1. Available Checkers¶
The analyzer performs checks that are categorized into families or “checkers”.
The default set of checkers covers a variety of checks targeted at finding security and API usage bugs, dead code, and other logic errors. See the Default Checkers checkers list below.
In addition to these, the analyzer contains a number of Experimental Checkers (aka alpha checkers). These checkers are under development and are switched off by default. They may crash or emit a higher number of false positives.
The debug package contains checkers for analyzer developers for debugging purposes.
Table of Contents
1.1. Default Checkers¶
1.1.1. core¶
Models core language features and contains general-purpose checkers such as division by zero, null pointer dereference, usage of uninitialized values, etc. These checkers must be always switched on as other checker rely on them.
1.1.1.1. core.CallAndMessage (C, C++, ObjC)¶
Check for logical errors for function calls and Objective-C message expressions (e.g., uninitialized arguments, null function pointers).
//C
void test() {
void (*foo)(void);
foo = 0;
foo(); // warn: function pointer is null
}
// C++
class C {
public:
void f();
};
void test() {
C *pc;
pc->f(); // warn: object pointer is uninitialized
}
// C++
class C {
public:
void f();
};
void test() {
C *pc = 0;
pc->f(); // warn: object pointer is null
}
// Objective-C
@interface MyClass : NSObject
@property (readwrite,assign) id x;
- (long double)longDoubleM;
@end
void test() {
MyClass *obj1;
long double ld1 = [obj1 longDoubleM];
// warn: receiver is uninitialized
}
// Objective-C
@interface MyClass : NSObject
@property (readwrite,assign) id x;
- (long double)longDoubleM;
@end
void test() {
MyClass *obj1;
id i = obj1.x; // warn: uninitialized object pointer
}
// Objective-C
@interface Subscriptable : NSObject
- (id)objectAtIndexedSubscript:(unsigned int)index;
@end
@interface MyClass : Subscriptable
@property (readwrite,assign) id x;
- (long double)longDoubleM;
@end
void test() {
MyClass *obj1;
id i = obj1[0]; // warn: uninitialized object pointer
}
1.1.1.2. core.DivideZero (C, C++, ObjC)¶
Check for division by zero.
void test(int z) {
if (z == 0)
int x = 1 / z; // warn
}
void test() {
int x = 1;
int y = x % 0; // warn
}
1.1.1.3. core.NonNullParamChecker (C, C++, ObjC)¶
Check for null pointers passed as arguments to a function whose arguments are references or marked with the ‘nonnull’ attribute.
int f(int *p) __attribute__((nonnull));
void test(int *p) {
if (!p)
f(p); // warn
}
1.1.1.4. core.NullDereference (C, C++, ObjC)¶
Check for dereferences of null pointers.
This checker specifically does not report null pointer dereferences for x86 and x86-64 targets when the address space is 256 (x86 GS Segment), 257 (x86 FS Segment), or 258 (x86 SS segment). See X86/X86-64 Language Extensions for reference.
The SuppressAddressSpaces
option suppresses
warnings for null dereferences of all pointers with address spaces. You can
disable this behavior with the option
-analyzer-config core.NullDereference:SuppressAddressSpaces=false
.
Defaults to true.
// C
void test(int *p) {
if (p)
return;
int x = p[0]; // warn
}
// C
void test(int *p) {
if (!p)
*p = 0; // warn
}
// C++
class C {
public:
int x;
};
void test() {
C *pc = 0;
int k = pc->x; // warn
}
// Objective-C
@interface MyClass {
@public
int x;
}
@end
void test() {
MyClass *obj = 0;
obj->x = 1; // warn
}
1.1.1.5. core.StackAddressEscape (C)¶
Check that addresses to stack memory do not escape the function.
char const *p;
void test() {
char const str[] = "string";
p = str; // warn
}
void* test() {
return __builtin_alloca(12); // warn
}
void test() {
static int *x;
int y;
x = &y; // warn
}
1.1.1.6. core.UndefinedBinaryOperatorResult (C)¶
Check for undefined results of binary operators.
void test() {
int x;
int y = x + 1; // warn: left operand is garbage
}
1.1.1.7. core.VLASize (C)¶
Check for declarations of Variable Length Arrays of undefined or zero size.
Check for declarations of VLA of undefined or zero size.
void test() {
int x;
int vla1[x]; // warn: garbage as size
}
void test() {
int x = 0;
int vla2[x]; // warn: zero size
}
1.1.1.8. core.uninitialized.ArraySubscript (C)¶
Check for uninitialized values used as array subscripts.
void test() {
int i, a[10];
int x = a[i]; // warn: array subscript is undefined
}
1.1.1.9. core.uninitialized.Assign (C)¶
Check for assigning uninitialized values.
void test() {
int x;
x |= 1; // warn: left expression is uninitialized
}
1.1.1.10. core.uninitialized.Branch (C)¶
Check for uninitialized values used as branch conditions.
void test() {
int x;
if (x) // warn
return;
}
1.1.1.11. core.uninitialized.CapturedBlockVariable (C)¶
Check for blocks that capture uninitialized values.
void test() {
int x;
^{ int y = x; }(); // warn
}
1.1.1.12. core.uninitialized.UndefReturn (C)¶
Check for uninitialized values being returned to the caller.
int test() {
int x;
return x; // warn
}
1.1.2. cplusplus¶
C++ Checkers.
1.1.2.1. cplusplus.InnerPointer (C++)¶
Check for inner pointers of C++ containers used after re/deallocation.
Many container methods in the C++ standard library are known to invalidate “references” (including actual references, iterators and raw pointers) to elements of the container. Using such references after they are invalidated causes undefined behavior, which is a common source of memory errors in C++ that this checker is capable of finding.
The checker is currently limited to std::string
objects and doesn’t
recognize some of the more sophisticated approaches to passing unowned pointers
around, such as std::string_view
.
void deref_after_assignment() {
std::string s = "llvm";
const char *c = s.data(); // note: pointer to inner buffer of 'std::string' obtained here
s = "clang"; // note: inner buffer of 'std::string' reallocated by call to 'operator='
consume(c); // warn: inner pointer of container used after re/deallocation
}
const char *return_temp(int x) {
return std::to_string(x).c_str(); // warn: inner pointer of container used after re/deallocation
// note: pointer to inner buffer of 'std::string' obtained here
// note: inner buffer of 'std::string' deallocated by call to destructor
}
1.1.2.2. cplusplus.NewDelete (C++)¶
Check for double-free and use-after-free problems. Traces memory managed by new/delete.
void f(int *p);
void testUseMiddleArgAfterDelete(int *p) {
delete p;
f(p); // warn: use after free
}
class SomeClass {
public:
void f();
};
void test() {
SomeClass *c = new SomeClass;
delete c;
c->f(); // warn: use after free
}
void test() {
int *p = (int *)__builtin_alloca(sizeof(int));
delete p; // warn: deleting memory allocated by alloca
}
void test() {
int *p = new int;
delete p;
delete p; // warn: attempt to free released
}
void test() {
int i;
delete &i; // warn: delete address of local
}
void test() {
int *p = new int[1];
delete[] (++p);
// warn: argument to 'delete[]' is offset by 4 bytes
// from the start of memory allocated by 'new[]'
}
1.1.2.3. cplusplus.NewDeleteLeaks (C++)¶
Check for memory leaks. Traces memory managed by new/delete.
void test() {
int *p = new int;
} // warn
1.1.2.4. cplusplus.PlacementNewChecker (C++)¶
Check if default placement new is provided with pointers to sufficient storage capacity.
#include <new>
void f() {
short s;
long *lp = ::new (&s) long; // warn
}
1.1.2.5. cplusplus.SelfAssignment (C++)¶
Checks C++ copy and move assignment operators for self assignment.
1.1.2.6. cplusplus.StringChecker (C++)¶
Checks std::string operations.
Checks if the cstring pointer from which the std::string
object is
constructed is NULL
or not.
If the checker cannot reason about the nullness of the pointer it will assume
that it was non-null to satisfy the precondition of the constructor.
This checker is capable of checking the SEI CERT C++ coding rule STR51-CPP. Do not attempt to create a std::string from a null pointer.
#include <string>
void f(const char *p) {
if (!p) {
std::string msg(p); // warn: The parameter must not be null
}
}
1.1.3. deadcode¶
Dead Code Checkers.
1.1.3.1. deadcode.DeadStores (C)¶
Check for values stored to variables that are never read afterwards.
void test() {
int x;
x = 1; // warn
}
The WarnForDeadNestedAssignments
option enables the checker to emit
warnings for nested dead assignments. You can disable with the
-analyzer-config deadcode.DeadStores:WarnForDeadNestedAssignments=false
.
Defaults to true.
Would warn for this e.g.: if ((y = make_int())) { }
1.1.4. nullability¶
Objective C checkers that warn for null pointer passing and dereferencing errors.
1.1.4.1. nullability.NullPassedToNonnull (ObjC)¶
Warns when a null pointer is passed to a pointer which has a _Nonnull type.
if (name != nil)
return;
// Warning: nil passed to a callee that requires a non-null 1st parameter
NSString *greeting = [@"Hello " stringByAppendingString:name];
1.1.4.2. nullability.NullReturnedFromNonnull (ObjC)¶
Warns when a null pointer is returned from a function that has _Nonnull return type.
