltinCreation);
2520 }
2521 
2522 /// Perform qualified name lookup into all base classes of the given
2523 /// class.
2524 ///
2525 /// \param R captures both the lookup criteria and any lookup results found.
2526 ///
2527 /// \param Class The context in which qualified name lookup will
2528 /// search. Name lookup will search in all base classes merging the results.
2529 ///
2530 /// @returns True if any decls were found (but possibly ambiguous)
2532  // The access-control rules we use here are essentially the rules for
2533  // doing a lookup in Class that just magically skipped the direct
2534  // members of Class itself. That is, the naming class is Class, and the
2535  // access includes the access of the base.
2536  for (const auto &BaseSpec : Class->bases()) {
2537  CXXRecordDecl *RD = cast<CXXRecordDecl>(
2538  BaseSpec.getType()->castAs<RecordType>()->getDecl());
2539  LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2540  Result.setBaseObjectType(Context.getRecordType(Class));
2541  LookupQualifiedName(Result, RD);
2542 
2543  // Copy the lookup results into the target, merging the base's access into
2544  // the path access.
2545  for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2546  R.addDecl(I.getDecl(),
2547  CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2548  I.getAccess()));
2549  }
2550 
2551  Result.suppressDiagnostics();
2552  }
2553 
2554  R.resolveKind();
2555  R.setNamingClass(Class);
2556 
2557  return !R.empty();
2558 }
2559 
2560 /// Produce a diagnostic describing the ambiguity that resulted
2561 /// from name lookup.
2562 ///
2563 /// \param Result The result of the ambiguous lookup to be diagnosed.
2565  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2566 
2567  DeclarationName Name = Result.getLookupName();
2568  SourceLocation NameLoc = Result.getNameLoc();
2569  SourceRange LookupRange = Result.getContextRange();
2570 
2571  switch (Result.getAmbiguityKind()) {
2573  CXXBasePaths *Paths = Result.getBasePaths();
2574  QualType SubobjectType = Paths->front().back().Base->getType();
2575  Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2576  << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2577  << LookupRange;
2578 
2579  DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2580  while (isa<CXXMethodDecl>(*Found) &&
2581  cast<CXXMethodDecl>(*Found)->isStatic())
2582  ++Found;
2583 
2584  Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2585  break;
2586  }
2587 
2589  Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2590  << Name << LookupRange;
2591 
2592  CXXBasePaths *Paths = Result.getBasePaths();
2593  std::set<Decl *> DeclsPrinted;
2594  for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2595  PathEnd = Paths->end();
2596  Path != PathEnd; ++Path) {
2597  Decl *D = Path->Decls.front();
2598  if (DeclsPrinted.insert(D).second)
2599  Diag(D->getLocation(), diag::note_ambiguous_member_found);
2600  }
2601  break;
2602  }
2603 
2605  Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2606 
2607  llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2608 
2609  for (auto *D : Result)
2610  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2611  TagDecls.insert(TD);
2612  Diag(TD->getLocation(), diag::note_hidden_tag);
2613  }
2614 
2615  for (auto *D : Result)
2616  if (!isa<TagDecl>(D))
2617  Diag(D->getLocation(), diag::note_hiding_object);
2618 
2619  // For recovery purposes, go ahead and implement the hiding.
2620  LookupResult::Filter F = Result.makeFilter();
2621  while (F.hasNext()) {
2622  if (TagDecls.count(F.next()))
2623  F.erase();
2624  }
2625  F.done();
2626  break;
2627  }
2628 
2630  Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2631 
2632  for (auto *D : Result)
2633  Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2634  break;
2635  }
2636  }
2637 }
2638 
2639 namespace {
2640  struct AssociatedLookup {
2641  AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2642  Sema::AssociatedNamespaceSet &Namespaces,
2643  Sema::AssociatedClassSet &Classes)
2644  : S(S), Namespaces(Namespaces), Classes(Classes),
2645  InstantiationLoc(InstantiationLoc) {
2646  }
2647 
2648  bool addClassTransitive(CXXRecordDecl *RD) {
2649  Classes.insert(RD);
2650  return ClassesTransitive.insert(RD);
2651  }
2652 
2653  Sema &S;
2654  Sema::AssociatedNamespaceSet &Namespaces;
2655  Sema::AssociatedClassSet &Classes;
2656  SourceLocation InstantiationLoc;
2657 
2658  private:
2659  Sema::AssociatedClassSet ClassesTransitive;
2660  };
2661 } // end anonymous namespace
2662 
2663 static void
2664 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2665 
2666 // Given the declaration context \param Ctx of a class, class template or
2667 // enumeration, add the associated namespaces to \param Namespaces as described
2668 // in [basic.lookup.argdep]p2.
2670  DeclContext *Ctx) {
2671  // The exact wording has been changed in C++14 as a result of
2672  // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2673  // to all language versions since it is possible to return a local type
2674  // from a lambda in C++11.
2675  //
2676  // C++14 [basic.lookup.argdep]p2:
2677  // If T is a class type [...]. Its associated namespaces are the innermost
2678  // enclosing namespaces of its associated classes. [...]
2679  //
2680  // If T is an enumeration type, its associated namespace is the innermost
2681  // enclosing namespace of its declaration. [...]
2682 
2683  // We additionally skip inline namespaces. The innermost non-inline namespace
2684  // contains all names of all its nested inline namespaces anyway, so we can
2685  // replace the entire inline namespace tree with its root.
2686  while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2687  Ctx = Ctx->getParent();
2688 
2689  Namespaces.insert(Ctx->getPrimaryContext());
2690 }
2691 
2692 // Add the associated classes and namespaces for argument-dependent
2693 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2694 static void
2695 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2696  const TemplateArgument &Arg) {
2697  // C++ [basic.lookup.argdep]p2, last bullet:
2698  // -- [...] ;
2699  switch (Arg.getKind()) {
2701  break;
2702 
2704  // [...] the namespaces and classes associated with the types of the
2705  // template arguments provided for template type parameters (excluding
2706  // template template parameters)
2708  break;
2709 
2712  // [...] the namespaces in which any template template arguments are
2713  // defined; and the classes in which any member templates used as
2714  // template template arguments are defined.
2716  if (ClassTemplateDecl *ClassTemplate
2717  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2718  DeclContext *Ctx = ClassTemplate->getDeclContext();
2719  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2720  Result.Classes.insert(EnclosingClass);
2721  // Add the associated namespace for this class.
2722  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2723  }
2724  break;
2725  }
2726 
2731  // [Note: non-type template arguments do not contribute to the set of
2732  // associated namespaces. ]
2733  break;
2734 
2736  for (const auto &P : Arg.pack_elements())
2738  break;
2739  }
2740 }
2741 
2742 // Add the associated classes and namespaces for argument-dependent lookup
2743 // with an argument of class type (C++ [basic.lookup.argdep]p2).
2744 static void
2745 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2746  CXXRecordDecl *Class) {
2747 
2748  // Just silently ignore anything whose name is __va_list_tag.
2749  if (Class->getDeclName() == Result.S.VAListTagName)
2750  return;
2751 
2752  // C++ [basic.lookup.argdep]p2:
2753  // [...]
2754  // -- If T is a class type (including unions), its associated
2755  // classes are: the class itself; the class of which it is a
2756  // member, if any; and its direct and indirect base classes.
2757  // Its associated namespaces are the innermost enclosing
2758  // namespaces of its associated classes.
2759 
2760  // Add the class of which it is a member, if any.
2761  DeclContext *Ctx = Class->getDeclContext();
2762  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2763  Result.Classes.insert(EnclosingClass);
2764 
2765  // Add the associated namespace for this class.
2766  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2767 
2768  // -- If T is a template-id, its associated namespaces and classes are
2769  // the namespace in which the template is defined; for member
2770  // templates, the member template's class; the namespaces and classes
2771  // associated with the types of the template arguments provided for
2772  // template type parameters (excluding template template parameters); the
2773  // namespaces in which any template template arguments are defined; and
2774  // the classes in which any member templates used as template template
2775  // arguments are defined. [Note: non-type template arguments do not
2776  // contribute to the set of associated namespaces. ]
2778  = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2779  DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2780  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2781  Result.Classes.insert(EnclosingClass);
2782  // Add the associated namespace for this class.
2783  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2784 
2785  const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2786  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2787  addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2788  }
2789 
2790  // Add the class itself. If we've already transitively visited this class,
2791  // we don't need to visit base classes.
2792  if (!Result.addClassTransitive(Class))
2793  return;
2794 
2795  // Only recurse into base classes for complete types.
2796  if (!Result.S.isCompleteType(Result.InstantiationLoc,
2797  Result.S.Context.getRecordType(Class)))
2798  return;
2799 
2800  // Add direct and indirect base classes along with their associated
2801  // namespaces.
2803  Bases.push_back(Class);
2804  while (!Bases.empty()) {
2805  // Pop this class off the stack.
2806  Class = Bases.pop_back_val();
2807 
2808  // Visit the base classes.
2809  for (const auto &Base : Class->bases()) {
2810  const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2811  // In dependent contexts, we do ADL twice, and the first time around,
2812  // the base type might be a dependent TemplateSpecializationType, or a
2813  // TemplateTypeParmType. If that happens, simply ignore it.
2814  // FIXME: If we want to support export, we probably need to add the
2815  // namespace of the template in a TemplateSpecializationType, or even
2816  // the classes and namespaces of known non-dependent arguments.
2817  if (!BaseType)
2818  continue;
2819  CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2820  if (Result.addClassTransitive(BaseDecl)) {
2821  // Find the associated namespace for this base class.
2822  DeclContext *BaseCtx = BaseDecl->getDeclContext();
2823  CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2824 
2825  // Make sure we visit the bases of this base class.
2826  if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2827  Bases.push_back(BaseDecl);
2828  }
2829  }
2830  }
2831 }
2832 
2833 // Add the associated classes and namespaces for
2834 // argument-dependent lookup with an argument of type T
2835 // (C++ [basic.lookup.koenig]p2).
2836 static void
2837 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2838  // C++ [basic.lookup.koenig]p2:
2839  //
2840  // For each argument type T in the function call, there is a set
2841  // of zero or more associated namespaces and a set of zero or more
2842  // associated classes to be considered. The sets of namespaces and
2843  // classes is determined entirely by the types of the function
2844  // arguments (and the namespace of any template template
2845  // argument). Typedef names and using-declarations used to specify
2846  // the types do not contribute to this set. The sets of namespaces
2847  // and classes are determined in the following way:
2848 
2850  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2851 
2852  while (true) {
2853  switch (T->getTypeClass()) {
2854 
2855 #define TYPE(Class, Base)
2856 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2857 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2858 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2859 #define ABSTRACT_TYPE(Class, Base)
2860 #include "clang/AST/TypeNodes.inc"
2861  // T is canonical. We can also ignore dependent types because
2862  // we don't need to do ADL at the definition point, but if we
2863  // wanted to implement template export (or if we find some other
2864  // use for associated classes and namespaces...) this would be
2865  // wrong.
2866  break;
2867 
2868  // -- If T is a pointer to U or an array of U, its associated
2869  // namespaces and classes are those associated with U.
2870  case Type::Pointer:
2871  T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2872  continue;
2873  case Type::ConstantArray:
2874  case Type::IncompleteArray:
2875  case Type::VariableArray:
2876  T = cast<ArrayType>(T)->getElementType().getTypePtr();
2877  continue;
2878 
2879  // -- If T is a fundamental type, its associated sets of
2880  // namespaces and classes are both empty.
2881  case Type::Builtin:
2882  break;
2883 
2884  // -- If T is a class type (including unions), its associated
2885  // classes are: the class itself; the class of which it is
2886  // a member, if any; and its direct and indirect base classes.
2887  // Its associated namespaces are the innermost enclosing
2888  // namespaces of its associated classes.
2889  case Type::Record: {
2890  CXXRecordDecl *Class =
2891  cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2892  addAssociatedClassesAndNamespaces(Result, Class);
2893  break;
2894  }
2895 
2896  // -- If T is an enumeration type, its associated namespace
2897  // is the innermost enclosing namespace of its declaration.
2898  // If it is a class member, its associated class is the
2899  // member’s class; else it has no associated class.
2900  case Type::Enum: {
2901  EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2902 
2903  DeclContext *Ctx = Enum->getDeclContext();
2904  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2905  Result.Classes.insert(EnclosingClass);
2906 
2907  // Add the associated namespace for this enumeration.
2908  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2909 
2910  break;
2911  }
2912 
2913  // -- If T is a function type, its associated namespaces and
2914  // classes are those associated with the function parameter
2915  // types and those associated with the return type.
2916  case Type::FunctionProto: {
2917  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2918  for (const auto &Arg : Proto->param_types())
2919  Queue.push_back(Arg.getTypePtr());
2920  // fallthrough
2921  LLVM_FALLTHROUGH;
2922  }
2923  case Type::FunctionNoProto: {
2924  const FunctionType *FnType = cast<FunctionType>(T);
2925  T = FnType->getReturnType().getTypePtr();
2926  continue;
2927  }
2928 
2929  // -- If T is a pointer to a member function of a class X, its
2930  // associated namespaces and classes are those associated
2931  // with the function parameter types and return type,
2932  // together with those associated with X.
2933  //
2934  // -- If T is a pointer to a data member of class X, its
2935  // associated namespaces and classes are those associated
2936  // with the member type together with those associated with
2937  // X.
2938  case Type::MemberPointer: {
2939  const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2940 
2941  // Queue up the class type into which this points.
2942  Queue.push_back(MemberPtr->getClass());
2943 
2944  // And directly continue with the pointee type.
2945  T = MemberPtr->getPointeeType().getTypePtr();
2946  continue;
2947  }
2948 
2949  // As an extension, treat this like a normal pointer.
2950  case Type::BlockPointer:
2951  T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2952  continue;
2953 
2954  // References aren't covered by the standard, but that's such an
2955  // obvious defect that we cover them anyway.
2956  case Type::LValueReference:
2957  case Type::RValueReference:
2958  T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2959  continue;
2960 
2961  // These are fundamental types.
2962  case Type::Vector:
2963  case Type::ExtVector:
2964  case Type::Complex:
2965  break;
2966 
2967  // Non-deduced auto types only get here for error cases.
2968  case Type::Auto:
2969  case Type::DeducedTemplateSpecialization:
2970  break;
2971 
2972  // If T is an Objective-C object or interface type, or a pointer to an
2973  // object or interface type, the associated namespace is the global
2974  // namespace.
2975  case Type::ObjCObject:
2976  case Type::ObjCInterface:
2977  case Type::ObjCObjectPointer:
2978  Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2979  break;
2980 
2981  // Atomic types are just wrappers; use the associations of the
2982  // contained type.
2983  case Type::Atomic:
2984  T = cast<AtomicType>(T)->getValueType().getTypePtr();
2985  continue;
2986  case Type::Pipe:
2987  T = cast<PipeType>(T)->getElementType().getTypePtr();
2988  continue;
2989  }
2990 
2991  if (Queue.empty())
2992  break;
2993  T = Queue.pop_back_val();
2994  }
2995 }
2996 
2997 /// Find the associated classes and namespaces for
2998 /// argument-dependent lookup for a call with the given set of
2999 /// arguments.
3000 ///
3001 /// This routine computes the sets of associated classes and associated
3002 /// namespaces searched by argument-dependent lookup
3003 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
3005  SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3006  AssociatedNamespaceSet &AssociatedNamespaces,
3007  AssociatedClassSet &AssociatedClasses) {
3008  AssociatedNamespaces.clear();
3009  AssociatedClasses.clear();
3010 
3011  AssociatedLookup Result(*this, InstantiationLoc,
3012  AssociatedNamespaces, AssociatedClasses);
3013 
3014  // C++ [basic.lookup.koenig]p2:
3015  // For each argument type T in the function call, there is a set
3016  // of zero or more associated namespaces and a set of zero or more
3017  // associated classes to be considered. The sets of namespaces and
3018  // classes is determined entirely by the types of the function
3019  // arguments (and the namespace of any template template
3020  // argument).
3021  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3022  Expr *Arg = Args[ArgIdx];
3023 
3024  if (Arg->getType() != Context.OverloadTy) {
3026  continue;
3027  }
3028 
3029  // [...] In addition, if the argument is the name or address of a
3030  // set of overloaded functions and/or function templates, its
3031  // associated classes and namespaces are the union of those
3032  // associated with each of the members of the set: the namespace
3033  // in which the function or function template is defined and the
3034  // classes and namespaces associated with its (non-dependent)
3035  // parameter types and return type.
3037 
3038  for (const NamedDecl *D : OE->decls()) {
3039  // Look through any using declarations to find the underlying function.
3040  const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3041 
3042  // Add the classes and namespaces associated with the parameter
3043  // types and return type of this function.
3044  addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3045  }
3046  }
3047 }
3048 
3050  SourceLocation Loc,
3051  LookupNameKind NameKind,
3052  RedeclarationKind Redecl) {
3053  LookupResult R(*this, Name, Loc, NameKind, Redecl);
3054  LookupName(R, S);
3055  return R.getAsSingle<NamedDecl>();
3056 }
3057 
3058 /// Find the protocol with the given name, if any.
3060  SourceLocation IdLoc,
3061  RedeclarationKind Redecl) {
3062  Decl *D = LookupSingleName(TUScope, II, IdLoc,
3063  LookupObjCProtocolName, Redecl);
3064  return cast_or_null<ObjCProtocolDecl>(D);
3065 }
3066 
3068  QualType T1, QualType T2,
3069  UnresolvedSetImpl &Functions) {
3070  // C++ [over.match.oper]p3:
3071  // -- The set of non-member candidates is the result of the
3072  // unqualified lookup of operator@ in the context of the
3073  // expression according to the usual rules for name lookup in
3074  // unqualified function calls (3.4.2) except that all member
3075  // functions are ignored.
3077  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3078  LookupName(Operators, S);
3079 
3080  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
3081  Functions.append(Operators.begin(), Operators.end());
3082 }
3083 
3086  bool ConstArg,
3087  bool VolatileArg,
3088  bool RValueThis,
3089  bool ConstThis,
3090  bool VolatileThis) {
3091  assert(CanDeclareSpecialMemberFunction(RD) &&
3092  "doing special member lookup into record that isn't fully complete");
3093  RD = RD->getDefinition();
3094  if (RValueThis || ConstThis || VolatileThis)
3095  assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
3096  "constructors and destructors always have unqualified lvalue this");
3097  if (ConstArg || VolatileArg)
3098  assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
3099  "parameter-less special members can't have qualified arguments");
3100 
3101  // FIXME: Get the caller to pass in a location for the lookup.
