clang  10.0.0git
ThreadSafetyCommon.cpp
Go to the documentation of this file.
1 //===- ThreadSafetyCommon.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the interfaces declared in ThreadSafetyCommon.h
10 //
11 //===----------------------------------------------------------------------===//
12 
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclGroup.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Basic/LLVM.h"
28 #include "clang/Basic/Specifiers.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Support/Casting.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <string>
34 #include <utility>
35 
36 using namespace clang;
37 using namespace threadSafety;
38 
39 // From ThreadSafetyUtil.h
41  switch (CE->getStmtClass()) {
42  case Stmt::IntegerLiteralClass:
43  return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
44  case Stmt::StringLiteralClass: {
45  std::string ret("\"");
46  ret += cast<StringLiteral>(CE)->getString();
47  ret += "\"";
48  return ret;
49  }
50  case Stmt::CharacterLiteralClass:
51  case Stmt::CXXNullPtrLiteralExprClass:
52  case Stmt::GNUNullExprClass:
53  case Stmt::CXXBoolLiteralExprClass:
54  case Stmt::FloatingLiteralClass:
55  case Stmt::ImaginaryLiteralClass:
56  case Stmt::ObjCStringLiteralClass:
57  default:
58  return "#lit";
59  }
60 }
61 
62 // Return true if E is a variable that points to an incomplete Phi node.
63 static bool isIncompletePhi(const til::SExpr *E) {
64  if (const auto *Ph = dyn_cast<til::Phi>(E))
65  return Ph->status() == til::Phi::PH_Incomplete;
66  return false;
67 }
68 
70 
72  auto It = SMap.find(S);
73  if (It != SMap.end())
74  return It->second;
75  return nullptr;
76 }
77 
79  Walker.walk(*this);
80  return Scfg;
81 }
82 
83 static bool isCalleeArrow(const Expr *E) {
84  const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
85  return ME ? ME->isArrow() : false;
86 }
87 
88 /// Translate a clang expression in an attribute to a til::SExpr.
89 /// Constructs the context from D, DeclExp, and SelfDecl.
90 ///
91 /// \param AttrExp The expression to translate.
92 /// \param D The declaration to which the attribute is attached.
93 /// \param DeclExp An expression involving the Decl to which the attribute
94 /// is attached. E.g. the call to a function.
96  const NamedDecl *D,
97  const Expr *DeclExp,
98  VarDecl *SelfDecl) {
99  // If we are processing a raw attribute expression, with no substitutions.
100  if (!DeclExp)
101  return translateAttrExpr(AttrExp, nullptr);
102 
103  CallingContext Ctx(nullptr, D);
104 
105  // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
106  // for formal parameters when we call buildMutexID later.
107  if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) {
108  Ctx.SelfArg = ME->getBase();
109  Ctx.SelfArrow = ME->isArrow();
110  } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
111  Ctx.SelfArg = CE->getImplicitObjectArgument();
112  Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
113  Ctx.NumArgs = CE->getNumArgs();
114  Ctx.FunArgs = CE->getArgs();
115  } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) {
116  Ctx.NumArgs = CE->getNumArgs();
117  Ctx.FunArgs = CE->getArgs();
118  } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
119  Ctx.SelfArg = nullptr; // Will be set below
120  Ctx.NumArgs = CE->getNumArgs();
121  Ctx.FunArgs = CE->getArgs();
122  } else if (D && isa<CXXDestructorDecl>(D)) {
123  // There's no such thing as a "destructor call" in the AST.
124  Ctx.SelfArg = DeclExp;
125  }
126 
127  // Hack to handle constructors, where self cannot be recovered from
128  // the expression.
129  if (SelfDecl && !Ctx.SelfArg) {
130  DeclRefExpr SelfDRE(SelfDecl->getASTContext(), SelfDecl, false,
131  SelfDecl->getType(), VK_LValue,
132  SelfDecl->getLocation());
133  Ctx.SelfArg = &SelfDRE;
134 
135  // If the attribute has no arguments, then assume the argument is "this".
136  if (!AttrExp)
137  return translateAttrExpr(Ctx.SelfArg, nullptr);
138  else // For most attributes.
139  return translateAttrExpr(AttrExp, &Ctx);
140  }
141 
142  // If the attribute has no arguments, then assume the argument is "this".
143  if (!AttrExp)
144  return translateAttrExpr(Ctx.SelfArg, nullptr);
145  else // For most attributes.
146  return translateAttrExpr(AttrExp, &Ctx);
147 }
148 
149 /// Translate a clang expression in an attribute to a til::SExpr.
150 // This assumes a CallingContext has already been created.
152  CallingContext *Ctx) {
153  if (!AttrExp)
154  return CapabilityExpr(nullptr, false);
155 
156  if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
157  if (SLit->getString() == StringRef("*"))
158  // The "*" expr is a universal lock, which essentially turns off
159  // checks until it is removed from the lockset.
160  return CapabilityExpr(new (Arena) til::Wildcard(), false);
161  else
162  // Ignore other string literals for now.
