clang  6.0.0
CodeGenFunction.h
Go to the documentation of this file.
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
33 #include "clang/Basic/TargetInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/MapVector.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Transforms/Utils/SanitizerStats.h"
42 
43 namespace llvm {
44 class BasicBlock;
45 class LLVMContext;
46 class MDNode;
47 class Module;
48 class SwitchInst;
49 class Twine;
50 class Value;
51 class CallSite;
52 }
53 
54 namespace clang {
55 class ASTContext;
56 class BlockDecl;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class EnumConstantDecl;
63 class FunctionDecl;
64 class FunctionProtoType;
65 class LabelStmt;
66 class ObjCContainerDecl;
67 class ObjCInterfaceDecl;
68 class ObjCIvarDecl;
69 class ObjCMethodDecl;
70 class ObjCImplementationDecl;
71 class ObjCPropertyImplDecl;
72 class TargetInfo;
73 class VarDecl;
74 class ObjCForCollectionStmt;
75 class ObjCAtTryStmt;
76 class ObjCAtThrowStmt;
77 class ObjCAtSynchronizedStmt;
78 class ObjCAutoreleasePoolStmt;
79 
80 namespace analyze_os_log {
81 class OSLogBufferLayout;
82 }
83 
84 namespace CodeGen {
85 class CodeGenTypes;
86 class CGCallee;
87 class CGFunctionInfo;
88 class CGRecordLayout;
89 class CGBlockInfo;
90 class CGCXXABI;
91 class BlockByrefHelpers;
92 class BlockByrefInfo;
93 class BlockFlags;
94 class BlockFieldFlags;
95 class RegionCodeGenTy;
96 class TargetCodeGenInfo;
97 struct OMPTaskDataTy;
98 struct CGCoroData;
99 
100 /// The kind of evaluation to perform on values of a particular
101 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or
102 /// CGExprAgg?
103 ///
104 /// TODO: should vectors maybe be split out into their own thing?
109 };
110 
111 #define LIST_SANITIZER_CHECKS \
112  SANITIZER_CHECK(AddOverflow, add_overflow, 0) \
113  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \
114  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \
115  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \
116  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \
117  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \
118  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \
119  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \
120  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \
121  SANITIZER_CHECK(MissingReturn, missing_return, 0) \
122  SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \
123  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \
124  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \
125  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \
126  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \
127  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \
128  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \
129  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \
130  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \
131  SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \
132  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \
133  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
134 
136 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
138 #undef SANITIZER_CHECK
139 };
140 
141 /// CodeGenFunction - This class organizes the per-function state that is used
142 /// while generating LLVM code.
144  CodeGenFunction(const CodeGenFunction &) = delete;
145  void operator=(const CodeGenFunction &) = delete;
146 
147  friend class CGCXXABI;
148 public:
149  /// A jump destination is an abstract label, branching to which may
150  /// require a jump out through normal cleanups.
151  struct JumpDest {
152  JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
153  JumpDest(llvm::BasicBlock *Block,
155  unsigned Index)
156  : Block(Block), ScopeDepth(Depth), Index(Index) {}
157 
158  bool isValid() const { return Block != nullptr; }
159  llvm::BasicBlock *getBlock() const { return Block; }
160  EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
161  unsigned getDestIndex() const { return Index; }
162 
163  // This should be used cautiously.
165  ScopeDepth = depth;
166  }
167 
168  private:
169  llvm::BasicBlock *Block;
171  unsigned Index;
172  };
173 
174  CodeGenModule &CGM; // Per-module state.
176 
177  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
180 
181  // Stores variables for which we can't generate correct lifetime markers
182  // because of jumps.
184 
185  // CodeGen lambda for loops and support for ordered clause
186  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
187  JumpDest)>
189  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
190  const unsigned, const bool)>
192 
193  // Codegen lambda for loop bounds in worksharing loop constructs
194  typedef llvm::function_ref<std::pair<LValue, LValue>(
197 
198  // Codegen lambda for loop bounds in dispatch-based loop implementation
199  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
200  CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
201  Address UB)>
203 
204  /// \brief CGBuilder insert helper. This function is called after an
205  /// instruction is created using Builder.
206  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
207  llvm::BasicBlock *BB,
208  llvm::BasicBlock::iterator InsertPt) const;
209 
210  /// CurFuncDecl - Holds the Decl for the current outermost
211  /// non-closure context.
213  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
217  llvm::Function *CurFn;
218 
219  // Holds coroutine data if the current function is a coroutine. We use a
220  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
221  // in this header.
222  struct CGCoroInfo {
223  std::unique_ptr<CGCoroData> Data;
224  CGCoroInfo();
225  ~CGCoroInfo();
226  };
228 
229  bool isCoroutine() const {
230  return CurCoro.Data != nullptr;
231  }
232 
233  /// CurGD - The GlobalDecl for the current function being compiled.
235 
236  /// PrologueCleanupDepth - The cleanup depth enclosing all the
237  /// cleanups associated with the parameters.
239 
240  /// ReturnBlock - Unified return block.
242 
243  /// ReturnValue - The temporary alloca to hold the return
244  /// value. This is invalid iff the function has no return value.
246 
247  /// Return true if a label was seen in the current scope.
249  if (CurLexicalScope)
250  return CurLexicalScope->hasLabels();
251  return !LabelMap.empty();
252  }
253 
254  /// AllocaInsertPoint - This is an instruction in the entry block before which
255  /// we prefer to insert allocas.
256  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
257 
258  /// \brief API for captured statement code generation.
260  public:
262  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
263  explicit CGCapturedStmtInfo(const CapturedStmt &S,
265  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
266 
270  E = S.capture_end();
271  I != E; ++I, ++Field) {
272  if (I->capturesThis())
273  CXXThisFieldDecl = *Field;
274  else if (I->capturesVariable())
275  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
276  else if (I->capturesVariableByCopy())
277  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
278  }
279  }
280 
281  virtual ~CGCapturedStmtInfo();
282 
283  CapturedRegionKind getKind() const { return Kind; }
284 
285  virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
286  // \brief Retrieve the value of the context parameter.
287  virtual llvm::Value *getContextValue() const { return ThisValue; }
288 
289  /// \brief Lookup the captured field decl for a variable.
290  virtual const FieldDecl *lookup(const VarDecl *VD) const {
291  return CaptureFields.lookup(VD->getCanonicalDecl());
292  }
293 
294  bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
295  virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
296 
297  static bool classof(const CGCapturedStmtInfo *) {
298  return true;
299  }
300 
301  /// \brief Emit the captured statement body.
302  virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
304  CGF.EmitStmt(S);
305  }
306 
307  /// \brief Get the name of the capture helper.
308  virtual StringRef getHelperName() const { return "__captured_stmt"; }
309 
310  private:
311  /// \brief The kind of captured statement being generated.
313 
314  /// \brief Keep the map between VarDecl and FieldDecl.
315  llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
316 
317  /// \brief The base address of the captured record, passed in as the first
318  /// argument of the parallel region function.
319  llvm::Value *ThisValue;
320 
321  /// \brief Captured 'this' type.
322  FieldDecl *CXXThisFieldDecl;
323  };
325 
326  /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
328  private:
329  CodeGenFunction &CGF;
330  CGCapturedStmtInfo *PrevCapturedStmtInfo;
331  public:
332  CGCapturedStmtRAII(CodeGenFunction &CGF,
333  CGCapturedStmtInfo *NewCapturedStmtInfo)
334  : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
335  CGF.CapturedStmtInfo = NewCapturedStmtInfo;
336  }
337  ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
338  };
339 
340  /// An abstract representation of regular/ObjC call/message targets.
342  /// The function declaration of the callee.
343  const Decl *CalleeDecl;
344 
345  public:
346  AbstractCallee() : CalleeDecl(nullptr) {}
347  AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
348  AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
349  bool hasFunctionDecl() const {
350  return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
351  }
352  const Decl *getDecl() const { return CalleeDecl; }
353  unsigned getNumParams() const {
354  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
355  return FD->getNumParams();
356  return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
357  }
358  const ParmVarDecl *getParamDecl(unsigned I) const {
359  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
360  return FD->getParamDecl(I);
361  return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
362  }
363  };
364 
365  /// \brief Sanitizers enabled for this function.
367 
368  /// \brief True if CodeGen currently emits code implementing sanitizer checks.
370 
371  /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
373  CodeGenFunction *CGF;
374  public:
375  SanitizerScope(CodeGenFunction *CGF);
376  ~SanitizerScope();
377  };
378 
379  /// In C++, whether we are code generating a thunk. This controls whether we
380  /// should emit cleanups.
382 
383  /// In ARC, whether we should autorelease the return value.
385 
386  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
387  /// potentially set the return value.
389 
390  const FunctionDecl *CurSEHParent = nullptr;
391 
392  /// True if the current function is an outlined SEH helper. This can be a
393  /// finally block or filter expression.
395 
398 
399  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
401 
402  /// \brief A mapping from NRVO variables to the flags used to indicate
403  /// when the NRVO has been applied to this variable.
404  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
405 
409 
410  llvm::Instruction *CurrentFuncletPad = nullptr;
411 
412  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
413  llvm::Value *Addr;
414  llvm::Value *Size;
415 
416  public:
418  : Addr(addr.getPointer()), Size(size) {}
419 
420  void Emit(CodeGenFunction &CGF, Flags flags) override {
421  CGF.EmitLifetimeEnd(Size, Addr);
422  }
423  };
424 
425  /// Header for data within LifetimeExtendedCleanupStack.
427  /// The size of the following cleanup object.
428  unsigned Size;
429  /// The kind of cleanup to push: a value from the CleanupKind enumeration.
431 
432  size_t getSize() const { return Size; }
433  CleanupKind getKind() const { return Kind; }
434  };
435 
436  /// i32s containing the indexes of the cleanup destinations.
437  llvm::AllocaInst *NormalCleanupDest;
438 
440 
441  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
443 
444  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
445  llvm::BasicBlock *EHResumeBlock;
446 
447  /// The exception slot. All landing pads write the current exception pointer
448  /// into this alloca.
450 
451  /// The selector slot. Under the MandatoryCleanup model, all landing pads
452  /// write the current selector value into this alloca.
453  llvm::AllocaInst *EHSelectorSlot;
454 
455  /// A stack of exception code slots. Entering an __except block pushes a slot
456  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
457  /// a value from the top of the stack.
459 
460  /// Value returned by __exception_info intrinsic.
461  llvm::Value *SEHInfo = nullptr;
462 
463  /// Emits a landing pad for the current EH stack.
464  llvm::BasicBlock *EmitLandingPad();
465 
466  llvm::BasicBlock *getInvokeDestImpl();
467 
468  template <class T>
470  return DominatingValue<T>::save(*this, value);
471  }
472 
473 public:
474  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
475  /// rethrows.
477 
478  /// A class controlling the emission of a finally block.
479  class FinallyInfo {
480  /// Where the catchall's edge through the cleanup should go.
481  JumpDest RethrowDest;
482 
483  /// A function to call to enter the catch.
484  llvm::Constant *BeginCatchFn;
485 
486  /// An i1 variable indicating whether or not the @finally is
487  /// running for an exception.
488  llvm::AllocaInst *ForEHVar;
489 
490  /// An i8* variable into which the exception pointer to rethrow
491  /// has been saved.
492  llvm::AllocaInst *SavedExnVar;
493 
494  public:
495  void enter(CodeGenFunction &CGF, const Stmt *Finally,
496  llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
497  llvm::Constant *rethrowFn);
498  void exit(CodeGenFunction &CGF);
499  };
500 
501  /// Returns true inside SEH __try blocks.
502  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
503 
504  /// Returns true while emitting a cleanuppad.
505  bool isCleanupPadScope() const {
506  return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
507  }
508 
509  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
510  /// current full-expression. Safe against the possibility that
511  /// we're currently inside a conditionally-evaluated expression.
512  template <class T, class... As>
514  // If we're not in a conditional branch, or if none of the
515  // arguments requires saving, then use the unconditional cleanup.
516  if (!isInConditionalBranch())
517  return EHStack.pushCleanup<T>(kind, A...);
518 
519  // Stash values in a tuple so we can guarantee the order of saves.
520  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
521  SavedTuple Saved{saveValueInCond(A)...};
522 
523  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
524  EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
525  initFullExprCleanup();
526  }
527 
528  /// \brief Queue a cleanup to be pushed after finishing the current
529  /// full-expression.
530  template <class T, class... As>
532  assert(!isInConditionalBranch() && "can't defer conditional cleanup");
533 
534  LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
535 
536  size_t OldSize = LifetimeExtendedCleanupStack.size();
537  LifetimeExtendedCleanupStack.resize(
538  LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
539 
540  static_assert(sizeof(Header) % alignof(T) == 0,
541  "Cleanup will be allocated on misaligned address");
542  char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
543  new (Buffer) LifetimeExtendedCleanupHeader(Header);
544  new (Buffer + sizeof(Header)) T(A...);
545  }
546 
547  /// Set up the last cleaup that was pushed as a conditional
548  /// full-expression cleanup.
549  void initFullExprCleanup();
550 
551  /// PushDestructorCleanup - Push a cleanup to call the
552  /// complete-object destructor of an object of the given type at the
553  /// given address. Does nothing if T is not a C++ class type with a
554  /// non-trivial destructor.
555  void PushDestructorCleanup(QualType T, Address Addr);
556 
557  /// PushDestructorCleanup - Push a cleanup to call the
558  /// complete-object variant of the given destructor on the object at
559  /// the given address.
560  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
561 
562  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
563  /// process all branch fixups.
564  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
565 
566  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
567  /// The block cannot be reactivated. Pops it if it's the top of the
568  /// stack.
569  ///
570  /// \param DominatingIP - An instruction which is known to
571  /// dominate the current IP (if set) and which lies along
572  /// all paths of execution between the current IP and the
573  /// the point at which the cleanup comes into scope.
574  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
575  llvm::Instruction *DominatingIP);
576 
577  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
578  /// Cannot be used to resurrect a deactivated cleanup.
579  ///
580  /// \param DominatingIP - An instruction which is known to
581  /// dominate the current IP (if set) and which lies along
582  /// all paths of execution between the current IP and the
583  /// the point at which the cleanup comes into scope.
584  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
585  llvm::Instruction *DominatingIP);
586 
587  /// \brief Enters a new scope for capturing cleanups, all of which
588  /// will be executed once the scope is exited.
590  EHScopeStack::stable_iterator CleanupStackDepth;
591  size_t LifetimeExtendedCleanupStackSize;
592  bool OldDidCallStackSave;
593  protected:
595  private:
596 
597  RunCleanupsScope(const RunCleanupsScope &) = delete;
598  void operator=(const RunCleanupsScope &) = delete;
599 
600  protected:
601  CodeGenFunction& CGF;
602 
603  public:
604  /// \brief Enter a new cleanup scope.
605  explicit RunCleanupsScope(CodeGenFunction &CGF)
606  : PerformCleanup(true), CGF(CGF)
607  {
608  CleanupStackDepth = CGF.EHStack.stable_begin();
609  LifetimeExtendedCleanupStackSize =
610  CGF.LifetimeExtendedCleanupStack.size();
611  OldDidCallStackSave = CGF.DidCallStackSave;
612  CGF.DidCallStackSave = false;
613  }
614 
615  /// \brief Exit this cleanup scope, emitting any accumulated cleanups.
617  if (PerformCleanup)
618  ForceCleanup();
619  }
620 
621  /// \brief Determine whether this scope requires any cleanups.
622  bool requiresCleanups() const {
623  return CGF.EHStack.stable_begin() != CleanupStackDepth;
624  }
625 
626  /// \brief Force the emission of cleanups now, instead of waiting
627  /// until this object is destroyed.
628  /// \param ValuesToReload - A list of values that need to be available at
629  /// the insertion point after cleanup emission. If cleanup emission created
630  /// a shared cleanup block, these value pointers will be rewritten.
631  /// Otherwise, they not will be modified.