- (nonnull id)firstChild {
id result = nil;
if ([_children count] > 0)
result = _children[0];
// Warning: nil returned from a method that is expected
// to return a non-null value
return result;
}
1.1.4.3. nullability.NullableDereferenced (ObjC)¶
Warns when a nullable pointer is dereferenced.
struct LinkedList {
int data;
struct LinkedList *next;
};
struct LinkedList * _Nullable getNext(struct LinkedList *l);
void updateNextData(struct LinkedList *list, int newData) {
struct LinkedList *next = getNext(list);
// Warning: Nullable pointer is dereferenced
next->data = 7;
}
1.1.4.4. nullability.NullablePassedToNonnull (ObjC)¶
Warns when a nullable pointer is passed to a pointer which has a _Nonnull type.
typedef struct Dummy { int val; } Dummy;
Dummy *_Nullable returnsNullable();
void takesNonnull(Dummy *_Nonnull);
void test() {
Dummy *p = returnsNullable();
takesNonnull(p); // warn
}
1.1.4.5. nullability.NullableReturnedFromNonnull (ObjC)¶
Warns when a nullable pointer is returned from a function that has _Nonnull return type.
1.1.5. optin¶
Checkers for portability, performance or coding style specific rules.
1.1.5.1. optin.cplusplus.UninitializedObject (C++)¶
This checker reports uninitialized fields in objects created after a constructor call. It doesn’t only find direct uninitialized fields, but rather makes a deep inspection of the object, analyzing all of its fields’ subfields. The checker regards inherited fields as direct fields, so one will receive warnings for uninitialized inherited data members as well.
// With Pedantic and CheckPointeeInitialization set to true
struct A {
struct B {
int x; // note: uninitialized field 'this->b.x'
// note: uninitialized field 'this->bptr->x'
int y; // note: uninitialized field 'this->b.y'
// note: uninitialized field 'this->bptr->y'
};
int *iptr; // note: uninitialized pointer 'this->iptr'
B b;
B *bptr;
char *cptr; // note: uninitialized pointee 'this->cptr'
A (B *bptr, char *cptr) : bptr(bptr), cptr(cptr) {}
};
void f() {
A::B b;
char c;
A a(&b, &c); // warning: 6 uninitialized fields
// after the constructor call
}
// With Pedantic set to false and
// CheckPointeeInitialization set to true
// (every field is uninitialized)
struct A {
struct B {
int x;
int y;
};
int *iptr;
B b;
B *bptr;
char *cptr;
A (B *bptr, char *cptr) : bptr(bptr), cptr(cptr) {}
};
void f() {
A::B b;
char c;
A a(&b, &c); // no warning
}
// With Pedantic set to true and
// CheckPointeeInitialization set to false
// (pointees are regarded as initialized)
struct A {
struct B {
int x; // note: uninitialized field 'this->b.x'
int y; // note: uninitialized field 'this->b.y'
};
int *iptr; // note: uninitialized pointer 'this->iptr'
B b;
B *bptr;
char *cptr;
A (B *bptr, char *cptr) : bptr(bptr), cptr(cptr) {}
};
void f() {
A::B b;
char c;
A a(&b, &c); // warning: 3 uninitialized fields
// after the constructor call
}
Options
This checker has several options which can be set from command line (e.g.
-analyzer-config optin.cplusplus.UninitializedObject:Pedantic=true
):
Pedantic
(boolean). If to false, the checker won’t emit warnings for objects that don’t have at least one initialized field. Defaults to false.NotesAsWarnings
(boolean). If set to true, the checker will emit a warning for each uninitialized field, as opposed to emitting one warning per constructor call, and listing the uninitialized fields that belongs to it in notes. Defaults to false.CheckPointeeInitialization
(boolean). If set to false, the checker will not analyze the pointee of pointer/reference fields, and will only check whether the object itself is initialized. Defaults to false.IgnoreRecordsWithField
(string). If supplied, the checker will not analyze structures that have a field with a name or type name that matches the given pattern. Defaults to “”.
1.1.5.2. optin.cplusplus.VirtualCall (C++)¶
Check virtual function calls during construction or destruction.
class A {
public:
A() {
f(); // warn
}
virtual void f();
};
class A {
public:
~A() {
this->f(); // warn
}
virtual void f();
};
1.1.5.3. optin.mpi.MPI-Checker (C)¶
Checks MPI code.
void test() {
double buf = 0;
MPI_Request sendReq1;
MPI_Ireduce(MPI_IN_PLACE, &buf, 1, MPI_DOUBLE, MPI_SUM,
0, MPI_COMM_WORLD, &sendReq1);
} // warn: request 'sendReq1' has no matching wait.
void test() {
double buf = 0;
MPI_Request sendReq;
MPI_Isend(&buf, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &sendReq);
MPI_Irecv(&buf, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &sendReq); // warn
MPI_Isend(&buf, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &sendReq); // warn
MPI_Wait(&sendReq, MPI_STATUS_IGNORE);
}
void missingNonBlocking() {
int rank = 0;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Request sendReq1[10][10][10];
MPI_Wait(&sendReq1[1][7][9], MPI_STATUS_IGNORE); // warn
}
1.1.5.4. optin.osx.cocoa.localizability.EmptyLocalizationContextChecker (ObjC)¶
Check that NSLocalizedString macros include a comment for context.
- (void)test {
NSString *string = NSLocalizedString(@"LocalizedString", nil); // warn
NSString *string2 = NSLocalizedString(@"LocalizedString", @" "); // warn
NSString *string3 = NSLocalizedStringWithDefaultValue(
@"LocalizedString", nil, [[NSBundle alloc] init], nil,@""); // warn
}
1.1.5.5. optin.osx.cocoa.localizability.NonLocalizedStringChecker (ObjC)¶
Warns about uses of non-localized NSStrings passed to UI methods expecting localized NSStrings.
NSString *alarmText =
NSLocalizedString(@"Enabled", @"Indicates alarm is turned on");
if (!isEnabled) {
alarmText = @"Disabled";
}
UILabel *alarmStateLabel = [[UILabel alloc] init];
// Warning: User-facing text should use localized string macro
[alarmStateLabel setText:alarmText];
1.1.5.6. optin.performance.GCDAntipattern¶
Check for performance anti-patterns when using Grand Central Dispatch.
1.1.5.7. optin.performance.Padding¶
Check for excessively padded structs.
1.1.5.8. optin.portability.UnixAPI¶
Finds implementation-defined behavior in UNIX/Posix functions.
1.1.6. security¶
Security related checkers.
1.1.6.1. security.FloatLoopCounter (C)¶
Warn on using a floating point value as a loop counter (CERT: FLP30-C, FLP30-CPP).
void test() {
for (float x = 0.1f; x <= 1.0f; x += 0.1f) {} // warn
}
1.1.6.2. security.insecureAPI.UncheckedReturn (C)¶
Warn on uses of functions whose return values must be always checked.
void test() {
setuid(1); // warn
}
1.1.6.3. security.insecureAPI.bcmp (C)¶
Warn on uses of the ‘bcmp’ function.
void test() {
bcmp(ptr0, ptr1, n); // warn
}
1.1.6.4. security.insecureAPI.bcopy (C)¶
Warn on uses of the ‘bcopy’ function.
void test() {
bcopy(src, dst, n); // warn
}
1.1.6.5. security.insecureAPI.bzero (C)¶
Warn on uses of the ‘bzero’ function.
void test() {
bzero(ptr, n); // warn
}
1.1.6.6. security.insecureAPI.getpw (C)¶
Warn on uses of the ‘getpw’ function.
void test() {
char buff[1024];
getpw(2, buff); // warn
}
1.1.6.7. security.insecureAPI.gets (C)¶
Warn on uses of the ‘gets’ function.
void test() {
char buff[1024];
gets(buff); // warn
}
1.1.6.8. security.insecureAPI.mkstemp (C)¶
Warn when ‘mkstemp’ is passed fewer than 6 X’s in the format string.
void test() {
mkstemp("XX"); // warn
}
1.1.6.9. security.insecureAPI.mktemp (C)¶
Warn on uses of the mktemp
function.
void test() {
char *x = mktemp("/tmp/zxcv"); // warn: insecure, use mkstemp
}
1.1.6.10. security.insecureAPI.rand (C)¶
Warn on uses of inferior random number generating functions (only if arc4random function is available):
drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, random, rand_r
.
void test() {
random(); // warn
}
1.1.6.11. security.insecureAPI.strcpy (C)¶
Warn on uses of the strcpy
and strcat
functions.
void test() {
char x[4];
char *y = "abcd";
strcpy(x, y); // warn
}
1.1.6.12. security.insecureAPI.vfork (C)¶
Warn on uses of the ‘vfork’ function.
void test() {
vfork(); // warn
}
1.1.6.13. security.insecureAPI.DeprecatedOrUnsafeBufferHandling (C)¶
Warn on occurrences of unsafe or deprecated buffer handling functions, which now have a secure variant:
sprintf, vsprintf, scanf, wscanf, fscanf, fwscanf, vscanf, vwscanf, vfscanf, vfwscanf, sscanf, swscanf, vsscanf, vswscanf, swprintf, snprintf, vswprintf, vsnprintf, memcpy, memmove, strncpy, strncat, memset
void test() {
char buf [5];
strncpy(buf, "a", 1); // warn
}
1.1.7. unix¶
POSIX/Unix checkers.