3102  SourceLocation LookupLoc = RD->getLocation();
3103 
3104  llvm::FoldingSetNodeID ID;
3105  ID.AddPointer(RD);
3106  ID.AddInteger(SM);
3107  ID.AddInteger(ConstArg);
3108  ID.AddInteger(VolatileArg);
3109  ID.AddInteger(RValueThis);
3110  ID.AddInteger(ConstThis);
3111  ID.AddInteger(VolatileThis);
3112 
3113  void *InsertPoint;
3115  SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3116 
3117  // This was already cached
3118  if (Result)
3119  return *Result;
3120 
3121  Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3122  Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3123  SpecialMemberCache.InsertNode(Result, InsertPoint);
3124 
3125  if (SM == CXXDestructor) {
3126  if (RD->needsImplicitDestructor()) {
3128  DeclareImplicitDestructor(RD);
3129  });
3130  }
3131  CXXDestructorDecl *DD = RD->getDestructor();
3132  Result->setMethod(DD);
3133  Result->setKind(DD && !DD->isDeleted()
3134  ? SpecialMemberOverloadResult::Success
3135  : SpecialMemberOverloadResult::NoMemberOrDeleted);
3136  return *Result;
3137  }
3138 
3139  // Prepare for overload resolution. Here we construct a synthetic argument
3140  // if necessary and make sure that implicit functions are declared.
3141  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3142  DeclarationName Name;
3143  Expr *Arg = nullptr;
3144  unsigned NumArgs;
3145 
3146  QualType ArgType = CanTy;
3147  ExprValueKind VK = VK_LValue;
3148 
3149  if (SM == CXXDefaultConstructor) {
3150  Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3151  NumArgs = 0;
3152  if (RD->needsImplicitDefaultConstructor()) {
3154  DeclareImplicitDefaultConstructor(RD);
3155  });
3156  }
3157  } else {
3158  if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3159  Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3160  if (RD->needsImplicitCopyConstructor()) {
3162  DeclareImplicitCopyConstructor(RD);
3163  });
3164  }
3165  if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3167  DeclareImplicitMoveConstructor(RD);
3168  });
3169  }
3170  } else {
3171  Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3172  if (RD->needsImplicitCopyAssignment()) {
3174  DeclareImplicitCopyAssignment(RD);
3175  });
3176  }
3177  if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3179  DeclareImplicitMoveAssignment(RD);
3180  });
3181  }
3182  }
3183 
3184  if (ConstArg)
3185  ArgType.addConst();
3186  if (VolatileArg)
3187  ArgType.addVolatile();
3188 
3189  // This isn't /really/ specified by the standard, but it's implied
3190  // we should be working from an RValue in the case of move to ensure
3191  // that we prefer to bind to rvalue references, and an LValue in the
3192  // case of copy to ensure we don't bind to rvalue references.
3193  // Possibly an XValue is actually correct in the case of move, but
3194  // there is no semantic difference for class types in this restricted
3195  // case.
3196  if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3197  VK = VK_LValue;
3198  else
3199  VK = VK_RValue;
3200  }
3201 
3202  OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3203 
3204  if (SM != CXXDefaultConstructor) {
3205  NumArgs = 1;
3206  Arg = &FakeArg;
3207  }
3208 
3209  // Create the object argument
3210  QualType ThisTy = CanTy;
3211  if (ConstThis)
3212  ThisTy.addConst();
3213  if (VolatileThis)
3214  ThisTy.addVolatile();
3215  Expr::Classification Classification =
3216  OpaqueValueExpr(LookupLoc, ThisTy,
3217  RValueThis ? VK_RValue : VK_LValue).Classify(Context);
3218 
3219  // Now we perform lookup on the name we computed earlier and do overload
3220  // resolution. Lookup is only performed directly into the class since there
3221  // will always be a (possibly implicit) declaration to shadow any others.
3223  DeclContext::lookup_result R = RD->lookup(Name);
3224 
3225  if (R.empty()) {
3226  // We might have no default constructor because we have a lambda's closure
3227  // type, rather than because there's some other declared constructor.
3228  // Every class has a copy/move constructor, copy/move assignment, and
3229  // destructor.
3230  assert(SM == CXXDefaultConstructor &&
3231  "lookup for a constructor or assignment operator was empty");
3232  Result->setMethod(nullptr);
3233  Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3234  return *Result;
3235  }
3236 
3237  // Copy the candidates as our processing of them may load new declarations
3238  // from an external source and invalidate lookup_result.
3239  SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3240 
3241  for (NamedDecl *CandDecl : Candidates) {
3242  if (CandDecl->isInvalidDecl())
3243  continue;
3244 
3245  DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3246  auto CtorInfo = getConstructorInfo(Cand);
3247  if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3248  if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3249  AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3250  llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3251  else if (CtorInfo)
3252  AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3253  llvm::makeArrayRef(&Arg, NumArgs), OCS,
3254  /*SuppressUserConversions*/ true);
3255  else
3256  AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3257  /*SuppressUserConversions*/ true);
3258  } else if (FunctionTemplateDecl *Tmpl =
3259  dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3260  if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3261  AddMethodTemplateCandidate(
3262  Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3263  llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3264  else if (CtorInfo)
3265  AddTemplateOverloadCandidate(
3266  CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3267  llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3268  else
3269  AddTemplateOverloadCandidate(
3270  Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3271  } else {
3272  assert(isa<UsingDecl>(Cand.getDecl()) &&
3273  "illegal Kind of operator = Decl");
3274  }
3275  }
3276 
3278  switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3279  case OR_Success:
3280  Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3281  Result->setKind(SpecialMemberOverloadResult::Success);
3282  break;
3283 
3284  case OR_Deleted:
3285  Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3286  Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3287  break;
3288 
3289  case OR_Ambiguous:
3290  Result->setMethod(nullptr);
3291  Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3292  break;
3293 
3294  case OR_No_Viable_Function:
3295  Result->setMethod(nullptr);
3296  Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3297  break;
3298  }
3299 
3300  return *Result;
3301 }
3302 
3303 /// Look up the default constructor for the given class.
3306  LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3307  false, false);
3308 
3309  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3310 }
3311 
3312 /// Look up the copying constructor for the given class.
3314  unsigned Quals) {
3315  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3316  "non-const, non-volatile qualifiers for copy ctor arg");
3318  LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3319  Quals & Qualifiers::Volatile, false, false, false);
3320 
3321  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3322 }
3323 
3324 /// Look up the moving constructor for the given class.
3326  unsigned Quals) {
3328  LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3329  Quals & Qualifiers::Volatile, false, false, false);
3330 
3331  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3332 }
3333 
3334 /// Look up the constructors for the given class.
3336  // If the implicit constructors have not yet been declared, do so now.
3337  if (CanDeclareSpecialMemberFunction(Class)) {
3339  if (Class->needsImplicitDefaultConstructor())
3340  DeclareImplicitDefaultConstructor(Class);
3341  if (Class->needsImplicitCopyConstructor())
3342  DeclareImplicitCopyConstructor(Class);
3343  if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3344  DeclareImplicitMoveConstructor(Class);
3345  });
3346  }
3347 
3348  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3350  return Class->lookup(Name);
3351 }
3352 
3353 /// Look up the copying assignment operator for the given class.
3355  unsigned Quals, bool RValueThis,
3356  unsigned ThisQuals) {
3357  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3358  "non-const, non-volatile qualifiers for copy assignment arg");
3359  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3360  "non-const, non-volatile qualifiers for copy assignment this");
3362  LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3363  Quals & Qualifiers::Volatile, RValueThis,
3364  ThisQuals & Qualifiers::Const,
3365  ThisQuals & Qualifiers::Volatile);
3366 
3367  return Result.getMethod();
3368 }
3369 
3370 /// Look up the moving assignment operator for the given class.
3372  unsigned Quals,
3373  bool RValueThis,
3374  unsigned ThisQuals) {
3375  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3376  "non-const, non-volatile qualifiers for copy assignment this");
3378  LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3379  Quals & Qualifiers::Volatile, RValueThis,
3380  ThisQuals & Qualifiers::Const,
3381  ThisQuals & Qualifiers::Volatile);
3382 
3383  return Result.getMethod();
3384 }
3385 
3386 /// Look for the destructor of the given class.
3387 ///
3388 /// During semantic analysis, this routine should be used in lieu of
3389 /// CXXRecordDecl::getDestructor().
3390 ///
3391 /// \returns The destructor for this class.
3393  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3394  false, false, false,
3395  false, false).getMethod());
3396 }
3397 
3398 /// LookupLiteralOperator - Determine which literal operator should be used for
3399 /// a user-defined literal, per C++11 [lex.ext].
3400 ///
3401 /// Normal overload resolution is not used to select which literal operator to
3402 /// call for a user-defined literal. Look up the provided literal operator name,
3403 /// and filter the results to the appropriate set for the given argument types.
3406  ArrayRef<QualType> ArgTys,
3407  bool AllowRaw, bool AllowTemplate,
3408  bool AllowStringTemplate, bool DiagnoseMissing) {
3409  LookupName(R, S);
3410  assert(R.getResultKind() != LookupResult::Ambiguous &&
3411  "literal operator lookup can't be ambiguous");
3412 
3413  // Filter the lookup results appropriately.
3415 
3416  bool FoundRaw = false;
3417  bool FoundTemplate = false;
3418  bool FoundStringTemplate = false;
3419  bool FoundExactMatch = false;
3420 
3421  while (F.hasNext()) {
3422  Decl *D = F.next();
3423  if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3424  D = USD->getTargetDecl();
3425 
3426  // If the declaration we found is invalid, skip it.
3427  if (D->isInvalidDecl()) {
3428  F.erase();
3429  continue;
3430  }
3431 
3432  bool IsRaw = false;
3433  bool IsTemplate = false;
3434  bool IsStringTemplate = false;
3435  bool IsExactMatch = false;
3436 
3437  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3438  if (FD->getNumParams() == 1 &&
3439  FD->getParamDecl(0)->getType()->getAs<PointerType>())
3440  IsRaw = true;
3441  else if (FD->getNumParams() == ArgTys.size()) {
3442  IsExactMatch = true;
3443  for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3444  QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3445  if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3446  IsExactMatch = false;
3447  break;
3448  }
3449  }
3450  }
3451  }
3452  if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3453  TemplateParameterList *Params = FD->getTemplateParameters();
3454  if (Params->size() == 1)
3455  IsTemplate = true;
3456  else
3457  IsStringTemplate = true;
3458  }
3459 
3460  if (IsExactMatch) {
3461  FoundExactMatch = true;
3462  AllowRaw = false;
3463  AllowTemplate = false;
3464  AllowStringTemplate = false;
3465  if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3466  // Go through again and remove the raw and template decls we've
3467  // already found.
3468  F.restart();
3469  FoundRaw = FoundTemplate = FoundStringTemplate = false;
3470  }
3471  } else if (AllowRaw && IsRaw) {
3472  FoundRaw = true;
3473  } else if (AllowTemplate && IsTemplate) {
3474  FoundTemplate = true;
3475  } else if (AllowStringTemplate && IsStringTemplate) {
3476  FoundStringTemplate = true;
3477  } else {
3478  F.erase();
3479  }
3480  }
3481 
3482  F.done();
3483 
3484  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3485  // parameter type, that is used in preference to a raw literal operator
3486  // or literal operator template.
3487  if (FoundExactMatch)
3488  return LOLR_Cooked;
3489 
3490  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3491  // operator template, but not both.
3492  if (FoundRaw && FoundTemplate) {
3493  Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3494  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3495  NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3496  return LOLR_Error;
3497  }
3498 
3499  if (FoundRaw)
3500  return LOLR_Raw;
3501 
3502  if (FoundTemplate)
3503  return LOLR_Template;
3504 
3505  if (FoundStringTemplate)
3506  return LOLR_StringTemplate;
3507 
3508  // Didn't find anything we could use.
3509  if (DiagnoseMissing) {
3510  Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3511  << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3512  << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3513  << (AllowTemplate || AllowStringTemplate);
3514  return LOLR_Error;
3515  }
3516 
3517  return LOLR_ErrorNoDiagnostic;
3518 }
3519 
3521  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3522 
3523  // If we haven't yet seen a decl for this key, or the last decl
3524  // was exactly this one, we're done.
3525  if (Old == nullptr || Old == New) {
3526  Old = New;
3527  return;
3528  }
3529 
3530  // Otherwise, decide which is a more recent redeclaration.
3531  FunctionDecl *OldFD = Old->getAsFunction();
3532  FunctionDecl *NewFD = New->getAsFunction();
3533 
3534  FunctionDecl *Cursor = NewFD;
3535  while (true) {
3536  Cursor = Cursor->getPreviousDecl();
3537 
3538  // If we got to the end without finding OldFD, OldFD is the newer
3539  // declaration; leave things as they are.
3540  if (!Cursor) return;
3541 
3542  // If we do find OldFD, then NewFD is newer.
3543  if (Cursor == OldFD) break;
3544 
3545  // Otherwise, keep looking.
3546  }
3547 
3548  Old = New;
3549 }
3550 
3552  ArrayRef<Expr *> Args, ADLResult &Result) {
3553  // Find all of the associated namespaces and classes based on the
3554  // arguments we have.
3555  AssociatedNamespaceSet AssociatedNamespaces;
3556  AssociatedClassSet AssociatedClasses;
3557  FindAssociatedClassesAndNamespaces(Loc, Args,
3558  AssociatedNamespaces,
3559  AssociatedClasses);
3560 
3561  // C++ [basic.lookup.argdep]p3:
3562  // Let X be the lookup set produced by unqualified lookup (3.4.1)
3563  // and let Y be the lookup set produced by argument dependent
3564  // lookup (defined as follows). If X contains [...] then Y is
3565  // empty. Otherwise Y is the set of declarations found in the
3566  // namespaces associated with the argument types as described
3567  // below. The set of declarations found by the lookup of the name
3568  // is the union of X and Y.
3569  //
3570  // Here, we compute Y and add its members to the overloaded
3571  // candidate set.
3572  for (auto *NS : AssociatedNamespaces) {
3573  // When considering an associated namespace, the lookup is the
3574  // same as the lookup performed when the associated namespace is
3575  // used as a qualifier (3.4.3.2) except that:
3576  //
3577  // -- Any using-directives in the associated namespace are
3578  // ignored.
3579  //
3580  // -- Any namespace-scope friend functions declared in
3581  // associated classes are visible within their respective
3582  // namespaces even if they are not visible during an ordinary
3583  // lookup (11.4).
3584  DeclContext::lookup_result R = NS->lookup(Name);
3585  for (auto *D : R) {
3586  auto *Underlying = D;
3587  if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3588  Underlying = USD->getTargetDecl();
3589 
3590  if (!isa<FunctionDecl>(Underlying) &&
3591  !isa<FunctionTemplateDecl>(Underlying))
3592  continue;
3593 
3594  // The declaration is visible to argument-dependent lookup if either
3595  // it's ordinarily visible or declared as a friend in an associated
3596  // class.
3597  bool Visible = false;
3598  for (D = D->getMostRecentDecl(); D;
3599  D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3601  if (isVisible(D)) {
3602  Visible = true;
3603  break;
3604  }
3605  } else if (D->getFriendObjectKind()) {
3606  auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3607  if (AssociatedClasses.count(RD) && isVisible(D)) {
3608  Visible = true;
3609  break;
3610  }
3611  }
3612  }
3613 
3614  // FIXME: Preserve D as the FoundDecl.
3615  if (Visible)
3616  Result.insert(Underlying);
3617  }
3618  }
3619 }
3620 
3621 //----------------------------------------------------------------------------
3622 // Search for all visible declarations.
3623 //----------------------------------------------------------------------------
3625 
3626 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3627 
3628 namespace {
3629 
3630 class ShadowContextRAII;
3631 
3632 class VisibleDeclsRecord {
3633 public:
3634  /// An entry in the shadow map, which is optimized to store a
3635  /// single declaration (the common case) but can also store a list
3636  /// of declarations.
3637  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3638 
3639 private:
3640  /// A mapping from declaration names to the declarations that have
3641  /// this name within a particular scope.
3642  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3643 
3644  /// A list of shadow maps, which is used to model name hiding.
3645  std::list<ShadowMap> ShadowMaps;
3646 
3647  /// The declaration contexts we have already visited.
3648  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3649 
3650  friend class ShadowContextRAII;
3651 
3652 public:
3653  /// Determine whether we have already visited this context
3654  /// (and, if not, note that we are going to visit that context now).
3655  bool visitedContext(DeclContext *Ctx) {
3656  return !VisitedContexts.insert(Ctx).second;
3657  }
3658 
3659  bool alreadyVisitedContext(DeclContext *Ctx) {
3660  return VisitedContexts.count(Ctx);
3661  }
3662 
3663  /// Determine whether the given declaration is hidden in the
3664  /// current scope.
3665  ///
3666  /// \returns the declaration that hides the given declaration, or
3667  /// NULL if no such declaration exists.
3668  NamedDecl *checkHidden(NamedDecl *ND);
3669 
3670  /// Add a declaration to the current shadow map.
3671  void add(NamedDecl *ND) {
3672  ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3673  }
3674 };
3675 
3676 /// RAII object that records when we've entered a shadow context.
3677 class ShadowContextRAII {
3678  VisibleDeclsRecord &Visible;
3679 
3680  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3681 
3682 public:
3683  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3684  Visible.ShadowMaps.emplace_back();
3685  }
3686 
3687  ~ShadowContextRAII() {
3688  Visible.ShadowMaps.pop_back();
3689  }
3690 };
3691 
3692 } // end anonymous namespace
3693 
3694 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3695  unsigned IDNS = ND->getIdentifierNamespace();
3696  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3697  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3698  SM != SMEnd; ++SM) {
3699  ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3700  if (Pos == SM->end())
3701  continue;
3702 
3703  for (auto *D : Pos->second) {
3704  // A tag declaration does not hide a non-tag declaration.
3705  if (D->hasTagIdentifierNamespace() &&
3708  continue;
3709 
3710  // Protocols are in distinct namespaces from everything else.
3712  || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3713  D->getIdentifierNamespace() != IDNS)
3714  continue;
3715 
3716  // Functions and function templates in the same scope overload
3717  // rather than hide. FIXME: Look for hiding based on function
3718  // signatures!
3721  SM == ShadowMaps.rbegin())
3722  continue;
3723 
3724  // A shadow declaration that's created by a resolved using declaration
3725  // is not hidden by the same using declaration.
3726  if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3727  cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3728  continue;
3729 
3730  // We've found a declaration that hides this one.