632  void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
633  assert(PerformCleanup && "Already forced cleanup");
634  CGF.DidCallStackSave = OldDidCallStackSave;
635  CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
636  ValuesToReload);
637  PerformCleanup = false;
638  }
639  };
640 
642  SourceRange Range;
644  LexicalScope *ParentScope;
645 
646  LexicalScope(const LexicalScope &) = delete;
647  void operator=(const LexicalScope &) = delete;
648 
649  public:
650  /// \brief Enter a new cleanup scope.
651  explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
652  : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
653  CGF.CurLexicalScope = this;
654  if (CGDebugInfo *DI = CGF.getDebugInfo())
655  DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
656  }
657 
658  void addLabel(const LabelDecl *label) {
659  assert(PerformCleanup && "adding label to dead scope?");
660  Labels.push_back(label);
661  }
662 
663  /// \brief Exit this cleanup scope, emitting any accumulated
664  /// cleanups.
666  if (CGDebugInfo *DI = CGF.getDebugInfo())
667  DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
668 
669  // If we should perform a cleanup, force them now. Note that
670  // this ends the cleanup scope before rescoping any labels.
671  if (PerformCleanup) {
672  ApplyDebugLocation DL(CGF, Range.getEnd());
673  ForceCleanup();
674  }
675  }
676 
677  /// \brief Force the emission of cleanups now, instead of waiting
678  /// until this object is destroyed.
679  void ForceCleanup() {
680  CGF.CurLexicalScope = ParentScope;
681  RunCleanupsScope::ForceCleanup();
682 
683  if (!Labels.empty())
684  rescopeLabels();
685  }
686 
687  bool hasLabels() const {
688  return !Labels.empty();
689  }
690 
691  void rescopeLabels();
692  };
693 
694  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
695 
696  /// \brief The scope used to remap some variables as private in the OpenMP
697  /// loop body (or other captured region emitted without outlining), and to
698  /// restore old vars back on exit.
700  DeclMapTy SavedLocals;
701  DeclMapTy SavedPrivates;
702 
703  private:
704  OMPPrivateScope(const OMPPrivateScope &) = delete;
705  void operator=(const OMPPrivateScope &) = delete;
706 
707  public:
708  /// \brief Enter a new OpenMP private scope.
709  explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
710 
711  /// \brief Registers \a LocalVD variable as a private and apply \a
712  /// PrivateGen function for it to generate corresponding private variable.
713  /// \a PrivateGen returns an address of the generated private variable.
714  /// \return true if the variable is registered as private, false if it has
715  /// been privatized already.
716  bool
717  addPrivate(const VarDecl *LocalVD,
718  llvm::function_ref<Address()> PrivateGen) {
719  assert(PerformCleanup && "adding private to dead scope");
720 
721  LocalVD = LocalVD->getCanonicalDecl();
722  // Only save it once.
723  if (SavedLocals.count(LocalVD)) return false;
724 
725  // Copy the existing local entry to SavedLocals.
726  auto it = CGF.LocalDeclMap.find(LocalVD);
727  if (it != CGF.LocalDeclMap.end()) {
728  SavedLocals.insert({LocalVD, it->second});
729  } else {
730  SavedLocals.insert({LocalVD, Address::invalid()});
731  }
732 
733  // Generate the private entry.
734  Address Addr = PrivateGen();
735  QualType VarTy = LocalVD->getType();
736  if (VarTy->isReferenceType()) {
737  Address Temp = CGF.CreateMemTemp(VarTy);
738  CGF.Builder.CreateStore(Addr.getPointer(), Temp);
739  Addr = Temp;
740  }
741  SavedPrivates.insert({LocalVD, Addr});
742 
743  return true;
744  }
745 
746  /// \brief Privatizes local variables previously registered as private.
747  /// Registration is separate from the actual privatization to allow
748  /// initializers use values of the original variables, not the private one.
749  /// This is important, for example, if the private variable is a class
750  /// variable initialized by a constructor that references other private
751  /// variables. But at initialization original variables must be used, not
752  /// private copies.
753  /// \return true if at least one variable was privatized, false otherwise.
754  bool Privatize() {
755  copyInto(SavedPrivates, CGF.LocalDeclMap);
756  SavedPrivates.clear();
757  return !SavedLocals.empty();
758  }
759 
760  void ForceCleanup() {
761  RunCleanupsScope::ForceCleanup();
762  copyInto(SavedLocals, CGF.LocalDeclMap);
763  SavedLocals.clear();
764  }
765 
766  /// \brief Exit scope - all the mapped variables are restored.
768  if (PerformCleanup)
769  ForceCleanup();
770  }
771 
772  /// Checks if the global variable is captured in current function.
773  bool isGlobalVarCaptured(const VarDecl *VD) const {
774  VD = VD->getCanonicalDecl();
775  return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
776  }
777 
778  private:
779  /// Copy all the entries in the source map over the corresponding
780  /// entries in the destination, which must exist.
781  static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
782  for (auto &pair : src) {
783  if (!pair.second.isValid()) {
784  dest.erase(pair.first);
785  continue;
786  }
787 
788  auto it = dest.find(pair.first);
789  if (it != dest.end()) {
790  it->second = pair.second;
791  } else {
792  dest.insert(pair);
793  }
794  }
795  }
796  };
797 
798  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
799  /// that have been added.
800  void
801  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
802  std::initializer_list<llvm::Value **> ValuesToReload = {});
803 
804  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
805  /// that have been added, then adds all lifetime-extended cleanups from
806  /// the given position to the stack.
807  void
808  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
809  size_t OldLifetimeExtendedStackSize,
810  std::initializer_list<llvm::Value **> ValuesToReload = {});
811 
812  void ResolveBranchFixups(llvm::BasicBlock *Target);
813 
814  /// The given basic block lies in the current EH scope, but may be a
815  /// target of a potentially scope-crossing jump; get a stable handle
816  /// to which we can perform this jump later.
817  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
818  return JumpDest(Target,
819  EHStack.getInnermostNormalCleanup(),
820  NextCleanupDestIndex++);
821  }
822 
823  /// The given basic block lies in the current EH scope, but may be a
824  /// target of a potentially scope-crossing jump; get a stable handle
825  /// to which we can perform this jump later.
826  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
827  return getJumpDestInCurrentScope(createBasicBlock(Name));
828  }
829 
830  /// EmitBranchThroughCleanup - Emit a branch from the current insert
831  /// block through the normal cleanup handling code (if any) and then
832  /// on to \arg Dest.
833  void EmitBranchThroughCleanup(JumpDest Dest);
834 
835  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
836  /// specified destination obviously has no cleanups to run. 'false' is always
837  /// a conservatively correct answer for this method.
838  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
839 
840  /// popCatchScope - Pops the catch scope at the top of the EHScope
841  /// stack, emitting any required code (other than the catch handlers
842  /// themselves).
843  void popCatchScope();
844 
845  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
846  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
847  llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
848 
849  /// An object to manage conditionally-evaluated expressions.
851  llvm::BasicBlock *StartBB;
852 
853  public:
854  ConditionalEvaluation(CodeGenFunction &CGF)
855  : StartBB(CGF.Builder.GetInsertBlock()) {}
856 
857  void begin(CodeGenFunction &CGF) {
858  assert(CGF.OutermostConditional != this);
859  if (!CGF.OutermostConditional)
860  CGF.OutermostConditional = this;
861  }
862 
863  void end(CodeGenFunction &CGF) {
864  assert(CGF.OutermostConditional != nullptr);
865  if (CGF.OutermostConditional == this)
866  CGF.OutermostConditional = nullptr;
867  }
868 
869  /// Returns a block which will be executed prior to each
870  /// evaluation of the conditional code.
871  llvm::BasicBlock *getStartingBlock() const {
872  return StartBB;
873  }
874  };
875 
876  /// isInConditionalBranch - Return true if we're currently emitting
877  /// one branch or the other of a conditional expression.
878  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
879 
881  assert(isInConditionalBranch());
882  llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
883  auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
884  store->setAlignment(addr.getAlignment().getQuantity());
885  }
886 
887  /// An RAII object to record that we're evaluating a statement
888  /// expression.
890  CodeGenFunction &CGF;
891 
892  /// We have to save the outermost conditional: cleanups in a
893  /// statement expression aren't conditional just because the
894  /// StmtExpr is.
895  ConditionalEvaluation *SavedOutermostConditional;
896 
897  public:
898  StmtExprEvaluation(CodeGenFunction &CGF)
899  : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
900  CGF.OutermostConditional = nullptr;
901  }
902 
904  CGF.OutermostConditional = SavedOutermostConditional;
905  CGF.EnsureInsertPoint();
906  }
907  };
908 
909  /// An object which temporarily prevents a value from being
910  /// destroyed by aggressive peephole optimizations that assume that
911  /// all uses of a value have been realized in the IR.
913  llvm::Instruction *Inst;
914  friend class CodeGenFunction;
915 
916  public:
917  PeepholeProtection() : Inst(nullptr) {}
918  };
919 
920  /// A non-RAII class containing all the information about a bound
921  /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
922  /// this which makes individual mappings very simple; using this
923  /// class directly is useful when you have a variable number of
924  /// opaque values or don't want the RAII functionality for some
925  /// reason.
927  const OpaqueValueExpr *OpaqueValue;
928  bool BoundLValue;
930 
932  bool boundLValue)
933  : OpaqueValue(ov), BoundLValue(boundLValue) {}
934  public:
935  OpaqueValueMappingData() : OpaqueValue(nullptr) {}
936 
937  static bool shouldBindAsLValue(const Expr *expr) {
938  // gl-values should be bound as l-values for obvious reasons.
939  // Records should be bound as l-values because IR generation
940  // always keeps them in memory. Expressions of function type
941  // act exactly like l-values but are formally required to be
942  // r-values in C.
943  return expr->isGLValue() ||
944  expr->getType()->isFunctionType() ||
945  hasAggregateEvaluationKind(expr->getType());
946  }
947 
948  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
949  const OpaqueValueExpr *ov,
950  const Expr *e) {
951  if (shouldBindAsLValue(ov))
952  return bind(CGF, ov, CGF.EmitLValue(e));
953  return bind(CGF, ov, CGF.EmitAnyExpr(e));
954  }
955 
956  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
957  const OpaqueValueExpr *ov,
958  const LValue &lv) {
959  assert(shouldBindAsLValue(ov));
960  CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
961  return OpaqueValueMappingData(ov, true);
962  }
963 
964  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
965  const OpaqueValueExpr *ov,
966  const RValue &rv) {
967  assert(!shouldBindAsLValue(ov));
968  CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
969 
970  OpaqueValueMappingData data(ov, false);
971 
972  // Work around an extremely aggressive peephole optimization in
973  // EmitScalarConversion which assumes that all other uses of a
974  // value are extant.
975  data.Protection = CGF.protectFromPeepholes(rv);
976 
977  return data;
978  }
979 
980  bool isValid() const { return OpaqueValue != nullptr; }
981  void clear() { OpaqueValue = nullptr; }
982 
983  void unbind(CodeGenFunction &CGF) {
984  assert(OpaqueValue && "no data to unbind!");
985 
986  if (BoundLValue) {
987  CGF.OpaqueLValues.erase(OpaqueValue);
988  } else {
989  CGF.OpaqueRValues.erase(OpaqueValue);
990  CGF.unprotectFromPeepholes(Protection);
991  }
992  }
993  };
994 
995  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
997  CodeGenFunction &CGF;
999 
1000  public:
1001  static bool shouldBindAsLValue(const Expr *expr) {
1002  return OpaqueValueMappingData::shouldBindAsLValue(expr);
1003  }
1004 
1005  /// Build the opaque value mapping for the given conditional
1006  /// operator if it's the GNU ?: extension. This is a common
1007  /// enough pattern that the convenience operator is really
1008  /// helpful.
1009  ///
1010  OpaqueValueMapping(CodeGenFunction &CGF,
1011  const AbstractConditionalOperator *op) : CGF(CGF) {
1012  if (isa<ConditionalOperator>(op))
1013  // Leave Data empty.
1014  return;
1015 
1016  const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1017  Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1018  e->getCommon());
1019  }
1020 
1021  /// Build the opaque value mapping for an OpaqueValueExpr whose source
1022  /// expression is set to the expression the OVE represents.
1023  OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1024  : CGF(CGF) {
1025  if (OV) {
1026  assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1027  "for OVE with no source expression");
1028  Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1029  }
1030  }
1031 
1032  OpaqueValueMapping(CodeGenFunction &CGF,
1033  const OpaqueValueExpr *opaqueValue,
1034  LValue lvalue)
1035  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1036  }
1037 
1038  OpaqueValueMapping(CodeGenFunction &CGF,
1039  const OpaqueValueExpr *opaqueValue,
1040  RValue rvalue)
1041  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1042  }
1043 
1044  void pop() {
1045  Data.unbind(CGF);
1046  Data.clear();
1047  }
1048 
1050  if (Data.isValid()) Data.unbind(CGF);
1051  }
1052  };
1053 
1054 private:
1055  CGDebugInfo *DebugInfo;
1056  bool DisableDebugInfo;
1057 
1058  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1059  /// calling llvm.stacksave for multiple VLAs in the same scope.
1060  bool DidCallStackSave;
1061 
1062  /// IndirectBranch - The first time an indirect goto is seen we create a block
1063  /// with an indirect branch. Every time we see the address of a label taken,
1064  /// we add the label to the indirect goto. Every subsequent indirect goto is
1065  /// codegen'd as a jump to the IndirectBranch's basic block.
1066  llvm::IndirectBrInst *IndirectBranch;
1067 
1068  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1069  /// decls.
1070  DeclMapTy LocalDeclMap;
1071 
1072  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1073  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1074  /// parameter.
1075  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1076  SizeArguments;
1077 
1078  /// Track escaped local variables with auto storage. Used during SEH
1079  /// outlining to produce a call to llvm.localescape.
1080  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1081 
1082  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1083  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1084 
1085  // BreakContinueStack - This keeps track of where break and continue
1086  // statements should jump to.
1087  struct BreakContinue {
1088  BreakContinue(JumpDest Break, JumpDest Continue)
1089  : BreakBlock(Break), ContinueBlock(Continue) {}
1090 
1091  JumpDest BreakBlock;
1092  JumpDest ContinueBlock;
1093  };
1094  SmallVector<BreakContinue, 8> BreakContinueStack;
1095 
1096  /// Handles cancellation exit points in OpenMP-related constructs.
1097  class OpenMPCancelExitStack {
1098  /// Tracks cancellation exit point and join point for cancel-related exit
1099  /// and normal exit.
1100  struct CancelExit {
1101  CancelExit() = default;
1102  CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1103  JumpDest ContBlock)
1104  : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1106  /// true if the exit block has been emitted already by the special
1107  /// emitExit() call, false if the default codegen is used.
1108  bool HasBeenEmitted = false;
1109  JumpDest ExitBlock;
1110  JumpDest ContBlock;
1111  };
1112 
1114 
1115  public:
1116  OpenMPCancelExitStack() : Stack(1) {}
1117  ~OpenMPCancelExitStack() = default;
1118  /// Fetches the exit block for the current OpenMP construct.
1119  JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1120  /// Emits exit block with special codegen procedure specific for the related
1121  /// OpenMP construct + emits code for normal construct cleanup.
1122  void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1123  const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
1124  if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1125  assert(CGF.getOMPCancelDestination(Kind).isValid());
1126  assert(CGF.HaveInsertPoint());
1127  assert(!Stack.back().HasBeenEmitted);
1128  auto IP = CGF.Builder.saveAndClearIP();
1129  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1130  CodeGen(CGF);
1131  CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1132  CGF.Builder.restoreIP(IP);
1133  Stack.back().HasBeenEmitted = true;
1134  }
1135  CodeGen(CGF);
1136  }
1137  /// Enter the cancel supporting \a Kind construct.
1138  /// \param Kind OpenMP directive that supports cancel constructs.
1139  /// \param HasCancel true, if the construct has inner cancel directive,
1140  /// false otherwise.