1.1.7.1. unix.API (C)¶
Check calls to various UNIX/Posix functions: open, pthread_once, calloc, malloc, realloc, alloca
.
// Currently the check is performed for apple targets only.
void test(const char *path) {
int fd = open(path, O_CREAT);
// warn: call to 'open' requires a third argument when the
// 'O_CREAT' flag is set
}
void f();
void test() {
pthread_once_t pred = {0x30B1BCBA, {0}};
pthread_once(&pred, f);
// warn: call to 'pthread_once' uses the local variable
}
void test() {
void *p = malloc(0); // warn: allocation size of 0 bytes
}
void test() {
void *p = calloc(0, 42); // warn: allocation size of 0 bytes
}
void test() {
void *p = malloc(1);
p = realloc(p, 0); // warn: allocation size of 0 bytes
}
void test() {
void *p = alloca(0); // warn: allocation size of 0 bytes
}
void test() {
void *p = valloc(0); // warn: allocation size of 0 bytes
}
1.1.7.2. unix.Malloc (C)¶
Check for memory leaks, double free, and use-after-free problems. Traces memory managed by malloc()/free().
void test() {
int *p = malloc(1);
free(p);
free(p); // warn: attempt to free released memory
}
void test() {
int *p = malloc(sizeof(int));
free(p);
*p = 1; // warn: use after free
}
void test() {
int *p = malloc(1);
if (p)
return; // warn: memory is never released
}
void test() {
int a[] = { 1 };
free(a); // warn: argument is not allocated by malloc
}
void test() {
int *p = malloc(sizeof(char));
p = p - 1;
free(p); // warn: argument to free() is offset by -4 bytes
}
1.1.7.3. unix.MallocSizeof (C)¶
Check for dubious malloc
arguments involving sizeof
.
void test() {
long *p = malloc(sizeof(short));
// warn: result is converted to 'long *', which is
// incompatible with operand type 'short'
free(p);
}
1.1.7.4. unix.MismatchedDeallocator (C, C++)¶
Check for mismatched deallocators.
// C, C++
void test() {
int *p = (int *)malloc(sizeof(int));
delete p; // warn
}
// C, C++
void __attribute((ownership_returns(malloc))) *user_malloc(size_t);
void test() {
int *p = (int *)user_malloc(sizeof(int));
delete p; // warn
}
// C, C++
void test() {
int *p = new int;
free(p); // warn
}
// C, C++
void test() {
int *p = new int[1];
realloc(p, sizeof(long)); // warn
}
// C, C++
template <typename T>
struct SimpleSmartPointer {
T *ptr;
explicit SimpleSmartPointer(T *p = 0) : ptr(p) {}
~SimpleSmartPointer() {
delete ptr; // warn
}
};
void test() {
SimpleSmartPointer<int> a((int *)malloc(4));
}
// C++
void test() {
int *p = (int *)operator new(0);
delete[] p; // warn
}
// Objective-C, C++
void test(NSUInteger dataLength) {
int *p = new int;
NSData *d = [NSData dataWithBytesNoCopy:p
length:sizeof(int) freeWhenDone:1];
// warn +dataWithBytesNoCopy:length:freeWhenDone: cannot take
// ownership of memory allocated by 'new'
}
1.1.7.5. unix.Vfork (C)¶
Check for proper usage of vfork
.
int test(int x) {
pid_t pid = vfork(); // warn
if (pid != 0)
return 0;
switch (x) {
case 0:
pid = 1;
execl("", "", 0);
_exit(1);
break;
case 1:
x = 0; // warn: this assignment is prohibited
break;
case 2:
foo(); // warn: this function call is prohibited
break;
default:
return 0; // warn: return is prohibited
}
while(1);
}
1.1.7.6. unix.cstring.BadSizeArg (C)¶
Check the size argument passed into C string functions for common erroneous patterns. Use -Wno-strncat-size
compiler option to mute other strncat
-related compiler warnings.
void test() {
char dest[3];
strncat(dest, """""""""""""""""""""""""*", sizeof(dest));
// warn: potential buffer overflow
}
1.1.7.7. unix.cstring.NullArg (C)¶
Check for null pointers being passed as arguments to C string functions:
strlen, strnlen, strcpy, strncpy, strcat, strncat, strcmp, strncmp, strcasecmp, strncasecmp, wcslen, wcsnlen
.
int test() {
return strlen(0); // warn
}
1.1.8. osx¶
macOS checkers.
1.1.8.1. osx.API (C)¶
Check for proper uses of various Apple APIs.
void test() {
dispatch_once_t pred = 0;
dispatch_once(&pred, ^(){}); // warn: dispatch_once uses local
}
1.1.8.2. osx.NumberObjectConversion (C, C++, ObjC)¶
Check for erroneous conversions of objects representing numbers into numbers.
NSNumber *photoCount = [albumDescriptor objectForKey:@"PhotoCount"];
// Warning: Comparing a pointer value of type 'NSNumber *'
// to a scalar integer value
if (photoCount > 0) {
[self displayPhotos];
}
1.1.8.3. osx.ObjCProperty (ObjC)¶
Check for proper uses of Objective-C properties.
NSNumber *photoCount = [albumDescriptor objectForKey:@"PhotoCount"];
// Warning: Comparing a pointer value of type 'NSNumber *'
// to a scalar integer value
if (photoCount > 0) {
[self displayPhotos];
}
1.1.8.4. osx.SecKeychainAPI (C)¶
Check for proper uses of Secure Keychain APIs.
void test() {
unsigned int *ptr = 0;
UInt32 length;
SecKeychainItemFreeContent(ptr, &length);
// warn: trying to free data which has not been allocated
}
void test() {
unsigned int *ptr = 0;
UInt32 *length = 0;
void *outData;
OSStatus st =
SecKeychainItemCopyContent(2, ptr, ptr, length, outData);
// warn: data is not released
}
void test() {
unsigned int *ptr = 0;
UInt32 *length = 0;
void *outData;
OSStatus st =
SecKeychainItemCopyContent(2, ptr, ptr, length, &outData);
SecKeychainItemFreeContent(ptr, outData);
// warn: only call free if a non-NULL buffer was returned
}
void test() {
unsigned int *ptr = 0;
UInt32 *length = 0;
void *outData;
OSStatus st =
SecKeychainItemCopyContent(2, ptr, ptr, length, &outData);
st = SecKeychainItemCopyContent(2, ptr, ptr, length, &outData);
// warn: release data before another call to the allocator
if (st == noErr)
SecKeychainItemFreeContent(ptr, outData);
}
void test() {
SecKeychainItemRef itemRef = 0;
SecKeychainAttributeInfo *info = 0;
SecItemClass *itemClass = 0;
SecKeychainAttributeList *attrList = 0;
UInt32 *length = 0;
void *outData = 0;
OSStatus st =
SecKeychainItemCopyAttributesAndData(itemRef, info,
itemClass, &attrList,
length, &outData);
SecKeychainItemFreeContent(attrList, outData);
// warn: deallocator doesn't match the allocator
}
1.1.8.5. osx.cocoa.AtSync (ObjC)¶
Check for nil pointers used as mutexes for @synchronized.
void test(id x) {
if (!x)
@synchronized(x) {} // warn: nil value used as mutex
}
void test() {
id y;
@synchronized(y) {} // warn: uninitialized value used as mutex
}
1.1.8.6. osx.cocoa.AutoreleaseWrite¶
Warn about potentially crashing writes to autoreleasing objects from different autoreleasing pools in Objective-C.
1.1.8.7. osx.cocoa.ClassRelease (ObjC)¶
Check for sending ‘retain’, ‘release’, or ‘autorelease’ directly to a Class.
@interface MyClass : NSObject
@end
void test(void) {
[MyClass release]; // warn
}
1.1.8.8. osx.cocoa.Dealloc (ObjC)¶
Warn about Objective-C classes that lack a correct implementation of -dealloc
@interface MyObject : NSObject {
id _myproperty;
}
@end
@implementation MyObject // warn: lacks 'dealloc'
@end
@interface MyObject : NSObject {}
@property(assign) id myproperty;
@end
@implementation MyObject // warn: does not send 'dealloc' to super
- (void)dealloc {
self.myproperty = 0;
}
@end
@interface MyObject : NSObject {
id _myproperty;
}
@property(retain) id myproperty;
@end
@implementation MyObject
@synthesize myproperty = _myproperty;
// warn: var was retained but wasn't released
- (void)dealloc {
[super dealloc];
}
@end
@interface MyObject : NSObject {
id _myproperty;
}
@property(assign) id myproperty;
@end
@implementation MyObject
@synthesize myproperty = _myproperty;
// warn: var wasn't retained but was released
- (void)dealloc {
[_myproperty release];
[super dealloc];
}
@end
1.1.8.9. osx.cocoa.IncompatibleMethodTypes (ObjC)¶
Warn about Objective-C method signatures with type incompatibilities.