163  return CapabilityExpr(nullptr, false);
164  }
165 
166  bool Neg = false;
167  if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
168  if (OE->getOperator() == OO_Exclaim) {
169  Neg = true;
170  AttrExp = OE->getArg(0);
171  }
172  }
173  else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
174  if (UO->getOpcode() == UO_LNot) {
175  Neg = true;
176  AttrExp = UO->getSubExpr();
177  }
178  }
179 
180  til::SExpr *E = translate(AttrExp, Ctx);
181 
182  // Trap mutex expressions like nullptr, or 0.
183  // Any literal value is nonsense.
184  if (!E || isa<til::Literal>(E))
185  return CapabilityExpr(nullptr, false);
186 
187  // Hack to deal with smart pointers -- strip off top-level pointer casts.
188  if (const auto *CE = dyn_cast_or_null<til::Cast>(E)) {
189  if (CE->castOpcode() == til::CAST_objToPtr)
190  return CapabilityExpr(CE->expr(), Neg);
191  }
192  return CapabilityExpr(E, Neg);
193 }
194 
195 // Translate a clang statement or expression to a TIL expression.
196 // Also performs substitution of variables; Ctx provides the context.
197 // Dispatches on the type of S.
199  if (!S)
200  return nullptr;
201 
202  // Check if S has already been translated and cached.
203  // This handles the lookup of SSA names for DeclRefExprs here.
204  if (til::SExpr *E = lookupStmt(S))
205  return E;
206 
207  switch (S->getStmtClass()) {
208  case Stmt::DeclRefExprClass:
209  return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
210  case Stmt::CXXThisExprClass:
211  return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
212  case Stmt::MemberExprClass:
213  return translateMemberExpr(cast<MemberExpr>(S), Ctx);
214  case Stmt::ObjCIvarRefExprClass:
215  return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx);
216  case Stmt::CallExprClass:
217  return translateCallExpr(cast<CallExpr>(S), Ctx);
218  case Stmt::CXXMemberCallExprClass:
219  return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
220  case Stmt::CXXOperatorCallExprClass:
221  return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
222  case Stmt::UnaryOperatorClass:
223  return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
224  case Stmt::BinaryOperatorClass:
225  case Stmt::CompoundAssignOperatorClass:
226  return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
227 
228  case Stmt::ArraySubscriptExprClass:
229  return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
230  case Stmt::ConditionalOperatorClass:
231  return translateAbstractConditionalOperator(
232  cast<ConditionalOperator>(S), Ctx);
233  case Stmt::BinaryConditionalOperatorClass:
234  return translateAbstractConditionalOperator(
235  cast<BinaryConditionalOperator>(S), Ctx);
236 
237  // We treat these as no-ops
238  case Stmt::ConstantExprClass:
239  return translate(cast<ConstantExpr>(S)->getSubExpr(), Ctx);
240  case Stmt::ParenExprClass:
241  return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
242  case Stmt::ExprWithCleanupsClass:
243  return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
244  case Stmt::CXXBindTemporaryExprClass:
245  return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
246  case Stmt::MaterializeTemporaryExprClass:
247  return translate(cast<MaterializeTemporaryExpr>(S)->getSubExpr(), Ctx);
248 
249  // Collect all literals
250  case Stmt::CharacterLiteralClass:
251  case Stmt::CXXNullPtrLiteralExprClass:
252  case Stmt::GNUNullExprClass:
253  case Stmt::CXXBoolLiteralExprClass:
254  case Stmt::FloatingLiteralClass:
255  case Stmt::ImaginaryLiteralClass:
256  case Stmt::IntegerLiteralClass:
257  case Stmt::StringLiteralClass:
258  case Stmt::ObjCStringLiteralClass:
259  return new (Arena) til::Literal(cast<Expr>(S));
260 
261  case Stmt::DeclStmtClass:
262  return translateDeclStmt(cast<DeclStmt>(S), Ctx);
263  default:
264  break;
265  }
266  if (const auto *CE = dyn_cast<CastExpr>(S))
267  return translateCastExpr(CE, Ctx);
268 
269  return new (Arena) til::Undefined(S);
270 }
271 
272 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
273  CallingContext *Ctx) {
274  const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
275 
276  // Function parameters require substitution and/or renaming.
277  if (const auto *PV = dyn_cast_or_null<ParmVarDecl>(VD)) {
278  unsigned I = PV->getFunctionScopeIndex();
279  const DeclContext *D = PV->getDeclContext();
280  if (Ctx && Ctx->FunArgs) {
281  const Decl *Canonical = Ctx->AttrDecl->getCanonicalDecl();
282  if (isa<FunctionDecl>(D)
283  ? (cast<FunctionDecl>(D)->getCanonicalDecl() == Canonical)
284  : (cast<ObjCMethodDecl>(D)->getCanonicalDecl() == Canonical)) {
285  // Substitute call arguments for references to function parameters
286  assert(I < Ctx->NumArgs);
287  return translate(Ctx->FunArgs[I], Ctx->Prev);
288  }
289  }
290  // Map the param back to the param of the original function declaration
291  // for consistent comparisons.