1141  void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1142  Stack.push_back({Kind,
1143  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1144  : JumpDest(),
1145  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1146  : JumpDest()});
1147  }
1148  /// Emits default exit point for the cancel construct (if the special one
1149  /// has not be used) + join point for cancel/normal exits.
1150  void exit(CodeGenFunction &CGF) {
1151  if (getExitBlock().isValid()) {
1152  assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1153  bool HaveIP = CGF.HaveInsertPoint();
1154  if (!Stack.back().HasBeenEmitted) {
1155  if (HaveIP)
1156  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1157  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1158  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1159  }
1160  CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1161  if (!HaveIP) {
1162  CGF.Builder.CreateUnreachable();
1163  CGF.Builder.ClearInsertionPoint();
1164  }
1165  }
1166  Stack.pop_back();
1167  }
1168  };
1169  OpenMPCancelExitStack OMPCancelStack;
1170 
1171  CodeGenPGO PGO;
1172 
1173  /// Calculate branch weights appropriate for PGO data
1174  llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1175  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1176  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1177  uint64_t LoopCount);
1178 
1179 public:
1180  /// Increment the profiler's counter for the given statement by \p StepV.
1181  /// If \p StepV is null, the default increment is 1.
1182  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1184  PGO.emitCounterIncrement(Builder, S, StepV);
1185  PGO.setCurrentStmt(S);
1186  }
1187 
1188  /// Get the profiler's count for the given statement.
1189  uint64_t getProfileCount(const Stmt *S) {
1190  Optional<uint64_t> Count = PGO.getStmtCount(S);
1191  if (!Count.hasValue())
1192  return 0;
1193  return *Count;
1194  }
1195 
1196  /// Set the profiler's current count.
1197  void setCurrentProfileCount(uint64_t Count) {
1198  PGO.setCurrentRegionCount(Count);
1199  }
1200 
1201  /// Get the profiler's current count. This is generally the count for the most
1202  /// recently incremented counter.
1204  return PGO.getCurrentRegionCount();
1205  }
1206 
1207 private:
1208 
1209  /// SwitchInsn - This is nearest current switch instruction. It is null if
1210  /// current context is not in a switch.
1211  llvm::SwitchInst *SwitchInsn;
1212  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1213  SmallVector<uint64_t, 16> *SwitchWeights;
1214 
1215  /// CaseRangeBlock - This block holds if condition check for last case
1216  /// statement range in current switch instruction.
1217  llvm::BasicBlock *CaseRangeBlock;
1218 
1219  /// OpaqueLValues - Keeps track of the current set of opaque value
1220  /// expressions.
1221  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1222  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1223 
1224  // VLASizeMap - This keeps track of the associated size for each VLA type.
1225  // We track this by the size expression rather than the type itself because
1226  // in certain situations, like a const qualifier applied to an VLA typedef,
1227  // multiple VLA types can share the same size expression.
1228  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1229  // enter/leave scopes.
1230  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1231 
1232  /// A block containing a single 'unreachable' instruction. Created
1233  /// lazily by getUnreachableBlock().
1234  llvm::BasicBlock *UnreachableBlock;
1235 
1236  /// Counts of the number return expressions in the function.
1237  unsigned NumReturnExprs;
1238 
1239  /// Count the number of simple (constant) return expressions in the function.
1240  unsigned NumSimpleReturnExprs;
1241 
1242  /// The last regular (non-return) debug location (breakpoint) in the function.
1243  SourceLocation LastStopPoint;
1244 
1245 public:
1246  /// A scope within which we are constructing the fields of an object which
1247  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1248  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1250  public:
1251  FieldConstructionScope(CodeGenFunction &CGF, Address This)
1252  : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1253  CGF.CXXDefaultInitExprThis = This;
1254  }
1256  CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1257  }
1258 
1259  private:
1260  CodeGenFunction &CGF;
1261  Address OldCXXDefaultInitExprThis;
1262  };
1263 
1264  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1265  /// is overridden to be the object under construction.
1267  public:
1268  CXXDefaultInitExprScope(CodeGenFunction &CGF)
1269  : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1270  OldCXXThisAlignment(CGF.CXXThisAlignment) {
1271  CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1272  CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1273  }
1275  CGF.CXXThisValue = OldCXXThisValue;
1276  CGF.CXXThisAlignment = OldCXXThisAlignment;
1277  }
1278 
1279  public:
1280  CodeGenFunction &CGF;
1283  };
1284 
1285  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1286  /// current loop index is overridden.
1288  public:
1289  ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1290  : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1291  CGF.ArrayInitIndex = Index;
1292  }
1294  CGF.ArrayInitIndex = OldArrayInitIndex;
1295  }
1296 
1297  private:
1298  CodeGenFunction &CGF;
1299  llvm::Value *OldArrayInitIndex;
1300  };
1301 
1303  public:
1305  : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1306  OldCurCodeDecl(CGF.CurCodeDecl),
1307  OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1308  OldCXXABIThisValue(CGF.CXXABIThisValue),
1309  OldCXXThisValue(CGF.CXXThisValue),
1310  OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1311  OldCXXThisAlignment(CGF.CXXThisAlignment),
1312  OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1313  OldCXXInheritedCtorInitExprArgs(
1314  std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1315  CGF.CurGD = GD;
1316  CGF.CurFuncDecl = CGF.CurCodeDecl =
1317  cast<CXXConstructorDecl>(GD.getDecl());
1318  CGF.CXXABIThisDecl = nullptr;
1319  CGF.CXXABIThisValue = nullptr;
1320  CGF.CXXThisValue = nullptr;
1321  CGF.CXXABIThisAlignment = CharUnits();
1322  CGF.CXXThisAlignment = CharUnits();
1323  CGF.ReturnValue = Address::invalid();
1324  CGF.FnRetTy = QualType();
1325  CGF.CXXInheritedCtorInitExprArgs.clear();
1326  }
1328  CGF.CurGD = OldCurGD;
1329  CGF.CurFuncDecl = OldCurFuncDecl;
1330  CGF.CurCodeDecl = OldCurCodeDecl;
1331  CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1332  CGF.CXXABIThisValue = OldCXXABIThisValue;
1333  CGF.CXXThisValue = OldCXXThisValue;
1334  CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1335  CGF.CXXThisAlignment = OldCXXThisAlignment;
1336  CGF.ReturnValue = OldReturnValue;
1337  CGF.FnRetTy = OldFnRetTy;
1338  CGF.CXXInheritedCtorInitExprArgs =
1339  std::move(OldCXXInheritedCtorInitExprArgs);
1340  }
1341 
1342  private:
1343  CodeGenFunction &CGF;
1344  GlobalDecl OldCurGD;
1345  const Decl *OldCurFuncDecl;
1346  const Decl *OldCurCodeDecl;
1347  ImplicitParamDecl *OldCXXABIThisDecl;
1348  llvm::Value *OldCXXABIThisValue;
1349  llvm::Value *OldCXXThisValue;
1350  CharUnits OldCXXABIThisAlignment;
1351  CharUnits OldCXXThisAlignment;
1352  Address OldReturnValue;
1353  QualType OldFnRetTy;
1354  CallArgList OldCXXInheritedCtorInitExprArgs;
1355  };
1356 
1357 private:
1358  /// CXXThisDecl - When generating code for a C++ member function,
1359  /// this will hold the implicit 'this' declaration.
1360  ImplicitParamDecl *CXXABIThisDecl;
1361  llvm::Value *CXXABIThisValue;
1362  llvm::Value *CXXThisValue;
1363  CharUnits CXXABIThisAlignment;
1364  CharUnits CXXThisAlignment;
1365 
1366  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1367  /// this expression.
1368  Address CXXDefaultInitExprThis = Address::invalid();
1369 
1370  /// The current array initialization index when evaluating an
1371  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1372  llvm::Value *ArrayInitIndex = nullptr;
1373 
1374  /// The values of function arguments to use when evaluating
1375  /// CXXInheritedCtorInitExprs within this context.
1376  CallArgList CXXInheritedCtorInitExprArgs;
1377 
1378  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1379  /// destructor, this will hold the implicit argument (e.g. VTT).
1380  ImplicitParamDecl *CXXStructorImplicitParamDecl;
1381  llvm::Value *CXXStructorImplicitParamValue;
1382 
1383  /// OutermostConditional - Points to the outermost active
1384  /// conditional control. This is used so that we know if a
1385  /// temporary should be destroyed conditionally.
1386  ConditionalEvaluation *OutermostConditional;
1387 
1388  /// The current lexical scope.
1389  LexicalScope *CurLexicalScope;
1390 
1391  /// The current source location that should be used for exception
1392  /// handling code.
1393  SourceLocation CurEHLocation;
1394 
1395  /// BlockByrefInfos - For each __block variable, contains
1396  /// information about the layout of the variable.
1397  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1398 
1399  /// Used by -fsanitize=nullability-return to determine whether the return
1400  /// value can be checked.
1401  llvm::Value *RetValNullabilityPrecondition = nullptr;
1402 
1403  /// Check if -fsanitize=nullability-return instrumentation is required for
1404  /// this function.
1405  bool requiresReturnValueNullabilityCheck() const {
1406  return RetValNullabilityPrecondition;
1407  }
1408 
1409  /// Used to store precise source locations for return statements by the
1410  /// runtime return value checks.
1411  Address ReturnLocation = Address::invalid();
1412 
1413  /// Check if the return value of this function requires sanitization.
1414  bool requiresReturnValueCheck() const {
1415  return requiresReturnValueNullabilityCheck() ||
1416  (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1417  CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1418  }
1419 
1420  llvm::BasicBlock *TerminateLandingPad;
1421  llvm::BasicBlock *TerminateHandler;
1422  llvm::BasicBlock *TrapBB;
1423 
1424  /// Terminate funclets keyed by parent funclet pad.
1425  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1426 
1427  /// True if we need emit the life-time markers.
1428  const bool ShouldEmitLifetimeMarkers;
1429 
1430  /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to
1431  /// the function metadata.
1432  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1433  llvm::Function *Fn);
1434 
1435 public:
1436  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1437  ~CodeGenFunction();
1438 
1439  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1440  ASTContext &getContext() const { return CGM.getContext(); }
1442  if (DisableDebugInfo)
1443  return nullptr;
1444  return DebugInfo;
1445  }
1446  void disableDebugInfo() { DisableDebugInfo = true; }
1447  void enableDebugInfo() { DisableDebugInfo = false; }
1448 
1450  return CGM.getCodeGenOpts().OptimizationLevel == 0;
1451  }
1452 
1453  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1454 
1455  /// Returns a pointer to the function's exception object and selector slot,
1456  /// which is assigned in every landing pad.
1457  Address getExceptionSlot();
1458  Address getEHSelectorSlot();
1459 
1460  /// Returns the contents of the function's exception object and selector
1461  /// slots.
1462  llvm::Value *getExceptionFromSlot();
1463  llvm::Value *getSelectorFromSlot();
1464 
1465  Address getNormalCleanupDestSlot();
1466 
1467  llvm::BasicBlock *getUnreachableBlock() {
1468  if (!UnreachableBlock) {
1469  UnreachableBlock = createBasicBlock("unreachable");
1470  new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1471  }
1472  return UnreachableBlock;
1473  }
1474 
1475  llvm::BasicBlock *getInvokeDest() {
1476  if (!EHStack.requiresLandingPad()) return nullptr;
1477  return getInvokeDestImpl();
1478  }
1479 
1480  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1481 
1482  const TargetInfo &getTarget() const { return Target; }
1483  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1485  return CGM.getTargetCodeGenInfo();
1486  }
1487 
1488  //===--------------------------------------------------------------------===//
1489  // Cleanups
1490  //===--------------------------------------------------------------------===//
1491 
1492  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1493 
1494  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1495  Address arrayEndPointer,
1496  QualType elementType,
1497  CharUnits elementAlignment,
1498  Destroyer *destroyer);
1499  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1500  llvm::Value *arrayEnd,
1501  QualType elementType,
1502  CharUnits elementAlignment,
1503  Destroyer *destroyer);
1504 
1505  void pushDestroy(QualType::DestructionKind dtorKind,
1506  Address addr, QualType type);
1507  void pushEHDestroy(QualType::DestructionKind dtorKind,
1508  Address addr, QualType type);
1509  void pushDestroy(CleanupKind kind, Address addr, QualType type,
1510  Destroyer *destroyer, bool useEHCleanupForArray);
1511  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1512  QualType type, Destroyer *destroyer,
1513  bool useEHCleanupForArray);
1514  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1515  llvm::Value *CompletePtr,
1516  QualType ElementType);
1517  void pushStackRestore(CleanupKind kind, Address SPMem);
1518  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1519  bool useEHCleanupForArray);
1520  llvm::Function *generateDestroyHelper(Address addr, QualType type,
1521  Destroyer *destroyer,
1522  bool useEHCleanupForArray,
1523  const VarDecl *VD);
1524  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1525  QualType elementType, CharUnits elementAlign,
1526  Destroyer *destroyer,
1527  bool checkZeroLength, bool useEHCleanup);
1528 
1529  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1530 
1531  /// Determines whether an EH cleanup is required to destroy a type
1532  /// with the given destruction kind.
1534  switch (kind) {
1535  case QualType::DK_none:
1536  return false;
1537  case QualType::DK_cxx_destructor:
1538  case QualType::DK_objc_weak_lifetime:
1539  return getLangOpts().Exceptions;
1540  case QualType::DK_objc_strong_lifetime:
1541  return getLangOpts().Exceptions &&
1542  CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1543  }
1544  llvm_unreachable("bad destruction kind");
1545  }
1546 
1548  return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1549  }
1550 
1551  //===--------------------------------------------------------------------===//
1552  // Objective-C
1553  //===--------------------------------------------------------------------===//
1554 
1555  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1556 
1557  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1558 
1559  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1560  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1561  const ObjCPropertyImplDecl *PID);
1562  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1563  const ObjCPropertyImplDecl *propImpl,
1564  const ObjCMethodDecl *GetterMothodDecl,
1565  llvm::Constant *AtomicHelperFn);
1566 
1567  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1568  ObjCMethodDecl *MD, bool ctor);
1569 
1570  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1571  /// for the given property.
1572  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1573  const ObjCPropertyImplDecl *PID);
1574  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1575  const ObjCPropertyImplDecl *propImpl,
1576  llvm::Constant *AtomicHelperFn);
1577 
1578  //===--------------------------------------------------------------------===//
1579  // Block Bits
1580  //===--------------------------------------------------------------------===//
1581 
1582  /// Emit block literal.
1583  /// \return an LLVM value which is a pointer to a struct which contains
1584  /// information about the block, including the block invoke function, the
1585  /// captured variables, etc.
1586  /// \param InvokeF will contain the block invoke function if it is not
1587  /// nullptr.
1588  llvm::Value *EmitBlockLiteral(const BlockExpr *,
1589  llvm::Function **InvokeF = nullptr);
1590  static void destroyBlockInfos(CGBlockInfo *info);
1591 
1592  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1593  const CGBlockInfo &Info,
1594  const DeclMapTy &ldm,
1595  bool IsLambdaConversionToBlock,
1596  bool BuildGlobalBlock);
1597 
1598  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1599  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1600  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1601  const ObjCPropertyImplDecl *PID);
1602  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1603  const ObjCPropertyImplDecl *PID);
1604  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1605 
1606  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1607 
1608  class AutoVarEmission;
1609 
1610  void emitByrefStructureInit(const AutoVarEmission &emission);
1611  void enterByrefCleanup(const AutoVarEmission &emission);
1612 
1613  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1614  llvm::Value *ptr);
1615 
1616  Address LoadBlockStruct();
1617  Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1618 
1619  /// BuildBlockByrefAddress - Computes the location of the
1620  /// data in a variable which is declared as __block.
1621  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1622  bool followForward = true);
1623  Address emitBlockByrefAddress(Address baseAddr,
1624  const BlockByrefInfo &info,
1625  bool followForward,
1626  const llvm::Twine &name);
1627 
1628  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1629 
1630  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1631 
1632  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1633  const CGFunctionInfo &FnInfo);
1634  /// \brief Emit code for the start of a function.