@interface MyClass1 : NSObject
- (int)foo;
@end
@implementation MyClass1
- (int)foo { return 1; }
@end
@interface MyClass2 : MyClass1
- (float)foo;
@end
@implementation MyClass2
- (float)foo { return 1.0; } // warn
@end
1.1.8.10. osx.cocoa.Loops¶
Improved modeling of loops using Cocoa collection types.
1.1.8.11. osx.cocoa.MissingSuperCall (ObjC)¶
Warn about Objective-C methods that lack a necessary call to super.
@interface Test : UIViewController
@end
@implementation test
- (void)viewDidLoad {} // warn
@end
1.1.8.12. osx.cocoa.NSAutoreleasePool (ObjC)¶
Warn for suboptimal uses of NSAutoreleasePool in Objective-C GC mode.
void test() {
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
[pool release]; // warn
}
1.1.8.13. osx.cocoa.NSError (ObjC)¶
Check usage of NSError parameters.
@interface A : NSObject
- (void)foo:(NSError """""""""""""""""""""""")error;
@end
@implementation A
- (void)foo:(NSError """""""""""""""""""""""")error {
// warn: method accepting NSError"""""""""""""""""""""""" should have a non-void
// return value
}
@end
@interface A : NSObject
- (BOOL)foo:(NSError """""""""""""""""""""""")error;
@end
@implementation A
- (BOOL)foo:(NSError """""""""""""""""""""""")error {
*error = 0; // warn: potential null dereference
return 0;
}
@end
1.1.8.14. osx.cocoa.NilArg (ObjC)¶
Check for prohibited nil arguments to ObjC method calls.
caseInsensitiveCompare:
compare:
compare:options:
compare:options:range:
compare:options:range:locale:
componentsSeparatedByCharactersInSet:
initWithFormat:
NSComparisonResult test(NSString *s) {
NSString *aString = nil;
return [s caseInsensitiveCompare:aString];
// warn: argument to 'NSString' method
// 'caseInsensitiveCompare:' cannot be nil
}
1.1.8.15. osx.cocoa.NonNilReturnValue¶
Models the APIs that are guaranteed to return a non-nil value.
1.1.8.16. osx.cocoa.ObjCGenerics (ObjC)¶
Check for type errors when using Objective-C generics.
NSMutableArray *names = [NSMutableArray array];
NSMutableArray *birthDates = names;
// Warning: Conversion from value of type 'NSDate *'
// to incompatible type 'NSString *'
[birthDates addObject: [NSDate date]];
1.1.8.17. osx.cocoa.RetainCount (ObjC)¶
Check for leaks and improper reference count management
void test() {
NSString *s = [[NSString alloc] init]; // warn
}
CFStringRef test(char *bytes) {
return CFStringCreateWithCStringNoCopy(
0, bytes, NSNEXTSTEPStringEncoding, 0); // warn
}
1.1.8.18. osx.cocoa.RunLoopAutoreleaseLeak¶
Check for leaked memory in autorelease pools that will never be drained.
1.1.8.19. osx.cocoa.SelfInit (ObjC)¶
Check that ‘self’ is properly initialized inside an initializer method.
@interface MyObj : NSObject {
id x;
}
- (id)init;
@end
@implementation MyObj
- (id)init {
[super init];
x = 0; // warn: instance variable used while 'self' is not
// initialized
return 0;
}
@end
@interface MyObj : NSObject
- (id)init;
@end
@implementation MyObj
- (id)init {
[super init];
return self; // warn: returning uninitialized 'self'
}
@end
1.1.8.20. osx.cocoa.SuperDealloc (ObjC)¶
Warn about improper use of ‘[super dealloc]’ in Objective-C.
@interface SuperDeallocThenReleaseIvarClass : NSObject {
NSObject *_ivar;
}
@end
@implementation SuperDeallocThenReleaseIvarClass
- (void)dealloc {
[super dealloc];
[_ivar release]; // warn
}
@end
1.1.8.21. osx.cocoa.UnusedIvars (ObjC)¶
Warn about private ivars that are never used.
@interface MyObj : NSObject {
@private
id x; // warn
}
@end
@implementation MyObj
@end
1.1.8.22. osx.cocoa.VariadicMethodTypes (ObjC)¶
Check for passing non-Objective-C types to variadic collection initialization methods that expect only Objective-C types.
void test() {
[NSSet setWithObjects:@"Foo", "Bar", nil];
// warn: argument should be an ObjC pointer type, not 'char *'
}
1.1.8.23. osx.coreFoundation.CFError (C)¶
Check usage of CFErrorRef* parameters
void test(CFErrorRef *error) {
// warn: function accepting CFErrorRef* should have a
// non-void return
}
int foo(CFErrorRef *error) {
*error = 0; // warn: potential null dereference
return 0;
}
1.1.8.24. osx.coreFoundation.CFNumber (C)¶
Check for proper uses of CFNumber APIs.
CFNumberRef test(unsigned char x) {
return CFNumberCreate(0, kCFNumberSInt16Type, &x);
// warn: 8 bit integer is used to initialize a 16 bit integer
}
1.1.8.25. osx.coreFoundation.CFRetainRelease (C)¶
Check for null arguments to CFRetain/CFRelease/CFMakeCollectable.
void test(CFTypeRef p) {
if (!p)
CFRetain(p); // warn
}
void test(int x, CFTypeRef p) {
if (p)
return;
CFRelease(p); // warn
}
1.1.8.26. osx.coreFoundation.containers.OutOfBounds (C)¶
Checks for index out-of-bounds when using ‘CFArray’ API.
void test() {
CFArrayRef A = CFArrayCreate(0, 0, 0, &kCFTypeArrayCallBacks);
CFArrayGetValueAtIndex(A, 0); // warn
}
1.1.8.27. osx.coreFoundation.containers.PointerSizedValues (C)¶
Warns if ‘CFArray’, ‘CFDictionary’, ‘CFSet’ are created with non-pointer-size values.
void test() {
int x[] = { 1 };
CFArrayRef A = CFArrayCreate(0, (const void """""""""""""""""""""""")x, 1,
&kCFTypeArrayCallBacks); // warn
}
1.1.9. Fuchsia¶
Fuchsia is an open source capability-based operating system currently being developed by Google. This section describes checkers that can find various misuses of Fuchsia APIs.
1.1.9.1. fuchsia.HandleChecker¶
Handles identify resources. Similar to pointers they can be leaked, double freed, or use after freed. This check attempts to find such problems.
void checkLeak08(int tag) {
zx_handle_t sa, sb;
zx_channel_create(0, &sa, &sb);
if (tag)
zx_handle_close(sa);
use(sb); // Warn: Potential leak of handle
zx_handle_close(sb);
}
1.1.10. WebKit¶
WebKit is an open-source web browser engine available for macOS, iOS and Linux. This section describes checkers that can find issues in WebKit codebase.
Most of the checkers focus on memory management for which WebKit uses custom implementation of reference counted smartpointers.
- Checkers are formulated in terms related to ref-counting:
Ref-counted type is either
Ref<T>
orRefPtr<T>
.Ref-countable type is any type that implements
ref()
andderef()
methods asRefPtr<>
is a template (i. e. relies on duck typing).Uncounted type is ref-countable but not ref-counted type.
1.1.10.1. webkit.RefCntblBaseVirtualDtor¶
All uncounted types used as base classes must have a virtual destructor.
Ref-counted types hold their ref-countable data by a raw pointer and allow implicit upcasting from ref-counted pointer to derived type to ref-counted pointer to base type. This might lead to an object of (dynamic) derived type being deleted via pointer to the base class type which C++ standard defines as UB in case the base class doesn’t have virtual destructor [expr.delete]
.
struct RefCntblBase {
void ref() {}
void deref() {}
};
struct Derived : RefCntblBase { }; // warn
1.1.10.2. webkit.NoUncountedMemberChecker¶
Raw pointers and references to uncounted types can’t be used as class members. Only ref-counted types are allowed.
struct RefCntbl {
void ref() {}
void deref() {}
};
struct Foo {
RefCntbl * ptr; // warn
RefCntbl & ptr; // warn
// ...
};
1.1.10.3. webkit.UncountedLambdaCapturesChecker¶
Raw pointers and references to uncounted types can’t be captured in lambdas. Only ref-counted types are allowed.
struct RefCntbl {
void ref() {}
void deref() {}
};
void foo(RefCntbl* a, RefCntbl& b) {
[&, a](){ // warn about 'a'
do_something(b); // warn about 'b'
};
};
1.2. Experimental Checkers¶
These are checkers with known issues or limitations that keep them from being on by default. They are likely to have false positives. Bug reports and especially patches are welcome.