292  VD = isa<FunctionDecl>(D)
293  ? cast<FunctionDecl>(D)->getCanonicalDecl()->getParamDecl(I)
294  : cast<ObjCMethodDecl>(D)->getCanonicalDecl()->getParamDecl(I);
295  }
296 
297  // For non-local variables, treat it as a reference to a named object.
298  return new (Arena) til::LiteralPtr(VD);
299 }
300 
301 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
302  CallingContext *Ctx) {
303  // Substitute for 'this'
304  if (Ctx && Ctx->SelfArg)
305  return translate(Ctx->SelfArg, Ctx->Prev);
306  assert(SelfVar && "We have no variable for 'this'!");
307  return SelfVar;
308 }
309 
310 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
311  if (const auto *V = dyn_cast<til::Variable>(E))
312  return V->clangDecl();
313  if (const auto *Ph = dyn_cast<til::Phi>(E))
314  return Ph->clangDecl();
315  if (const auto *P = dyn_cast<til::Project>(E))
316  return P->clangDecl();
317  if (const auto *L = dyn_cast<til::LiteralPtr>(E))
318  return L->clangDecl();
319  return nullptr;
320 }
321 
322 static bool hasAnyPointerType(const til::SExpr *E) {
323  auto *VD = getValueDeclFromSExpr(E);
324  if (VD && VD->getType()->isAnyPointerType())
325  return true;
326  if (const auto *C = dyn_cast<til::Cast>(E))
327  return C->castOpcode() == til::CAST_objToPtr;
328 
329  return false;
330 }
331 
332 // Grab the very first declaration of virtual method D
334  while (true) {
335  D = D->getCanonicalDecl();
336  auto OverriddenMethods = D->overridden_methods();
337  if (OverriddenMethods.begin() == OverriddenMethods.end())
338  return D; // Method does not override anything
339  // FIXME: this does not work with multiple inheritance.
340  D = *OverriddenMethods.begin();
341  }
342  return nullptr;
343 }
344 
345 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
346  CallingContext *Ctx) {
347  til::SExpr *BE = translate(ME->getBase(), Ctx);
348  til::SExpr *E = new (Arena) til::SApply(BE);
349 
350  const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
351  if (const auto *VD = dyn_cast<CXXMethodDecl>(D))
352  D = getFirstVirtualDecl(VD);
353 
354  til::Project *P = new (Arena) til::Project(E, D);
355  if (hasAnyPointerType(BE))
356  P->setArrow(true);
357  return P;
358 }
359 
360 til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE,
361  CallingContext *Ctx) {
362  til::SExpr *BE = translate(IVRE->getBase(), Ctx);
363  til::SExpr *E = new (Arena) til::SApply(BE);
364 
365  const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl());
366 
367  til::Project *P = new (Arena) til::Project(E, D);
368  if (hasAnyPointerType(BE))
369  P->setArrow(true);
370  return P;
371 }
372 
373 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
374  CallingContext *Ctx,
375  const Expr *SelfE) {
376  if (CapabilityExprMode) {
377  // Handle LOCK_RETURNED
378  if (const FunctionDecl *FD = CE->getDirectCallee()) {
379  FD = FD->getMostRecentDecl();
380  if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) {
381  CallingContext LRCallCtx(Ctx);
382  LRCallCtx.AttrDecl = CE->getDirectCallee();
383  LRCallCtx.SelfArg = SelfE;
384  LRCallCtx.NumArgs = CE->getNumArgs();
385  LRCallCtx.FunArgs = CE->getArgs();
386  return const_cast<til::SExpr *>(
387  translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
388  }
389  }
390  }
391 
392  til::SExpr *E = translate(CE->getCallee(), Ctx);
393  for (const auto *Arg : CE->arguments()) {
394  til::SExpr *A = translate(Arg, Ctx);
395  E = new (Arena) til::Apply(E, A);
396  }
397  return new (Arena) til::Call(E, CE);
398 }
399 
400 til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
401  const CXXMemberCallExpr *ME, CallingContext *Ctx) {
402  if (CapabilityExprMode) {
403  // Ignore calls to get() on smart pointers.
404  if (ME->getMethodDecl()->getNameAsString() == "get" &&
405  ME->getNumArgs() == 0) {
406  auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
407  return new (Arena) til::Cast(til::CAST_objToPtr, E);
408  // return E;
409  }
410  }
411  return translateCallExpr(cast<CallExpr>(ME), Ctx,
413 }
414 
415 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
416  const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
417  if (CapabilityExprMode) {
418  // Ignore operator * and operator -> on smart pointers.