3731  return D;
3732  }
3733  }
3734 
3735  return nullptr;
3736 }
3737 
3738 namespace {
3739 class LookupVisibleHelper {
3740 public:
3741  LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
3742  bool LoadExternal)
3743  : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
3744  LoadExternal(LoadExternal) {}
3745 
3746  void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
3747  bool IncludeGlobalScope) {
3748  // Determine the set of using directives available during
3749  // unqualified name lookup.
3750  Scope *Initial = S;
3751  UnqualUsingDirectiveSet UDirs(SemaRef);
3752  if (SemaRef.getLangOpts().CPlusPlus) {
3753  // Find the first namespace or translation-unit scope.
3754  while (S && !isNamespaceOrTranslationUnitScope(S))
3755  S = S->getParent();
3756 
3757  UDirs.visitScopeChain(Initial, S);
3758  }
3759  UDirs.done();
3760 
3761  // Look for visible declarations.
3762  LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3763  Result.setAllowHidden(Consumer.includeHiddenDecls());
3764  if (!IncludeGlobalScope)
3765  Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3766  ShadowContextRAII Shadow(Visited);
3767  lookupInScope(Initial, Result, UDirs);
3768  }
3769 
3770  void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
3771  Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
3772  LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3773  Result.setAllowHidden(Consumer.includeHiddenDecls());
3774  if (!IncludeGlobalScope)
3775  Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3776 
3777  ShadowContextRAII Shadow(Visited);
3778  lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
3779  /*InBaseClass=*/false);
3780  }
3781 
3782 private:
3783  void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
3784  bool QualifiedNameLookup, bool InBaseClass) {
3785  if (!Ctx)
3786  return;
3787 
3788  // Make sure we don't visit the same context twice.
3789  if (Visited.visitedContext(Ctx->getPrimaryContext()))
3790  return;
3791 
3792  Consumer.EnteredContext(Ctx);
3793 
3794  // Outside C++, lookup results for the TU live on identifiers.
3795  if (isa<TranslationUnitDecl>(Ctx) &&
3796  !Result.getSema().getLangOpts().CPlusPlus) {
3797  auto &S = Result.getSema();
3798  auto &Idents = S.Context.Idents;
3799 
3800  // Ensure all external identifiers are in the identifier table.
3801  if (LoadExternal)
3802  if (IdentifierInfoLookup *External =
3803  Idents.getExternalIdentifierLookup()) {
3804  std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3805  for (StringRef Name = Iter->Next(); !Name.empty();
3806  Name = Iter->Next())
3807  Idents.get(Name);
3808  }
3809 
3810  // Walk all lookup results in the TU for each identifier.
3811  for (const auto &Ident : Idents) {
3812  for (auto I = S.IdResolver.begin(Ident.getValue()),
3813  E = S.IdResolver.end();
3814  I != E; ++I) {
3815  if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3816  if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3817  Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3818  Visited.add(ND);
3819  }
3820  }
3821  }
3822  }
3823 
3824  return;
3825  }
3826 
3827  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3829 
3830  // We sometimes skip loading namespace-level results (they tend to be huge).
3831  bool Load = LoadExternal ||
3832  !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3833  // Enumerate all of the results in this context.
3834  for (DeclContextLookupResult R :
3835  Load ? Ctx->lookups()
3836  : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3837  for (auto *D : R) {
3838  if (auto *ND = Result.getAcceptableDecl(D)) {
3839  Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3840  Visited.add(ND);
3841  }
3842  }
3843  }
3844 
3845  // Traverse using directives for qualified name lookup.
3846  if (QualifiedNameLookup) {
3847  ShadowContextRAII Shadow(Visited);
3848  for (auto I : Ctx->using_directives()) {
3849  if (!Result.getSema().isVisible(I))
3850  continue;
3851  lookupInDeclContext(I->getNominatedNamespace(), Result,
3852  QualifiedNameLookup, InBaseClass);
3853  }
3854  }
3855 
3856  // Traverse the contexts of inherited C++ classes.
3857  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3858  if (!Record->hasDefinition())
3859  return;
3860 
3861  for (const auto &B : Record->bases()) {
3862  QualType BaseType = B.getType();
3863 
3864  RecordDecl *RD;
3865  if (BaseType->isDependentType()) {
3866  if (!IncludeDependentBases) {
3867  // Don't look into dependent bases, because name lookup can't look
3868  // there anyway.
3869  continue;
3870  }
3871  const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3872  if (!TST)
3873  continue;
3874  TemplateName TN = TST->getTemplateName();
3875  const auto *TD =
3876  dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3877  if (!TD)
3878  continue;
3879  RD = TD->getTemplatedDecl();
3880  } else {
3881  const auto *Record = BaseType->getAs<RecordType>();
3882  if (!Record)
3883  continue;
3884  RD = Record->getDecl();
3885  }
3886 
3887  // FIXME: It would be nice to be able to determine whether referencing
3888  // a particular member would be ambiguous. For example, given
3889  //
3890  // struct A { int member; };
3891  // struct B { int member; };
3892  // struct C : A, B { };
3893  //
3894  // void f(C *c) { c->### }
3895  //
3896  // accessing 'member' would result in an ambiguity. However, we
3897  // could be smart enough to qualify the member with the base
3898  // class, e.g.,
3899  //
3900  // c->B::member
3901  //
3902  // or
3903  //
3904  // c->A::member
3905 
3906  // Find results in this base class (and its bases).
3907  ShadowContextRAII Shadow(Visited);
3908  lookupInDeclContext(RD, Result, QualifiedNameLookup,
3909  /*InBaseClass=*/true);
3910  }
3911  }
3912 
3913  // Traverse the contexts of Objective-C classes.
3914  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3915  // Traverse categories.
3916  for (auto *Cat : IFace->visible_categories()) {
3917  ShadowContextRAII Shadow(Visited);
3918  lookupInDeclContext(Cat, Result, QualifiedNameLookup,
3919  /*InBaseClass=*/false);
3920  }
3921 
3922  // Traverse protocols.
3923  for (auto *I : IFace->all_referenced_protocols()) {
3924  ShadowContextRAII Shadow(Visited);
3925  lookupInDeclContext(I, Result, QualifiedNameLookup,
3926  /*InBaseClass=*/false);
3927  }
3928 
3929  // Traverse the superclass.
3930  if (IFace->getSuperClass()) {
3931  ShadowContextRAII Shadow(Visited);
3932  lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
3933  /*InBaseClass=*/true);
3934  }
3935 
3936  // If there is an implementation, traverse it. We do this to find
3937  // synthesized ivars.
3938  if (IFace->getImplementation()) {
3939  ShadowContextRAII Shadow(Visited);
3940  lookupInDeclContext(IFace->getImplementation(), Result,
3941  QualifiedNameLookup, InBaseClass);
3942  }
3943  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3944  for (auto *I : Protocol->protocols()) {
3945  ShadowContextRAII Shadow(Visited);
3946  lookupInDeclContext(I, Result, QualifiedNameLookup,
3947  /*InBaseClass=*/false);
3948  }
3949  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3950  for (auto *I : Category->protocols()) {
3951  ShadowContextRAII Shadow(Visited);
3952  lookupInDeclContext(I, Result, QualifiedNameLookup,
3953  /*InBaseClass=*/false);
3954  }
3955 
3956  // If there is an implementation, traverse it.
3957  if (Category->getImplementation()) {
3958  ShadowContextRAII Shadow(Visited);
3959  lookupInDeclContext(Category->getImplementation(), Result,
3960  QualifiedNameLookup, /*InBaseClass=*/true);
3961  }
3962  }
3963  }
3964 
3965  void lookupInScope(Scope *S, LookupResult &Result,
3966  UnqualUsingDirectiveSet &UDirs) {
3967  // No clients run in this mode and it's not supported. Please add tests and
3968  // remove the assertion if you start relying on it.
3969  assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
3970 
3971  if (!S)
3972  return;
3973 
3974  if (!S->getEntity() ||
3975  (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
3976  (S->getEntity())->isFunctionOrMethod()) {
3977  FindLocalExternScope FindLocals(Result);
3978  // Walk through the declarations in this Scope. The consumer might add new
3979  // decls to the scope as part of deserialization, so make a copy first.
3980  SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3981  for (Decl *D : ScopeDecls) {
3982  if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3983  if ((ND = Result.getAcceptableDecl(ND))) {
3984  Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3985  Visited.add(ND);
3986  }
3987  }
3988  }
3989 
3990  // FIXME: C++ [temp.local]p8
3991  DeclContext *Entity = nullptr;
3992  if (S->getEntity()) {
3993  // Look into this scope's declaration context, along with any of its
3994  // parent lookup contexts (e.g., enclosing classes), up to the point
3995  // where we hit the context stored in the next outer scope.
3996  Entity = S->getEntity();
3997  DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3998 
3999  for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4000  Ctx = Ctx->getLookupParent()) {
4001  if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4002  if (Method->isInstanceMethod()) {
4003  // For instance methods, look for ivars in the method's interface.
4004  LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4005  Result.getNameLoc(),
4007  if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4008  lookupInDeclContext(IFace, IvarResult,
4009  /*QualifiedNameLookup=*/false,
4010  /*InBaseClass=*/false);
4011  }
4012  }
4013 
4014  // We've already performed all of the name lookup that we need
4015  // to for Objective-C methods; the next context will be the
4016  // outer scope.
4017  break;
4018  }
4019 
4020  if (Ctx->isFunctionOrMethod())
4021  continue;
4022 
4023  lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4024  /*InBaseClass=*/false);
4025  }
4026  } else if (!S->getParent()) {
4027  // Look into the translation unit scope. We walk through the translation
4028  // unit's declaration context, because the Scope itself won't have all of
4029  // the declarations if we loaded a precompiled header.
4030  // FIXME: We would like the translation unit's Scope object to point to
4031  // the translation unit, so we don't need this special "if" branch.
4032  // However, doing so would force the normal C++ name-lookup code to look
4033  // into the translation unit decl when the IdentifierInfo chains would
4034  // suffice. Once we fix that problem (which is part of a more general
4035  // "don't look in DeclContexts unless we have to" optimization), we can
4036  // eliminate this.
4037  Entity = Result.getSema().Context.getTranslationUnitDecl();
4038  lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4039  /*InBaseClass=*/false);
4040  }
4041 
4042  if (Entity) {
4043  // Lookup visible declarations in any namespaces found by using
4044  // directives.
4045  for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4046  lookupInDeclContext(
4047  const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4048  /*QualifiedNameLookup=*/false,
4049  /*InBaseClass=*/false);
4050  }
4051 
4052  // Lookup names in the parent scope.
4053  ShadowContextRAII Shadow(Visited);
4054  lookupInScope(S->getParent(), Result, UDirs);
4055  }
4056 
4057 private:
4058  VisibleDeclsRecord Visited;
4059  VisibleDeclConsumer &Consumer;
4060  bool IncludeDependentBases;
4061  bool LoadExternal;
4062 };
4063 } // namespace
4064 
4066  VisibleDeclConsumer &Consumer,
4067  bool IncludeGlobalScope, bool LoadExternal) {
4068  LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4069  LoadExternal);
4070  H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4071 }
4072 
4074  VisibleDeclConsumer &Consumer,
4075  bool IncludeGlobalScope,
4076  bool IncludeDependentBases, bool LoadExternal) {
4077  LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4078  H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4079 }
4080 
4081 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4082 /// If GnuLabelLoc is a valid source location, then this is a definition
4083 /// of an __label__ label name, otherwise it is a normal label definition
4084 /// or use.
4086  SourceLocation GnuLabelLoc) {
4087  // Do a lookup to see if we have a label with this name already.
4088  NamedDecl *Res = nullptr;
4089 
4090  if (GnuLabelLoc.isValid()) {
4091  // Local label definitions always shadow existing labels.
4092  Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4093  Scope *S = CurScope;
4094  PushOnScopeChains(Res, S, true);
4095  return cast<LabelDecl>(Res);
4096  }
4097 
4098  // Not a GNU local label.
4099  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4100  // If we found a label, check to see if it is in the same context as us.
4101  // When in a Block, we don't want to reuse a label in an enclosing function.
4102  if (Res && Res->getDeclContext() != CurContext)
4103  Res = nullptr;
4104  if (!Res) {
4105  // If not forward referenced or defined already, create the backing decl.
4106  Res = LabelDecl::Create(Context, CurContext, Loc, II);
4107  Scope *S = CurScope->getFnParent();
4108  assert(S && "Not in a function?");
4109  PushOnScopeChains(Res, S, true);
4110  }
4111  return cast<LabelDecl>(Res);
4112 }
4113 
4114 //===----------------------------------------------------------------------===//
4115 // Typo correction
4116 //===----------------------------------------------------------------------===//
4117 
4119  TypoCorrection &Candidate) {
4120  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4121  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4122 }
4123 
4124 static void LookupPotentialTypoResult(Sema &SemaRef,
4125  LookupResult &Res,
4126  IdentifierInfo *Name,
4127  Scope *S, CXXScopeSpec *SS,
4129  bool EnteringContext,
4130  bool isObjCIvarLookup,
4131  bool FindHidden);
4132 
4133 /// Check whether the declarations found for a typo correction are
4134 /// visible. Set the correction's RequiresImport flag to true if none of the
4135 /// declarations are visible, false otherwise.
4136 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4137  TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4138 
4139  for (/**/; DI != DE; ++DI)
4140  if (!LookupResult::isVisible(SemaRef, *DI))
4141  break;
4142  // No filtering needed if all decls are visible.
4143  if (DI == DE) {
4144  TC.setRequiresImport(false);
4145  return;
4146  }
4147 
4148  llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4149  bool AnyVisibleDecls = !NewDecls.empty();
4150 
4151  for (/**/; DI != DE; ++DI) {
4152  if (LookupResult::isVisible(SemaRef, *DI)) {
4153  if (!AnyVisibleDecls) {
4154  // Found a visible decl, discard all hidden ones.
4155  AnyVisibleDecls = true;
4156  NewDecls.clear();
4157  }
4158  NewDecls.push_back(*DI);
4159  } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4160  NewDecls.push_back(*DI);
4161  }
4162 
4163  if (NewDecls.empty())
4164  TC = TypoCorrection();
4165  else {
4166  TC.setCorrectionDecls(NewDecls);
4167  TC.setRequiresImport(!AnyVisibleDecls);
4168  }
4169 }
4170 
4171 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
4172 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4173 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4175  NestedNameSpecifier *NNS,
4177  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4178  getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4179  else
4180  Identifiers.clear();
4181 
4182  const IdentifierInfo *II = nullptr;
4183 
4184  switch (NNS->getKind()) {
4186  II = NNS->getAsIdentifier();
4187  break;
4188 
4190  if (NNS->getAsNamespace()->isAnonymousNamespace())
4191  return;
4192  II = NNS->getAsNamespace()->getIdentifier();
4193  break;
4194 
4196  II = NNS->getAsNamespaceAlias()->getIdentifier();
4197  break;
4198 
4201  II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4202  break;
4203 
4206  return;
4207  }
4208 
4209  if (II)
4210  Identifiers.push_back(II);
4211 }
4212 
4214  DeclContext *Ctx, bool InBaseClass) {
4215  // Don't consider hidden names for typo correction.
4216  if (Hiding)
4217  return;
4218 
4219  // Only consider entities with identifiers for names, ignoring
4220  // special names (constructors, overloaded operators, selectors,
4221  // etc.).
4222  IdentifierInfo *Name = ND->getIdentifier();
4223  if (!Name)
4224  return;
4225 
4226  // Only consider visible declarations and declarations from modules with
4227  // names that exactly match.
4228  if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4229  return;
4230 
4231  FoundName(Name->getName());
4232 }
4233 
4235  // Compute the edit distance between the typo and the name of this
4236  // entity, and add the identifier to the list of results.
4237  addName(Name, nullptr);
4238 }
4239 
4241  // Compute the edit distance between the typo and this keyword,
4242  // and add the keyword to the list of results.
4243  addName(Keyword, nullptr, nullptr, true);
4244 }
4245 
4246 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4247  NestedNameSpecifier *NNS, bool isKeyword) {
4248  // Use a simple length-based heuristic to determine the minimum possible
4249  // edit distance. If the minimum isn't good enough, bail out early.
4250  StringRef TypoStr = Typo->getName();
4251  unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4252  if (MinED && TypoStr.size() / MinED < 3)
4253  return;
4254 
4255  // Compute an upper bound on the allowable edit distance, so that the
4256  // edit-distance algorithm can short-circuit.
4257  unsigned UpperBound = (TypoStr.size() + 2) / 3;
4258  unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4259  if (ED > UpperBound) return;
4260 
4261  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4262  if (isKeyword) TC.makeKeyword();
4263  TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4264  addCorrection(TC);
4265 }
4266 
4267 static const unsigned MaxTypoDistanceResultSets = 5;
4268 
4270  StringRef TypoStr = Typo->getName();
4271  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4272 
4273  // For very short typos, ignore potential corrections that have a different
4274  // base identifier from the typo or which have a normalized edit distance
4275  // longer than the typo itself.
4276  if (TypoStr.size() < 3 &&
4277  (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4278  return;
4279 
4280  // If the correction is resolved but is not viable, ignore it.
4281  if (Correction.isResolved()) {
4282  checkCorrectionVisibility(SemaRef, Correction);
4283  if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4284  return;
4285  }
4286 
4287  TypoResultList &CList =
4288  CorrectionResults[Correction.getEditDistance(false)][Name];
4289 
4290  if (!CList.empty() && !CList.back().isResolved())
4291  CList.pop_back();
4292  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4293  std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4294  for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4295  RI != RIEnd; ++RI) {
4296  // If the Correction refers to a decl already in the result list,
4297  // replace the existing result if the string representation of Correction
4298  // comes before the current result alphabetically, then stop as there is
4299  // nothing more to be done to add Correction to the candidate set.
4300  if (RI->getCorrectionDecl() == NewND) {
4301  if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4302  *RI = Correction;
4303  return;
4304  }
4305  }
4306  }
4307  if (CList.empty() || Correction.isResolved())
4308  CList.push_back(Correction);
4309 
4310  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4311  CorrectionResults.erase(std::prev(CorrectionResults.end()));
4312 }
4313 
4315  const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4316  SearchNamespaces = true;
4317 
4318  for (auto KNPair : KnownNamespaces)
4319  Namespaces.addNameSpecifier(KNPair.first);
4320 
4321  bool SSIsTemplate = false;
4322  if (NestedNameSpecifier *NNS =
4323  (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4324  if (const Type *T = NNS->getAsType())
4325  SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4326  }
4327  // Do not transform this into an iterator-based loop. The loop body can
4328  // trigger the creation of further types (through lazy deserialization) and
4329  // invalid iterators into this list.