1635  /// \param Loc The location to be associated with the function.
1636  /// \param StartLoc The location of the function body.
1637  void StartFunction(GlobalDecl GD,
1638  QualType RetTy,
1639  llvm::Function *Fn,
1640  const CGFunctionInfo &FnInfo,
1641  const FunctionArgList &Args,
1643  SourceLocation StartLoc = SourceLocation());
1644 
1645  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1646 
1647  void EmitConstructorBody(FunctionArgList &Args);
1648  void EmitDestructorBody(FunctionArgList &Args);
1649  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1650  void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1651  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1652 
1653  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1654  CallArgList &CallArgs);
1655  void EmitLambdaBlockInvokeBody();
1656  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1657  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1658  void EmitAsanPrologueOrEpilogue(bool Prologue);
1659 
1660  /// \brief Emit the unified return block, trying to avoid its emission when
1661  /// possible.
1662  /// \return The debug location of the user written return statement if the
1663  /// return block is is avoided.
1664  llvm::DebugLoc EmitReturnBlock();
1665 
1666  /// FinishFunction - Complete IR generation of the current function. It is
1667  /// legal to call this function even if there is no current insertion point.
1668  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1669 
1670  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1671  const CGFunctionInfo &FnInfo);
1672 
1673  void EmitCallAndReturnForThunk(llvm::Constant *Callee,
1674  const ThunkInfo *Thunk);
1675 
1676  void FinishThunk();
1677 
1678  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1679  void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1680  llvm::Value *Callee);
1681 
1682  /// Generate a thunk for the given method.
1683  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1684  GlobalDecl GD, const ThunkInfo &Thunk);
1685 
1686  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1687  const CGFunctionInfo &FnInfo,
1688  GlobalDecl GD, const ThunkInfo &Thunk);
1689 
1690  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1691  FunctionArgList &Args);
1692 
1693  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1694 
1695  /// Struct with all informations about dynamic [sub]class needed to set vptr.
1696  struct VPtr {
1701  };
1702 
1703  /// Initialize the vtable pointer of the given subobject.
1704  void InitializeVTablePointer(const VPtr &vptr);
1705 
1707 
1708  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1709  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1710 
1711  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1712  CharUnits OffsetFromNearestVBase,
1713  bool BaseIsNonVirtualPrimaryBase,
1714  const CXXRecordDecl *VTableClass,
1715  VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1716 
1717  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1718 
1719  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1720  /// to by This.
1721  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1722  const CXXRecordDecl *VTableClass);
1723 
1730  };
1731 
1732  /// \brief Derived is the presumed address of an object of type T after a
1733  /// cast. If T is a polymorphic class type, emit a check that the virtual
1734  /// table for Derived belongs to a class derived from T.
1735  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1736  bool MayBeNull, CFITypeCheckKind TCK,
1737  SourceLocation Loc);
1738 
1739  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1740  /// If vptr CFI is enabled, emit a check that VTable is valid.
1741  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1742  CFITypeCheckKind TCK, SourceLocation Loc);
1743 
1744  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1745  /// RD using llvm.type.test.
1746  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1747  CFITypeCheckKind TCK, SourceLocation Loc);
1748 
1749  /// If whole-program virtual table optimization is enabled, emit an assumption
1750  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1751  /// enabled, emit a check that VTable is a member of RD's type identifier.
1752  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1753  llvm::Value *VTable, SourceLocation Loc);
1754 
1755  /// Returns whether we should perform a type checked load when loading a
1756  /// virtual function for virtual calls to members of RD. This is generally
1757  /// true when both vcall CFI and whole-program-vtables are enabled.
1758  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1759 
1760  /// Emit a type checked load from the given vtable.
1761  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1762  uint64_t VTableByteOffset);
1763 
1764  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1765  /// given phase of destruction for a destructor. The end result
1766  /// should call destructors on members and base classes in reverse
1767  /// order of their construction.
1768  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1769 
1770  /// ShouldInstrumentFunction - Return true if the current function should be
1771  /// instrumented with __cyg_profile_func_* calls
1772  bool ShouldInstrumentFunction();
1773 
1774  /// ShouldXRayInstrument - Return true if the current function should be
1775  /// instrumented with XRay nop sleds.
1776  bool ShouldXRayInstrumentFunction() const;
1777 
1778  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
1779  /// XRay custom event handling calls.
1780  bool AlwaysEmitXRayCustomEvents() const;
1781 
1782  /// Encode an address into a form suitable for use in a function prologue.
1783  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1784  llvm::Constant *Addr);
1785 
1786  /// Decode an address used in a function prologue, encoded by \c
1787  /// EncodeAddrForUseInPrologue.
1788  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1789  llvm::Value *EncodedAddr);
1790 
1791  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1792  /// arguments for the given function. This is also responsible for naming the
1793  /// LLVM function arguments.
1794  void EmitFunctionProlog(const CGFunctionInfo &FI,
1795  llvm::Function *Fn,
1796  const FunctionArgList &Args);
1797 
1798  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1799  /// given temporary.
1800  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1801  SourceLocation EndLoc);
1802 
1803  /// Emit a test that checks if the return value \p RV is nonnull.
1804  void EmitReturnValueCheck(llvm::Value *RV);
1805 
1806  /// EmitStartEHSpec - Emit the start of the exception spec.
1807  void EmitStartEHSpec(const Decl *D);
1808 
1809  /// EmitEndEHSpec - Emit the end of the exception spec.
1810  void EmitEndEHSpec(const Decl *D);
1811 
1812  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1813  llvm::BasicBlock *getTerminateLandingPad();
1814 
1815  /// getTerminateLandingPad - Return a cleanup funclet that just calls
1816  /// terminate.
1817  llvm::BasicBlock *getTerminateFunclet();
1818 
1819  /// getTerminateHandler - Return a handler (not a landing pad, just
1820  /// a catch handler) that just calls terminate. This is used when
1821  /// a terminate scope encloses a try.
1822  llvm::BasicBlock *getTerminateHandler();
1823 
1824  llvm::Type *ConvertTypeForMem(QualType T);
1825  llvm::Type *ConvertType(QualType T);
1826  llvm::Type *ConvertType(const TypeDecl *T) {
1827  return ConvertType(getContext().getTypeDeclType(T));
1828  }
1829 
1830  /// LoadObjCSelf - Load the value of self. This function is only valid while
1831  /// generating code for an Objective-C method.
1832  llvm::Value *LoadObjCSelf();
1833 
1834  /// TypeOfSelfObject - Return type of object that this self represents.
1835  QualType TypeOfSelfObject();
1836 
1837  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
1838  static TypeEvaluationKind getEvaluationKind(QualType T);
1839 
1841  return getEvaluationKind(T) == TEK_Scalar;
1842  }
1843 
1845  return getEvaluationKind(T) == TEK_Aggregate;
1846  }
1847 
1848  /// createBasicBlock - Create an LLVM basic block.
1849  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1850  llvm::Function *parent = nullptr,
1851  llvm::BasicBlock *before = nullptr) {
1852 #ifdef NDEBUG
1853  return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1854 #else
1855  return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1856 #endif
1857  }
1858 
1859  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1860  /// label maps to.
1861  JumpDest getJumpDestForLabel(const LabelDecl *S);
1862 
1863  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1864  /// another basic block, simplify it. This assumes that no other code could
1865  /// potentially reference the basic block.
1866  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1867 
1868  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1869  /// adding a fall-through branch from the current insert block if
1870  /// necessary. It is legal to call this function even if there is no current
1871  /// insertion point.
1872  ///
1873  /// IsFinished - If true, indicates that the caller has finished emitting
1874  /// branches to the given block and does not expect to emit code into it. This
1875  /// means the block can be ignored if it is unreachable.
1876  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1877 
1878  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1879  /// near its uses, and leave the insertion point in it.
1880  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1881 
1882  /// EmitBranch - Emit a branch to the specified basic block from the current
1883  /// insert block, taking care to avoid creation of branches from dummy
1884  /// blocks. It is legal to call this function even if there is no current
1885  /// insertion point.
1886  ///
1887  /// This function clears the current insertion point. The caller should follow
1888  /// calls to this function with calls to Emit*Block prior to generation new
1889  /// code.
1890  void EmitBranch(llvm::BasicBlock *Block);
1891 
1892  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1893  /// indicates that the current code being emitted is unreachable.
1894  bool HaveInsertPoint() const {
1895  return Builder.GetInsertBlock() != nullptr;
1896  }
1897 
1898  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1899  /// emitted IR has a place to go. Note that by definition, if this function
1900  /// creates a block then that block is unreachable; callers may do better to
1901  /// detect when no insertion point is defined and simply skip IR generation.
1903  if (!HaveInsertPoint())
1904  EmitBlock(createBasicBlock());
1905  }
1906 
1907  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1908  /// specified stmt yet.
1909  void ErrorUnsupported(const Stmt *S, const char *Type);
1910 
1911  //===--------------------------------------------------------------------===//
1912  // Helpers
1913  //===--------------------------------------------------------------------===//
1914 
1916  AlignmentSource Source = AlignmentSource::Type) {
1917  return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
1918  CGM.getTBAAAccessInfo(T));
1919  }
1920 
1922  TBAAAccessInfo TBAAInfo) {
1923  return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
1924  }
1925 
1927  AlignmentSource Source = AlignmentSource::Type) {
1928  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1929  LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
1930  }
1931 
1933  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
1934  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1935  BaseInfo, TBAAInfo);
1936  }
1937 
1938  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1939  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1940  CharUnits getNaturalTypeAlignment(QualType T,
1941  LValueBaseInfo *BaseInfo = nullptr,
1942  TBAAAccessInfo *TBAAInfo = nullptr,
1943  bool forPointeeType = false);
1944  CharUnits getNaturalPointeeTypeAlignment(QualType T,
1945  LValueBaseInfo *BaseInfo = nullptr,
1946  TBAAAccessInfo *TBAAInfo = nullptr);
1947 
1948  Address EmitLoadOfReference(LValue RefLVal,
1949  LValueBaseInfo *PointeeBaseInfo = nullptr,
1950  TBAAAccessInfo *PointeeTBAAInfo = nullptr);
1951  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
1953  AlignmentSource Source =
1954  AlignmentSource::Type) {
1955  LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
1956  CGM.getTBAAAccessInfo(RefTy));
1957  return EmitLoadOfReferenceLValue(RefLVal);
1958  }
1959 
1960  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1961  LValueBaseInfo *BaseInfo = nullptr,
1962  TBAAAccessInfo *TBAAInfo = nullptr);
1963  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1964 
1965  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
1966  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
1967  /// insertion point of the builder. The caller is responsible for setting an
1968  /// appropriate alignment on
1969  /// the alloca.
1970  ///
1971  /// \p ArraySize is the number of array elements to be allocated if it
1972  /// is not nullptr.
1973  ///
1974  /// LangAS::Default is the address space of pointers to local variables and
1975  /// temporaries, as exposed in the source language. In certain
1976  /// configurations, this is not the same as the alloca address space, and a
1977  /// cast is needed to lift the pointer from the alloca AS into
1978  /// LangAS::Default. This can happen when the target uses a restricted
1979  /// address space for the stack but the source language requires
1980  /// LangAS::Default to be a generic address space. The latter condition is
1981  /// common for most programming languages; OpenCL is an exception in that
1982  /// LangAS::Default is the private address space, which naturally maps
1983  /// to the stack.
1984  ///
1985  /// Because the address of a temporary is often exposed to the program in
1986  /// various ways, this function will perform the cast by default. The cast
1987  /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is
1988  /// more efficient if the caller knows that the address will not be exposed.
1989  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
1990  llvm::Value *ArraySize = nullptr);
1991  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1992  const Twine &Name = "tmp",
1993  llvm::Value *ArraySize = nullptr,
1994  bool CastToDefaultAddrSpace = true);
1995 
1996  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1997  /// default ABI alignment of the given LLVM type.
1998  ///
1999  /// IMPORTANT NOTE: This is *not* generally the right alignment for
2000  /// any given AST type that happens to have been lowered to the
2001  /// given IR type. This should only ever be used for function-local,
2002  /// IR-driven manipulations like saving and restoring a value. Do
2003  /// not hand this address off to arbitrary IRGen routines, and especially
2004  /// do not pass it as an argument to a function that might expect a
2005  /// properly ABI-aligned value.
2006  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2007  const Twine &Name = "tmp");
2008 
2009  /// InitTempAlloca - Provide an initial value for the given alloca which
2010  /// will be observable at all locations in the function.
2011  ///
2012  /// The address should be something that was returned from one of
2013  /// the CreateTempAlloca or CreateMemTemp routines, and the
2014  /// initializer must be valid in the entry block (i.e. it must
2015  /// either be a constant or an argument value).
2016  void InitTempAlloca(Address Alloca, llvm::Value *Value);
2017 
2018  /// CreateIRTemp - Create a temporary IR object of the given type, with
2019  /// appropriate alignment. This routine should only be used when an temporary
2020  /// value needs to be stored into an alloca (for example, to avoid explicit
2021  /// PHI construction), but the type is the IR type, not the type appropriate
2022  /// for storing in memory.
2023  ///
2024  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2025  /// ConvertType instead of ConvertTypeForMem.
2026  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2027 
2028  /// CreateMemTemp - Create a temporary memory object of the given type, with
2029  /// appropriate alignment. Cast it to the default address space if
2030  /// \p CastToDefaultAddrSpace is true.
2031  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2032  bool CastToDefaultAddrSpace = true);
2033  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2034  bool CastToDefaultAddrSpace = true);
2035 
2036  /// CreateAggTemp - Create a temporary memory object for the given
2037  /// aggregate type.
2038  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2039  return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2040  T.getQualifiers(),
2041  AggValueSlot::IsNotDestructed,
2042  AggValueSlot::DoesNotNeedGCBarriers,
2043  AggValueSlot::IsNotAliased);
2044  }
2045 
2046  /// Emit a cast to void* in the appropriate address space.
2047  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2048 
2049  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2050  /// expression and compare the result against zero, returning an Int1Ty value.
2051  llvm::Value *EvaluateExprAsBool(const Expr *E);
2052 
2053  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2054  void EmitIgnoredExpr(const Expr *E);
2055 
2056  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2057  /// any type. The result is returned as an RValue struct. If this is an
2058  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2059  /// the result should be returned.
2060  ///
2061  /// \param ignoreResult True if the resulting value isn't used.
2062  RValue EmitAnyExpr(const Expr *E,
2063  AggValueSlot aggSlot = AggValueSlot::ignored(),
2064  bool ignoreResult = false);
2065 
2066  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2067  // or the value of the expression, depending on how va_list is defined.
2068  Address EmitVAListRef(const Expr *E);
2069 
2070  /// Emit a "reference" to a __builtin_ms_va_list; this is
2071  /// always the value of the expression, because a __builtin_ms_va_list is a
2072  /// pointer to a char.
2073  Address EmitMSVAListRef(const Expr *E);
2074 
2075  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2076  /// always be accessible even if no aggregate location is provided.
2077  RValue EmitAnyExprToTemp(const Expr *E);
2078 
2079  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2080  /// arbitrary expression into the given memory location.
2081  void EmitAnyExprToMem(const Expr *E, Address Location,
2082  Qualifiers Quals, bool IsInitializer);
2083 
2084  void EmitAnyExprToExn(const Expr *E, Address Addr);
2085 
2086  /// EmitExprAsInit - Emits the code necessary to initialize a
2087  /// location in memory with the given initializer.
2088  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2089  bool capturedByInit);
2090 
2091  /// hasVolatileMember - returns true if aggregate type has a volatile
2092  /// member.
2094  if (const RecordType *RT = T->getAs<RecordType>()) {
2095  const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2096  return RD->hasVolatileMember();
2097  }
2098  return false;
2099  }
2100  /// EmitAggregateCopy - Emit an aggregate assignment.