1.2.1. alpha.clone¶
1.2.1.1. alpha.clone.CloneChecker (C, C++, ObjC)¶
Reports similar pieces of code.
void log();
int max(int a, int b) { // warn
log();
if (a > b)
return a;
return b;
}
int maxClone(int x, int y) { // similar code here
log();
if (x > y)
return x;
return y;
}
1.2.2. alpha.core¶
1.2.2.1. alpha.core.BoolAssignment (ObjC)¶
Warn about assigning non-{0,1} values to boolean variables.
void test() {
BOOL b = -1; // warn
}
1.2.2.2. alpha.core.C11Lock¶
Similarly to alpha.unix.PthreadLock, checks for
the locking/unlocking of mtx_t
mutexes.
mtx_t mtx1;
void bad1(void)
{
mtx_lock(&mtx1);
mtx_lock(&mtx1); // warn: This lock has already been acquired
}
1.2.2.3. alpha.core.CallAndMessageUnInitRefArg (C,C++, ObjC)¶
Check for logical errors for function calls and Objective-C message expressions (e.g., uninitialized arguments, null function pointers, and pointer to undefined variables).
void test(void) {
int t;
int &p = t;
int &s = p;
int &q = s;
foo(q); // warn
}
void test(void) {
int x;
foo(&x); // warn
}
1.2.2.4. alpha.core.CastSize (C)¶
Check when casting a malloc’ed type T
, whether the size is a multiple of the size of T
.
void test() {
int *x = (int *) malloc(11); // warn
}
1.2.2.5. alpha.core.CastToStruct (C, C++)¶
Check for cast from non-struct pointer to struct pointer.
// C
struct s {};
void test(int *p) {
struct s *ps = (struct s *) p; // warn
}
// C++
class c {};
void test(int *p) {
c *pc = (c *) p; // warn
}
1.2.2.6. alpha.core.Conversion (C, C++, ObjC)¶
Loss of sign/precision in implicit conversions.
void test(unsigned U, signed S) {
if (S > 10) {
if (U < S) {
}
}
if (S < -10) {
if (U < S) { // warn (loss of sign)
}
}
}
void test() {
long long A = 1LL << 60;
short X = A; // warn (loss of precision)
}
1.2.2.7. alpha.core.DynamicTypeChecker (ObjC)¶
Check for cases where the dynamic and the static type of an object are unrelated.
id date = [NSDate date];
// Warning: Object has a dynamic type 'NSDate *' which is
// incompatible with static type 'NSNumber *'"
NSNumber *number = date;
[number doubleValue];
1.2.2.8. alpha.core.FixedAddr (C)¶
Check for assignment of a fixed address to a pointer.
void test() {
int *p;
p = (int *) 0x10000; // warn
}
1.2.2.9. alpha.core.IdenticalExpr (C, C++)¶
Warn about unintended use of identical expressions in operators.
// C
void test() {
int a = 5;
int b = a | 4 | a; // warn: identical expr on both sides
}
// C++
bool f(void);
void test(bool b) {
int i = 10;
if (f()) { // warn: true and false branches are identical
do {
i--;
} while (f());
} else {
do {
i--;
} while (f());
}
}
1.2.2.10. alpha.core.PointerArithm (C)¶
Check for pointer arithmetic on locations other than array elements.
void test() {
int x;
int *p;
p = &x + 1; // warn
}
1.2.2.11. alpha.core.PointerSub (C)¶
Check for pointer subtractions on two pointers pointing to different memory chunks.
void test() {
int x, y;
int d = &y - &x; // warn
}
1.2.2.12. alpha.core.SizeofPtr (C)¶
Warn about unintended use of sizeof()
on pointer expressions.
struct s {};
int test(struct s *p) {
return sizeof(p);
// warn: sizeof(ptr) can produce an unexpected result
}
1.2.2.13. alpha.core.StackAddressAsyncEscape (C)¶
Check that addresses to stack memory do not escape the function that involves dispatch_after or dispatch_async.
This checker is a part of core.StackAddressEscape
, but is temporarily disabled until some false positives are fixed.
dispatch_block_t test_block_inside_block_async_leak() {
int x = 123;
void (^inner)(void) = ^void(void) {
int y = x;
++y;
};
void (^outer)(void) = ^void(void) {
int z = x;
++z;
inner();
};
return outer; // warn: address of stack-allocated block is captured by a
// returned block
}
1.2.2.14. alpha.core.TestAfterDivZero (C)¶
Check for division by variable that is later compared against 0. Either the comparison is useless or there is division by zero.
void test(int x) {
var = 77 / x;
if (x == 0) { } // warn
}
1.2.3. alpha.cplusplus¶
1.2.3.1. alpha.cplusplus.DeleteWithNonVirtualDtor (C++)¶
Reports destructions of polymorphic objects with a non-virtual destructor in their base class.
NonVirtual *create() {
NonVirtual *x = new NVDerived(); // note: conversion from derived to base
// happened here
return x;
}
void sink(NonVirtual *x) {
delete x; // warn: destruction of a polymorphic object with no virtual
// destructor
}
1.2.3.2. alpha.cplusplus.EnumCastOutOfRange (C++)¶
Check for integer to enumeration casts that could result in undefined values.
enum TestEnum {
A = 0
};
void foo() {
TestEnum t = static_cast(-1);
// warn: the value provided to the cast expression is not in
// the valid range of values for the enum
1.2.3.3. alpha.cplusplus.InvalidatedIterator (C++)¶
Check for use of invalidated iterators.
void bad_copy_assign_operator_list1(std::list &L1,
const std::list &L2) {
auto i0 = L1.cbegin();
L1 = L2;
*i0; // warn: invalidated iterator accessed
}
1.2.3.4. alpha.cplusplus.IteratorRange (C++)¶
Check for iterators used outside their valid ranges.
void simple_bad_end(const std::vector &v) {
auto i = v.end();
*i; // warn: iterator accessed outside of its range
}
1.2.3.5. alpha.cplusplus.MismatchedIterator (C++)¶
Check for use of iterators of different containers where iterators of the same container are expected.
void bad_insert3(std::vector &v1, std::vector &v2) {
v2.insert(v1.cbegin(), v2.cbegin(), v2.cend()); // warn: container accessed
// using foreign
// iterator argument
v1.insert(v1.cbegin(), v1.cbegin(), v2.cend()); // warn: iterators of
// different containers
// used where the same
// container is
// expected
v1.insert(v1.cbegin(), v2.cbegin(), v1.cend()); // warn: iterators of
// different containers
// used where the same
// container is
// expected
}
1.2.3.6. alpha.cplusplus.MisusedMovedObject (C++)¶
Method calls on a moved-from object and copying a moved-from object will be reported.
struct A {
void foo() {}
};
void f() {
A a;
A b = std::move(a); // note: 'a' became 'moved-from' here
a.foo(); // warn: method call on a 'moved-from' object 'a'
}
1.2.3.7. alpha.cplusplus.SmartPtr (C++)¶
Check for dereference of null smart pointers.
void deref_smart_ptr() {
std::unique_ptr<int> P;
*P; // warn: dereference of a default constructed smart unique_ptr
}
1.2.4. alpha.deadcode¶
1.2.4.1. alpha.deadcode.UnreachableCode (C, C++)¶
Check unreachable code.
// C
int test() {
int x = 1;
while(x);
return x; // warn
}
// C++
void test() {
int a = 2;
while (a > 1)
a--;
if (a > 1)
a++; // warn
}
// Objective-C
void test(id x) {
return;
[x retain]; // warn
}
1.2.5. alpha.fuchsia¶
1.2.5.1. alpha.fuchsia.Lock¶
Similarly to alpha.unix.PthreadLock, checks for the locking/unlocking of fuchsia mutexes.
spin_lock_t mtx1;
void bad1(void)
{
spin_lock(&mtx1);
spin_lock(&mtx1); // warn: This lock has already been acquired
}
1.2.6. alpha.llvm¶
1.2.6.1. alpha.llvm.Conventions¶
Check code for LLVM codebase conventions:
A StringRef should not be bound to a temporary std::string whose lifetime is shorter than the StringRef’s.
Clang AST nodes should not have fields that can allocate memory.
1.2.7. alpha.osx¶
1.2.7.1. alpha.osx.cocoa.DirectIvarAssignment (ObjC)¶
Check for direct assignments to instance variables.
@interface MyClass : NSObject {}
@property (readonly) id A;
- (void) foo;
@end
@implementation MyClass
- (void) foo {
_A = 0; // warn
}
@end
1.2.7.2. alpha.osx.cocoa.DirectIvarAssignmentForAnnotatedFunctions (ObjC)¶
Check for direct assignments to instance variables in
the methods annotated with objc_no_direct_instance_variable_assignment
.
@interface MyClass : NSObject {}
@property (readonly) id A;
- (void) fAnnotated __attribute__((
annotate("objc_no_direct_instance_variable_assignment")));
- (void) fNotAnnotated;
@end
@implementation MyClass
- (void) fAnnotated {
_A = 0; // warn
}
- (void) fNotAnnotated {
_A = 0; // no warn
}
@end
1.2.7.3. alpha.osx.cocoa.InstanceVariableInvalidation (ObjC)¶
Check that the invalidatable instance variables are invalidated in the methods annotated with objc_instance_variable_invalidator.