4330  auto &Types = SemaRef.getASTContext().getTypes();
4331  for (unsigned I = 0; I != Types.size(); ++I) {
4332  const auto *TI = Types[I];
4333  if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4334  CD = CD->getCanonicalDecl();
4335  if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4336  !CD->isUnion() && CD->getIdentifier() &&
4337  (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4338  (CD->isBeingDefined() || CD->isCompleteDefinition()))
4339  Namespaces.addNameSpecifier(CD);
4340  }
4341  }
4342 }
4343 
4345  if (++CurrentTCIndex < ValidatedCorrections.size())
4346  return ValidatedCorrections[CurrentTCIndex];
4347 
4348  CurrentTCIndex = ValidatedCorrections.size();
4349  while (!CorrectionResults.empty()) {
4350  auto DI = CorrectionResults.begin();
4351  if (DI->second.empty()) {
4352  CorrectionResults.erase(DI);
4353  continue;
4354  }
4355 
4356  auto RI = DI->second.begin();
4357  if (RI->second.empty()) {
4358  DI->second.erase(RI);
4359  performQualifiedLookups();
4360  continue;
4361  }
4362 
4363  TypoCorrection TC = RI->second.pop_back_val();
4364  if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4365  ValidatedCorrections.push_back(TC);
4366  return ValidatedCorrections[CurrentTCIndex];
4367  }
4368  }
4369  return ValidatedCorrections[0]; // The empty correction.
4370 }
4371 
4372 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4373  IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4374  DeclContext *TempMemberContext = MemberContext;
4375  CXXScopeSpec *TempSS = SS.get();
4376 retry_lookup:
4377  LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4378  EnteringContext,
4379  CorrectionValidator->IsObjCIvarLookup,
4380  Name == Typo && !Candidate.WillReplaceSpecifier());
4381  switch (Result.getResultKind()) {
4385  if (TempSS) {
4386  // Immediately retry the lookup without the given CXXScopeSpec
4387  TempSS = nullptr;
4388  Candidate.WillReplaceSpecifier(true);
4389  goto retry_lookup;
4390  }
4391  if (TempMemberContext) {
4392  if (SS && !TempSS)
4393  TempSS = SS.get();
4394  TempMemberContext = nullptr;
4395  goto retry_lookup;
4396  }
4397  if (SearchNamespaces)
4398  QualifiedResults.push_back(Candidate);
4399  break;
4400 
4402  // We don't deal with ambiguities.
4403  break;
4404 
4405  case LookupResult::Found:
4407  // Store all of the Decls for overloaded symbols
4408  for (auto *TRD : Result)
4409  Candidate.addCorrectionDecl(TRD);
4410  checkCorrectionVisibility(SemaRef, Candidate);
4411  if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4412  if (SearchNamespaces)
4413  QualifiedResults.push_back(Candidate);
4414  break;
4415  }
4416  Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4417  return true;
4418  }
4419  return false;
4420 }
4421 
4422 void TypoCorrectionConsumer::performQualifiedLookups() {
4423  unsigned TypoLen = Typo->getName().size();
4424  for (const TypoCorrection &QR : QualifiedResults) {
4425  for (const auto &NSI : Namespaces) {
4426  DeclContext *Ctx = NSI.DeclCtx;
4427  const Type *NSType = NSI.NameSpecifier->getAsType();
4428 
4429  // If the current NestedNameSpecifier refers to a class and the
4430  // current correction candidate is the name of that class, then skip
4431  // it as it is unlikely a qualified version of the class' constructor
4432  // is an appropriate correction.
4433  if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4434  nullptr) {
4435  if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4436  continue;
4437  }
4438 
4439  TypoCorrection TC(QR);
4440  TC.ClearCorrectionDecls();
4441  TC.setCorrectionSpecifier(NSI.NameSpecifier);
4442  TC.setQualifierDistance(NSI.EditDistance);
4443  TC.setCallbackDistance(0); // Reset the callback distance
4444 
4445  // If the current correction candidate and namespace combination are
4446  // too far away from the original typo based on the normalized edit
4447  // distance, then skip performing a qualified name lookup.
4448  unsigned TmpED = TC.getEditDistance(true);
4449  if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4450  TypoLen / TmpED < 3)
4451  continue;
4452 
4453  Result.clear();
4454  Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4455  if (!SemaRef.LookupQualifiedName(Result, Ctx))
4456  continue;
4457 
4458  // Any corrections added below will be validated in subsequent
4459  // iterations of the main while() loop over the Consumer's contents.
4460  switch (Result.getResultKind()) {
4461  case LookupResult::Found:
4463  if (SS && SS->isValid()) {
4464  std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4465  std::string OldQualified;
4466  llvm::raw_string_ostream OldOStream(OldQualified);
4467  SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4468  OldOStream << Typo->getName();
4469  // If correction candidate would be an identical written qualified
4470  // identifier, then the existing CXXScopeSpec probably included a
4471  // typedef that didn't get accounted for properly.
4472  if (OldOStream.str() == NewQualified)
4473  break;
4474  }
4475  for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4476  TRD != TRDEnd; ++TRD) {
4477  if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4478  NSType ? NSType->getAsCXXRecordDecl()
4479  : nullptr,
4480  TRD.getPair()) == Sema::AR_accessible)
4481  TC.addCorrectionDecl(*TRD);
4482  }
4483  if (TC.isResolved()) {
4484  TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4485  addCorrection(TC);
4486  }
4487  break;
4488  }
4493  break;
4494  }
4495  }
4496  }
4497  QualifiedResults.clear();
4498 }
4499 
4500 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4501  ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4502  : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4503  if (NestedNameSpecifier *NNS =
4504  CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4505  llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4506  NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4507 
4508  getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4509  }
4510  // Build the list of identifiers that would be used for an absolute
4511  // (from the global context) NestedNameSpecifier referring to the current
4512  // context.
4513  for (DeclContext *C : llvm::reverse(CurContextChain)) {
4514  if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4515  CurContextIdentifiers.push_back(ND->getIdentifier());
4516  }
4517 
4518  // Add the global context as a NestedNameSpecifier
4519  SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4521  DistanceMap[1].push_back(SI);
4522 }
4523 
4524 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4525  DeclContext *Start) -> DeclContextList {
4526  assert(Start && "Building a context chain from a null context");
4527  DeclContextList Chain;
4528  for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4529  DC = DC->getLookupParent()) {
4530  NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4531  if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4532  !(ND && ND->isAnonymousNamespace()))
4533  Chain.push_back(DC->getPrimaryContext());
4534  }
4535  return Chain;
4536 }
4537 
4538 unsigned
4539 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4540  DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4541  unsigned NumSpecifiers = 0;
4542  for (DeclContext *C : llvm::reverse(DeclChain)) {
4543  if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4544  NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4545  ++NumSpecifiers;
4546  } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4547  NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4548  RD->getTypeForDecl());
4549  ++NumSpecifiers;
4550  }
4551  }
4552  return NumSpecifiers;
4553 }
4554 
4555 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4556  DeclContext *Ctx) {
4557  NestedNameSpecifier *NNS = nullptr;
4558  unsigned NumSpecifiers = 0;
4559  DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4560  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4561 
4562  // Eliminate common elements from the two DeclContext chains.
4563  for (DeclContext *C : llvm::reverse(CurContextChain)) {
4564  if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4565  break;
4566  NamespaceDeclChain.pop_back();
4567  }
4568 
4569  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4570  NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4571 
4572  // Add an explicit leading '::' specifier if needed.
4573  if (NamespaceDeclChain.empty()) {
4574  // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4575  NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4576  NumSpecifiers =
4577  buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4578  } else if (NamedDecl *ND =
4579  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4580  IdentifierInfo *Name = ND->getIdentifier();
4581  bool SameNameSpecifier = false;
4582  if (std::find(CurNameSpecifierIdentifiers.begin(),
4583  CurNameSpecifierIdentifiers.end(),
4584  Name) != CurNameSpecifierIdentifiers.end()) {
4585  std::string NewNameSpecifier;
4586  llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4587  SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4588  getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4589  NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4590  SpecifierOStream.flush();
4591  SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4592  }
4593  if (SameNameSpecifier || llvm::find(CurContextIdentifiers, Name) !=
4594  CurContextIdentifiers.end()) {
4595  // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4596  NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4597  NumSpecifiers =
4598  buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4599  }
4600  }
4601 
4602  // If the built NestedNameSpecifier would be replacing an existing
4603  // NestedNameSpecifier, use the number of component identifiers that
4604  // would need to be changed as the edit distance instead of the number
4605  // of components in the built NestedNameSpecifier.
4606  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4607  SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4608  getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4609  NumSpecifiers = llvm::ComputeEditDistance(
4610  llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4611  llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4612  }
4613 
4614  SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4615  DistanceMap[NumSpecifiers].push_back(SI);
4616 }
4617 
4618 /// Perform name lookup for a possible result for typo correction.
4619 static void LookupPotentialTypoResult(Sema &SemaRef,
4620  LookupResult &Res,
4621  IdentifierInfo *Name,
4622  Scope *S, CXXScopeSpec *SS,
4623  DeclContext *MemberContext,
4624  bool EnteringContext,
4625  bool isObjCIvarLookup,
4626  bool FindHidden) {
4627  Res.suppressDiagnostics();
4628  Res.clear();
4629  Res.setLookupName(Name);
4630  Res.setAllowHidden(FindHidden);
4631  if (MemberContext) {
4632  if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4633  if (isObjCIvarLookup) {
4634  if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4635  Res.addDecl(Ivar);
4636  Res.resolveKind();
4637  return;
4638  }
4639  }
4640 
4641  if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4643  Res.addDecl(Prop);
4644  Res.resolveKind();
4645  return;
4646  }
4647  }
4648 
4649  SemaRef.LookupQualifiedName(Res, MemberContext);
4650  return;
4651  }
4652 
4653  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4654  EnteringContext);
4655 
4656  // Fake ivar lookup; this should really be part of
4657  // LookupParsedName.
4658  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4659  if (Method->isInstanceMethod() && Method->getClassInterface() &&
4660  (Res.empty() ||
4661  (Res.isSingleResult() &&
4663  if (ObjCIvarDecl *IV
4664  = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4665  Res.addDecl(IV);
4666  Res.resolveKind();
4667  }
4668  }
4669  }
4670 }
4671 
4672 /// Add keywords to the consumer as possible typo corrections.
4673 static void AddKeywordsToConsumer(Sema &SemaRef,
4674  TypoCorrectionConsumer &Consumer,
4676  bool AfterNestedNameSpecifier) {
4677  if (AfterNestedNameSpecifier) {
4678  // For 'X::', we know exactly which keywords can appear next.
4679  Consumer.addKeywordResult("template");
4680  if (CCC.WantExpressionKeywords)
4681  Consumer.addKeywordResult("operator");
4682  return;
4683  }
4684 
4685  if (CCC.WantObjCSuper)
4686  Consumer.addKeywordResult("super");
4687 
4688  if (CCC.WantTypeSpecifiers) {
4689  // Add type-specifier keywords to the set of results.
4690  static const char *const CTypeSpecs[] = {
4691  "char", "const", "double", "enum", "float", "int", "long", "short",
4692  "signed", "struct", "union", "unsigned", "void", "volatile",
4693  "_Complex", "_Imaginary",
4694  // storage-specifiers as well
4695  "extern", "inline", "static", "typedef"
4696  };
4697 
4698  const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4699  for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4700  Consumer.addKeywordResult(CTypeSpecs[I]);
4701 
4702  if (SemaRef.getLangOpts().C99)
4703  Consumer.addKeywordResult("restrict");
4704  if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4705  Consumer.addKeywordResult("bool");
4706  else if (SemaRef.getLangOpts().C99)
4707  Consumer.addKeywordResult("_Bool");
4708 
4709  if (SemaRef.getLangOpts().CPlusPlus) {
4710  Consumer.addKeywordResult("class");
4711  Consumer.addKeywordResult("typename");
4712  Consumer.addKeywordResult("wchar_t");
4713 
4714  if (SemaRef.getLangOpts().CPlusPlus11) {
4715  Consumer.addKeywordResult("char16_t");
4716  Consumer.addKeywordResult("char32_t");
4717  Consumer.addKeywordResult("constexpr");
4718  Consumer.addKeywordResult("decltype");
4719  Consumer.addKeywordResult("thread_local");
4720  }
4721  }
4722 
4723  if (SemaRef.getLangOpts().GNUKeywords)
4724  Consumer.addKeywordResult("typeof");
4725  } else if (CCC.WantFunctionLikeCasts) {
4726  static const char *const CastableTypeSpecs[] = {
4727  "char", "double", "float", "int", "long", "short",
4728  "signed", "unsigned", "void"
4729  };
4730  for (auto *kw : CastableTypeSpecs)
4731  Consumer.addKeywordResult(kw);
4732  }
4733 
4734  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4735  Consumer.addKeywordResult("const_cast");
4736  Consumer.addKeywordResult("dynamic_cast");
4737  Consumer.addKeywordResult("reinterpret_cast");
4738  Consumer.addKeywordResult("static_cast");
4739  }
4740 
4741  if (CCC.WantExpressionKeywords) {
4742  Consumer.addKeywordResult("sizeof");
4743  if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4744  Consumer.addKeywordResult("false");
4745  Consumer.addKeywordResult("true");
4746  }
4747 
4748  if (SemaRef.getLangOpts().CPlusPlus) {
4749  static const char *const CXXExprs[] = {
4750  "delete", "new", "operator", "throw", "typeid"
4751  };
4752  const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4753  for (unsigned I = 0; I != NumCXXExprs; ++I)
4754  Consumer.addKeywordResult(CXXExprs[I]);
4755 
4756  if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4757  cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4758  Consumer.addKeywordResult("this");
4759 
4760  if (SemaRef.getLangOpts().CPlusPlus11) {
4761  Consumer.addKeywordResult("alignof");
4762  Consumer.addKeywordResult("nullptr");
4763  }
4764  }
4765 
4766  if (SemaRef.getLangOpts().C11) {
4767  // FIXME: We should not suggest _Alignof if the alignof macro
4768  // is present.
4769  Consumer.addKeywordResult("_Alignof");
4770  }
4771  }
4772 
4773  if (CCC.WantRemainingKeywords) {
4774  if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4775  // Statements.
4776  static const char *const CStmts[] = {
4777  "do", "else", "for", "goto", "if", "return", "switch", "while" };
4778  const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4779  for (unsigned I = 0; I != NumCStmts; ++I)
4780  Consumer.addKeywordResult(CStmts[I]);
4781 
4782  if (SemaRef.getLangOpts().CPlusPlus) {
4783  Consumer.addKeywordResult("catch");
4784  Consumer.addKeywordResult("try");
4785  }
4786 
4787  if (S && S->getBreakParent())
4788  Consumer.addKeywordResult("break");
4789 
4790  if (S && S->getContinueParent())
4791  Consumer.addKeywordResult("continue");
4792 
4793  if (SemaRef.getCurFunction() &&
4794  !SemaRef.getCurFunction()->SwitchStack.empty()) {
4795  Consumer.addKeywordResult("case");
4796  Consumer.addKeywordResult("default");
4797  }
4798  } else {
4799  if (SemaRef.getLangOpts().CPlusPlus) {
4800  Consumer.addKeywordResult("namespace");
4801  Consumer.addKeywordResult("template");
4802  }
4803 
4804  if (S && S->isClassScope()) {
4805  Consumer.addKeywordResult("explicit");
4806  Consumer.addKeywordResult("friend");
4807  Consumer.addKeywordResult("mutable");
4808  Consumer.addKeywordResult("private");
4809  Consumer.addKeywordResult("protected");
4810  Consumer.addKeywordResult("public");
4811  Consumer.addKeywordResult("virtual");
4812  }
4813  }
4814 
4815  if (SemaRef.getLangOpts().CPlusPlus) {
4816  Consumer.addKeywordResult("using");
4817 
4818  if (SemaRef.getLangOpts().CPlusPlus11)
4819  Consumer.addKeywordResult("static_assert");
4820  }
4821  }
4822 }
4823 
4824 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4825  const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4827  DeclContext *MemberContext, bool EnteringContext,
4828  const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4829 
4830  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4831  DisableTypoCorrection)
4832  return nullptr;
4833 
4834  // In Microsoft mode, don't perform typo correction in a template member
4835  // function dependent context because it interferes with the "lookup into
4836  // dependent bases of class templates" feature.
4837  if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4838  isa<CXXMethodDecl>(CurContext))
4839  return nullptr;
4840 
4841  // We only attempt to correct typos for identifiers.
4842  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4843  if (!Typo)
4844  return nullptr;
4845 
4846  // If the scope specifier itself was invalid, don't try to correct
4847  // typos.
4848  if (SS && SS->isInvalid())
4849  return nullptr;
4850 
4851  // Never try to correct typos during any kind of code synthesis.
4852  if (!CodeSynthesisContexts.empty())
4853  return nullptr;
4854 
4855  // Don't try to correct 'super'.
4856  if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4857  return nullptr;
4858 
4859  // Abort if typo correction already failed for this specific typo.
4860  IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4861  if (locs != TypoCorrectionFailures.end() &&
4862  locs->second.count(TypoName.getLoc()))
4863  return nullptr;
4864 
4865  // Don't try to correct the identifier "vector" when in AltiVec mode.
4866  // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4867  // remove this workaround.
4868  if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4869  return nullptr;
4870 
4871  // Provide a stop gap for files that are just seriously broken. Trying
4872  // to correct all typos can turn into a HUGE performance penalty, causing
4873  // some files to take minutes to get rejected by the parser.
4874  unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4875  if (Limit && TyposCorrected >= Limit)
4876  return nullptr;
4877  ++TyposCorrected;
4878 
4879  // If we're handling a missing symbol error, using modules, and the
4880  // special search all modules option is used, look for a missing import.
4881  if (ErrorRecovery && getLangOpts().Modules &&
4882  getLangOpts().ModulesSearchAll) {
4883  // The following has the side effect of loading the missing module.
4884  getModuleLoader().lookupMissingImports(Typo->getName(),
4885  TypoName.getBeginLoc());
4886  }
4887 
4888  // Extend the lifetime of the callback. We delayed this until here
4889  // to avoid allocations in the hot path (which is where no typo correction
4890  // occurs). Note that CorrectionCandidateCallback is polymorphic and
4891  // initially stack-allocated.