2101  ///
2102  /// The difference to EmitAggregateCopy is that tail padding is not copied.
2103  /// This is required for correctness when assigning non-POD structures in C++.
2104  void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
2105  QualType EltTy) {
2106  bool IsVolatile = hasVolatileMember(EltTy);
2107  EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
2108  }
2109 
2110  void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
2111  QualType DestTy, QualType SrcTy) {
2112  EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
2113  /*IsAssignment=*/false);
2114  }
2115 
2116  /// EmitAggregateCopy - Emit an aggregate copy.
2117  ///
2118  /// \param isVolatile - True iff either the source or the destination is
2119  /// volatile.
2120  /// \param isAssignment - If false, allow padding to be copied. This often
2121  /// yields more efficient.
2122  void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
2123  QualType EltTy, bool isVolatile=false,
2124  bool isAssignment = false);
2125 
2126  /// GetAddrOfLocalVar - Return the address of a local variable.
2128  auto it = LocalDeclMap.find(VD);
2129  assert(it != LocalDeclMap.end() &&
2130  "Invalid argument to GetAddrOfLocalVar(), no decl!");
2131  return it->second;
2132  }
2133 
2134  /// getOpaqueLValueMapping - Given an opaque value expression (which
2135  /// must be mapped to an l-value), return its mapping.
2137  assert(OpaqueValueMapping::shouldBindAsLValue(e));
2138 
2139  llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
2140  it = OpaqueLValues.find(e);
2141  assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
2142  return it->second;
2143  }
2144 
2145  /// getOpaqueRValueMapping - Given an opaque value expression (which
2146  /// must be mapped to an r-value), return its mapping.
2148  assert(!OpaqueValueMapping::shouldBindAsLValue(e));
2149 
2150  llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
2151  it = OpaqueRValues.find(e);
2152  assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
2153  return it->second;
2154  }
2155 
2156  /// Get the index of the current ArrayInitLoopExpr, if any.
2157  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2158 
2159  /// getAccessedFieldNo - Given an encoded value and a result number, return
2160  /// the input field number being accessed.
2161  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2162 
2163  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2164  llvm::BasicBlock *GetIndirectGotoBlock();
2165 
2166  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2167  static bool IsWrappedCXXThis(const Expr *E);
2168 
2169  /// EmitNullInitialization - Generate code to set a value of the given type to
2170  /// null, If the type contains data member pointers, they will be initialized
2171  /// to -1 in accordance with the Itanium C++ ABI.
2172  void EmitNullInitialization(Address DestPtr, QualType Ty);
2173 
2174  /// Emits a call to an LLVM variable-argument intrinsic, either
2175  /// \c llvm.va_start or \c llvm.va_end.
2176  /// \param ArgValue A reference to the \c va_list as emitted by either
2177  /// \c EmitVAListRef or \c EmitMSVAListRef.
2178  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2179  /// calls \c llvm.va_end.
2180  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2181 
2182  /// Generate code to get an argument from the passed in pointer
2183  /// and update it accordingly.
2184  /// \param VE The \c VAArgExpr for which to generate code.
2185  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2186  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2187  /// \returns A pointer to the argument.
2188  // FIXME: We should be able to get rid of this method and use the va_arg
2189  // instruction in LLVM instead once it works well enough.
2190  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2191 
2192  /// emitArrayLength - Compute the length of an array, even if it's a
2193  /// VLA, and drill down to the base element type.
2194  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2195  QualType &baseType,
2196  Address &addr);
2197 
2198  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2199  /// the given variably-modified type and store them in the VLASizeMap.
2200  ///
2201  /// This function can be called with a null (unreachable) insert point.
2202  void EmitVariablyModifiedType(QualType Ty);
2203 
2204  /// getVLASize - Returns an LLVM value that corresponds to the size,
2205  /// in non-variably-sized elements, of a variable length array type,
2206  /// plus that largest non-variably-sized element type. Assumes that
2207  /// the type has already been emitted with EmitVariablyModifiedType.
2208  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
2209  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
2210 
2211  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2212  /// generating code for an C++ member function.
2214  assert(CXXThisValue && "no 'this' value for this function");
2215  return CXXThisValue;
2216  }
2217  Address LoadCXXThisAddress();
2218 
2219  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2220  /// virtual bases.
2221  // FIXME: Every place that calls LoadCXXVTT is something
2222  // that needs to be abstracted properly.
2224  assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2225  return CXXStructorImplicitParamValue;
2226  }
2227 
2228  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2229  /// complete class to the given direct base.
2230  Address
2231  GetAddressOfDirectBaseInCompleteClass(Address Value,
2232  const CXXRecordDecl *Derived,
2233  const CXXRecordDecl *Base,
2234  bool BaseIsVirtual);
2235 
2236  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2237 
2238  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2239  /// load of 'this' and returns address of the base class.
2240  Address GetAddressOfBaseClass(Address Value,
2241  const CXXRecordDecl *Derived,
2244  bool NullCheckValue, SourceLocation Loc);
2245 
2246  Address GetAddressOfDerivedClass(Address Value,
2247  const CXXRecordDecl *Derived,
2250  bool NullCheckValue);
2251 
2252  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2253  /// base constructor/destructor with virtual bases.
2254  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2255  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2256  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2257  bool Delegating);
2258 
2259  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2260  CXXCtorType CtorType,
2261  const FunctionArgList &Args,
2262  SourceLocation Loc);
2263  // It's important not to confuse this and the previous function. Delegating
2264  // constructors are the C++0x feature. The constructor delegate optimization
2265  // is used to reduce duplication in the base and complete consturctors where
2266  // they are substantially the same.
2267  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2268  const FunctionArgList &Args);
2269 
2270  /// Emit a call to an inheriting constructor (that is, one that invokes a
2271  /// constructor inherited from a base class) by inlining its definition. This
2272  /// is necessary if the ABI does not support forwarding the arguments to the
2273  /// base class constructor (because they're variadic or similar).
2274  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2275  CXXCtorType CtorType,
2276  bool ForVirtualBase,
2277  bool Delegating,
2278  CallArgList &Args);
2279 
2280  /// Emit a call to a constructor inherited from a base class, passing the
2281  /// current constructor's arguments along unmodified (without even making
2282  /// a copy).
2283  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2284  bool ForVirtualBase, Address This,
2285  bool InheritedFromVBase,
2286  const CXXInheritedCtorInitExpr *E);
2287 
2288  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2289  bool ForVirtualBase, bool Delegating,
2290  Address This, const CXXConstructExpr *E);
2291 
2292  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2293  bool ForVirtualBase, bool Delegating,
2294  Address This, CallArgList &Args);
2295 
2296  /// Emit assumption load for all bases. Requires to be be called only on
2297  /// most-derived class and not under construction of the object.
2298  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2299 
2300  /// Emit assumption that vptr load == global vtable.
2301  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2302 
2303  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2304  Address This, Address Src,
2305  const CXXConstructExpr *E);
2306 
2307  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2308  const ArrayType *ArrayTy,
2309  Address ArrayPtr,
2310  const CXXConstructExpr *E,
2311  bool ZeroInitialization = false);
2312 
2313  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2314  llvm::Value *NumElements,
2315  Address ArrayPtr,
2316  const CXXConstructExpr *E,
2317  bool ZeroInitialization = false);
2318 
2319  static Destroyer destroyCXXObject;
2320 
2321  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2322  bool ForVirtualBase, bool Delegating,
2323  Address This);
2324 
2325  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2326  llvm::Type *ElementTy, Address NewPtr,
2327  llvm::Value *NumElements,
2328  llvm::Value *AllocSizeWithoutCookie);
2329 
2330  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2331  Address Ptr);
2332 
2333  llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2334  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2335 
2336  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2337  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2338 
2339  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2340  QualType DeleteTy, llvm::Value *NumElements = nullptr,
2341  CharUnits CookieSize = CharUnits());
2342 
2343  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2344  const Expr *Arg, bool IsDelete);
2345 
2346  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2347  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2348  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2349 
2350  /// \brief Situations in which we might emit a check for the suitability of a
2351  /// pointer or glvalue.
2353  /// Checking the operand of a load. Must be suitably sized and aligned.
2355  /// Checking the destination of a store. Must be suitably sized and aligned.
2357  /// Checking the bound value in a reference binding. Must be suitably sized
2358  /// and aligned, but is not required to refer to an object (until the
2359  /// reference is used), per core issue 453.
2361  /// Checking the object expression in a non-static data member access. Must
2362  /// be an object within its lifetime.
2364  /// Checking the 'this' pointer for a call to a non-static member function.
2365  /// Must be an object within its lifetime.
2367  /// Checking the 'this' pointer for a constructor call.
2369  /// Checking the operand of a static_cast to a derived pointer type. Must be
2370  /// null or an object within its lifetime.
2372  /// Checking the operand of a static_cast to a derived reference type. Must
2373  /// be an object within its lifetime.
2375  /// Checking the operand of a cast to a base object. Must be suitably sized
2376  /// and aligned.
2378  /// Checking the operand of a cast to a virtual base object. Must be an
2379  /// object within its lifetime.
2381  /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2383  /// Checking the operand of a dynamic_cast or a typeid expression. Must be
2384  /// null or an object within its lifetime.
2385  TCK_DynamicOperation
2386  };
2387 
2388  /// Determine whether the pointer type check \p TCK permits null pointers.
2389  static bool isNullPointerAllowed(TypeCheckKind TCK);
2390 
2391  /// Determine whether the pointer type check \p TCK requires a vptr check.
2392  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2393 
2394  /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2395  /// calls to EmitTypeCheck can be skipped.
2396  bool sanitizePerformTypeCheck() const;
2397 
2398  /// \brief Emit a check that \p V is the address of storage of the
2399  /// appropriate size and alignment for an object of type \p Type.
2400  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2401  QualType Type, CharUnits Alignment = CharUnits::Zero(),
2402  SanitizerSet SkippedChecks = SanitizerSet());
2403 
2404  /// \brief Emit a check that \p Base points into an array object, which
2405  /// we can access at index \p Index. \p Accessed should be \c false if we
2406  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2407  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2408  QualType IndexType, bool Accessed);
2409 
2410  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2411  bool isInc, bool isPre);
2412  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2413  bool isInc, bool isPre);
2414 
2415  void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2416  llvm::Value *OffsetValue = nullptr) {
2417  Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2418  OffsetValue);
2419  }
2420 
2421  /// Converts Location to a DebugLoc, if debug information is enabled.
2422  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2423 
2424 
2425  //===--------------------------------------------------------------------===//
2426  // Declaration Emission
2427  //===--------------------------------------------------------------------===//
2428 
2429  /// EmitDecl - Emit a declaration.
2430  ///
2431  /// This function can be called with a null (unreachable) insert point.
2432  void EmitDecl(const Decl &D);
2433 
2434  /// EmitVarDecl - Emit a local variable declaration.
2435  ///
2436  /// This function can be called with a null (unreachable) insert point.
2437  void EmitVarDecl(const VarDecl &D);
2438 
2439  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2440  bool capturedByInit);
2441 
2442  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2443  llvm::Value *Address);
2444 
2445  /// \brief Determine whether the given initializer is trivial in the sense
2446  /// that it requires no code to be generated.
2447  bool isTrivialInitializer(const Expr *Init);
2448 
2449  /// EmitAutoVarDecl - Emit an auto variable declaration.
2450  ///
2451  /// This function can be called with a null (unreachable) insert point.
2452  void EmitAutoVarDecl(const VarDecl &D);
2453 
2455  friend class CodeGenFunction;
2456 
2457  const VarDecl *Variable;
2458 
2459  /// The address of the alloca. Invalid if the variable was emitted
2460  /// as a global constant.
2461  Address Addr;
2462 
2463  llvm::Value *NRVOFlag;
2464 
2465  /// True if the variable is a __block variable.
2466  bool IsByRef;
2467 
2468  /// True if the variable is of aggregate type and has a constant
2469  /// initializer.
2470  bool IsConstantAggregate;
2471 
2472  /// Non-null if we should use lifetime annotations.
2473  llvm::Value *SizeForLifetimeMarkers;
2474 
2475  struct Invalid {};
2476  AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2477 
2478  AutoVarEmission(const VarDecl &variable)
2479  : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2480  IsByRef(false), IsConstantAggregate(false),
2481  SizeForLifetimeMarkers(nullptr) {}
2482 
2483  bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2484 
2485  public:
2486  static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2487 
2488  bool useLifetimeMarkers() const {
2489  return SizeForLifetimeMarkers != nullptr;
2490  }
2492  assert(useLifetimeMarkers());
2493  return SizeForLifetimeMarkers;
2494  }
2495 
2496  /// Returns the raw, allocated address, which is not necessarily
2497  /// the address of the object itself.
2499  return Addr;
2500  }
2501 
2502  /// Returns the address of the object within this declaration.
2503  /// Note that this does not chase the forwarding pointer for
2504  /// __block decls.
2505  Address getObjectAddress(CodeGenFunction &CGF) const {
2506  if (!IsByRef) return Addr;
2507 
2508  return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2509  }
2510  };
2511  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2512  void EmitAutoVarInit(const AutoVarEmission &emission);
2513  void EmitAutoVarCleanups(const AutoVarEmission &emission);
2514  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2515  QualType::DestructionKind dtorKind);
2516 
2517  void EmitStaticVarDecl(const VarDecl &D,
2518  llvm::GlobalValue::LinkageTypes Linkage);
2519 
2520  class ParamValue {
2521  llvm::Value *Value;
2522  unsigned Alignment;
2523  ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2524  public:
2526  return ParamValue(value, 0);
2527  }
2529  assert(!addr.getAlignment().isZero());
2530  return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2531  }
2532 
2533  bool isIndirect() const { return Alignment != 0; }
2534  llvm::Value *getAnyValue() const { return Value; }
2535 
2537  assert(!isIndirect());
2538  return Value;
2539  }
2540 
2542  assert(isIndirect());
2543  return Address(Value, CharUnits::fromQuantity(Alignment));
2544  }
2545  };
2546 
2547  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2548  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2549 
2550  /// protectFromPeepholes - Protect a value that we're intending to
2551  /// store to the side, but which will probably be used later, from
2552  /// aggressive peepholing optimizations that might delete it.
2553  ///
2554  /// Pass the result to unprotectFromPeepholes to declare that
2555  /// protection is no longer required.
2556  ///
2557  /// There's no particular reason why this shouldn't apply to
2558  /// l-values, it's just that no existing peepholes work on pointers.
2559  PeepholeProtection protectFromPeepholes(RValue rvalue);
2560  void unprotectFromPeepholes(PeepholeProtection protection);
2561 
2563  llvm::Value *OffsetValue = nullptr) {
2564  Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2565  OffsetValue);
2566  }
2567 
2568  //===--------------------------------------------------------------------===//
2569  // Statement Emission
2570  //===--------------------------------------------------------------------===//
2571 
2572  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2573  void EmitStopPoint(const Stmt *S);
2574 
2575  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2576  /// this function even if there is no current insertion point.
2577  ///
2578  /// This function may clear the current insertion point; callers should use
2579  /// EnsureInsertPoint if they wish to subsequently generate code without first
2580  /// calling EmitBlock, EmitBranch, or EmitStmt.
2581  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2582 
2583  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2584  /// necessarily require an insertion point or debug information; typically
2585  /// because the statement amounts to a jump or a container of other
2586  /// statements.
2587  ///
2588  /// \return True if the statement was handled.
2589  bool EmitSimpleStmt(const Stmt *S);
2590 
2591  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2592  AggValueSlot AVS = AggValueSlot::ignored());
2593  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2594  bool GetLast = false,
2595  AggValueSlot AVS =
2596  AggValueSlot::ignored());
2597 
2598  /// EmitLabel - Emit the block for the given label. It is legal to call this
2599  /// function even if there is no current insertion point.