420  if (k == OO_Star || k == OO_Arrow) {
421  auto *E = translate(OCE->getArg(0), Ctx);
422  return new (Arena) til::Cast(til::CAST_objToPtr, E);
423  // return E;
424  }
425  }
426  return translateCallExpr(cast<CallExpr>(OCE), Ctx);
427 }
428 
429 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
430  CallingContext *Ctx) {
431  switch (UO->getOpcode()) {
432  case UO_PostInc:
433  case UO_PostDec:
434  case UO_PreInc:
435  case UO_PreDec:
436  return new (Arena) til::Undefined(UO);
437 
438  case UO_AddrOf:
439  if (CapabilityExprMode) {
440  // interpret &Graph::mu_ as an existential.
441  if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
442  if (DRE->getDecl()->isCXXInstanceMember()) {
443  // This is a pointer-to-member expression, e.g. &MyClass::mu_.
444  // We interpret this syntax specially, as a wildcard.
445  auto *W = new (Arena) til::Wildcard();
446  return new (Arena) til::Project(W, DRE->getDecl());
447  }
448  }
449  }
450  // otherwise, & is a no-op
451  return translate(UO->getSubExpr(), Ctx);
452 
453  // We treat these as no-ops
454  case UO_Deref:
455  case UO_Plus:
456  return translate(UO->getSubExpr(), Ctx);
457 
458  case UO_Minus:
459  return new (Arena)
461  case UO_Not:
462  return new (Arena)
464  case UO_LNot:
465  return new (Arena)
467 
468  // Currently unsupported
469  case UO_Real:
470  case UO_Imag:
471  case UO_Extension:
472  case UO_Coawait:
473  return new (Arena) til::Undefined(UO);
474  }
475  return new (Arena) til::Undefined(UO);
476 }
477 
478 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
479  const BinaryOperator *BO,
480  CallingContext *Ctx, bool Reverse) {
481  til::SExpr *E0 = translate(BO->getLHS(), Ctx);
482  til::SExpr *E1 = translate(BO->getRHS(), Ctx);
483  if (Reverse)
484  return new (Arena) til::BinaryOp(Op, E1, E0);
485  else
486  return new (Arena) til::BinaryOp(Op, E0, E1);
487 }
488 
489 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
490  const BinaryOperator *BO,
491  CallingContext *Ctx,
492  bool Assign) {
493  const Expr *LHS = BO->getLHS();
494  const Expr *RHS = BO->getRHS();
495  til::SExpr *E0 = translate(LHS, Ctx);
496  til::SExpr *E1 = translate(RHS, Ctx);
497 
498  const ValueDecl *VD = nullptr;
499  til::SExpr *CV = nullptr;
500  if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
501  VD = DRE->getDecl();
502  CV = lookupVarDecl(VD);
503  }
504 
505  if (!Assign) {
506  til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
507  E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
508  E1 = addStatement(E1, nullptr, VD);
509  }
510  if (VD && CV)
511  return updateVarDecl(VD, E1);
512  return new (Arena) til::Store(E0, E1);
513 }
514 
515 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
516  CallingContext *Ctx) {
517  switch (BO->getOpcode()) {
518  case BO_PtrMemD:
519  case BO_PtrMemI:
520  return new (Arena) til::Undefined(BO);
521 
522  case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx);
523  case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx);
524  case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx);
525  case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx);
526  case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx);
527  case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx);
528  case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx);
529  case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx);
530  case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true);
531  case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx);
532  case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true);
533  case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx);
534  case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx);
535  case BO_Cmp: return translateBinOp(til::BOP_Cmp, BO, Ctx);
536  case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx);
537  case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx);
538  case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx);
539  case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
540  case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx);
541 
542  case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true);
543  case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
544  case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
545  case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
546  case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
547  case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
548  case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
549  case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
550  case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
551  case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
552  case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx);
553 
554  case BO_Comma:
555  // The clang CFG should have already processed both sides.
556  return translate(BO->getRHS(), Ctx);
557  }
558  return new (Arena) til::Undefined(BO);
559 }
560 
561 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
562  CallingContext *Ctx) {
563  CastKind K = CE->getCastKind();
564  switch (K) {
565  case CK_LValueToRValue: {
566  if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
567  til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
568  if (E0)
569  return E0;
570  }
571  til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
572  return E0;
573  // FIXME!! -- get Load working properly
574  // return new (Arena) til::Load(E0);
575  }
576  case CK_NoOp:
577  case CK_DerivedToBase:
578  case CK_UncheckedDerivedToBase:
579  case CK_ArrayToPointerDecay:
580  case CK_FunctionToPointerDecay: {
581  til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
582  return E0;
583  }
584  default: {
585  // FIXME: handle different kinds of casts.