4892  std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
4893  auto Consumer = std::make_unique<TypoCorrectionConsumer>(
4894  *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
4895  EnteringContext);
4896 
4897  // Perform name lookup to find visible, similarly-named entities.
4898  bool IsUnqualifiedLookup = false;
4899  DeclContext *QualifiedDC = MemberContext;
4900  if (MemberContext) {
4901  LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4902 
4903  // Look in qualified interfaces.
4904  if (OPT) {
4905  for (auto *I : OPT->quals())
4906  LookupVisibleDecls(I, LookupKind, *Consumer);
4907  }
4908  } else if (SS && SS->isSet()) {
4909  QualifiedDC = computeDeclContext(*SS, EnteringContext);
4910  if (!QualifiedDC)
4911  return nullptr;
4912 
4913  LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4914  } else {
4915  IsUnqualifiedLookup = true;
4916  }
4917 
4918  // Determine whether we are going to search in the various namespaces for
4919  // corrections.
4920  bool SearchNamespaces
4921  = getLangOpts().CPlusPlus &&
4922  (IsUnqualifiedLookup || (SS && SS->isSet()));
4923 
4924  if (IsUnqualifiedLookup || SearchNamespaces) {
4925  // For unqualified lookup, look through all of the names that we have
4926  // seen in this translation unit.
4927  // FIXME: Re-add the ability to skip very unlikely potential corrections.
4928  for (const auto &I : Context.Idents)
4929  Consumer->FoundName(I.getKey());
4930 
4931  // Walk through identifiers in external identifier sources.
4932  // FIXME: Re-add the ability to skip very unlikely potential corrections.
4933  if (IdentifierInfoLookup *External
4934  = Context.Idents.getExternalIdentifierLookup()) {
4935  std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4936  do {
4937  StringRef Name = Iter->Next();
4938  if (Name.empty())
4939  break;
4940 
4941  Consumer->FoundName(Name);
4942  } while (true);
4943  }
4944  }
4945 
4946  AddKeywordsToConsumer(*this, *Consumer, S,
4947  *Consumer->getCorrectionValidator(),
4948  SS && SS->isNotEmpty());
4949 
4950  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4951  // to search those namespaces.
4952  if (SearchNamespaces) {
4953  // Load any externally-known namespaces.
4954  if (ExternalSource && !LoadedExternalKnownNamespaces) {
4955  SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4956  LoadedExternalKnownNamespaces = true;
4957  ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4958  for (auto *N : ExternalKnownNamespaces)
4959  KnownNamespaces[N] = true;
4960  }
4961 
4962  Consumer->addNamespaces(KnownNamespaces);
4963  }
4964 
4965  return Consumer;
4966 }
4967 
4968 /// Try to "correct" a typo in the source code by finding
4969 /// visible declarations whose names are similar to the name that was
4970 /// present in the source code.
4971 ///
4972 /// \param TypoName the \c DeclarationNameInfo structure that contains
4973 /// the name that was present in the source code along with its location.
4974 ///
4975 /// \param LookupKind the name-lookup criteria used to search for the name.
4976 ///
4977 /// \param S the scope in which name lookup occurs.
4978 ///
4979 /// \param SS the nested-name-specifier that precedes the name we're
4980 /// looking for, if present.
4981 ///
4982 /// \param CCC A CorrectionCandidateCallback object that provides further
4983 /// validation of typo correction candidates. It also provides flags for
4984 /// determining the set of keywords permitted.
4985 ///
4986 /// \param MemberContext if non-NULL, the context in which to look for
4987 /// a member access expression.
4988 ///
4989 /// \param EnteringContext whether we're entering the context described by
4990 /// the nested-name-specifier SS.
4991 ///
4992 /// \param OPT when non-NULL, the search for visible declarations will
4993 /// also walk the protocols in the qualified interfaces of \p OPT.
4994 ///
4995 /// \returns a \c TypoCorrection containing the corrected name if the typo
4996 /// along with information such as the \c NamedDecl where the corrected name
4997 /// was declared, and any additional \c NestedNameSpecifier needed to access
4998 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
5000  Sema::LookupNameKind LookupKind,
5001  Scope *S, CXXScopeSpec *SS,
5003  CorrectTypoKind Mode,
5004  DeclContext *MemberContext,
5005  bool EnteringContext,
5006  const ObjCObjectPointerType *OPT,
5007  bool RecordFailure) {
5008  // Always let the ExternalSource have the first chance at correction, even
5009  // if we would otherwise have given up.
5010  if (ExternalSource) {
5011  if (TypoCorrection Correction =
5012  ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5013  MemberContext, EnteringContext, OPT))
5014  return Correction;
5015  }
5016 
5017  // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5018  // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5019  // some instances of CTC_Unknown, while WantRemainingKeywords is true
5020  // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5021  bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5022 
5023  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5024  auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5025  MemberContext, EnteringContext,
5026  OPT, Mode == CTK_ErrorRecovery);
5027 
5028  if (!Consumer)
5029  return TypoCorrection();
5030 
5031  // If we haven't found anything, we're done.
5032  if (Consumer->empty())
5033  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5034 
5035  // Make sure the best edit distance (prior to adding any namespace qualifiers)
5036  // is not more that about a third of the length of the typo's identifier.
5037  unsigned ED = Consumer->getBestEditDistance(true);
5038  unsigned TypoLen = Typo->getName().size();
5039  if (ED > 0 && TypoLen / ED < 3)
5040  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5041 
5042  TypoCorrection BestTC = Consumer->getNextCorrection();
5043  TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5044  if (!BestTC)
5045  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5046 
5047  ED = BestTC.getEditDistance();
5048 
5049  if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5050  // If this was an unqualified lookup and we believe the callback
5051  // object wouldn't have filtered out possible corrections, note
5052  // that no correction was found.
5053  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5054  }
5055 
5056  // If only a single name remains, return that result.
5057  if (!SecondBestTC ||
5058  SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5059  const TypoCorrection &Result = BestTC;
5060 
5061  // Don't correct to a keyword that's the same as the typo; the keyword
5062  // wasn't actually in scope.
5063  if (ED == 0 && Result.isKeyword())
5064  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5065 
5066  TypoCorrection TC = Result;
5067  TC.setCorrectionRange(SS, TypoName);
5068  checkCorrectionVisibility(*this, TC);
5069  return TC;
5070  } else if (SecondBestTC && ObjCMessageReceiver) {
5071  // Prefer 'super' when we're completing in a message-receiver
5072  // context.
5073 
5074  if (BestTC.getCorrection().getAsString() != "super") {
5075  if (SecondBestTC.getCorrection().getAsString() == "super")
5076  BestTC = SecondBestTC;
5077  else if ((*Consumer)["super"].front().isKeyword())
5078  BestTC = (*Consumer)["super"].front();
5079  }
5080  // Don't correct to a keyword that's the same as the typo; the keyword
5081  // wasn't actually in scope.
5082  if (BestTC.getEditDistance() == 0 ||
5083  BestTC.getCorrection().getAsString() != "super")
5084  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5085 
5086  BestTC.setCorrectionRange(SS, TypoName);
5087  return BestTC;
5088  }
5089 
5090  // Record the failure's location if needed and return an empty correction. If
5091  // this was an unqualified lookup and we believe the callback object did not
5092  // filter out possible corrections, also cache the failure for the typo.
5093  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5094 }
5095 
5096 /// Try to "correct" a typo in the source code by finding
5097 /// visible declarations whose names are similar to the name that was
5098 /// present in the source code.
5099 ///
5100 /// \param TypoName the \c DeclarationNameInfo structure that contains
5101 /// the name that was present in the source code along with its location.
5102 ///
5103 /// \param LookupKind the name-lookup criteria used to search for the name.
5104 ///
5105 /// \param S the scope in which name lookup occurs.
5106 ///
5107 /// \param SS the nested-name-specifier that precedes the name we're
5108 /// looking for, if present.
5109 ///
5110 /// \param CCC A CorrectionCandidateCallback object that provides further
5111 /// validation of typo correction candidates. It also provides flags for
5112 /// determining the set of keywords permitted.
5113 ///
5114 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5115 /// diagnostics when the actual typo correction is attempted.
5116 ///
5117 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
5118 /// Expr from a typo correction candidate.
5119 ///
5120 /// \param MemberContext if non-NULL, the context in which to look for
5121 /// a member access expression.
5122 ///
5123 /// \param EnteringContext whether we're entering the context described by
5124 /// the nested-name-specifier SS.
5125 ///
5126 /// \param OPT when non-NULL, the search for visible declarations will
5127 /// also walk the protocols in the qualified interfaces of \p OPT.
5128 ///
5129 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
5130 /// Expr representing the result of performing typo correction, or nullptr if
5131 /// typo correction is not possible. If nullptr is returned, no diagnostics will
5132 /// be emitted and it is the responsibility of the caller to emit any that are
5133 /// needed.
5135  const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5138  DeclContext *MemberContext, bool EnteringContext,
5139  const ObjCObjectPointerType *OPT) {
5140  auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5141  MemberContext, EnteringContext,
5142  OPT, Mode == CTK_ErrorRecovery);
5143 
5144  // Give the external sema source a chance to correct the typo.
5145  TypoCorrection ExternalTypo;
5146  if (ExternalSource && Consumer) {
5147  ExternalTypo = ExternalSource->CorrectTypo(
5148  TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5149  MemberContext, EnteringContext, OPT);
5150  if (ExternalTypo)
5151  Consumer->addCorrection(ExternalTypo);
5152  }
5153 
5154  if (!Consumer || Consumer->empty())
5155  return nullptr;
5156 
5157  // Make sure the best edit distance (prior to adding any namespace qualifiers)
5158  // is not more that about a third of the length of the typo's identifier.
5159  unsigned ED = Consumer->getBestEditDistance(true);
5160  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5161  if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5162  return nullptr;
5163 
5164  ExprEvalContexts.back().NumTypos++;
5165  return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
5166 }
5167 
5169  if (!CDecl) return;
5170 
5171  if (isKeyword())
5172  CorrectionDecls.clear();
5173 
5174  CorrectionDecls.push_back(CDecl);
5175 
5176  if (!CorrectionName)
5177  CorrectionName = CDecl->getDeclName();
5178 }
5179 
5180 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5181  if (CorrectionNameSpec) {
5182  std::string tmpBuffer;
5183  llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5184  CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5185  PrefixOStream << CorrectionName;
5186  return PrefixOStream.str();
5187  }
5188 
5189  return CorrectionName.getAsString();
5190 }
5191 
5193  const TypoCorrection &candidate) {
5194  if (!candidate.isResolved())
5195  return true;
5196 
5197  if (candidate.isKeyword())
5198  return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5199  WantRemainingKeywords || WantObjCSuper;
5200 
5201  bool HasNonType = false;
5202  bool HasStaticMethod = false;
5203  bool HasNonStaticMethod = false;
5204  for (Decl *D : candidate) {
5205  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5206  D = FTD->getTemplatedDecl();
5207  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5208  if (Method->isStatic())
5209  HasStaticMethod = true;
5210  else
5211  HasNonStaticMethod = true;
5212  }
5213  if (!isa<TypeDecl>(D))
5214  HasNonType = true;
5215  }
5216 
5217  if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5218  !candidate.getCorrectionSpecifier())
5219  return false;
5220 
5221  return WantTypeSpecifiers || HasNonType;
5222 }
5223 
5225  bool HasExplicitTemplateArgs,
5226  MemberExpr *ME)
5227  : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5228  CurContext(SemaRef.CurContext), MemberFn(ME) {
5229  WantTypeSpecifiers = false;
5230  WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5231  !HasExplicitTemplateArgs && NumArgs == 1;
5232  WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5233  WantRemainingKeywords = false;
5234 }
5235 
5237  if (!candidate.getCorrectionDecl())
5238  return candidate.isKeyword();
5239 
5240  for (auto *C : candidate) {
5241  FunctionDecl *FD = nullptr;
5242  NamedDecl *ND = C->getUnderlyingDecl();
5243  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5244  FD = FTD->getTemplatedDecl();
5245  if (!HasExplicitTemplateArgs && !FD) {
5246  if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5247  // If the Decl is neither a function nor a template function,
5248  // determine if it is a pointer or reference to a function. If so,
5249  // check against the number of arguments expected for the pointee.
5250  QualType ValType = cast<ValueDecl>(ND)->getType();
5251  if (ValType.isNull())
5252  continue;
5253  if (ValType->isAnyPointerType() || ValType->isReferenceType())
5254  ValType = ValType->getPointeeType();
5255  if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5256  if (FPT->getNumParams() == NumArgs)
5257  return true;
5258  }
5259  }
5260 
5261  // A typo for a function-style cast can look like a function call in C++.
5262  if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5263  : isa<TypeDecl>(ND)) &&
5264  CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5265  // Only a class or class template can take two or more arguments.
5266  return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5267 
5268  // Skip the current candidate if it is not a FunctionDecl or does not accept
5269  // the current number of arguments.
5270  if (!FD || !(FD->getNumParams() >= NumArgs &&
5271  FD->getMinRequiredArguments() <= NumArgs))
5272  continue;
5273 
5274  // If the current candidate is a non-static C++ method, skip the candidate
5275  // unless the method being corrected--or the current DeclContext, if the
5276  // function being corrected is not a method--is a method in the same class
5277  // or a descendent class of the candidate's parent class.
5278  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5279  if (MemberFn || !MD->isStatic()) {
5280  CXXMethodDecl *CurMD =
5281  MemberFn
5282  ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5283  : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5284  CXXRecordDecl *CurRD =
5285  CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5286  CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5287  if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5288  continue;
5289  }
5290  }
5291  return true;
5292  }
5293  return false;
5294 }
5295 
5296 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5297  const PartialDiagnostic &TypoDiag,
5298  bool ErrorRecovery) {
5299  diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5300  ErrorRecovery);
5301 }
5302 
5303 /// Find which declaration we should import to provide the definition of
5304 /// the given declaration.
5306  if (VarDecl *VD = dyn_cast<VarDecl>(D))
5307  return VD->getDefinition();
5308  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5309  return FD->getDefinition();
5310  if (TagDecl *TD = dyn_cast<TagDecl>(D))
5311  return TD->getDefinition();
5312  // The first definition for this ObjCInterfaceDecl might be in the TU
5313  // and not associated with any module. Use the one we know to be complete
5314  // and have just seen in a module.
5315  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5316  return ID;
5317  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5318  return PD->getDefinition();
5319  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5320  if (NamedDecl *TTD = TD->getTemplatedDecl())
5321  return getDefinitionToImport(TTD);
5322  return nullptr;
5323 }
5324 
5326  MissingImportKind MIK, bool Recover) {
5327  // Suggest importing a module providing the definition of this entity, if
5328  // possible.
5329  NamedDecl *Def = getDefinitionToImport(Decl);
5330  if (!Def)
5331  Def = Decl;
5332 
5333  Module *Owner = getOwningModule(Def);
5334  assert(Owner && "definition of hidden declaration is not in a module");
5335 
5336  llvm::SmallVector<Module*, 8> OwningModules;
5337  OwningModules.push_back(Owner);
5338  auto Merged = Context.getModulesWithMergedDefinition(Def);
5339  OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5340 
5341  diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5342  Recover);
5343 }
5344 
5345 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5346 /// suggesting the addition of a #include of the specified file.
5348  const FileEntry *E,
5349  llvm::StringRef IncludingFile) {
5350  bool IsSystem = false;
5352  E, IncludingFile, &IsSystem);
5353  return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5354 }
5355 
5357  SourceLocation DeclLoc,
5358  ArrayRef<Module *> Modules,
5359  MissingImportKind MIK, bool Recover) {
5360  assert(!Modules.empty());
5361 
5362  auto NotePrevious = [&] {
5363  unsigned DiagID;
5364  switch (MIK) {
5365  case MissingImportKind::Declaration:
5366  DiagID = diag::note_previous_declaration;
5367  break;
5368  case MissingImportKind::Definition:
5369  DiagID = diag::note_previous_definition;
5370  break;
5371  case MissingImportKind::DefaultArgument:
5372  DiagID = diag::note_default_argument_declared_here;
5373  break;
5374  case MissingImportKind::ExplicitSpecialization:
5375  DiagID = diag::note_explicit_specialization_declared_here;
5376  break;
5377  case MissingImportKind::PartialSpecialization:
5378  DiagID = diag::note_partial_specialization_declared_here;
5379  break;
5380  }
5381  Diag(DeclLoc, DiagID);
5382  };
5383 
5384  // Weed out duplicates from module list.
5385  llvm::SmallVector<Module*, 8> UniqueModules;
5386  llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5387  for (auto *M : Modules) {
5388  if (M->Kind == Module::GlobalModuleFragment)
5389  continue;
5390  if (UniqueModuleSet.insert(M).second)
5391  UniqueModules.push_back(M);
5392  }
5393 
5394  llvm::StringRef IncludingFile;
5395  if (const FileEntry *FE =
5396  SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5397  IncludingFile = FE->tryGetRealPathName();
5398 
5399  if (UniqueModules.empty()) {
5400  // All candidates were global module fragments. Try to suggest a #include.
5401  const FileEntry *E =
5402  PP.getModuleHeaderToIncludeForDiagnostics(UseLoc, Modules[0], DeclLoc);
5403  // FIXME: Find a smart place to suggest inserting a #include, and add
5404  // a FixItHint there.
5405  Diag(UseLoc, diag::err_module_unimported_use_global_module_fragment)
5406  << (int)MIK << Decl << !!E
5407  << (E ? getIncludeStringForHeader(PP, E, IncludingFile) : "");
5408  // Produce a "previous" note if it will point to a header rather than some
5409  // random global module fragment.
5410  // FIXME: Suppress the note backtrace even under
5411  // -fdiagnostics-show-note-include-stack.
5412  if (E)
5413  NotePrevious();
5414  if (Recover)
5415  createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5416  return;
5417  }
5418 
5419  Modules = UniqueModules;
5420 
5421  if (Modules.size() > 1) {
5422  std::string ModuleList;
5423  unsigned N = 0;
5424  for (Module *M : Modules) {
5425  ModuleList += "\n ";
5426  if (++N == 5 && N != Modules.size()) {
5427  ModuleList += "[...]";
5428  break;
5429  }
5430  ModuleList += M->getFullModuleName();
5431  }
5432 
5433  Diag(UseLoc, diag::err_module_unimported_use_multiple)
5434  << (int)MIK << Decl << ModuleList;
5435  } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics(
5436  UseLoc, Modules[0], DeclLoc)) {
5437  // The right way to make the declaration visible is to include a header;
5438  // suggest doing so.