2600  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2601 
2602  void EmitLabelStmt(const LabelStmt &S);
2603  void EmitAttributedStmt(const AttributedStmt &S);
2604  void EmitGotoStmt(const GotoStmt &S);
2605  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2606  void EmitIfStmt(const IfStmt &S);
2607 
2608  void EmitWhileStmt(const WhileStmt &S,
2609  ArrayRef<const Attr *> Attrs = None);
2610  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2611  void EmitForStmt(const ForStmt &S,
2612  ArrayRef<const Attr *> Attrs = None);
2613  void EmitReturnStmt(const ReturnStmt &S);
2614  void EmitDeclStmt(const DeclStmt &S);
2615  void EmitBreakStmt(const BreakStmt &S);
2616  void EmitContinueStmt(const ContinueStmt &S);
2617  void EmitSwitchStmt(const SwitchStmt &S);
2618  void EmitDefaultStmt(const DefaultStmt &S);
2619  void EmitCaseStmt(const CaseStmt &S);
2620  void EmitCaseStmtRange(const CaseStmt &S);
2621  void EmitAsmStmt(const AsmStmt &S);
2622 
2623  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2624  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2625  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2626  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2627  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2628 
2629  void EmitCoroutineBody(const CoroutineBodyStmt &S);
2630  void EmitCoreturnStmt(const CoreturnStmt &S);
2631  RValue EmitCoawaitExpr(const CoawaitExpr &E,
2632  AggValueSlot aggSlot = AggValueSlot::ignored(),
2633  bool ignoreResult = false);
2634  LValue EmitCoawaitLValue(const CoawaitExpr *E);
2635  RValue EmitCoyieldExpr(const CoyieldExpr &E,
2636  AggValueSlot aggSlot = AggValueSlot::ignored(),
2637  bool ignoreResult = false);
2638  LValue EmitCoyieldLValue(const CoyieldExpr *E);
2639  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2640 
2641  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2642  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2643 
2644  void EmitCXXTryStmt(const CXXTryStmt &S);
2645  void EmitSEHTryStmt(const SEHTryStmt &S);
2646  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2647  void EnterSEHTryStmt(const SEHTryStmt &S);
2648  void ExitSEHTryStmt(const SEHTryStmt &S);
2649 
2650  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2651  const Stmt *OutlinedStmt);
2652 
2653  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2654  const SEHExceptStmt &Except);
2655 
2656  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2657  const SEHFinallyStmt &Finally);
2658 
2659  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2660  llvm::Value *ParentFP,
2661  llvm::Value *EntryEBP);
2662  llvm::Value *EmitSEHExceptionCode();
2663  llvm::Value *EmitSEHExceptionInfo();
2664  llvm::Value *EmitSEHAbnormalTermination();
2665 
2666  /// Emit simple code for OpenMP directives in Simd-only mode.
2667  void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
2668 
2669  /// Scan the outlined statement for captures from the parent function. For
2670  /// each capture, mark the capture as escaped and emit a call to
2671  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2672  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2673  bool IsFilter);
2674 
2675  /// Recovers the address of a local in a parent function. ParentVar is the
2676  /// address of the variable used in the immediate parent function. It can
2677  /// either be an alloca or a call to llvm.localrecover if there are nested
2678  /// outlined functions. ParentFP is the frame pointer of the outermost parent
2679  /// frame.
2680  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2681  Address ParentVar,
2682  llvm::Value *ParentFP);
2683 
2684  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2685  ArrayRef<const Attr *> Attrs = None);
2686 
2687  /// Controls insertion of cancellation exit blocks in worksharing constructs.
2689  CodeGenFunction &CGF;
2690 
2691  public:
2693  bool HasCancel)
2694  : CGF(CGF) {
2695  CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2696  }
2697  ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2698  };
2699 
2700  /// Returns calculated size of the specified type.
2701  llvm::Value *getTypeSize(QualType Ty);
2702  LValue InitCapturedStruct(const CapturedStmt &S);
2703  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2704  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2705  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2706  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2707  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2708  SmallVectorImpl<llvm::Value *> &CapturedVars);
2709  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2710  SourceLocation Loc);
2711  /// \brief Perform element by element copying of arrays with type \a
2712  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2713  /// generated by \a CopyGen.
2714  ///
2715  /// \param DestAddr Address of the destination array.
2716  /// \param SrcAddr Address of the source array.
2717  /// \param OriginalType Type of destination and source arrays.
2718  /// \param CopyGen Copying procedure that copies value of single array element
2719  /// to another single array element.
2720  void EmitOMPAggregateAssign(
2721  Address DestAddr, Address SrcAddr, QualType OriginalType,
2722  const llvm::function_ref<void(Address, Address)> &CopyGen);
2723  /// \brief Emit proper copying of data from one variable to another.
2724  ///
2725  /// \param OriginalType Original type of the copied variables.
2726  /// \param DestAddr Destination address.
2727  /// \param SrcAddr Source address.
2728  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2729  /// type of the base array element).
2730  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2731  /// the base array element).
2732  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2733  /// DestVD.
2734  void EmitOMPCopy(QualType OriginalType,
2735  Address DestAddr, Address SrcAddr,
2736  const VarDecl *DestVD, const VarDecl *SrcVD,
2737  const Expr *Copy);
2738  /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2739  /// \a X = \a E \a BO \a E.
2740  ///
2741  /// \param X Value to be updated.
2742  /// \param E Update value.
2743  /// \param BO Binary operation for update operation.
2744  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2745  /// expression, false otherwise.
2746  /// \param AO Atomic ordering of the generated atomic instructions.
2747  /// \param CommonGen Code generator for complex expressions that cannot be
2748  /// expressed through atomicrmw instruction.
2749  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2750  /// generated, <false, RValue::get(nullptr)> otherwise.
2751  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2752  LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2753  llvm::AtomicOrdering AO, SourceLocation Loc,
2754  const llvm::function_ref<RValue(RValue)> &CommonGen);
2755  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2756  OMPPrivateScope &PrivateScope);
2757  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2758  OMPPrivateScope &PrivateScope);
2759  void EmitOMPUseDevicePtrClause(
2760  const OMPClause &C, OMPPrivateScope &PrivateScope,
2761  const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2762  /// \brief Emit code for copyin clause in \a D directive. The next code is
2763  /// generated at the start of outlined functions for directives:
2764  /// \code
2765  /// threadprivate_var1 = master_threadprivate_var1;
2766  /// operator=(threadprivate_var2, master_threadprivate_var2);
2767  /// ...
2768  /// __kmpc_barrier(&loc, global_tid);
2769  /// \endcode
2770  ///
2771  /// \param D OpenMP directive possibly with 'copyin' clause(s).
2772  /// \returns true if at least one copyin variable is found, false otherwise.
2773  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2774  /// \brief Emit initial code for lastprivate variables. If some variable is
2775  /// not also firstprivate, then the default initialization is used. Otherwise
2776  /// initialization of this variable is performed by EmitOMPFirstprivateClause
2777  /// method.
2778  ///
2779  /// \param D Directive that may have 'lastprivate' directives.
2780  /// \param PrivateScope Private scope for capturing lastprivate variables for
2781  /// proper codegen in internal captured statement.
2782  ///
2783  /// \returns true if there is at least one lastprivate variable, false
2784  /// otherwise.
2785  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2786  OMPPrivateScope &PrivateScope);
2787  /// \brief Emit final copying of lastprivate values to original variables at
2788  /// the end of the worksharing or simd directive.
2789  ///
2790  /// \param D Directive that has at least one 'lastprivate' directives.
2791  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2792  /// it is the last iteration of the loop code in associated directive, or to
2793  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2794  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2795  bool NoFinals,
2796  llvm::Value *IsLastIterCond = nullptr);
2797  /// Emit initial code for linear clauses.
2798  void EmitOMPLinearClause(const OMPLoopDirective &D,
2799  CodeGenFunction::OMPPrivateScope &PrivateScope);
2800  /// Emit final code for linear clauses.
2801  /// \param CondGen Optional conditional code for final part of codegen for
2802  /// linear clause.
2803  void EmitOMPLinearClauseFinal(
2804  const OMPLoopDirective &D,
2805  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2806  /// \brief Emit initial code for reduction variables. Creates reduction copies
2807  /// and initializes them with the values according to OpenMP standard.
2808  ///
2809  /// \param D Directive (possibly) with the 'reduction' clause.
2810  /// \param PrivateScope Private scope for capturing reduction variables for
2811  /// proper codegen in internal captured statement.
2812  ///
2813  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2814  OMPPrivateScope &PrivateScope);
2815  /// \brief Emit final update of reduction values to original variables at
2816  /// the end of the directive.
2817  ///
2818  /// \param D Directive that has at least one 'reduction' directives.
2819  /// \param ReductionKind The kind of reduction to perform.
2820  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
2821  const OpenMPDirectiveKind ReductionKind);
2822  /// \brief Emit initial code for linear variables. Creates private copies
2823  /// and initializes them with the values according to OpenMP standard.
2824  ///
2825  /// \param D Directive (possibly) with the 'linear' clause.
2826  /// \return true if at least one linear variable is found that should be
2827  /// initialized with the value of the original variable, false otherwise.
2828  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2829 
2830  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2831  llvm::Value * /*OutlinedFn*/,
2832  const OMPTaskDataTy & /*Data*/)>
2834  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2835  const RegionCodeGenTy &BodyGen,
2836  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2838  Address BasePointersArray = Address::invalid();
2839  Address PointersArray = Address::invalid();
2840  Address SizesArray = Address::invalid();
2841  unsigned NumberOfTargetItems = 0;
2842  explicit OMPTargetDataInfo() = default;
2843  OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
2844  Address SizesArray, unsigned NumberOfTargetItems)
2845  : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
2846  SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
2847  };
2848  void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
2849  const RegionCodeGenTy &BodyGen,
2850  OMPTargetDataInfo &InputInfo);
2851 
2852  void EmitOMPParallelDirective(const OMPParallelDirective &S);
2853  void EmitOMPSimdDirective(const OMPSimdDirective &S);
2854  void EmitOMPForDirective(const OMPForDirective &S);
2855  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2856  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2857  void EmitOMPSectionDirective(const OMPSectionDirective &S);
2858  void EmitOMPSingleDirective(const OMPSingleDirective &S);
2859  void EmitOMPMasterDirective(const OMPMasterDirective &S);
2860  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2861  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2862  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2863  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2864  void EmitOMPTaskDirective(const OMPTaskDirective &S);
2865  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2866  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2867  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2868  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2869  void EmitOMPFlushDirective(const OMPFlushDirective &S);
2870  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2871  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2872  void EmitOMPTargetDirective(const OMPTargetDirective &S);
2873  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2874  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2875  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2876  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2877  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2878  void
2879  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2880  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2881  void
2882  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2883  void EmitOMPCancelDirective(const OMPCancelDirective &S);
2884  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2885  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2886  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2887  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2888  void EmitOMPDistributeParallelForDirective(
2890  void EmitOMPDistributeParallelForSimdDirective(
2892  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2893  void EmitOMPTargetParallelForSimdDirective(
2895  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2896  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2897  void
2898  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2899  void EmitOMPTeamsDistributeParallelForSimdDirective(
2901  void EmitOMPTeamsDistributeParallelForDirective(
2903  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2904  void EmitOMPTargetTeamsDistributeDirective(
2906  void EmitOMPTargetTeamsDistributeParallelForDirective(
2908  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2910  void EmitOMPTargetTeamsDistributeSimdDirective(
2912 
2913  /// Emit device code for the target directive.
2914  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
2915  StringRef ParentName,
2916  const OMPTargetDirective &S);
2917  static void
2918  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2919  const OMPTargetParallelDirective &S);
2920  /// Emit device code for the target parallel for directive.
2921  static void EmitOMPTargetParallelForDeviceFunction(
2922  CodeGenModule &CGM, StringRef ParentName,
2924  /// Emit device code for the target parallel for simd directive.
2925  static void EmitOMPTargetParallelForSimdDeviceFunction(
2926  CodeGenModule &CGM, StringRef ParentName,
2928  /// Emit device code for the target teams directive.
2929  static void
2930  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2931  const OMPTargetTeamsDirective &S);
2932  /// Emit device code for the target teams distribute directive.
2933  static void EmitOMPTargetTeamsDistributeDeviceFunction(
2934  CodeGenModule &CGM, StringRef ParentName,
2936  /// Emit device code for the target teams distribute simd directive.
2937  static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
2938  CodeGenModule &CGM, StringRef ParentName,
2940  /// Emit device code for the target simd directive.
2941  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
2942  StringRef ParentName,
2943  const OMPTargetSimdDirective &S);
2944  /// \brief Emit inner loop of the worksharing/simd construct.
2945  ///
2946  /// \param S Directive, for which the inner loop must be emitted.
2947  /// \param RequiresCleanup true, if directive has some associated private
2948  /// variables.
2949  /// \param LoopCond Bollean condition for loop continuation.
2950  /// \param IncExpr Increment expression for loop control variable.
2951  /// \param BodyGen Generator for the inner body of the inner loop.
2952  /// \param PostIncGen Genrator for post-increment code (required for ordered
2953  /// loop directvies).
2954  void EmitOMPInnerLoop(
2955  const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2956  const Expr *IncExpr,
2957  const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2958  const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2959 
2960  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2961  /// Emit initial code for loop counters of loop-based directives.
2962  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2963  OMPPrivateScope &LoopScope);
2964 
2965  /// Helper for the OpenMP loop directives.
2966  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2967 
2968  /// \brief Emit code for the worksharing loop-based directive.
2969  /// \return true, if this construct has any lastprivate clause, false -
2970  /// otherwise.
2971  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
2972  const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2973  const CodeGenDispatchBoundsTy &CGDispatchBounds);
2974 
2975  /// Emit code for the distribute loop-based directive.
2976  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
2977  const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
2978 
2979  /// Helpers for the OpenMP loop directives.
2980  void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2981  void EmitOMPSimdFinal(
2982  const OMPLoopDirective &D,
2983  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2984 
2985  /// Emits the lvalue for the expression with possibly captured variable.
2986  LValue EmitOMPSharedLValue(const Expr *E);
2987 
2988 private:
2989  /// Helpers for blocks. Returns invoke function by \p InvokeF if it is not
2990  /// nullptr. It should be called without \p InvokeF if the caller does not
2991  /// need invoke function to be returned.
2992  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info,
2993  llvm::Function **InvokeF = nullptr);
2994 
2995  /// struct with the values to be passed to the OpenMP loop-related functions
2996  struct OMPLoopArguments {
2997  /// loop lower bound
2998  Address LB = Address::invalid();
2999  /// loop upper bound
3000  Address UB = Address::invalid();
3001  /// loop stride
3002  Address ST = Address::invalid();
3003  /// isLastIteration argument for runtime functions
3004  Address IL = Address::invalid();
3005  /// Chunk value generated by sema
3006  llvm::Value *Chunk = nullptr;
3007  /// EnsureUpperBound
3008  Expr *EUB = nullptr;
3009  /// IncrementExpression
3010  Expr *IncExpr = nullptr;
3011  /// Loop initialization
3012  Expr *Init = nullptr;
3013  /// Loop exit condition
3014  Expr *Cond = nullptr;
3015  /// Update of LB after a whole chunk has been executed
3016  Expr *NextLB = nullptr;
3017  /// Update of UB after a whole chunk has been executed
3018  Expr *NextUB = nullptr;
3019  OMPLoopArguments() = default;
3020  OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3021  llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3022  Expr *IncExpr = nullptr, Expr *Init = nullptr,
3023  Expr *Cond = nullptr, Expr *NextLB = nullptr,
3024  Expr *NextUB = nullptr)
3025  : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3026  IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3027  NextUB(NextUB) {}
3028  };
3029  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3030  const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3031  const OMPLoopArguments &LoopArgs,
3032  const CodeGenLoopTy &CodeGenLoop,
3033  const CodeGenOrderedTy &CodeGenOrdered);
3034  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3035  bool IsMonotonic, const OMPLoopDirective &S,
3036  OMPPrivateScope &LoopScope, bool Ordered,
3037  const OMPLoopArguments &LoopArgs,
3038  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3039  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3040  const OMPLoopDirective &S,
3041  OMPPrivateScope &LoopScope,
3042  const OMPLoopArguments &LoopArgs,
3043  const CodeGenLoopTy &CodeGenLoopContent);
3044  /// \brief Emit code for sections directive.