586  til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
587  if (CapabilityExprMode)
588  return E0;
589  return new (Arena) til::Cast(til::CAST_none, E0);
590  }
591  }
592 }
593 
594 til::SExpr *
595 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
596  CallingContext *Ctx) {
597  til::SExpr *E0 = translate(E->getBase(), Ctx);
598  til::SExpr *E1 = translate(E->getIdx(), Ctx);
599  return new (Arena) til::ArrayIndex(E0, E1);
600 }
601 
602 til::SExpr *
603 SExprBuilder::translateAbstractConditionalOperator(
605  auto *C = translate(CO->getCond(), Ctx);
606  auto *T = translate(CO->getTrueExpr(), Ctx);
607  auto *E = translate(CO->getFalseExpr(), Ctx);
608  return new (Arena) til::IfThenElse(C, T, E);
609 }
610 
611 til::SExpr *
612 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
613  DeclGroupRef DGrp = S->getDeclGroup();
614  for (auto I : DGrp) {
615  if (auto *VD = dyn_cast_or_null<VarDecl>(I)) {
616  Expr *E = VD->getInit();
617  til::SExpr* SE = translate(E, Ctx);
618 
619  // Add local variables with trivial type to the variable map
620  QualType T = VD->getType();
621  if (T.isTrivialType(VD->getASTContext()))
622  return addVarDecl(VD, SE);
623  else {
624  // TODO: add alloca
625  }
626  }
627  }
628  return nullptr;
629 }
630 
631 // If (E) is non-trivial, then add it to the current basic block, and
632 // update the statement map so that S refers to E. Returns a new variable
633 // that refers to E.
634 // If E is trivial returns E.
635 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
636  const ValueDecl *VD) {
637  if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
638  return E;
639  if (VD)
640  E = new (Arena) til::Variable(E, VD);
641  CurrentInstructions.push_back(E);
642  if (S)
643  insertStmt(S, E);
644  return E;
645 }
646 
647 // Returns the current value of VD, if known, and nullptr otherwise.
648 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
649  auto It = LVarIdxMap.find(VD);
650  if (It != LVarIdxMap.end()) {
651  assert(CurrentLVarMap[It->second].first == VD);
652  return CurrentLVarMap[It->second].second;
653  }
654  return nullptr;
655 }
656 
657 // if E is a til::Variable, update its clangDecl.
658 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
659  if (!E)
660  return;
661  if (auto *V = dyn_cast<til::Variable>(E)) {
662  if (!V->clangDecl())
663  V->setClangDecl(VD);
664  }
665 }
666 
667 // Adds a new variable declaration.
668 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
669  maybeUpdateVD(E, VD);
670  LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
671  CurrentLVarMap.makeWritable();
672  CurrentLVarMap.push_back(std::make_pair(VD, E));
673  return E;
674 }
675 
676 // Updates a current variable declaration. (E.g. by assignment)
677 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
678  maybeUpdateVD(E, VD);
679  auto It = LVarIdxMap.find(VD);
680  if (It == LVarIdxMap.end()) {
681  til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
682  til::SExpr *St = new (Arena) til::Store(Ptr, E);
683  return St;
684  }
685  CurrentLVarMap.makeWritable();
686  CurrentLVarMap.elem(It->second).second = E;
687  return E;
688 }
689 
690 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
691 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
692 // If E == null, this is a backedge and will be set later.
693 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
694  unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
695  assert(ArgIndex > 0 && ArgIndex < NPreds);
696 
697  til::SExpr *CurrE = CurrentLVarMap[i].second;
698  if (CurrE->block() == CurrentBB) {
699  // We already have a Phi node in the current block,
700  // so just add the new variable to the Phi node.
701  auto *Ph = dyn_cast<til::Phi>(CurrE);
702  assert(Ph && "Expecting Phi node.");
703  if (E)
704  Ph->values()[ArgIndex] = E;
705  return;
706  }
707 
708  // Make a new phi node: phi(..., E)
709  // All phi args up to the current index are set to the current value.
710  til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
711  Ph->values().setValues(NPreds, nullptr);
712  for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
713  Ph->values()[PIdx] = CurrE;
714  if (E)
715  Ph->values()[ArgIndex] = E;
716  Ph->setClangDecl(CurrentLVarMap[i].first);
717  // If E is from a back-edge, or either E or CurrE are incomplete, then
718  // mark this node as incomplete; we may need to remove it later.
719  if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE))
721 
722  // Add Phi node to current block, and update CurrentLVarMap[i]
723  CurrentArguments.push_back(Ph);
724  if (Ph->status() == til::Phi::PH_Incomplete)
725  IncompleteArgs.push_back(Ph);
726 
727  CurrentLVarMap.makeWritable();
728  CurrentLVarMap.elem(i).second = Ph;
729 }
730 
731 // Merge values from Map into the current variable map.
732 // This will construct Phi nodes in the current basic block as necessary.
733 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
734  assert(CurrentBlockInfo && "Not processing a block!");
735 
736  if (!CurrentLVarMap.valid()) {
737  // Steal Map, using copy-on-write.
738  CurrentLVarMap = std::move(Map);
739  return;
740  }
741  if (CurrentLVarMap.sameAs(Map))
742  return; // Easy merge: maps from different predecessors are unchanged.