5439  //
5440  // FIXME: Find a smart place to suggest inserting a #include, and add
5441  // a FixItHint there.
5442  Diag(UseLoc, diag::err_module_unimported_use_header)
5443  << (int)MIK << Decl << Modules[0]->getFullModuleName()
5444  << getIncludeStringForHeader(PP, E, IncludingFile);
5445  } else {
5446  // FIXME: Add a FixItHint that imports the corresponding module.
5447  Diag(UseLoc, diag::err_module_unimported_use)
5448  << (int)MIK << Decl << Modules[0]->getFullModuleName();
5449  }
5450 
5451  NotePrevious();
5452 
5453  // Try to recover by implicitly importing this module.
5454  if (Recover)
5455  createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5456 }
5457 
5458 /// Diagnose a successfully-corrected typo. Separated from the correction
5459 /// itself to allow external validation of the result, etc.
5460 ///
5461 /// \param Correction The result of performing typo correction.
5462 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5463 /// string added to it (and usually also a fixit).
5464 /// \param PrevNote A note to use when indicating the location of the entity to
5465 /// which we are correcting. Will have the correction string added to it.
5466 /// \param ErrorRecovery If \c true (the default), the caller is going to
5467 /// recover from the typo as if the corrected string had been typed.
5468 /// In this case, \c PDiag must be an error, and we will attach a fixit
5469 /// to it.
5470 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5471  const PartialDiagnostic &TypoDiag,
5472  const PartialDiagnostic &PrevNote,
5473  bool ErrorRecovery) {
5474  std::string CorrectedStr = Correction.getAsString(getLangOpts());
5475  std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5477  Correction.getCorrectionRange(), CorrectedStr);
5478 
5479  // Maybe we're just missing a module import.
5480  if (Correction.requiresImport()) {
5481  NamedDecl *Decl = Correction.getFoundDecl();
5482  assert(Decl && "import required but no declaration to import");
5483 
5484  diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5485  MissingImportKind::Declaration, ErrorRecovery);
5486  return;
5487  }
5488 
5489  Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5490  << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5491 
5492  NamedDecl *ChosenDecl =
5493  Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5494  if (PrevNote.getDiagID() && ChosenDecl)
5495  Diag(ChosenDecl->getLocation(), PrevNote)
5496  << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5497 
5498  // Add any extra diagnostics.
5499  for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5500  Diag(Correction.getCorrectionRange().getBegin(), PD);
5501 }
5502 
5503 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5505  TypoRecoveryCallback TRC) {
5506  assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5507  auto TE = new (Context) TypoExpr(Context.DependentTy);
5508  auto &State = DelayedTypos[TE];
5509  State.Consumer = std::move(TCC);
5510  State.DiagHandler = std::move(TDG);
5511  State.RecoveryHandler = std::move(TRC);
5512  if (TE)
5513  TypoExprs.push_back(TE);
5514  return TE;
5515 }
5516 
5517 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5518  auto Entry = DelayedTypos.find(TE);
5519  assert(Entry != DelayedTypos.end() &&
5520  "Failed to get the state for a TypoExpr!");
5521  return Entry->second;
5522 }
5523 
5525  DelayedTypos.erase(TE);
5526 }
5527 
5529  DeclarationNameInfo Name(II, IILoc);
5530  LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5531  R.suppressDiagnostics();
5532  R.setHideTags(false);
5533  LookupName(R, S);
5534  R.dump();
5535 }
SourceLocation getLoc() const
getLoc - Returns the main location of the declaration name.
Defines the clang::ASTContext interface.
void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex)
Definition: Decl.h:1628
Name lookup results in an ambiguity because multiple definitions of entity that meet the lookup crite...
Definition: Lookup.h:118
void setImplicit(bool I=true)
Definition: DeclBase.h:559
Represents a function declaration or definition.
Definition: Decl.h:1783
FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs, MemberExpr *ME=nullptr)
Name lookup found a set of overloaded functions that met the criteria.
Definition: Lookup.h:63
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
bool isForRedeclaration() const
True if this lookup is just looking for an existing declaration.
Definition: Lookup.h:258
SourceRange getCorrectionRange() const
bool isPredefinedLibFunction(unsigned ID) const
Determines whether this builtin is a predefined libc/libm function, such as "malloc", where we know the signature a priori.
Definition: Builtins.h:138
void setOrigin(CXXRecordDecl *Rec)
CXXMethodDecl * getMethod() const
Definition: Sema.h:1147
no exception specification
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2614
A (possibly-)qualified type.
Definition: Type.h:654
Simple class containing the result of Sema::CorrectTypo.
base_class_range bases()
Definition: DeclCXX.h:587
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2919
bool hasVisibleDeclarationSlow(const NamedDecl *D, llvm::SmallVectorImpl< Module *> *Modules)
CorrectTypoKind
Definition: Sema.h:3667
virtual unsigned RankCandidate(const TypoCorrection &candidate)
Method used by Sema::CorrectTypo to assign an "edit distance" rank to a candidate (where a lower valu...
Template argument deduction was successful.
Definition: Sema.h:7754
Defines the clang::FileManager interface and associated types.
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc...
Definition: Sema.h:3435
DeclarationName getCXXConstructorName(CanQualType Ty)
Returns the name of a C++ constructor for the given Type.
void setLookupName(DeclarationName Name)
Sets the name to look up.
Definition: Lookup.h:248
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false)
Perform unqualified name lookup starting from a given scope.
AmbiguityKind getAmbiguityKind() const
Definition: Lookup.h:326
Look up the name of an Objective-C protocol.
Definition: Sema.h:3469
Filter makeFilter()
Create a filter for this result set.
Definition: Lookup.h:682
CXXMethodDecl * LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals)
Look up the moving assignment operator for the given class.
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3422
Provides information about an attempted template argument deduction, whose success or failure was des...
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:557
void addConst()
Add the const type qualifier to this QualType.
Definition: Type.h:823
Microsoft&#39;s &#39;__super&#39; specifier, stored as a CXXRecordDecl* of the class it appeared in...
void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class)
Force the declaration of any implicitly-declared members of this class.
Definition: SemaLookup.cpp:918
The template argument is an expression, and we&#39;ve not resolved it to one of the other forms yet...
Definition: TemplateBase.h:86
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:299
bool isSingleTagDecl() const
Asks if the result is a single tag decl.
Definition: Lookup.h:530
void erase()
Erase the last element returned from this iterator.
Definition: Lookup.h:654
ConstructorInfo getConstructorInfo(NamedDecl *ND)
Definition: Overload.h:1140
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
__DEVICE__ long long abs(long long __n)
bool isModuleVisible(const Module *M, bool ModulePrivate=false)
NestedNameSpecifier * getPrefix() const
Return the prefix of this nested name specifier.
SmallVectorImpl< NamedDecl * >::iterator decl_iterator
Name lookup results in an ambiguity because multiple nonstatic entities that meet the lookup criteria...
Definition: Lookup.h:103
Defines the C++ template declaration subclasses.
bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, bool AllowBuiltinCreation=false, bool EnteringContext=false)
Performs name lookup for a name that was parsed in the source code, and may contain a C++ scope speci...
StringRef P
Classification Classify(ASTContext &Ctx) const
Classify - Classify this expression according to the C++11 expression taxonomy.
Definition: Expr.h:386
OverloadedOperatorKind getCXXOverloadedOperator() const
If this name is the name of an overloadable operator in C++ (e.g., operator+), retrieve the kind of o...
bool isTemplateParamScope() const
isTemplateParamScope - Return true if this scope is a C++ template parameter scope.
Definition: Scope.h:378
void swap(CXXBasePaths &Other)
Swap this data structure&#39;s contents with another CXXBasePaths object.
SmallVector< CodeSynthesisContext, 16 > CodeSynthesisContexts
List of active code synthesis contexts.
Definition: Sema.h:8135
static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D, llvm::SmallVectorImpl< Module *> *Modules, Filter F)
Decl * getPreviousDecl()
Retrieve the previous declaration that declares the same entity as this declaration, or NULL if there is no previous declaration.
Definition: DeclBase.h:960
NamedDecl * getDecl() const
The base class of the type hierarchy.
Definition: Type.h:1450
SourceLocation getBeginLoc() const
getBeginLoc - Retrieve the location of the first token.
MissingImportKind
Kinds of missing import.
Definition: Sema.h:2454
bool isDerivedFrom(const CXXRecordDecl *Base) const
Determine whether this class is derived from the class Base.
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:63
Represent a C++ namespace.
Definition: Decl.h:497
RedeclarationKind
Specifies whether (or how) name lookup is being performed for a redeclaration (vs.
Definition: Sema.h:3482
Ambiguous candidates found.
Definition: Overload.h:59
NamedDecl * getParam(unsigned Idx)
Definition: DeclTemplate.h:138
decl_iterator begin()
AccessSpecifier
A C++ access specifier (public, private, protected), plus the special value "none" which means differ...
Definition: Specifiers.h:113
const NestedNameSpecifier * Specifier
Look up of a name that precedes the &#39;::&#39; scope resolution operator in C++.
Definition: Sema.h:3451
void makeKeyword()
Mark this TypoCorrection as being a keyword.
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified=false, bool hasWrittenPrototype=true, ConstexprSpecKind ConstexprKind=CSK_unspecified, Expr *TrailingRequiresClause=nullptr)
Definition: Decl.h:1955
bool needsImplicitMoveAssignment() const
Determine whether this class should get an implicit move assignment operator or if any existing speci...
Definition: DeclCXX.h:925
Scope * getContinueParent()
getContinueParent - Return the closest scope that a continue statement would be affected by...
Definition: Scope.h:242
void setCorrectionSpecifier(NestedNameSpecifier *NNS)
bool hasNext() const
Definition: Lookup.h:639
Represents a path from a specific derived class (which is not represented as part of the path) to a p...
LiteralOperatorLookupResult
The possible outcomes of name lookup for a literal operator.
Definition: Sema.h:3507
unsigned getIdentifierNamespace() const
Definition: DeclBase.h:799
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2383
LLVM_ATTRIBUTE_REINITIALIZES void clear()
Clears out any current state.
Definition: Lookup.h:554
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3324
lookups_range noload_lookups(bool PreserveInternalState) const
Definition: DeclLookups.h:89
Look up a namespace name within a C++ using directive or namespace alias definition, ignoring non-namespace names (C++ [basic.lookup.udir]p1).
Definition: Sema.h:3455
CXXMethodDecl * DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl)
Declare the implicit move assignment operator for the given class.
Consumes visible declarations found when searching for all visible names within a given scope or cont...
Definition: Lookup.h:765
An identifier, stored as an IdentifierInfo*.
CXXConstructorDecl * LookupMovingConstructor(CXXRecordDecl *Class, unsigned Quals)
Look up the moving constructor for the given class.
std::list< CXXBasePath >::iterator paths_iterator
DeclContext::lookup_result Decls
The set of declarations found inside this base class subobject.
Represents a variable declaration or definition.
Definition: Decl.h:820
CXXMethodDecl * LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals)
Look up the copying assignment operator for the given class.
static NestedNameSpecifier * Create(const ASTContext &Context, NestedNameSpecifier *Prefix, IdentifierInfo *II)
Builds a specifier combining a prefix and an identifier.
DeclarationName getLookupName() const
Gets the name to look up.
Definition: Lookup.h:243
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:7002
PrintingPolicy getPrintingPolicy() const
Retrieve a suitable printing policy for diagnostics.
Definition: Sema.h:2487
static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last)
Determine whether the given set of member declarations contains only static members, nested types, and enumerators.
bool isInObjcMethodScope() const
isInObjcMethodScope - Return true if this scope is, or is contained in, an Objective-C method body...
Definition: Scope.h:356
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:56
Extra information about a function prototype.
Definition: Type.h:3837
static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class)
Determine whether we can declare a special member function within the class at this point...
Definition: SemaLookup.cpp:909
bool needsImplicitCopyAssignment() const
Determine whether this class needs an implicit copy assignment operator to be lazily declared...
Definition: DeclCXX.h:876
void setNotFoundInCurrentInstantiation()
Note that while no result was found in the current instantiation, there were dependent base classes t...
Definition: Lookup.h:452
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:138
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition: Decl.h:414
bool isAmbiguous() const
Definition: Lookup.h:301
static bool FindOMPReductionMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, DeclarationName Name)
Base-class lookup callback that determines whether there exists an OpenMP declare reduction member wi...
A namespace, stored as a NamespaceDecl*.
bool isInvalidDecl() const
Definition: DeclBase.h:553
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:69
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:47
SpecifierKind getKind() const
Determine what kind of nested name specifier is stored.
Look up an ordinary name that is going to be redeclared as a name with linkage.
Definition: Sema.h:3464
Represents a parameter to a function.
Definition: Decl.h:1595
Defines the clang::Expr interface and subclasses for C++ expressions.
void addKeywordResult(StringRef Keyword)
static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR, IdentifierInfo *II, const unsigned FctIndex, const unsigned Len)
When trying to resolve a function name, if isOpenCLBuiltin() returns a non-null <Index, Len> pair, then the name is referencing an OpenCL builtin function.
Definition: SemaLookup.cpp:763
void setMethod(CXXMethodDecl *MD)
Definition: Sema.h:1148
ModuleKind Kind
The kind of this module.
Definition: Module.h:88
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:244
Types, declared with &#39;struct foo&#39;, typedefs, etc.
Definition: DeclBase.h:132
Represents a struct/union/class.
Definition: Decl.h:3748
bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class)
Perform qualified name lookup into all base classes of the given class.
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:272
bool Encloses(const DeclContext *DC) const
Determine whether this declaration context encloses the declaration context DC.
Definition: DeclBase.cpp:1161
FunctionType::ExtInfo ExtInfo
Definition: Type.h:3838
Represents a class template specialization, which refers to a class template with a given set of temp...
One of these records is kept for each identifier that is lexed.
Name lookup results in an ambiguity; use getAmbiguityKind to figure out what kind of ambiguity we hav...
Definition: Lookup.h:73
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
std::string getQuoted(const LangOptions &LO) const
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:168
DeclarationName getCorrection() const
Gets the DeclarationName of the typo correction.
The results of name lookup within a DeclContext.
Definition: DeclBase.h:1195
LineState State
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:71
TemplateDecl * getAsTemplateDecl() const
Retrieve the underlying template declaration that this template name refers to, if known...
Base class for callback objects used by Sema::CorrectTypo to check the validity of a potential typo c...
sema::BlockScopeInfo * getCurBlock()
Retrieve the current block, if any.
Definition: Sema.cpp:1839
void setAmbiguousBaseSubobjectTypes(CXXBasePaths &P)
Make these results show that the name was found in base classes of different types.
Definition: SemaLookup.cpp:650
NameKind getNameKind() const
Determine what kind of name this is.
const Type * getAsType() const
Retrieve the type stored in this nested name specifier.
void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx, bool InBaseClass) override
Invoked each time Sema::LookupVisibleDecls() finds a declaration visible from the current scope or co...
This declaration is a friend function.
Definition: DeclBase.h:154
void setVisibleDespiteOwningModule()
Set that this declaration is globally visible, even if it came from a module that is not visible...
Definition: DeclBase.h:780
const DeclarationNameInfo & getLookupNameInfo() const
Gets the name info to look up.
Definition: Lookup.h:233
conversion_iterator conversion_end() const
Definition: DeclCXX.h:1038
bool isReferenceType() const
Definition: Type.h:6516
The iterator over UnresolvedSets.
Definition: UnresolvedSet.h:32
void addCorrectionDecl(NamedDecl *CDecl)
Add the given NamedDecl to the list of NamedDecls that are the declarations associated with the Decla...
bool isDefinedOutsideFunctionOrMethod() const
isDefinedOutsideFunctionOrMethod - This predicate returns true if this scoped decl is defined outside...
Definition: DeclBase.h:855
int Category
Definition: Format.cpp:1828
static std::string getIncludeStringForHeader(Preprocessor &PP, const FileEntry *E, llvm::StringRef IncludingFile)
Get a "quoted.h" or <angled.h> include path to use in a diagnostic suggesting the addition of a #incl...
bool Equals(const DeclContext *DC) const
Determine whether this declaration context is equivalent to the declaration context DC...
Definition: DeclBase.h:1908
bool isExternallyDeclarable() const
Determine whether this declaration can be redeclared in a different translation unit.
Definition: Decl.h:368
LookupResultKind getResultKind() const
Definition: Lookup.h:321
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:53
Scope * getBreakParent()
getBreakParent - Return the closest scope that a break statement would be affected by...
Definition: Scope.h:252
No entity found met the criteria within the current instantiation,, but there were dependent base cla...
Definition: Lookup.h:55
bool requiresImport() const
Returns whether this typo correction is correcting to a declaration that was declared in a module tha...
Describes a module or submodule.
Definition: Module.h:64
IdentifierTable & Idents
Definition: ASTContext.h:580
SpecialMemberOverloadResult - The overloading result for a special member function.
Definition: Sema.h:1131
void setCallbackDistance(unsigned ED)
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:125
DeclClass * getAsSingle() const
Definition: Lookup.h:507
StringRef getTopLevelModuleName() const
Retrieve the name of the top-level module.
Definition: Module.h:467
CXXBasePaths * getBasePaths() const
Return the base paths structure that&#39;s associated with these results, or null if none is...
Definition: Lookup.h:343
bool isTemplateNameLookup() const
Definition: Lookup.h:299
CXXRecordDecl * getAsRecordDecl() const
Retrieve the record declaration stored in this nested name specifier.
Look up implicit &#39;self&#39; parameter of an objective-c method.
Definition: Sema.h:3471
IdentifierInfo * getAsIdentifier() const
Retrieve the identifier stored in this nested name specifier.
void resolveKind()
Resolves the result kind of the lookup, possibly hiding decls.
Definition: SemaLookup.cpp:475
Represents the results of name lookup.
Definition: Lookup.h:46
void setAmbiguousBaseSubobjects(CXXBasePaths &P)
Make these results show that the name was found in distinct base classes of the same type...
Definition: SemaLookup.cpp:642
static DeclAccessPair make(NamedDecl *D, AccessSpecifier AS)
virtual bool includeHiddenDecls() const
Determine whether hidden declarations (from unimported modules) should be given to this consumer...
ObjCMethodDecl * getCurMethodDecl()
getCurMethodDecl - If inside of a method body, this returns a pointer to the method decl for the meth...
Definition: Sema.cpp:1309
Namespaces, declared with &#39;namespace foo {}&#39;.