@protocol Invalidation <NSObject>
- (void) invalidate
__attribute__((annotate("objc_instance_variable_invalidator")));
@end
@interface InvalidationImpObj : NSObject <Invalidation>
@end
@interface SubclassInvalidationImpObj : InvalidationImpObj {
InvalidationImpObj *var;
}
- (void)invalidate;
@end
@implementation SubclassInvalidationImpObj
- (void) invalidate {}
@end
// warn: var needs to be invalidated or set to nil
1.2.7.4. alpha.osx.cocoa.MissingInvalidationMethod (ObjC)¶
Check that the invalidation methods are present in classes that contain invalidatable instance variables.
@protocol Invalidation <NSObject>
- (void)invalidate
__attribute__((annotate("objc_instance_variable_invalidator")));
@end
@interface NeedInvalidation : NSObject <Invalidation>
@end
@interface MissingInvalidationMethodDecl : NSObject {
NeedInvalidation *Var; // warn
}
@end
@implementation MissingInvalidationMethodDecl
@end
1.2.7.5. alpha.osx.cocoa.localizability.PluralMisuseChecker (ObjC)¶
Warns against using one vs. many plural pattern in code when generating localized strings.
NSString *reminderText =
NSLocalizedString(@"None", @"Indicates no reminders");
if (reminderCount == 1) {
// Warning: Plural cases are not supported across all languages.
// Use a .stringsdict file instead
reminderText =
NSLocalizedString(@"1 Reminder", @"Indicates single reminder");
} else if (reminderCount >= 2) {
// Warning: Plural cases are not supported across all languages.
// Use a .stringsdict file instead
reminderText =
[NSString stringWithFormat:
NSLocalizedString(@"%@ Reminders", @"Indicates multiple reminders"),
reminderCount];
}
1.2.8. alpha.security¶
1.2.8.1. alpha.security.ArrayBound (C)¶
Warn about buffer overflows (older checker).
void test() {
char *s = "";
char c = s[1]; // warn
}
struct seven_words {
int c[7];
};
void test() {
struct seven_words a, *p;
p = &a;
p[0] = a;
p[1] = a;
p[2] = a; // warn
}
// note: requires unix.Malloc or
// alpha.unix.MallocWithAnnotations checks enabled.
void test() {
int *p = malloc(12);
p[3] = 4; // warn
}
void test() {
char a[2];
int *b = (int*)a;
b[1] = 3; // warn
}
1.2.8.2. alpha.security.ArrayBoundV2 (C)¶
Warn about buffer overflows (newer checker).
void test() {
char *s = "";
char c = s[1]; // warn
}
void test() {
int buf[100];
int *p = buf;
p = p + 99;
p[1] = 1; // warn
}
// note: compiler has internal check for this.
// Use -Wno-array-bounds to suppress compiler warning.
void test() {
int buf[100][100];
buf[0][-1] = 1; // warn
}
// note: requires alpha.security.taint check turned on.
void test() {
char s[] = "abc";
int x = getchar();
char c = s[x]; // warn: index is tainted
}
1.2.8.3. alpha.security.MallocOverflow (C)¶
Check for overflows in the arguments to malloc()
.
It tries to catch malloc(n * c)
patterns, where:
n
: a variable or member access of an object
c
: a constant foldable integral
This checker was designed for code audits, so expect false-positive reports.
One is supposed to silence this checker by ensuring proper bounds checking on
the variable in question using e.g. an assert()
or a branch.
void test(int n) {
void *p = malloc(n * sizeof(int)); // warn
}
void test2(int n) {
if (n > 100) // gives an upper-bound
return;
void *p = malloc(n * sizeof(int)); // no warning
}
void test3(int n) {
assert(n <= 100 && "Contract violated.");
void *p = malloc(n * sizeof(int)); // no warning
}
Limitations:
The checker won’t warn for variables involved in explicit casts, since that might limit the variable’s domain. E.g.:
(unsigned char)int x
would limit the domain to[0,255]
. The checker will miss the true-positive cases when the explicit cast would not tighten the domain to prevent the overflow in the subsequent multiplication operation.It is an AST-based checker, thus it does not make use of the path-sensitive taint-analysis.
1.2.8.4. alpha.security.MmapWriteExec (C)¶
Warn on mmap() calls that are both writable and executable.
void test(int n) {
void *c = mmap(NULL, 32, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANON, -1, 0);
// warn: Both PROT_WRITE and PROT_EXEC flags are set. This can lead to
// exploitable memory regions, which could be overwritten with malicious
// code
}
1.2.8.5. alpha.security.ReturnPtrRange (C)¶
Check for an out-of-bound pointer being returned to callers.
static int A[10];
int *test() {
int *p = A + 10;
return p; // warn
}
int test(void) {
int x;
return x; // warn: undefined or garbage returned
}
1.2.9. alpha.security.cert¶
SEI CERT checkers which tries to find errors based on their C coding rules.
1.2.10. alpha.security.cert.pos¶
SEI CERT checkers of POSIX C coding rules.
1.2.10.1. alpha.security.cert.pos.34c¶
Finds calls to the putenv
function which pass a pointer to an automatic variable as the argument.
int func(const char *var) {
char env[1024];
int retval = snprintf(env, sizeof(env),"TEST=%s", var);
if (retval < 0 || (size_t)retval >= sizeof(env)) {
/* Handle error */
}
return putenv(env); // putenv function should not be called with auto variables
}
Limitations:
Technically, one can pass automatic variables to
putenv
, but one needs to ensure that the given environment key stays alive until it’s removed or overwritten. Since the analyzer cannot keep track of which envvars get overwritten and when, it needs to be slightly more aggressive and warn for such cases too, leading in some cases to false-positive reports like this:void baz() { char env[] = "NAME=value"; putenv(env); // false-positive warning: putenv function should not be called... // More code... putenv((char *)"NAME=anothervalue"); // This putenv call overwrites the previous entry, thus that can no longer dangle. } // 'env' array becomes dead only here.
1.2.11. alpha.security.cert.env¶
SEI CERT checkers of Environment C coding rules.
1.2.11.1. alpha.security.cert.env.InvalidPtr¶
Corresponds to SEI CERT Rules ENV31-C and ENV34-C.
ENV31-C: Rule is about the possible problem with main function’s third argument, environment pointer, “envp”. When enviornment array is modified using some modification function such as putenv, setenv or others, It may happen that memory is reallocated, however “envp” is not updated to reflect the changes and points to old memory region.
ENV34-C: Some functions return a pointer to a statically allocated buffer. Consequently, subsequent call of these functions will invalidate previous pointer. These functions include: getenv, localeconv, asctime, setlocale, strerror
int main(int argc, const char *argv[], const char *envp[]) {
if (setenv("MY_NEW_VAR", "new_value", 1) != 0) {
// setenv call may invalidate 'envp'
/* Handle error */
}
if (envp != NULL) {
for (size_t i = 0; envp[i] != NULL; ++i) {
puts(envp[i]);
// envp may no longer point to the current environment
// this program has unanticipated behavior, since envp
// does not reflect changes made by setenv function.
}
}
return 0;
}
void previous_call_invalidation() {
char *p, *pp;
p = getenv("VAR");
pp = getenv("VAR2");
// subsequent call to 'getenv' invalidated previous one
*p;
// dereferencing invalid pointer
}
1.2.12. alpha.security.taint¶
Checkers implementing taint analysis.
1.2.12.1. alpha.security.taint.TaintPropagation (C, C++)¶
Taint analysis identifies untrusted sources of information (taint sources), rules as to how the untrusted data flows along the execution path (propagation rules), and points of execution where the use of tainted data is risky (taints sinks). The most notable examples of taint sources are:
network originating data
environment variables
database originating data
GenericTaintChecker
is the main implementation checker for this rule, and it generates taint information used by other checkers.
void test() {
char x = getchar(); // 'x' marked as tainted
system(&x); // warn: untrusted data is passed to a system call
}
// note: compiler internally checks if the second param to
// sprintf is a string literal or not.
// Use -Wno-format-security to suppress compiler warning.
void test() {
char s[10], buf[10];
fscanf(stdin, "%s", s); // 's' marked as tainted
sprintf(buf, s); // warn: untrusted data as a format string
}
void test() {
size_t ts;
scanf("%zd", &ts); // 'ts' marked as tainted
int *p = (int *)malloc(ts * sizeof(int));
// warn: untrusted data as buffer size
}
There are built-in sources, propagations and sinks defined in code inside GenericTaintChecker
.
These operations are handled even if no external taint configuration is provided.