743 
744  unsigned NPreds = CurrentBB->numPredecessors();
745  unsigned ESz = CurrentLVarMap.size();
746  unsigned MSz = Map.size();
747  unsigned Sz = std::min(ESz, MSz);
748 
749  for (unsigned i = 0; i < Sz; ++i) {
750  if (CurrentLVarMap[i].first != Map[i].first) {
751  // We've reached the end of variables in common.
752  CurrentLVarMap.makeWritable();
753  CurrentLVarMap.downsize(i);
754  break;
755  }
756  if (CurrentLVarMap[i].second != Map[i].second)
757  makePhiNodeVar(i, NPreds, Map[i].second);
758  }
759  if (ESz > MSz) {
760  CurrentLVarMap.makeWritable();
761  CurrentLVarMap.downsize(Map.size());
762  }
763 }
764 
765 // Merge a back edge into the current variable map.
766 // This will create phi nodes for all variables in the variable map.
767 void SExprBuilder::mergeEntryMapBackEdge() {
768  // We don't have definitions for variables on the backedge, because we
769  // haven't gotten that far in the CFG. Thus, when encountering a back edge,
770  // we conservatively create Phi nodes for all variables. Unnecessary Phi
771  // nodes will be marked as incomplete, and stripped out at the end.
772  //
773  // An Phi node is unnecessary if it only refers to itself and one other
774  // variable, e.g. x = Phi(y, y, x) can be reduced to x = y.
775 
776  assert(CurrentBlockInfo && "Not processing a block!");
777 
778  if (CurrentBlockInfo->HasBackEdges)
779  return;
780  CurrentBlockInfo->HasBackEdges = true;
781 
782  CurrentLVarMap.makeWritable();
783  unsigned Sz = CurrentLVarMap.size();
784  unsigned NPreds = CurrentBB->numPredecessors();
785 
786  for (unsigned i = 0; i < Sz; ++i)
787  makePhiNodeVar(i, NPreds, nullptr);
788 }
789 
790 // Update the phi nodes that were initially created for a back edge
791 // once the variable definitions have been computed.
792 // I.e., merge the current variable map into the phi nodes for Blk.
793 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
794  til::BasicBlock *BB = lookupBlock(Blk);
795  unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
796  assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
797 
798  for (til::SExpr *PE : BB->arguments()) {
799  auto *Ph = dyn_cast_or_null<til::Phi>(PE);
800  assert(Ph && "Expecting Phi Node.");
801  assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
802 
803  til::SExpr *E = lookupVarDecl(Ph->clangDecl());
804  assert(E && "Couldn't find local variable for Phi node.");
805  Ph->values()[ArgIndex] = E;
806  }
807 }
808 
809 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
810  const CFGBlock *First) {
811  // Perform initial setup operations.
812  unsigned NBlocks = Cfg->getNumBlockIDs();
813  Scfg = new (Arena) til::SCFG(Arena, NBlocks);
814 
815  // allocate all basic blocks immediately, to handle forward references.
816  BBInfo.resize(NBlocks);
817  BlockMap.resize(NBlocks, nullptr);
818  // create map from clang blockID to til::BasicBlocks
819  for (auto *B : *Cfg) {
820  auto *BB = new (Arena) til::BasicBlock(Arena);
821  BB->reserveInstructions(B->size());
822  BlockMap[B->getBlockID()] = BB;
823  }
824 
825  CurrentBB = lookupBlock(&Cfg->getEntry());
826  auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
827  : cast<FunctionDecl>(D)->parameters();
828  for (auto *Pm : Parms) {
829  QualType T = Pm->getType();
830  if (!T.isTrivialType(Pm->getASTContext()))
831  continue;
832 
833  // Add parameters to local variable map.
834  // FIXME: right now we emulate params with loads; that should be fixed.
835  til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
836  til::SExpr *Ld = new (Arena) til::Load(Lp);
837  til::SExpr *V = addStatement(Ld, nullptr, Pm);
838  addVarDecl(Pm, V);
839  }
840 }
841 
842 void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
843  // Initialize TIL basic block and add it to the CFG.
844  CurrentBB = lookupBlock(B);
845  CurrentBB->reservePredecessors(B->pred_size());
846  Scfg->add(CurrentBB);
847 
848  CurrentBlockInfo = &BBInfo[B->getBlockID()];
849 
850  // CurrentLVarMap is moved to ExitMap on block exit.
851  // FIXME: the entry block will hold function parameters.
852  // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
853 }
854 
855 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
856  // Compute CurrentLVarMap on entry from ExitMaps of predecessors
857 
858  CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
859  BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
860  assert(PredInfo->UnprocessedSuccessors > 0);
861 
862  if (--PredInfo->UnprocessedSuccessors == 0)
863  mergeEntryMap(std::move(PredInfo->ExitMap));
864  else
865  mergeEntryMap(PredInfo->ExitMap.clone());
866 
867  ++CurrentBlockInfo->ProcessedPredecessors;
868 }
869 
870 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
871  mergeEntryMapBackEdge();
872 }
873 
874 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
875  // The merge*() methods have created arguments.