Definition: DeclBase.h:142
static void LookupPotentialTypoResult(Sema &SemaRef, LookupResult &Res, IdentifierInfo *Name, Scope *S, CXXScopeSpec *SS, DeclContext *MemberContext, bool EnteringContext, bool isObjCIvarLookup, bool FindHidden)
Perform name lookup for a possible result for typo correction.
HeaderSearch & getHeaderSearchInfo() const
Definition: Preprocessor.h:912
void setQualifierDistance(unsigned ED)
bool hasTagIdentifierNamespace() const
Definition: DeclBase.h:809
Succeeded, but refers to a deleted function.
Definition: Overload.h:62
bool ValidateCandidate(const TypoCorrection &candidate) override
Simple predicate used by the default RankCandidate to determine whether to return an edit distance of...
CXXConstructorDecl * DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl)
Declare the implicit move constructor for the given class.
Look up all declarations in a scope with the given name, including resolved using declarations...
Definition: Sema.h:3459
static NamedDecl * getDefinitionToImport(NamedDecl *D)
Find which declaration we should import to provide the definition of the given declaration.
NamespaceAliasDecl * getAsNamespaceAlias() const
Retrieve the namespace alias stored in this nested name specifier.
TemplateDecl * getAsTypeTemplateDecl(Decl *D)
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:671
IdentifierInfoLookup * getExternalIdentifierLookup() const
Retrieve the external identifier lookup object, if any.
Represents a declaration of a type.
Definition: Decl.h:3029
A set of unresolved declarations.
Definition: UnresolvedSet.h:61
static unsigned getIDNS(Sema::LookupNameKind NameKind, bool CPlusPlus, bool Redeclaration)
Definition: SemaLookup.cpp:209
Module * Parent
The parent of this module.
Definition: Module.h:92
const Type * getClass() const
Definition: Type.h:2867
Look up the name of an OpenMP user-defined reduction operation.
Definition: Sema.h:3473
std::function< ExprResult(Sema &, TypoExpr *, TypoCorrection)> TypoRecoveryCallback
Definition: Sema.h:3538
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
void DiagnoseAmbiguousLookup(LookupResult &Result)
Produce a diagnostic describing the ambiguity that resulted from name lookup.
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:6256
CXXRecordDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclCXX.h:492
TypoExpr - Internal placeholder for expressions where typo correction still needs to be performed and...
Definition: Expr.h:5978
using_directives_range using_directives()
Definition: Scope.h:473
void append(iterator I, iterator E)
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
base_class_iterator bases_begin()
Definition: DeclCXX.h:594
Represents an Objective-C protocol declaration.
Definition: DeclObjC.h:2078
lookups_range lookups() const
Definition: DeclLookups.h:75
DeclContext * getLexicalDeclContext()
getLexicalDeclContext - The declaration context where this Decl was lexically declared (LexicalDC)...
Definition: DeclBase.h:828
LabelDecl * LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc, SourceLocation GnuLabelLoc=SourceLocation())
LookupOrCreateLabel - Do a name lookup of a label with the specified name.
const LangOptions & getLangOpts() const
Definition: Sema.h:1324
Labels, declared with &#39;x:&#39; and referenced with &#39;goto x&#39;.
Definition: DeclBase.h:119
const TypoCorrection & getNextCorrection()
Return the next typo correction that passes all internal filters and is deemed valid by the consumer&#39;...
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:1770
Represents an ObjC class declaration.
Definition: DeclObjC.h:1186
void addDecl(NamedDecl *D)
Add a declaration to these results with its natural access.
Definition: Lookup.h:426
Member name lookup, which finds the names of class/struct/union members.
Definition: Sema.h:3443
void print(raw_ostream &OS, const PrintingPolicy &Policy, bool ResolveTemplateArguments=false) const
Print this nested name specifier to the given output stream.
Ordinary names.
Definition: DeclBase.h:146
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:877
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1612
ExtInfo withCallingConv(CallingConv cc) const
Definition: Type.h:3638
static const unsigned InvalidDistance
CXXSpecialMember
Kinds of C++ special members.
Definition: Sema.h:1240
NodeId Parent
Definition: ASTDiff.cpp:191
unsigned getFlags() const
getFlags - Return the flags for this scope.
Definition: Scope.h:220
void LookupVisibleDecls(Scope *S, LookupNameKind Kind, VisibleDeclConsumer &Consumer, bool IncludeGlobalScope=true, bool LoadExternal=true)
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:336
udir_range using_directives() const
Returns iterator range [First, Last) of UsingDirectiveDecls stored within this context.
Definition: DeclBase.cpp:1911
NamedDecl * getFoundDecl() const
Get the correction declaration found by name lookup (before we looked through using shadow declaratio...
void setNamingClass(CXXRecordDecl *Record)
Sets the &#39;naming class&#39; for this lookup.
Definition: Lookup.h:408
ArrayRef< Module * > getModulesWithMergedDefinition(const NamedDecl *Def)
Get the additional modules in which the definition Def has been merged.
Definition: ASTContext.h:990
virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx, bool InBaseClass)=0
Invoked each time Sema::LookupVisibleDecls() finds a declaration visible from the current scope or co...
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1690
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3754
std::string CurrentModule
The name of the current module, of which the main source file is a part.
Definition: LangOptions.h:277
This declaration is a C++ operator declared in a non-class context.
Definition: DeclBase.h:170
Objective C @protocol.
Definition: DeclBase.h:149
virtual void EnteredContext(DeclContext *Ctx)
Callback to inform the client that Sema entered into a new context to find a visible declaration...
Definition: Lookup.h:794
bool hasMergedDefinitionInCurrentModule(NamedDecl *Def)
The return type of classify().
Definition: Expr.h:311
std::pair< unsigned, unsigned > getDepthAndIndex(NamedDecl *ND)
Retrieve the depth and index of a template parameter.
Definition: SemaInternal.h:65
DeclarationNameTable DeclarationNames
Definition: ASTContext.h:583
Provides lookups to, and iteration over, IdentiferInfo objects.
SourceRange getRange() const
Definition: DeclSpec.h:68
unsigned getEditDistance(bool Normalized=true) const
Gets the "edit distance" of the typo correction from the typo.
std::function< void(const TypoCorrection &)> TypoDiagnosticGenerator
Definition: Sema.h:3536
This declaration is a friend class.
Definition: DeclBase.h:159
std::string getAsString(const LangOptions &LO) const
static bool LookupAnyMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, DeclarationName Name)
Callback that looks for any member of a class with the given name.
void runWithSufficientStackSpace(llvm::function_ref< void()> Diag, llvm::function_ref< void()> Fn)
Run a given function on a stack with "sufficient" space.
Definition: Stack.h:40
virtual bool ValidateCandidate(const TypoCorrection &candidate)
Simple predicate used by the default RankCandidate to determine whether to return an edit distance of...
void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, ArrayRef< Expr *> Args, ADLResult &Functions)
bool isInlineNamespace() const
Definition: DeclBase.cpp:1070
static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, DeclContext *StartDC)
Perform qualified name lookup in the namespaces nominated by using directives by the given context...
DeclContext * getLexicalParent()
getLexicalParent - Returns the containing lexical DeclContext.
Definition: DeclBase.h:1800
QualType getCXXNameType() const
If this name is one of the C++ names (of a constructor, destructor, or conversion function)...
NamespaceDecl * getAsNamespace() const
Retrieve the namespace stored in this nested name specifier.
TypoExpr * CorrectTypoDelayed(const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, DeclContext *MemberContext=nullptr, bool EnteringContext=false, const ObjCObjectPointerType *OPT=nullptr)
Try to "correct" a typo in the source code by finding visible declarations whose names are similar to...
This represents one expression.
Definition: Expr.h:108
Defines the clang::LangOptions interface.
void setOpenCLExtensionForDecl(Decl *FD, llvm::StringRef Exts)
Set OpenCL extensions for a declaration which can only be used when these OpenCL extensions are enabl...
Definition: Sema.cpp:2236
LookupNameKind
Describes the kind of name lookup to perform.
Definition: Sema.h:3431
ExprValueKind
The categorization of expression values, currently following the C++11 scheme.
Definition: Specifiers.h:122
llvm::StringRef getAsString(SyncScope S)
Definition: SyncScope.h:50
bool isDeclScope(Decl *D)
isDeclScope - Return true if this is the scope that the specified decl is declared in...
Definition: Scope.h:323
int Id
Definition: ASTDiff.cpp:190
Look up the name of an OpenMP user-defined mapper.
Definition: Sema.h:3475
int SubobjectNumber
Identifies which base class subobject (of type Base->getType()) this base path element refers to...
static FindResult find(Expr *E)
Finds the overloaded expression in the given expression E of OverloadTy.
Definition: ExprCXX.h:2904
DeclContext * getEntity() const
Definition: Scope.h:327
void makeMergedDefinitionVisible(NamedDecl *ND)
Make a merged definition of an existing hidden definition ND visible at the specified location...
void setHideTags(bool Hide)
Sets whether tag declarations should be hidden by non-tag declarations during resolution.
Definition: Lookup.h:288
This file defines the classes used to store parsed information about declaration-specifiers and decla...
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:7067
The template argument is a null pointer or null pointer to member that was provided for a non-type te...
Definition: TemplateBase.h:67
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2649
std::string getAsString() const
Retrieve the human-readable string for this name.
This declaration is an OpenMP user defined reduction construction.
Definition: DeclBase.h:180
bool isAnonymousNamespace() const
Returns true if this is an anonymous namespace declaration.
Definition: Decl.h:553
const CXXRecordDecl * getTemplateInstantiationPattern() const
Retrieve the record declaration from which this record could be instantiated.
Definition: DeclCXX.cpp:1725
SmallVector< SwitchInfo, 8 > SwitchStack
SwitchStack - This is the current set of active switch statements in the block.
Definition: ScopeInfo.h:186
QualType getTagDeclType(const TagDecl *Decl) const
Return the unique reference to the type for the specified TagDecl (struct/union/class/enum) decl...
static NamedDecl * findAcceptableDecl(Sema &SemaRef, NamedDecl *D, unsigned IDNS)
Retrieve the visible declaration corresponding to D, if any.
Defines the clang::Preprocessor interface.
void setRequiresImport(bool Req)
#define bool
Definition: stdbool.h:15
Name lookup results in an ambiguity because an entity with a tag name was hidden by an entity with an...
Definition: Lookup.h:135
bool isFileContext() const
Definition: DeclBase.h:1854
DeclContext * getDeclContext()
Definition: DeclBase.h:438
static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, DeclarationName Name)
Base-class lookup callback that determines whether there exists a member with the given name that can...
CXXRecordDecl * getDefinition() const
Definition: DeclCXX.h:533
Overload resolution succeeded.
Definition: Overload.h:53
bool hasAnyDependentBases() const
Determine whether this class has any dependent base classes which are not the current instantiation...
Definition: DeclCXX.cpp:543
bool isTemplateParameter() const
isTemplateParameter - Determines whether this declaration is a template parameter.
Definition: DeclBase.h:2458
Represents a C++ template name within the type system.
Definition: TemplateName.h:191
bool needsImplicitDestructor() const
Determine whether this class needs an implicit destructor to be lazily declared.
Definition: DeclCXX.h:949
A namespace alias, stored as a NamespaceAliasDecl*.
bool isVisible(const NamedDecl *D)
Determine whether a declaration is visible to name lookup.
Definition: Sema.h:1761
VarDecl * getTemplateInstantiationPattern() const
Retrieve the variable declaration from which this variable could be instantiated, if it is an instant...
Definition: Decl.cpp:2484
IdentifierInfo * getAsIdentifierInfo() const
Retrieve the IdentifierInfo * stored in this declaration name, or null if this declaration name isn&#39;t...
This declaration is an OpenMP user defined mapper.
Definition: DeclBase.h:183
bool isClassScope() const
isClassScope - Return true if this scope is a class/struct/union scope.
Definition: Scope.h:340
QualType getType() const
Definition: Expr.h:137
bool isFunctionOrMethod() const
Definition: DeclBase.h:1836
Module * getOwningModule(const Decl *Entity)
Get the module owning an entity.
Definition: Sema.h:1750
decl_range decls() const
Definition: Scope.h:283
bool isSingleResult() const
Determines if this names a single result which is not an unresolved value using decl.
Definition: Lookup.h:308
DeclarationName getCXXOperatorName(OverloadedOperatorKind Op)
Get the name of the overloadable C++ operator corresponding to Op.
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1784
void addCorrection(TypoCorrection Correction)
QualType getRecordType(const RecordDecl *Decl) const
static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, DeclarationName Name)
Base-class lookup callback that determines whether there exists a member with the given name...
void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl, MissingImportKind MIK, bool Recover=true)
Diagnose that the specified declaration needs to be visible but isn&#39;t, and suggest a module import th...
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
Definition: ASTContext.h:1401
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:1091
bool needsImplicitDefaultConstructor() const
Determine if we need to declare a default constructor for this class.
Definition: DeclCXX.h:738
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1417
NamedDecl * LookupSingleName(Scope *S, DeclarationName Name, SourceLocation Loc, LookupNameKind NameKind, RedeclarationKind Redecl=NotForRedeclaration)
Look up a name, looking for a single declaration.
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:719
const SourceManager & SM
Definition: Format.cpp:1685
CXXConstructorDecl * LookupCopyingConstructor(CXXRecordDecl *Class, unsigned Quals)
Look up the copying constructor for the given class.
Name lookup results in an ambiguity because multiple entities that meet the lookup criteria were foun...
Definition: Lookup.h:89
FriendObjectKind getFriendObjectKind() const
Determines whether this declaration is the object of a friend declaration and, if so...
Definition: DeclBase.h:1111
CXXDestructorDecl * LookupDestructor(CXXRecordDecl *Class)
Look for the destructor of the given class.
unsigned getBuiltinID() const
Return a value indicating whether this is a builtin function.
bool LookupBuiltin(LookupResult &R)
Lookup a builtin function, when name lookup would otherwise fail.
Definition: SemaLookup.cpp:855
bool hasVisibleMemberSpecialization(const NamedDecl *D, llvm::SmallVectorImpl< Module *> *Modules=nullptr)
Determine if there is a visible declaration of D that is a member specialization declaration (as oppo...
static void AddOpenCLExtensions(Sema &S, const OpenCLBuiltinStruct &BIDecl, FunctionDecl *FDecl)
Add extensions to the function declaration.
Definition: SemaLookup.cpp:746
RecordDecl * getDecl() const
Definition: Type.h:4505
static void GetOpenCLBuiltinFctOverloads(ASTContext &Context, unsigned GenTypeMaxCnt, std::vector< QualType > &FunctionList, SmallVector< QualType, 1 > &RetTypes, SmallVector< SmallVector< QualType, 1 >, 5 > &ArgTypes)
Create a list of the candidate function overloads for an OpenCL builtin function. ...
Definition: SemaLookup.cpp:716
static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name)
Determine whether this is the name of an implicitly-declared special member function.
Definition: SemaLookup.cpp:951
NestedNameSpecifier * getScopeRep() const
Retrieve the representation of the nested-name-specifier.
Definition: DeclSpec.h:76
const CXXBaseSpecifier * Base
The base specifier that states the link from a derived class to a base class, which will be followed ...
static Module * getDefiningModule(Sema &S, Decl *Entity)
Find the module in which the given declaration was defined.
CanQualType OverloadTy
Definition: ASTContext.h:1045
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:1075
llvm::cl::opt< std::string > Filter
SmallVectorImpl< OverloadCandidate >::iterator iterator
Definition: Overload.h:1053
Tag name lookup, which finds the names of enums, classes, structs, and unions.
Definition: Sema.h:3438
Kind
A reference to an overloaded function set, either an UnresolvedLookupExpr or an UnresolvedMemberExpr...
Definition: ExprCXX.h:2844
decl_type * getPreviousDecl()
Return the previous declaration of this declaration or NULL if this is the first declaration.
Definition: Redeclarable.h:203
param_type_range param_types() const
Definition: Type.h:4119
ExtProtoInfo getExtProtoInfo() const
Definition: Type.h:3975
FunctionDecl * getAsFunction() LLVM_READONLY
Returns the function itself, or the templated function if this is a function template.
Definition: DeclBase.cpp:218
ASTContext & getASTContext() const
Definition: Sema.h:1331
FunctionDecl * getTemplatedDecl() const
Get the underlying function declaration of the template.
Encodes a location in the source.
void addVolatile()
Add the volatile type qualifier to this QualType.
Definition: Type.h:831
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
QualType getReturnType() const
Definition: Type.h:3680
Members, declared with object declarations within tag definitions.
Definition: DeclBase.h:138
void FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc, ArrayRef< Expr *> Args, AssociatedNamespaceSet &AssociatedNamespaces, AssociatedClassSet &AssociatedClasses)
Find the associated classes and namespaces for argument-dependent lookup for a call with the given se...
DeclarationName getName() const
getName - Returns the embedded declaration name.
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3219
void FoundName(StringRef Name)
Represents the declaration of a label.
Definition: Decl.h:451
Cached information about one file (either on disk or in the virtual file system). ...
Definition: FileManager.h:78
bool hasVisibleMergedDefinition(NamedDecl *Def)
bool hasVisibleDefaultArgument(const NamedDecl *D, llvm::SmallVectorImpl< Module *> *Modules=nullptr)
Determine if the template parameter D has a visible default argument.
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1931
static bool FindOMPMapperMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, DeclarationName Name)
Base-class lookup callback that determines whether there exists an OpenMP declare mapper member with ...
paths_iterator begin()
bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested, bool OnlyNeedComplete=false)
Determine if D has a visible definition.
Definition: SemaType.cpp:7956
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
Name lookup found an unresolvable value declaration and cannot yet complete.
Definition: Lookup.h:68
bool isModuleVisible(const Module *M) const
Determine whether the specified module would be visible to a lookup at the end of this module...
Definition: Module.h:552
llvm::DenseSet< Module * > & getLookupModules()
Get the set of additional modules that should be checked during name lookup.
ObjCCategoryDecl - Represents a category declaration.
Definition: DeclObjC.h:2294
virtual std::unique_ptr< CorrectionCandidateCallback > clone()=0
Clone this CorrectionCandidateCallback.
SourceRange getContextRange() const
Gets the source range of the context of this name; for C++ qualified lookups, this is the source rang...
Definition: Lookup.h:600
This is a fragment of the global module within some C++ module.
Definition: Module.h:81
static bool hasVisibleDefaultArgument(Sema &S, const ParmDecl *D, llvm::SmallVectorImpl< Module *> *Modules)
OverloadingResult BestViableFunction(Sema &S, SourceLocation Loc, OverloadCandidateSet::iterator &Best)
Find the best viable function on this overload set, if it exists.