- Default sources defined by
GenericTaintChecker
: _IO_getc
,fdopen
,fopen
,freopen
,get_current_dir_name
,getch
,getchar
,getchar_unlocked
,getwd
,getcwd
,getgroups
,gethostname
,getlogin
,getlogin_r
,getnameinfo
,gets
,gets_s
,getseuserbyname
,readlink
,readlinkat
,scanf
,scanf_s
,socket
,wgetch
Default propagations defined by GenericTaintChecker
:
atoi
, atol
, atoll
, basename
, dirname
, fgetc
, fgetln
, fgets
, fnmatch
, fread
, fscanf
, fscanf_s
, index
, inflate
, isalnum
, isalpha
, isascii
, isblank
, iscntrl
, isdigit
, isgraph
, islower
, isprint
, ispunct
, isspace
, isupper
, isxdigit
, memchr
, memrchr
, sscanf
, getc
, getc_unlocked
, getdelim
, getline
, getw
, memcmp
, memcpy
, memmem
, memmove
, mbtowc
, pread
, qsort
, qsort_r
, rawmemchr
, read
, recv
, recvfrom
, rindex
, strcasestr
, strchr
, strchrnul
, strcasecmp
, strcmp
, strcspn
, strlen
, strncasecmp
, strncmp
, strndup
, strndupa
, strnlen
, strpbrk
, strrchr
, strsep
, strspn
, strstr
, strtol
, strtoll
, strtoul
, strtoull
, tolower
, toupper
, ttyname
, ttyname_r
, wctomb
, wcwidth
Default sinks defined in GenericTaintChecker
:
printf
, setproctitle
, system
, popen
, execl
, execle
, execlp
, execv
, execvp
, execvP
, execve
, dlopen
, memcpy
, memmove
, strncpy
, strndup
, malloc
, calloc
, alloca
, memccpy
, realloc
, bcopy
The user can configure taint sources, sinks, and propagation rules by providing a configuration file via checker option alpha.security.taint.TaintPropagation:Config
.
External taint configuration is in YAML format. The taint-related options defined in the config file extend but do not override the built-in sources, rules, sinks. The format of the external taint configuration file is not stable, and could change without any notice even in a non-backward compatible way.
For a more detailed description of configuration options, please see the Taint Analysis Configuration. For an example see Example configuration file.
1.2.13. alpha.unix¶
1.2.13.1. alpha.unix.StdCLibraryFunctionArgs (C)¶
Check for calls of standard library functions that violate predefined argument
constraints. For example, it is stated in the C standard that for the int
isalnum(int ch)
function the behavior is undefined if the value of ch
is
not representable as unsigned char and is not equal to EOF
.
void test_alnum_concrete(int v) {
int ret = isalnum(256); // \
// warning: Function argument constraint is not satisfied
(void)ret;
}
If the argument’s value is unknown then the value is assumed to hold the proper value range.
#define EOF -1
int test_alnum_symbolic(int x) {
int ret = isalnum(x);
// after the call, ret is assumed to be in the range [-1, 255]
if (ret > 255) // impossible (infeasible branch)
if (x == 0)
return ret / x; // division by zero is not reported
return ret;
}
If the user disables the checker then the argument violation warning is suppressed. However, the assumption about the argument is still modeled. This is because exploring an execution path that already contains undefined behavior is not valuable.
There are different kind of constraints modeled: range constraint, not null
constraint, buffer size constraint. A range constraint requires the
argument’s value to be in a specific range, see isalnum
as an example above.
A not null constraint requires the pointer argument to be non-null.
A buffer size constraint specifies the minimum size of the buffer
argument. The size might be a known constant. For example, asctime_r
requires
that the buffer argument’s size must be greater than or equal to 26
bytes. In
other cases, the size is denoted by another argument or as a multiplication of
two arguments.
For instance, size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream)
.
Here, ptr
is the buffer, and its minimum size is size * nmemb
void buffer_size_constraint_violation(FILE *file) {
enum { BUFFER_SIZE = 1024 };
wchar_t wbuf[BUFFER_SIZE];
const size_t size = sizeof(*wbuf); // 4
const size_t nitems = sizeof(wbuf); // 4096
// Below we receive a warning because the 3rd parameter should be the
// number of elements to read, not the size in bytes. This case is a known
// vulnerability described by the ARR38-C SEI-CERT rule.
fread(wbuf, size, nitems, file);
}
Limitations
The checker is in alpha because the reports cannot provide notes about the
values of the arguments. Without this information it is hard to confirm if the
constraint is indeed violated. For example, consider the above case for
fread
. We display in the warning message that the size of the 1st arg
should be equal to or less than the value of the 2nd arg times the 3rd arg.
However, we fail to display the concrete values (4
and 4096
) for those
arguments.
Parameters
The checker models functions (and emits diagnostics) from the C standard by
default. The ModelPOSIX
option enables the checker to model (and emit
diagnostics) for functions that are defined in the POSIX standard. This option
is disabled by default.
1.2.13.2. alpha.unix.BlockInCriticalSection (C)¶
Check for calls to blocking functions inside a critical section.
Applies to: lock, unlock, sleep, getc, fgets, read, recv, pthread_mutex_lock,
`` pthread_mutex_unlock, mtx_lock, mtx_timedlock, mtx_trylock, mtx_unlock, lock_guard, unique_lock``
void test() {
std::mutex m;
m.lock();
sleep(3); // warn: a blocking function sleep is called inside a critical
// section
m.unlock();
}
1.2.13.3. alpha.unix.Chroot (C)¶
Check improper use of chroot.
void f();
void test() {
chroot("/usr/local");
f(); // warn: no call of chdir("/") immediately after chroot
}
1.2.13.4. alpha.unix.Errno (C)¶
Check for improper use of errno
.
This checker implements partially CERT rule
ERR30-C. Set errno to zero before calling a library function known to set errno,
and check errno only after the function returns a value indicating failure.
The checker can find the first read of errno
after successful standard
function calls.
The C and POSIX standards often do not define if a standard library function
may change value of errno
if the call does not fail.
Therefore, errno
should only be used if it is known from the return value
of a function that the call has failed.
There are exceptions to this rule (for example strtol
) but the affected
functions are not yet supported by the checker.
The return values for the failure cases are documented in the standard Linux man
pages of the functions and in the POSIX standard.
int unsafe_errno_read(int sock, void *data, int data_size) {
if (send(sock, data, data_size, 0) != data_size) {
// 'send' can be successful even if not all data was sent
if (errno == 1) { // An undefined value may be read from 'errno'
return 0;
}
}
return 1;
}
The supported functions are the same that are modeled by checker
alpha.unix.StdCLibraryFunctionArgs (C).
The ModelPOSIX
option of that checker affects the set of checked functions.
Parameters
The AllowErrnoReadOutsideConditionExpressions
option allows read of the
errno value if the value is not used in a condition (in if
statements,
loops, conditional expressions, switch
statements). For example errno
can be stored into a variable without getting a warning by the checker.
int unsafe_errno_read(int sock, void *data, int data_size) {
if (send(sock, data, data_size, 0) != data_size) {
int err = errno;
// warning if 'AllowErrnoReadOutsideConditionExpressions' is false
// no warning if 'AllowErrnoReadOutsideConditionExpressions' is true
}
return 1;
}
Default value of this option is true
. This allows save of the errno value
for possible later error handling.
Limitations
Only the very first usage of
errno
is checked after an affected function call. Value oferrno
is not followed when it is stored into a variable or returned from a function.Documentation of function
lseek
is not clear about what happens if the function returns different value than the expected file position but not -1. To avoid possible false-positiveserrno
is allowed to be used in this case.
1.2.13.5. alpha.unix.PthreadLock (C)¶
Simple lock -> unlock checker.
Applies to: pthread_mutex_lock, pthread_rwlock_rdlock, pthread_rwlock_wrlock, lck_mtx_lock, lck_rw_lock_exclusive
lck_rw_lock_shared, pthread_mutex_trylock, pthread_rwlock_tryrdlock, pthread_rwlock_tryrwlock, lck_mtx_try_lock,
lck_rw_try_lock_exclusive, lck_rw_try_lock_shared, pthread_mutex_unlock, pthread_rwlock_unlock, lck_mtx_unlock, lck_rw_done
.
pthread_mutex_t mtx;
void test() {
pthread_mutex_lock(&mtx);
pthread_mutex_lock(&mtx);
// warn: this lock has already been acquired
}
lck_mtx_t lck1, lck2;
void test() {
lck_mtx_lock(&lck1);
lck_mtx_lock(&lck2);
lck_mtx_unlock(&lck1);
// warn: this was not the most recently acquired lock
}
lck_mtx_t lck1, lck2;
void test() {
if (lck_mtx_try_lock(&lck1) == 0)
return;
lck_mtx_lock(&lck2);
lck_mtx_unlock(&lck1);
// warn: this was not the most recently acquired lock
}
1.2.13.6. alpha.unix.SimpleStream (C)¶
Check for misuses of stream APIs. Check for misuses of stream APIs: fopen, fclose
(demo checker, the subject of the demo (Slides ,
Video) by Anna Zaks and Jordan Rose presented at the
2012 LLVM Developers’ Meeting).
void test() {
FILE *F = fopen("myfile.txt", "w");
} // warn: opened file is never closed
void test() {
FILE *F = fopen("myfile.txt", "w");
if (F)
fclose(F);
fclose(F); // warn: closing a previously closed file stream
}
1.2.13.7. alpha.unix.Stream (C)¶
Check stream handling functions: fopen, tmpfile, fclose, fread, fwrite, fseek, ftell, rewind, fgetpos,
fsetpos, clearerr, feof, ferror, fileno
.