3045  void EmitSections(const OMPExecutableDirective &S);
3046 
3047 public:
3048 
3049  //===--------------------------------------------------------------------===//
3050  // LValue Expression Emission
3051  //===--------------------------------------------------------------------===//
3052 
3053  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3054  RValue GetUndefRValue(QualType Ty);
3055 
3056  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3057  /// and issue an ErrorUnsupported style diagnostic (using the
3058  /// provided Name).
3059  RValue EmitUnsupportedRValue(const Expr *E,
3060  const char *Name);
3061 
3062  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3063  /// an ErrorUnsupported style diagnostic (using the provided Name).
3064  LValue EmitUnsupportedLValue(const Expr *E,
3065  const char *Name);
3066 
3067  /// EmitLValue - Emit code to compute a designator that specifies the location
3068  /// of the expression.
3069  ///
3070  /// This can return one of two things: a simple address or a bitfield
3071  /// reference. In either case, the LLVM Value* in the LValue structure is
3072  /// guaranteed to be an LLVM pointer type.
3073  ///
3074  /// If this returns a bitfield reference, nothing about the pointee type of
3075  /// the LLVM value is known: For example, it may not be a pointer to an
3076  /// integer.
3077  ///
3078  /// If this returns a normal address, and if the lvalue's C type is fixed
3079  /// size, this method guarantees that the returned pointer type will point to
3080  /// an LLVM type of the same size of the lvalue's type. If the lvalue has a
3081  /// variable length type, this is not possible.
3082  ///
3083  LValue EmitLValue(const Expr *E);
3084 
3085  /// \brief Same as EmitLValue but additionally we generate checking code to
3086  /// guard against undefined behavior. This is only suitable when we know
3087  /// that the address will be used to access the object.
3088  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3089 
3090  RValue convertTempToRValue(Address addr, QualType type,
3091  SourceLocation Loc);
3092 
3093  void EmitAtomicInit(Expr *E, LValue lvalue);
3094 
3095  bool LValueIsSuitableForInlineAtomic(LValue Src);
3096 
3097  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3098  AggValueSlot Slot = AggValueSlot::ignored());
3099 
3100  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3101  llvm::AtomicOrdering AO, bool IsVolatile = false,
3102  AggValueSlot slot = AggValueSlot::ignored());
3103 
3104  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3105 
3106  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3107  bool IsVolatile, bool isInit);
3108 
3109  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3110  LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3111  llvm::AtomicOrdering Success =
3112  llvm::AtomicOrdering::SequentiallyConsistent,
3113  llvm::AtomicOrdering Failure =
3114  llvm::AtomicOrdering::SequentiallyConsistent,
3115  bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3116 
3117  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3118  const llvm::function_ref<RValue(RValue)> &UpdateOp,
3119  bool IsVolatile);
3120 
3121  /// EmitToMemory - Change a scalar value from its value
3122  /// representation to its in-memory representation.
3123  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3124 
3125  /// EmitFromMemory - Change a scalar value from its memory
3126  /// representation to its value representation.
3127  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3128 
3129  /// Check if the scalar \p Value is within the valid range for the given
3130  /// type \p Ty.
3131  ///
3132  /// Returns true if a check is needed (even if the range is unknown).
3133  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3134  SourceLocation Loc);
3135 
3136  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3137  /// care to appropriately convert from the memory representation to
3138  /// the LLVM value representation.
3139  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3140  SourceLocation Loc,
3141  AlignmentSource Source = AlignmentSource::Type,
3142  bool isNontemporal = false) {
3143  return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3144  CGM.getTBAAAccessInfo(Ty), isNontemporal);
3145  }
3146 
3147  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3148  SourceLocation Loc, LValueBaseInfo BaseInfo,
3149  TBAAAccessInfo TBAAInfo,
3150  bool isNontemporal = false);
3151 
3152  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3153  /// care to appropriately convert from the memory representation to
3154  /// the LLVM value representation. The l-value must be a simple
3155  /// l-value.
3156  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3157 
3158  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3159  /// care to appropriately convert from the memory representation to
3160  /// the LLVM value representation.
3162  bool Volatile, QualType Ty,
3163  AlignmentSource Source = AlignmentSource::Type,
3164  bool isInit = false, bool isNontemporal = false) {
3165  EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3166  CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3167  }
3168 
3169  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3170  bool Volatile, QualType Ty,
3171  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3172  bool isInit = false, bool isNontemporal = false);
3173 
3174  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3175  /// care to appropriately convert from the memory representation to
3176  /// the LLVM value representation. The l-value must be a simple
3177  /// l-value. The isInit flag indicates whether this is an initialization.
3178  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3179  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3180 
3181  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3182  /// this method emits the address of the lvalue, then loads the result as an
3183  /// rvalue, returning the rvalue.
3184  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3185  RValue EmitLoadOfExtVectorElementLValue(LValue V);
3186  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3187  RValue EmitLoadOfGlobalRegLValue(LValue LV);
3188 
3189  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3190  /// lvalue, where both are guaranteed to the have the same type, and that type
3191  /// is 'Ty'.
3192  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3193  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3194  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3195 
3196  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3197  /// as EmitStoreThroughLValue.
3198  ///
3199  /// \param Result [out] - If non-null, this will be set to a Value* for the
3200  /// bit-field contents after the store, appropriate for use as the result of
3201  /// an assignment to the bit-field.
3202  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3203  llvm::Value **Result=nullptr);
3204 
3205  /// Emit an l-value for an assignment (simple or compound) of complex type.
3206  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3207  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3208  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3209  llvm::Value *&Result);
3210 
3211  // Note: only available for agg return types
3212  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3213  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3214  // Note: only available for agg return types
3215  LValue EmitCallExprLValue(const CallExpr *E);
3216  // Note: only available for agg return types
3217  LValue EmitVAArgExprLValue(const VAArgExpr *E);
3218  LValue EmitDeclRefLValue(const DeclRefExpr *E);
3219  LValue EmitStringLiteralLValue(const StringLiteral *E);
3220  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3221  LValue EmitPredefinedLValue(const PredefinedExpr *E);
3222  LValue EmitUnaryOpLValue(const UnaryOperator *E);
3223  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3224  bool Accessed = false);
3225  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3226  bool IsLowerBound = true);
3227  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3228  LValue EmitMemberExpr(const MemberExpr *E);
3229  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3230  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3231  LValue EmitInitListLValue(const InitListExpr *E);
3232  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3233  LValue EmitCastLValue(const CastExpr *E);
3234  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3235  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3236 
3237  Address EmitExtVectorElementLValue(LValue V);
3238 
3239  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3240 
3241  Address EmitArrayToPointerDecay(const Expr *Array,
3242  LValueBaseInfo *BaseInfo = nullptr,
3243  TBAAAccessInfo *TBAAInfo = nullptr);
3244 
3246  llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3247  ConstantEmission(llvm::Constant *C, bool isReference)
3248  : ValueAndIsReference(C, isReference) {}
3249  public:
3251  static ConstantEmission forReference(llvm::Constant *C) {
3252  return ConstantEmission(C, true);
3253  }
3254  static ConstantEmission forValue(llvm::Constant *C) {
3255  return ConstantEmission(C, false);
3256  }
3257 
3258  explicit operator bool() const {
3259  return ValueAndIsReference.getOpaqueValue() != nullptr;
3260  }
3261 
3262  bool isReference() const { return ValueAndIsReference.getInt(); }
3263  LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3264  assert(isReference());
3265  return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3266  refExpr->getType());
3267  }
3268 
3269  llvm::Constant *getValue() const {
3270  assert(!isReference());
3271  return ValueAndIsReference.getPointer();
3272  }
3273  };
3274 
3275  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3276  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3277 
3278  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3279  AggValueSlot slot = AggValueSlot::ignored());
3280  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3281 
3282  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3283  const ObjCIvarDecl *Ivar);
3284  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3285  LValue EmitLValueForLambdaField(const FieldDecl *Field);
3286 
3287  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3288  /// if the Field is a reference, this will return the address of the reference
3289  /// and not the address of the value stored in the reference.
3290  LValue EmitLValueForFieldInitialization(LValue Base,
3291  const FieldDecl* Field);
3292 
3293  LValue EmitLValueForIvar(QualType ObjectTy,
3294  llvm::Value* Base, const ObjCIvarDecl *Ivar,
3295  unsigned CVRQualifiers);
3296 
3297  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3298  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3299  LValue EmitLambdaLValue(const LambdaExpr *E);
3300  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3301  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3302 
3303  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3304  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3305  LValue EmitStmtExprLValue(const StmtExpr *E);
3306  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3307  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3308  void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3309 
3310  //===--------------------------------------------------------------------===//
3311  // Scalar Expression Emission
3312  //===--------------------------------------------------------------------===//
3313 
3314  /// EmitCall - Generate a call of the given function, expecting the given
3315  /// result type, and using the given argument list which specifies both the
3316  /// LLVM arguments and the types they were derived from.
3317  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3318  ReturnValueSlot ReturnValue, const CallArgList &Args,
3319  llvm::Instruction **callOrInvoke, SourceLocation Loc);
3320  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3321  ReturnValueSlot ReturnValue, const CallArgList &Args,
3322  llvm::Instruction **callOrInvoke = nullptr) {
3323  return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3324  SourceLocation());
3325  }
3326  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3327  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3328  RValue EmitCallExpr(const CallExpr *E,
3329  ReturnValueSlot ReturnValue = ReturnValueSlot());
3330  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3331  CGCallee EmitCallee(const Expr *E);
3332 
3333  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3334 
3335  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3336  const Twine &name = "");
3337  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3339  const Twine &name = "");
3340  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3341  const Twine &name = "");
3342  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3344  const Twine &name = "");
3345 
3346  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3348  const Twine &Name = "");
3349  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3351  const Twine &name = "");
3352  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3353  const Twine &name = "");
3354  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3355  ArrayRef<llvm::Value*> args);
3356 
3358  NestedNameSpecifier *Qual,
3359  llvm::Type *Ty);
3360 
3361  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3362  CXXDtorType Type,
3363  const CXXRecordDecl *RD);
3364 
3365  RValue
3366  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3367  const CGCallee &Callee,
3368  ReturnValueSlot ReturnValue, llvm::Value *This,
3369  llvm::Value *ImplicitParam,
3370  QualType ImplicitParamTy, const CallExpr *E,
3371  CallArgList *RtlArgs);
3372  RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3373  const CGCallee &Callee,
3374  llvm::Value *This, llvm::Value *ImplicitParam,
3375  QualType ImplicitParamTy, const CallExpr *E,
3376  StructorType Type);
3377  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3378  ReturnValueSlot ReturnValue);
3379  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3380  const CXXMethodDecl *MD,
3381  ReturnValueSlot ReturnValue,
3382  bool HasQualifier,
3383  NestedNameSpecifier *Qualifier,
3384  bool IsArrow, const Expr *Base);
3385  // Compute the object pointer.
3386  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3387  llvm::Value *memberPtr,
3388  const MemberPointerType *memberPtrType,
3389  LValueBaseInfo *BaseInfo = nullptr,
3390  TBAAAccessInfo *TBAAInfo = nullptr);
3391  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3392  ReturnValueSlot ReturnValue);
3393 
3394  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3395  const CXXMethodDecl *MD,
3396  ReturnValueSlot ReturnValue);
3397  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3398 
3399  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3400  ReturnValueSlot ReturnValue);
3401 
3402  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3403  ReturnValueSlot ReturnValue);
3404 
3405  RValue EmitBuiltinExpr(const FunctionDecl *FD,
3406  unsigned BuiltinID, const CallExpr *E,
3407  ReturnValueSlot ReturnValue);
3408 
3409  /// Emit IR for __builtin_os_log_format.
3410  RValue emitBuiltinOSLogFormat(const CallExpr &E);
3411 
3412  llvm::Function *generateBuiltinOSLogHelperFunction(
3413  const analyze_os_log::OSLogBufferLayout &Layout,
3414  CharUnits BufferAlignment);
3415 
3416  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3417 
3418  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3419  /// is unhandled by the current target.
3420  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3421 
3422  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3423  const llvm::CmpInst::Predicate Fp,
3424  const llvm::CmpInst::Predicate Ip,
3425  const llvm::Twine &Name = "");
3426  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3427  llvm::Triple::ArchType Arch);
3428 
3429  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3430  unsigned LLVMIntrinsic,
3431  unsigned AltLLVMIntrinsic,
3432  const char *NameHint,
3433  unsigned Modifier,
3434  const CallExpr *E,
3436  Address PtrOp0, Address PtrOp1,
3437  llvm::Triple::ArchType Arch);
3438  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3439  unsigned Modifier, llvm::Type *ArgTy,
3440  const CallExpr *E);
3441  llvm::Value *EmitNeonCall(llvm::Function *F,
3443  const char *name,
3444  unsigned shift = 0, bool rightshift = false);
3445  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3446  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3447  bool negateForRightShift);
3448  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3449  llvm::Type *Ty, bool usgn, const char *name);
3450  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3451  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3452  llvm::Triple::ArchType Arch);
3453 
3454  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3455  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3456  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3457  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3458  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3459  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3460  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3461  const CallExpr *E);
3462  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3463 
3464 private:
3465  enum class MSVCIntrin;
3466 
3467 public:
3468  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3469 
3470  llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3471 
3472  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3473  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3474  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3475  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3476  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3477  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3478  const ObjCMethodDecl *MethodWithObjects);
3479  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3480  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3481  ReturnValueSlot Return = ReturnValueSlot());
3482 
3483  /// Retrieves the default cleanup kind for an ARC cleanup.
3484  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3486  return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3488  }
3489 
3490  // ARC primitives.
3491  void EmitARCInitWeak(Address addr, llvm::Value *value);
3492  void EmitARCDestroyWeak(Address addr);
3493  llvm::Value *EmitARCLoadWeak(Address addr);
3494  llvm::Value *EmitARCLoadWeakRetained(Address addr);
3495  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3496  void EmitARCCopyWeak(Address dst, Address src);
3497  void EmitARCMoveWeak(Address dst, Address src);
3498  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3499  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3500  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3501  bool resultIgnored);
3502  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3503  bool resultIgnored);
3504  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3505  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3506  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3507  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3508  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3509  llvm::Value *EmitARCAutorelease(llvm::Value *value);
3510  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3511  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3512  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3513  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3514 
3515  std::pair<LValue,llvm::Value*>
3516  EmitARCStoreAutoreleasing(const BinaryOperator *e);
3517  std::pair<LValue,llvm::Value*>
3518  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3519  std::pair<LValue,llvm::Value*>
3520  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3521 
3522  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3523  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3524  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3525 
3526  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3527  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3528  bool allowUnsafeClaim);
3529  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3530  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3531  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3532 
3533  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3534 
3535  static Destroyer destroyARCStrongImprecise;
3536  static Destroyer destroyARCStrongPrecise;
3537  static Destroyer destroyARCWeak;
3538  static Destroyer emitARCIntrinsicUse;
3539 
3540  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3541  llvm::Value *EmitObjCAutoreleasePoolPush();
3542  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3543  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3544  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3545 
3546  /// \brief Emits a reference binding to the passed in expression.
3547  RValue EmitReferenceBindingToExpr(const Expr *E);
3548 
3549  //===--------------------------------------------------------------------===//
3550  // Expression Emission
3551  //===--------------------------------------------------------------------===//
3552 
3553  // Expressions are broken into three classes: scalar, complex, aggregate.
3554 
3555  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3556  /// scalar type, returning the result.
3557  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3558 
3559  /// Emit a conversion from the specified type to the specified destination
3560  /// type, both of which are LLVM scalar types.