TemplateDeductionResult DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, const TemplateArgumentList &TemplateArgs, sema::TemplateDeductionInfo &Info)
Perform template argument deduction to determine whether the given template arguments match the given...
TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, CorrectTypoKind Mode, DeclContext *MemberContext=nullptr, bool EnteringContext=false, const ObjCObjectPointerType *OPT=nullptr, bool RecordFailure=true)
Try to "correct" a typo in the source code by finding visible declarations whose names are similar to...
Look up any declaration with any name.
Definition: Sema.h:3477
bool isAnyPointerType() const
Definition: Type.h:6508
A class for iterating through a result set and possibly filtering out results.
Definition: Lookup.h:617
const TypoExprState & getTypoExprState(TypoExpr *TE) const
Represents one property declaration in an Objective-C interface.
Definition: DeclObjC.h:741
ObjCProtocolDecl * LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc, RedeclarationKind Redecl=NotForRedeclaration)
Find the protocol with the given name, if any.
No entity found met the criteria.
Definition: Lookup.h:50
TypeClass getTypeClass() const
Definition: Type.h:1876
unsigned getMinRequiredArguments() const
Returns the minimum number of arguments needed to call this function.
Definition: Decl.cpp:3263
const SmallVectorImpl< Type * > & getTypes() const
Definition: ASTContext.h:1104
static bool canHideTag(NamedDecl *D)
Determine whether D can hide a tag declaration.
Definition: SemaLookup.cpp:455
NamedDecl * next()
Definition: Lookup.h:643
OverloadCandidateSet - A set of overload candidates, used in C++ overload resolution (C++ 13...
Definition: Overload.h:896
bool isInvalid() const
An error occurred during parsing of the scope specifier.
Definition: DeclSpec.h:194
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2345
Sema & getSema() const
Get the Sema object that this lookup result is searching with.
Definition: Lookup.h:612
CXXDestructorDecl * DeclareImplicitDestructor(CXXRecordDecl *ClassDecl)
Declare the implicit destructor for the given class.
ArrayRef< TemplateArgument > pack_elements() const
Iterator range referencing all of the elements of a template argument pack.
Definition: TemplateBase.h:353
A POD class for pairing a NamedDecl* with an access specifier.
StringRef getName() const
Return the actual identifier string.
A class for storing results from argument-dependent lookup.
Definition: Lookup.h:798
Represents an element in a path from a derived class to a base class.
void diagnoseTypo(const TypoCorrection &Correction, const PartialDiagnostic &TypoDiag, bool ErrorRecovery=true)
Represents a template argument.
Definition: TemplateBase.h:50
static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, DeclContext *Ctx)
static DeclContext * getContextForScopeMatching(Decl *D)
Get a representative context for a declaration such that two declarations will have the same context ...
Definition: SemaLookup.cpp:350
DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class)
Look up the constructors for the given class.
bool hasVisibleExplicitSpecialization(const NamedDecl *D, llvm::SmallVectorImpl< Module *> *Modules=nullptr)
Determine if there is a visible declaration of D that is an explicit specialization declaration for a...
redecl_range redecls() const
Returns an iterator range for all the redeclarations of the same decl.
Definition: DeclBase.h:948
NamespaceDecl * getNominatedNamespace()
Returns the namespace nominated by this using-directive.
Definition: DeclCXX.cpp:2753
static ParmVarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
Definition: Decl.cpp:2672
void setAllowHidden(bool AH)
Specify whether hidden declarations are visible, e.g., for recovery reasons.
Definition: Lookup.h:275
std::list< CXXBasePath >::const_iterator const_paths_iterator
Dataflow Directional Tag Classes.
bool isValid() const
Return true if this is a valid SourceLocation object.
CXXConstructorDecl * DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl)
Declare the implicit copy constructor for the given class.
DeducedType * getContainedDeducedType() const
Get the DeducedType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.cpp:1808
static void getNestedNameSpecifierIdentifiers(NestedNameSpecifier *NNS, SmallVectorImpl< const IdentifierInfo *> &Identifiers)
static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC)
Check whether the declarations found for a typo correction are visible.
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1271
static void AddKeywordsToConsumer(Sema &SemaRef, TypoCorrectionConsumer &Consumer, Scope *S, CorrectionCandidateCallback &CCC, bool AfterNestedNameSpecifier)
Add keywords to the consumer as possible typo corrections.
The base class of all kinds of template declarations (e.g., class, function, etc.).
Definition: DeclTemplate.h:402
unsigned getIdentifierNamespace() const
Returns the identifier namespace mask for this lookup.
Definition: Lookup.h:377
void setContextRange(SourceRange SR)
Sets a &#39;context&#39; source range.
Definition: Lookup.h:593
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:21
const Scope * getParent() const
getParent - Return the scope that this is nested in.
Definition: Scope.h:228
The template argument is a pack expansion of a template name that was provided for a template templat...
Definition: TemplateBase.h:79
bool isFunctionOrFunctionTemplate() const
Whether this declaration is a function or function template.
Definition: DeclBase.h:1018
void setAmbiguousQualifiedTagHiding()
Make these results show that the name was found in different contexts and a tag decl was hidden by an...
Definition: Lookup.h:549
void clearDelayedTypo(TypoExpr *TE)
Clears the state of the given TypoExpr.
AccessSpecifier getAccess() const
Definition: DeclBase.h:473
NamespaceDecl * getOriginalNamespace()
Get the original (first) namespace declaration.
Definition: DeclCXX.cpp:2784
void insert(NamedDecl *D)
Adds a new ADL candidate to this map.
void setShadowed()
Note that we found and ignored a declaration while performing lookup.
Definition: Lookup.h:463
FunctionDecl * getTemplateInstantiationPattern() const
Retrieve the function declaration from which this function could be instantiated, if it is an instant...
Definition: Decl.cpp:3612
conversion_iterator conversion_begin() const
Definition: DeclCXX.h:1034
NamedDecl * getCorrectionDecl() const
Gets the pointer to the declaration of the typo correction.
The name of a declaration.
NamedDecl * getFoundDecl() const
Fetch the unique decl found by this lookup.
Definition: Lookup.h:517
const CXXRecordDecl * getParent() const
Return the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2046
Label name lookup.
Definition: Sema.h:3440
Represents an enum.
Definition: Decl.h:3481
static const unsigned MaxTypoDistanceResultSets
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2833
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
Tags, declared with &#39;struct foo;&#39; and referenced with &#39;struct foo&#39;.
Definition: DeclBase.h:127
A type that was preceded by the &#39;template&#39; keyword, stored as a Type*.
NamedDecl * getCurFunctionOrMethodDecl()
getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method or C function we&#39;re in...
Definition: Sema.cpp:1316
bool isHidden() const
Determine whether this declaration might be hidden from name lookup.
Definition: DeclBase.h:774
IdentifierInfo * getCorrectionAsIdentifierInfo() const
static LabelDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II)
Definition: Decl.cpp:4649
bool isValid() const
A scope specifier is present, and it refers to a real scope.
Definition: DeclSpec.h:196
CXXConstructorDecl * DeclareImplicitDefaultConstructor(CXXRecordDecl *ClassDecl)
Declare the implicit default constructor for the given class.
void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, QualType T1, QualType T2, UnresolvedSetImpl &Functions)
Represents a pointer to an Objective C object.
Definition: Type.h:5951
SpecialMemberOverloadResult LookupSpecialMember(CXXRecordDecl *D, CXXSpecialMember SM, bool ConstArg, bool VolatileArg, bool RValueThis, bool ConstThis, bool VolatileThis)
Name lookup found a single declaration that met the criteria.
Definition: Lookup.h:59
static AccessSpecifier MergeAccess(AccessSpecifier PathAccess, AccessSpecifier DeclAccess)
Calculates the access of a decl that is reached along a path.
Definition: DeclCXX.h:1665
bool lookupInBases(BaseMatchesCallback BaseMatches, CXXBasePaths &Paths, bool LookupInDependent=false) const
Look for entities within the base classes of this C++ class, transitively searching all base class su...
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4495
std::string suggestPathToFileForDiagnostics(const FileEntry *File, llvm::StringRef MainFile, bool *IsSystem=nullptr)
Suggest a path by which the specified file could be found, for use in diagnostics to suggest a #inclu...
The lookup is a reference to this name that is not for the purpose of redeclaring the name...
Definition: Sema.h:3485
QualType getCanonicalTypeInternal() const
Definition: Type.h:2429
This template specialization was declared or defined by an explicit specialization (C++ [temp...
Definition: Specifiers.h:185
static bool isFunctionOrMethod(const Decl *D)
isFunctionOrMethod - Return true if the given decl has function type (function or function-typed vari...
static void DeclareImplicitMemberFunctionsWithName(Sema &S, DeclarationName Name, SourceLocation Loc, const DeclContext *DC)
If there are any implicit member functions with the given name that need to be declared in the given ...
Definition: SemaLookup.cpp:969
CanQualType DependentTy
Definition: ASTContext.h:1045
CXXBasePath & front()
DeclContext * getRedeclContext()
getRedeclContext - Retrieve the context in which an entity conflicts with other entities of the same ...
Definition: DeclBase.cpp:1747
The template argument is a type.
Definition: TemplateBase.h:59
qual_range quals() const
Definition: Type.h:6074
static bool FindTagMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, DeclarationName Name)
Base-class lookup callback that determines whether there exists a tag with the given name...
Sema::LookupNameKind getLookupKind() const
Gets the kind of lookup to perform.
Definition: Lookup.h:253
The template argument is actually a parameter pack.
Definition: TemplateBase.h:90
Represents a base class of a C++ class.
Definition: DeclCXX.h:145
This is a scope that can contain a declaration.
Definition: Scope.h:59
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types...
Definition: Type.cpp:2115
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, bool InUnqualifiedLookup=false)
Perform qualified name lookup into a given context.
llvm::iterator_range< decls_iterator > decls() const
Definition: ExprCXX.h:2942
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2305
A template argument list.
Definition: DeclTemplate.h:239
bool isSet() const
Deprecated.
Definition: DeclSpec.h:209
bool needsImplicitCopyConstructor() const
Determine whether this class needs an implicit copy constructor to be lazily declared.
Definition: DeclCXX.h:766
void mergeDefinitionIntoModule(NamedDecl *ND, Module *M, bool NotifyListeners=true)
Note that the definition ND has been merged into module M, and should be visible whenever M is visibl...
ArgKind getKind() const
Return the kind of stored template argument.
Definition: TemplateBase.h:234
static bool isNamespaceOrTranslationUnitScope(Scope *S)
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
TemplateDecl * getCXXDeductionGuideTemplate() const
If this name is the name of a C++ deduction guide, return the template associated with that name...
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:1009
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2836
void setCorrectionDecls(ArrayRef< NamedDecl *> Decls)
Clears the list of NamedDecls and adds the given set.
static void GetQualTypesForOpenCLBuiltin(ASTContext &Context, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt, SmallVector< QualType, 1 > &RetTypes, SmallVector< SmallVector< QualType, 1 >, 5 > &ArgTypes)
Get the QualType instances of the return type and arguments for an OpenCL builtin function signature...
Definition: SemaLookup.cpp:687
Represents a C++ struct/union/class.
Definition: DeclCXX.h:253
void ClearCorrectionDecls()
Clears the list of NamedDecls.
The template argument is a template name that was provided for a template template parameter...
Definition: TemplateBase.h:75
sema::FunctionScopeInfo * getCurFunction() const
Definition: Sema.h:1493
Look up a friend of a local class.
Definition: Sema.h:3467
bool setUseQualifiedLookup(bool use=true) const
Definition: DeclBase.h:2379
void addAllDecls(const LookupResult &Other)
Add all the declarations from another set of lookup results.
Definition: Lookup.h:439
LiteralOperatorLookupResult LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef< QualType > ArgTys, bool AllowRaw, bool AllowTemplate, bool AllowStringTemplate, bool DiagnoseMissing)
LookupLiteralOperator - Determine which literal operator should be used for a user-defined literal...
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1959
base_class_iterator bases_end()
Definition: DeclCXX.h:596
void setCorrectionRange(CXXScopeSpec *SS, const DeclarationNameInfo &TypoName)
void print(raw_ostream &)
Definition: SemaLookup.cpp:658
AccessResult CheckMemberAccess(SourceLocation UseLoc, CXXRecordDecl *NamingClass, DeclAccessPair Found)
Checks access to a member.
Builtin::Context & BuiltinInfo
Definition: ASTContext.h:582
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:397
void DeclareImplicitDeductionGuides(TemplateDecl *Template, SourceLocation Loc)
Declare implicit deduction guides for a class template if we&#39;ve not already done so.
Declaration of a class template.
DeclContext * getLookupParent()
Find the parent context of this context that will be used for unqualified name lookup.
Definition: DeclBase.cpp:1042
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string...
Definition: Diagnostic.h:129
void addAttr(Attr *A)
Definition: DeclBase.cpp:832
NamedDecl * getAcceptableDecl(NamedDecl *D) const
Retrieve the accepted (re)declaration of the given declaration, if there is one.
Definition: Lookup.h:361
iterator end() const
Definition: Lookup.h:336
__DEVICE__ int min(int __a, int __b)
decl_iterator end()
static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, NamedDecl *D, NamedDecl *Existing)
Determine whether D is a better lookup result than Existing, given that they declare the same entity...
Definition: SemaLookup.cpp:365
AccessSpecifier Access
The access along this inheritance path.
ASTContext & getParentASTContext() const
Definition: DeclBase.h:1813
void addNamespaces(const llvm::MapVector< NamespaceDecl *, bool > &KnownNamespaces)
Set-up method to add to the consumer the set of namespaces to use in performing corrections to nested...
virtual ~VisibleDeclConsumer()
Destroys the visible declaration consumer.
void dump() const
Definition: ASTDumper.cpp:179
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2150
QualType getAsType() const
Retrieve the type for a type template argument.
Definition: TemplateBase.h:256
This declaration is a function-local extern declaration of a variable or function.
Definition: DeclBase.h:177
const Scope * getFnParent() const
getFnParent - Return the closest scope that is a function body.
Definition: Scope.h:232
static void addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T)
Represents a type template specialization; the template must be a class template, a type alias templa...
Definition: Type.h:4996
NamedDecl * getMostRecentDecl()
Definition: Decl.h:428
CXXMethodDecl * DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl)
Declare the implicit copy assignment operator for the given class.
CXXConstructorDecl * LookupDefaultConstructor(CXXRecordDecl *Class)
Look up the default constructor for the given class.
DeclContext * getPrimaryContext()
getPrimaryContext - There may be many different declarations of the same entity (including forward de...
Definition: DeclBase.cpp:1171
BasePaths - Represents the set of paths from a derived class to one of its (direct or indirect) bases...
Annotates a diagnostic with some code that should be inserted, removed, or replaced to fix the proble...
Definition: Diagnostic.h:66
bool needsImplicitMoveConstructor() const
Determine whether this class should get an implicit move constructor or if any existing special membe...
Definition: DeclCXX.h:852
No viable function found.
Definition: Overload.h:56
void suppressDiagnostics()
Suppress the diagnostics that would normally fire because of this lookup.
Definition: Lookup.h:583
static std::pair< DeclContext *, bool > findOuterContext(Scope *S)
QualType getType() const
Definition: Decl.h:630
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:129
bool empty() const
Return true if no decls were found.
Definition: Lookup.h:339
bool Load(InterpState &S, CodePtr OpPC)
Definition: Interp.h:616
A trivial tuple used to represent a source range.
bool isModulePrivate() const
Whether this declaration was marked as being private to the module in which it was defined...
Definition: DeclBase.h:607
ASTContext & Context
Definition: Sema.h:385
paths_iterator end()
This represents a decl that may have a name.
Definition: Decl.h:223
bool isTranslationUnit() const
Definition: DeclBase.h:1859
iterator begin() const
Definition: Lookup.h:335
Represents C++ using-directive.
Definition: DeclCXX.h:2863
SourceLocation getNameLoc() const
Gets the location of the identifier.
Definition: Lookup.h:606
static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts)
Determine whether the module M is part of the current module from the perspective of a module-private...
Look up of an operator name (e.g., operator+) for use with operator overloading.
Definition: Sema.h:3447
static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, DeclContext *NS, UnqualUsingDirectiveSet &UDirs)
The global specifier &#39;::&#39;. There is no stored value.
TemplateName getAsTemplateOrTemplatePattern() const
Retrieve the template argument as a template name; if the argument is a pack expansion, return the pattern as a template name.
Definition: TemplateBase.h:287
static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC)
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition: Decl.cpp:3242
SourceLocation getBegin() const
const LangOptions & getLangOpts() const
Definition: ASTContext.h:724
void WillReplaceSpecifier(bool ForceReplacement)
ExceptionSpecInfo ExceptionSpec
Definition: Type.h:3843
Defines enum values for all the target-independent builtin functions.
Declaration of a template function.
Definition: DeclTemplate.h:977
iterator - Iterate over the decls of a specified declaration name.
void setFindLocalExtern(bool FindLocalExtern)
Definition: Lookup.h:686
SourceLocation getLocation() const
Definition: DeclBase.h:429
QualType getPointeeType() const
Definition: Type.h:2853
Represents a shadow declaration introduced into a scope by a (resolved) using declaration.
Definition: DeclCXX.h:3162
bool isBeingDefined() const
Return true if this decl is currently being defined.
Definition: Decl.h:3344
static bool isCandidateViable(CorrectionCandidateCallback &CCC, TypoCorrection &Candidate)
Engages in a tight little dance with the lexer to efficiently preprocess tokens.
Definition: Preprocessor.h:128
This declaration is a using declaration.
Definition: DeclBase.h:165
static bool isVisible(Sema &SemaRef, NamedDecl *D)
Determine whether the given declaration is visible to the program.
Definition: Lookup.h:349
bool isTransparentContext() const
isTransparentContext - Determines whether this context is a "transparent" context, meaning that the members declared in this context are semantically declared in the nearest enclosing non-transparent (opaque) context but are lexically declared in this context.
Definition: DeclBase.cpp:1123
void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II)
Called on #pragma clang __debug dump II.
ArrayRef< PartialDiagnostic > getExtraDiagnostics() const
QualType getType() const
Retrieves the type of the base class.
Definition: DeclCXX.h:244
static NestedNameSpecifier * GlobalSpecifier(const ASTContext &Context)
Returns the nested name specifier representing the global scope.