void test() {
FILE *p = fopen("foo", "r");
} // warn: opened file is never closed
void test() {
FILE *p = fopen("foo", "r");
fseek(p, 1, SEEK_SET); // warn: stream pointer might be NULL
fclose(p);
}
void test() {
FILE *p = fopen("foo", "r");
if (p)
fseek(p, 1, 3);
// warn: third arg should be SEEK_SET, SEEK_END, or SEEK_CUR
fclose(p);
}
void test() {
FILE *p = fopen("foo", "r");
fclose(p);
fclose(p); // warn: already closed
}
void test() {
FILE *p = tmpfile();
ftell(p); // warn: stream pointer might be NULL
fclose(p);
}
1.2.13.8. alpha.unix.cstring.BufferOverlap (C)¶
Checks for overlap in two buffer arguments. Applies to: memcpy, mempcpy, wmemcpy
.
void test() {
int a[4] = {0};
memcpy(a + 2, a + 1, 8); // warn
}
1.2.13.9. alpha.unix.cstring.NotNullTerminated (C)¶
Check for arguments which are not null-terminated strings; applies to: strlen, strnlen, strcpy, strncpy, strcat, strncat, wcslen, wcsnlen
.
void test() {
int y = strlen((char *)&test); // warn
}
1.2.13.10. alpha.unix.cstring.OutOfBounds (C)¶
Check for out-of-bounds access in string functions, such as:
memcpy, bcopy, strcpy, strncpy, strcat, strncat, memmove, memcmp, memset
and more.
This check also works with string literals, except there is a known bug in that the analyzer cannot detect embedded NULL characters when determining the string length.
void test1() {
const char str[] = "Hello world";
char buffer[] = "Hello world";
memcpy(buffer, str, sizeof(str) + 1); // warn
}
void test2() {
const char str[] = "Hello world";
char buffer[] = "Helloworld";
memcpy(buffer, str, sizeof(str)); // warn
}
1.2.13.11. alpha.unix.cstring.UninitializedRead (C)¶
- Check for uninitialized reads from common memory copy/manipulation functions such as:
memcpy, mempcpy, memmove, memcmp, strcmp, strncmp, strcpy, strlen, strsep
and many more.
void test() {
char src[10];
char dst[5];
memcpy(dst,src,sizeof(dst)); // warn: Bytes string function accesses uninitialized/garbage values
}
Limitations:
Due to limitations of the memory modeling in the analyzer, one can likely observe a lot of false-positive reports like this:
void false_positive() { int src[] = {1, 2, 3, 4}; int dst[5] = {0}; memcpy(dst, src, 4 * sizeof(int)); // false-positive: // The 'src' buffer was correctly initialized, yet we cannot conclude // that since the analyzer could not see a direct initialization of the // very last byte of the source buffer. }More details at the corresponding GitHub issue.
1.2.13.12. alpha.nondeterminism.PointerIteration (C++)¶
Check for non-determinism caused by iterating unordered containers of pointers.
void test() {
int a = 1, b = 2;
std::unordered_set<int *> UnorderedPtrSet = {&a, &b};
for (auto i : UnorderedPtrSet) // warn
f(i);
}
1.2.13.13. alpha.nondeterminism.PointerSorting (C++)¶
Check for non-determinism caused by sorting of pointers.
void test() {
int a = 1, b = 2;
std::vector<int *> V = {&a, &b};
std::sort(V.begin(), V.end()); // warn
}
1.2.14. alpha.WebKit¶
1.2.14.1. alpha.webkit.UncountedCallArgsChecker¶
The goal of this rule is to make sure that lifetime of any dynamically allocated ref-countable object passed as a call argument spans past the end of the call. This applies to call to any function, method, lambda, function pointer or functor. Ref-countable types aren’t supposed to be allocated on stack so we check arguments for parameters of raw pointers and references to uncounted types.
Here are some examples of situations that we warn about as they might be potentially unsafe. The logic is that either we’re able to guarantee that an argument is safe or it’s considered if not a bug then bug-prone.
RefCountable* provide_uncounted(); void consume(RefCountable*); // In these cases we can't make sure callee won't directly or indirectly call `deref()` on the argument which could make it unsafe from such point until the end of the call. void foo1() { consume(provide_uncounted()); // warn } void foo2() { RefCountable* uncounted = provide_uncounted(); consume(uncounted); // warn }
Although we are enforcing member variables to be ref-counted by webkit.NoUncountedMemberChecker any method of the same class still has unrestricted access to these. Since from a caller’s perspective we can’t guarantee a particular member won’t get modified by callee (directly or indirectly) we don’t consider values obtained from members safe.
Note: It’s likely this heuristic could be made more precise with fewer false positives - for example calls to free functions that don’t have any parameter other than the pointer should be safe as the callee won’t be able to tamper with the member unless it’s a global variable.
struct Foo { RefPtr<RefCountable> member; void consume(RefCountable*) { /* ... */ } void bugprone() { consume(member.get()); // warn } };
The implementation of this rule is a heuristic - we define a whitelist of kinds of values that are considered safe to be passed as arguments. If we can’t prove an argument is safe it’s considered an error.
Allowed kinds of arguments:
values obtained from ref-counted objects (including temporaries as those survive the call too)
RefCountable* provide_uncounted(); void consume(RefCountable*); void foo() { RefPtr<RefCountable> rc = makeRef(provide_uncounted()); consume(rc.get()); // ok consume(makeRef(provide_uncounted()).get()); // ok }
forwarding uncounted arguments from caller to callee
void foo(RefCountable& a) { bar(a); // ok }
Caller of
foo()
is responsible fora
’s lifetime.this
pointervoid Foo::foo() { baz(this); // ok }
Caller of
foo()
is responsible for keeping the memory pointed to bythis
pointer safe.constants
foo(nullptr, NULL, 0); // ok
We also define a set of safe transformations which if passed a safe value as an input provide (usually it’s the return value) a safe value (or an object that provides safe values). This is also a heuristic.
constructors of ref-counted types (including factory methods)
getters of ref-counted types
member overloaded operators
casts
unary operators like
&
or*
1.2.14.2. alpha.webkit.UncountedLocalVarsChecker¶
The goal of this rule is to make sure that any uncounted local variable is backed by a ref-counted object with lifetime that is strictly larger than the scope of the uncounted local variable. To be on the safe side we require the scope of an uncounted variable to be embedded in the scope of ref-counted object that backs it.
These are examples of cases that we consider safe:
void foo1() { RefPtr<RefCountable> counted; // The scope of uncounted is EMBEDDED in the scope of counted. { RefCountable* uncounted = counted.get(); // ok } } void foo2(RefPtr<RefCountable> counted_param) { RefCountable* uncounted = counted_param.get(); // ok } void FooClass::foo_method() { RefCountable* uncounted = this; // ok }
Here are some examples of situations that we warn about as they might be potentially unsafe. The logic is that either we’re able to guarantee that an argument is safe or it’s considered if not a bug then bug-prone.
void foo1() { RefCountable* uncounted = new RefCountable; // warn } RefCountable* global_uncounted; void foo2() { RefCountable* uncounted = global_uncounted; // warn } void foo3() { RefPtr<RefCountable> counted; // The scope of uncounted is not EMBEDDED in the scope of counted. RefCountable* uncounted = counted.get(); // warn }
We don’t warn about these cases - we don’t consider them necessarily safe but since they are very common and usually safe we’d introduce a lot of false positives otherwise:
- variable defined in condition part of an `if`
statement
- variable defined in init statement condition of a `for`
statement
For the time being we also don’t warn about uninitialized uncounted local variables.
1.3. Debug Checkers¶
1.3.1. debug¶
Checkers used for debugging the analyzer. Debug Checks page contains a detailed description.
1.3.1.1. debug.AnalysisOrder¶
Print callbacks that are called during analysis in order.
1.3.1.2. debug.ConfigDumper¶
Dump config table.
1.3.1.3. debug.DumpCFG Display¶
Control-Flow Graphs.
1.3.1.4. debug.DumpCallGraph¶
Display Call Graph.
1.3.1.5. debug.DumpCalls¶
Print calls as they are traversed by the engine.
1.3.1.6. debug.DumpDominators¶
Print the dominance tree for a given CFG.
1.3.1.7. debug.DumpLiveVars¶
Print results of live variable analysis.
1.3.1.8. debug.DumpTraversal¶
Print branch conditions as they are traversed by the engine.
1.3.1.9. debug.ExprInspection¶
Check the analyzer’s understanding of expressions.
1.3.1.10. debug.Stats¶
Emit warnings with analyzer statistics.
1.3.1.11. debug.TaintTest¶
Mark tainted symbols as such.
1.3.1.12. debug.ViewCFG¶
View Control-Flow Graphs using GraphViz.
1.3.1.13. debug.ViewCallGraph¶
View Call Graph using GraphViz.
1.3.1.14. debug.ViewExplodedGraph¶
View Exploded Graphs using GraphViz.