876  // Push those arguments onto the basic block.
877  CurrentBB->arguments().reserve(
878  static_cast<unsigned>(CurrentArguments.size()), Arena);
879  for (auto *A : CurrentArguments)
880  CurrentBB->addArgument(A);
881 }
882 
883 void SExprBuilder::handleStatement(const Stmt *S) {
884  til::SExpr *E = translate(S, nullptr);
885  addStatement(E, S);
886 }
887 
888 void SExprBuilder::handleDestructorCall(const VarDecl *VD,
889  const CXXDestructorDecl *DD) {
890  til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
891  til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
892  til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
893  til::SExpr *E = new (Arena) til::Call(Ap);
894  addStatement(E, nullptr);
895 }
896 
897 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
898  CurrentBB->instructions().reserve(
899  static_cast<unsigned>(CurrentInstructions.size()), Arena);
900  for (auto *V : CurrentInstructions)
901  CurrentBB->addInstruction(V);
902 
903  // Create an appropriate terminator
904  unsigned N = B->succ_size();
905  auto It = B->succ_begin();
906  if (N == 1) {
907  til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
908  // TODO: set index
909  unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
910  auto *Tm = new (Arena) til::Goto(BB, Idx);
911  CurrentBB->setTerminator(Tm);
912  }
913  else if (N == 2) {
914  til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
915  til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
916  ++It;
917  til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
918  // FIXME: make sure these aren't critical edges.
919  auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
920  CurrentBB->setTerminator(Tm);
921  }
922 }
923 
924 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
925  ++CurrentBlockInfo->UnprocessedSuccessors;
926 }
927 
928 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
929  mergePhiNodesBackEdge(Succ);
930  ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
931 }
932 
933 void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
934  CurrentArguments.clear();
935  CurrentInstructions.clear();
936  CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
937  CurrentBB = nullptr;
938  CurrentBlockInfo = nullptr;
939 }
940 
941 void SExprBuilder::exitCFG(const CFGBlock *Last) {
942  for (auto *Ph : IncompleteArgs) {
943  if (Ph->status() == til::Phi::PH_Incomplete)
945  }
946 
947  CurrentArguments.clear();
948  CurrentInstructions.clear();
949  IncompleteArgs.clear();
950 }
951 
952 /*
953 namespace {
954 
955 class TILPrinter :
956  public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
957 
958 } // namespace
959 
960 namespace clang {
961 namespace threadSafety {
962 
963 void printSCFG(CFGWalker &Walker) {
964  llvm::BumpPtrAllocator Bpa;
965  til::MemRegionRef Arena(&Bpa);
966  SExprBuilder SxBuilder(Arena);
967  til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
968  TILPrinter::print(Scfg, llvm::errs());
969 }
970 
971 } // namespace threadSafety
972 } // namespace clang
973 */
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
Simple arithmetic unary operations, e.g.
static const Decl * getCanonicalDecl(const Decl *D)
Represents a function declaration or definition.
Definition: Decl.h:1783
Apply a self-argument to a self-applicable function.
Expr ** getArgs()
Retrieve the call arguments.
Definition: Expr.h:2692
til::SExpr * lookupStmt(const Stmt *S)
A (possibly-)qualified type.
Definition: Type.h:654
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2919
A conditional branch to two other blocks.
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2702
succ_iterator succ_begin()
Definition: CFG.h:956
Stmt - This represents one statement.
Definition: Stmt.h:66
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2689
C Language Family Type Representation.
Expr * getBase() const
Definition: Expr.h:2913
unsigned getBlockID() const
Definition: CFG.h:1075
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
Expr * getImplicitObjectArgument() const
Retrieve the implicit object argument for the member call.
Definition: ExprCXX.cpp:719
Opcode getOpcode() const
Definition: Expr.h:3469
StringRef P
til::SExpr * translate(const Stmt *S, CallingContext *Ctx)
static const ValueDecl * getValueDeclFromSExpr(const til::SExpr *E)
unsigned succ_size() const
Definition: CFG.h:974
bool isTrivialType(const ASTContext &Context) const
Return true if this is a trivial type per (C++0x [basic.types]p9)
Definition: Type.cpp:2241
Represents a variable declaration or definition.
Definition: Decl.h:820
std::string getSourceLiteralString(const Expr *CE)
static bool isCalleeArrow(const Expr *E)
unsigned addPredecessor(BasicBlock *Pred)
static const CXXMethodDecl * getFirstVirtualDecl(const CXXMethodDecl *D)
size_t numPredecessors() const
Returns the number of predecessors.
Defines the clang::Expr interface and subclasses for C++ expressions.
If p is a reference to an array, then p[i] is a reference to the i&#39;th element of the array...
til::SCFG * buildCFG(CFGWalker &Walker)
static bool hasAnyPointerType(const til::SExpr *E)
FieldDecl * getCanonicalDecl() override
Retrieves the canonical declaration of this field.
Definition: Decl.h:2929
Project a named slot from a C++ struct or class.
CXXMethodDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclCXX.h:2017
const DeclGroupRef getDeclGroup() const
Definition: Stmt.h:1243
Expr * getSubExpr()
Definition: Expr.h:3202
unsigned findPredecessorIndex(const BasicBlock *BB) const
Return the index of BB, or Predecessors.size if BB is not a predecessor.
static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD)
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified...
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3434
bool isArrow() const
Definition: Expr.h:3020
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:3000
A basic block is part of an SCFG.
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3150
void setClangDecl(const ValueDecl *Cvd)
Set the clang variable associated with this Phi node.
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:877
Placeholder for expressions that cannot be represented in the TIL.
Represents the this expression in C++.
Definition: ExprCXX.h:1097
ObjCIvarDecl * getDecl()
Definition: ExprObjC.h:576
void addInstruction(SExpr *V)
Add a new instruction.
An SCFG is a control-flow graph.
CastKind
CastKind - The kind of operation required for a conversion.
Represents a single basic block in a source-level CFG.
Definition: CFG.h:576
void addArgument(Phi *V)
Add a new argument.
Apply an argument to a function.
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:619
This represents one expression.
Definition: Expr.h:108
Stmt * getTerminatorCondition(bool StripParens=true)
Definition: CFG.cpp:5930
Represents a source-level, intra-procedural CFG that represents the control-flow of a Stmt...
Definition: CFG.h:1226
#define V(N, I)
Definition: ASTContext.h:2941
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2649
Expr * getCallee()
Definition: Expr.h:2663
Defines an enumeration for C++ overloaded operators.
overridden_method_range overridden_methods() const
Definition: DeclCXX.cpp:2327
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return null.
Definition: Expr.h:2681
static SVal getValue(SVal val, SValBuilder &svalBuilder)
Jump to another basic block.
SExprBuilder::CallingContext CallingContext
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:2046
CXXMethodDecl * getMethodDecl() const
Retrieve the declaration of the called method.
Definition: ExprCXX.cpp:738
ValueDecl * getDecl()
Definition: Expr.h:1247
TIL_BinaryOpcode
Opcode for binary arithmetic operations.
void reservePredecessors(unsigned NumPreds)
Expr * getSubExpr() const
Definition: Expr.h:2076
CastKind getCastKind() const
Definition: Expr.h:3196
std::string getNameAsString() const
Get a human-readable name for the declaration, even if it is one of the special kinds of names (C++ c...
Definition: Decl.h:266
const ValArray & values() const
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:171
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:377
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:1225
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1931
arg_range arguments()
Definition: Expr.h:2739
unsigned getNumBlockIDs() const
Returns the total number of BlockIDs allocated (which start at 0).
Definition: CFG.h:1395
Placeholder for a wildcard that matches any other expression.
bool sameAs(const CopyOnWriteVector &V) const
Encapsulates the lexical context of a function call.
const InstrArray & arguments() const
Expr * getLHS() const
Definition: Expr.h:3474
Defines various enumerations that describe declaration and type specifiers.
Load a value from memory.
Dataflow Directional Tag Classes.
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1271
OverloadedOperatorKind getOperator() const
Returns the kind of overloaded operator that this expression refers to.
Definition: ExprCXX.h:107
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:21
unsigned pred_size() const
Definition: CFG.h:977
An if-then-else expression.
StmtClass getStmtClass() const
Definition: Stmt.h:1109
BasicBlock * block() const
Returns the block, if this is an instruction in a basic block, otherwise returns null.
til::BasicBlock * lookupBlock(const CFGBlock *B)
Phi Node, for code in SSA form.
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2462
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:3690
Simple arithmetic binary operations, e.g.
Opcode getOpcode() const
Definition: Expr.h:2071
const Expr * getBase() const
Definition: ExprObjC.h:580
void setValues(unsigned Sz, const T &C)
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:546
CapabilityExpr translateAttrExpr(const Expr *AttrExp, const NamedDecl *D, const Expr *DeclExp, VarDecl *SelfD=nullptr)
Translate a clang expression in an attribute to a til::SExpr.
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2836
void reserve(size_t Ncp, MemRegionRef A)
void simplifyIncompleteArg(til::Phi *Ph)
Store a value to memory.
__DEVICE__ int min(int __a, int __b)
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2546
static bool isIncompletePhi(const til::SExpr *E)
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1171
Expr * getRHS() const
Definition: Expr.h:3476
Base class for AST nodes in the typed intermediate language.
A Literal pointer to an object allocated in memory.
QualType getType() const
Definition: Decl.h:630
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:129
Call a function (after all arguments have been applied).
This represents a decl that may have a name.
Definition: Decl.h:223
llvm::DenseMap< const Stmt *, CFGBlock * > SMap
Definition: CFGStmtMap.cpp:21
SourceLocation getLocation() const
Definition: DeclBase.h:429
bool isCXXInstanceMember() const
Determine whether the given declaration is an instance member of a C++ class.
Definition: Decl.cpp:1790