3561  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3562  QualType DstTy, SourceLocation Loc);
3563 
3564  /// Emit a conversion from the specified complex type to the specified
3565  /// destination type, where the destination type is an LLVM scalar type.
3566  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3567  QualType DstTy,
3568  SourceLocation Loc);
3569 
3570  /// EmitAggExpr - Emit the computation of the specified expression
3571  /// of aggregate type. The result is computed into the given slot,
3572  /// which may be null to indicate that the value is not needed.
3573  void EmitAggExpr(const Expr *E, AggValueSlot AS);
3574 
3575  /// EmitAggExprToLValue - Emit the computation of the specified expression of
3576  /// aggregate type into a temporary LValue.
3577  LValue EmitAggExprToLValue(const Expr *E);
3578 
3579  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3580  /// make sure it survives garbage collection until this point.
3581  void EmitExtendGCLifetime(llvm::Value *object);
3582 
3583  /// EmitComplexExpr - Emit the computation of the specified expression of
3584  /// complex type, returning the result.
3585  ComplexPairTy EmitComplexExpr(const Expr *E,
3586  bool IgnoreReal = false,
3587  bool IgnoreImag = false);
3588 
3589  /// EmitComplexExprIntoLValue - Emit the given expression of complex
3590  /// type and place its result into the specified l-value.
3591  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3592 
3593  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3594  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3595 
3596  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3597  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3598 
3599  Address emitAddrOfRealComponent(Address complex, QualType complexType);
3600  Address emitAddrOfImagComponent(Address complex, QualType complexType);
3601 
3602  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3603  /// global variable that has already been created for it. If the initializer
3604  /// has a different type than GV does, this may free GV and return a different
3605  /// one. Otherwise it just returns GV.
3606  llvm::GlobalVariable *
3607  AddInitializerToStaticVarDecl(const VarDecl &D,
3608  llvm::GlobalVariable *GV);
3609 
3610 
3611  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3612  /// variable with global storage.
3613  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3614  bool PerformInit);
3615 
3616  llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3617  llvm::Constant *Addr);
3618 
3619  /// Call atexit() with a function that passes the given argument to
3620  /// the given function.
3621  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3622  llvm::Constant *addr);
3623 
3624  /// Emit code in this function to perform a guarded variable
3625  /// initialization. Guarded initializations are used when it's not
3626  /// possible to prove that an initialization will be done exactly
3627  /// once, e.g. with a static local variable or a static data member
3628  /// of a class template.
3629  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3630  bool PerformInit);
3631 
3632  enum class GuardKind { VariableGuard, TlsGuard };
3633 
3634  /// Emit a branch to select whether or not to perform guarded initialization.
3635  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3636  llvm::BasicBlock *InitBlock,
3637  llvm::BasicBlock *NoInitBlock,
3638  GuardKind Kind, const VarDecl *D);
3639 
3640  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3641  /// variables.
3642  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3643  ArrayRef<llvm::Function *> CXXThreadLocals,
3644  Address Guard = Address::invalid());
3645 
3646  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3647  /// variables.
3648  void GenerateCXXGlobalDtorsFunc(
3649  llvm::Function *Fn,
3650  const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3651  &DtorsAndObjects);
3652 
3653  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3654  const VarDecl *D,
3655  llvm::GlobalVariable *Addr,
3656  bool PerformInit);
3657 
3658  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3659 
3660  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3661 
3663  if (E->getNumObjects() == 0) return;
3664  enterNonTrivialFullExpression(E);
3665  }
3666  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3667 
3668  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3669 
3670  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3671 
3672  RValue EmitAtomicExpr(AtomicExpr *E);
3673 
3674  //===--------------------------------------------------------------------===//
3675  // Annotations Emission
3676  //===--------------------------------------------------------------------===//
3677 
3678  /// Emit an annotation call (intrinsic or builtin).
3679  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3680  llvm::Value *AnnotatedVal,
3681  StringRef AnnotationStr,
3682  SourceLocation Location);
3683 
3684  /// Emit local annotations for the local variable V, declared by D.
3685  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3686 
3687  /// Emit field annotations for the given field & value. Returns the
3688  /// annotation result.
3689  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3690 
3691  //===--------------------------------------------------------------------===//
3692  // Internal Helpers
3693  //===--------------------------------------------------------------------===//
3694 
3695  /// ContainsLabel - Return true if the statement contains a label in it. If
3696  /// this statement is not executed normally, it not containing a label means
3697  /// that we can just remove the code.
3698  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3699 
3700  /// containsBreak - Return true if the statement contains a break out of it.
3701  /// If the statement (recursively) contains a switch or loop with a break
3702  /// inside of it, this is fine.
3703  static bool containsBreak(const Stmt *S);
3704 
3705  /// Determine if the given statement might introduce a declaration into the
3706  /// current scope, by being a (possibly-labelled) DeclStmt.
3707  static bool mightAddDeclToScope(const Stmt *S);
3708 
3709  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3710  /// to a constant, or if it does but contains a label, return false. If it
3711  /// constant folds return true and set the boolean result in Result.
3712  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3713  bool AllowLabels = false);
3714 
3715  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3716  /// to a constant, or if it does but contains a label, return false. If it
3717  /// constant folds return true and set the folded value.
3718  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3719  bool AllowLabels = false);
3720 
3721  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3722  /// if statement) to the specified blocks. Based on the condition, this might
3723  /// try to simplify the codegen of the conditional based on the branch.
3724  /// TrueCount should be the number of times we expect the condition to
3725  /// evaluate to true based on PGO data.
3726  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3727  llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3728 
3729  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
3730  /// nonnull, if \p LHS is marked _Nonnull.
3731  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
3732 
3733  /// An enumeration which makes it easier to specify whether or not an
3734  /// operation is a subtraction.
3735  enum { NotSubtraction = false, IsSubtraction = true };
3736 
3737  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
3738  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
3739  /// \p SignedIndices indicates whether any of the GEP indices are signed.
3740  /// \p IsSubtraction indicates whether the expression used to form the GEP
3741  /// is a subtraction.
3742  llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
3743  ArrayRef<llvm::Value *> IdxList,
3744  bool SignedIndices,
3745  bool IsSubtraction,
3746  SourceLocation Loc,
3747  const Twine &Name = "");
3748 
3749  /// Specifies which type of sanitizer check to apply when handling a
3750  /// particular builtin.
3754  };
3755 
3756  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
3757  /// enabled, a runtime check specified by \p Kind is also emitted.
3758  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
3759 
3760  /// \brief Emit a description of a type in a format suitable for passing to
3761  /// a runtime sanitizer handler.
3762  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3763 
3764  /// \brief Convert a value into a format suitable for passing to a runtime
3765  /// sanitizer handler.
3766  llvm::Value *EmitCheckValue(llvm::Value *V);
3767 
3768  /// \brief Emit a description of a source location in a format suitable for
3769  /// passing to a runtime sanitizer handler.
3770  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3771 
3772  /// \brief Create a basic block that will call a handler function in a
3773  /// sanitizer runtime with the provided arguments, and create a conditional
3774  /// branch to it.
3775  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3776  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3777  ArrayRef<llvm::Value *> DynamicArgs);
3778 
3779  /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3780  /// if Cond if false.
3781  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3782  llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3783  ArrayRef<llvm::Constant *> StaticArgs);
3784 
3785  /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
3786  /// checking is enabled. Otherwise, just emit an unreachable instruction.
3787  void EmitUnreachable(SourceLocation Loc);
3788 
3789  /// \brief Create a basic block that will call the trap intrinsic, and emit a
3790  /// conditional branch to it, for the -ftrapv checks.
3791  void EmitTrapCheck(llvm::Value *Checked);
3792 
3793  /// \brief Emit a call to trap or debugtrap and attach function attribute
3794  /// "trap-func-name" if specified.
3795  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3796 
3797  /// \brief Emit a stub for the cross-DSO CFI check function.
3798  void EmitCfiCheckStub();
3799 
3800  /// \brief Emit a cross-DSO CFI failure handling function.
3801  void EmitCfiCheckFail();
3802 
3803  /// \brief Create a check for a function parameter that may potentially be
3804  /// declared as non-null.
3805  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3806  AbstractCallee AC, unsigned ParmNum);
3807 
3808  /// EmitCallArg - Emit a single call argument.
3809  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3810 
3811  /// EmitDelegateCallArg - We are performing a delegate call; that
3812  /// is, the current function is delegating to another one. Produce
3813  /// a r-value suitable for passing the given parameter.
3814  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3815  SourceLocation loc);
3816 
3817  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3818  /// point operation, expressed as the maximum relative error in ulp.
3819  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3820 
3821 private:
3822  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3823  void EmitReturnOfRValue(RValue RV, QualType Ty);
3824 
3825  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3826 
3828  DeferredReplacements;
3829 
3830  /// Set the address of a local variable.
3831  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3832  assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3833  LocalDeclMap.insert({VD, Addr});
3834  }
3835 
3836  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3837  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3838  ///
3839  /// \param AI - The first function argument of the expansion.
3840  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3842 
3843  /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3844  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3845  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3846  void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3847  SmallVectorImpl<llvm::Value *> &IRCallArgs,
3848  unsigned &IRCallArgPos);
3849 
3850  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3851  const Expr *InputExpr, std::string &ConstraintStr);
3852 
3853  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3854  LValue InputValue, QualType InputType,
3855  std::string &ConstraintStr,
3856  SourceLocation Loc);
3857 
3858  /// \brief Attempts to statically evaluate the object size of E. If that
3859  /// fails, emits code to figure the size of E out for us. This is
3860  /// pass_object_size aware.
3861  ///
3862  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
3863  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3864  llvm::IntegerType *ResType,
3865  llvm::Value *EmittedE);
3866 
3867  /// \brief Emits the size of E, as required by __builtin_object_size. This
3868  /// function is aware of pass_object_size parameters, and will act accordingly
3869  /// if E is a parameter with the pass_object_size attribute.
3870  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3871  llvm::IntegerType *ResType,
3872  llvm::Value *EmittedE);
3873 
3874 public:
3875 #ifndef NDEBUG
3876  // Determine whether the given argument is an Objective-C method
3877  // that may have type parameters in its signature.
3878  static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3879  const DeclContext *dc = method->getDeclContext();
3880  if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3881  return classDecl->getTypeParamListAsWritten();
3882  }
3883 
3884  if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3885  return catDecl->getTypeParamList();
3886  }
3887 
3888  return false;
3889  }
3890 
3891  template<typename T>
3892  static bool isObjCMethodWithTypeParams(const T *) { return false; }
3893 #endif
3894 
3895  enum class EvaluationOrder {
3896  ///! No language constraints on evaluation order.
3897  Default,
3898  ///! Language semantics require left-to-right evaluation.
3899  ForceLeftToRight,
3900  ///! Language semantics require right-to-left evaluation.
3901  ForceRightToLeft
3902  };
3903 
3904  /// EmitCallArgs - Emit call arguments for a function.
3905  template <typename T>
3906  void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3907  llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3909  unsigned ParamsToSkip = 0,
3910  EvaluationOrder Order = EvaluationOrder::Default) {
3911  SmallVector<QualType, 16> ArgTypes;
3912  CallExpr::const_arg_iterator Arg = ArgRange.begin();
3913 
3914  assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3915  "Can't skip parameters if type info is not provided");
3916  if (CallArgTypeInfo) {
3917 #ifndef NDEBUG
3918  bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3919 #endif
3920 
3921  // First, use the argument types that the type info knows about
3922  for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3923  E = CallArgTypeInfo->param_type_end();
3924  I != E; ++I, ++Arg) {
3925  assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3926  assert((isGenericMethod ||
3927  ((*I)->isVariablyModifiedType() ||
3928  (*I).getNonReferenceType()->isObjCRetainableType() ||
3929  getContext()
3930  .getCanonicalType((*I).getNonReferenceType())
3931  .getTypePtr() ==
3932  getContext()
3933  .getCanonicalType((*Arg)->getType())
3934  .getTypePtr())) &&
3935  "type mismatch in call argument!");
3936  ArgTypes.push_back(*I);
3937  }
3938  }
3939 
3940  // Either we've emitted all the call args, or we have a call to variadic
3941  // function.
3942  assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3943  CallArgTypeInfo->isVariadic()) &&
3944  "Extra arguments in non-variadic function!");
3945 
3946  // If we still have any arguments, emit them using the type of the argument.
3947  for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3948  ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
3949 
3950  EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
3951  }
3952 
3953  void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3954  llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3956  unsigned ParamsToSkip = 0,
3957  EvaluationOrder Order = EvaluationOrder::Default);
3958 
3959  /// EmitPointerWithAlignment - Given an expression with a pointer type,
3960  /// emit the value and compute our best estimate of the alignment of the
3961  /// pointee.
3962  ///
3963  /// \param BaseInfo - If non-null, this will be initialized with
3964  /// information about the source of the alignment and the may-alias
3965  /// attribute. Note that this function will conservatively fall back on
3966  /// the type when it doesn't recognize the expression and may-alias will
3967  /// be set to false.
3968  ///
3969  /// One reasonable way to use this information is when there's a language
3970  /// guarantee that the pointer must be aligned to some stricter value, and
3971  /// we're simply trying to ensure that sufficiently obvious uses of under-
3972  /// aligned objects don't get miscompiled; for example, a placement new
3973  /// into the address of a local variable. In such a case, it's quite
3974  /// reasonable to just ignore the returned alignment when it isn't from an
3975  /// explicit source.
3976  Address EmitPointerWithAlignment(const Expr *Addr,
3977  LValueBaseInfo *BaseInfo = nullptr,
3978  TBAAAccessInfo *TBAAInfo = nullptr);
3979 
3980  /// If \p E references a parameter with pass_object_size info or a constant
3981  /// array size modifier, emit the object size divided by the size of \p EltTy.
3982  /// Otherwise return null.
3983  llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
3984 
3985  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
3986 
3987 private:
3988  QualType getVarArgType(const Expr *Arg);
3989 
3990  void EmitDeclMetadata();
3991 
3992  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3993  const AutoVarEmission &emission);
3994 
3995  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3996 
3997  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3998  llvm::Value *EmitX86CpuIs(const CallExpr *E);
3999  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4000  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4001  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4002  llvm::Value *EmitX86CpuInit();
4003 };
4004 
4005 /// Helper class with most of the code for saving a value for a
4006 /// conditional expression cleanup.
4008  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
4009 
4010  /// Answer whether the given value needs extra work to be saved.
4011  static bool needsSaving(llvm::Value *value) {
4012  // If it's not an instruction, we don't need to save.
4013  if (!isa<llvm::Instruction>(value)) return false;
4014 
4015  // If it's an instruction in the entry block, we don't need to save.
4016  llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
4017  return (block != &block->getParent()->getEntryBlock());
4018  }
4019 
4020  /// Try to save the given value.
4021  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
4022  if (!needsSaving(value)) return saved_type(value, false);
4023 
4024  // Otherwise, we need an alloca.
4025  auto align = CharUnits::fromQuantity(
4026  CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4027  Address alloca =
4028  CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4029  CGF.Builder.CreateStore(value, alloca);
4030 
4031  return saved_type(alloca.getPointer(), true);
4032  }
4033 
4034  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
4035  // If the value says it wasn't saved, trust that it's still dominating.
4036  if (!value.getInt()) return value.getPointer();
4037 
4038  // Otherwise, it should be an alloca instruction, as set up in save().
4039  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4040  return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
4041  }
4042 };
4043 
4044 /// A partial specialization of DominatingValue for llvm::Values that
4045 /// might be llvm::Instructions.
4046 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
4047  typedef T *type;
4048  static type restore(CodeGenFunction &CGF, saved_type value) {
4049  return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
4050  }
4051 };
4052 
4053 /// A specialization of DominatingValue for Address.
4054 template <> struct DominatingValue<Address> {
4055  typedef Address type;
4056 
4057  struct saved_type {
4060  };
4061 
4062  static bool needsSaving(type value) {
4063  return DominatingLLVMValue::needsSaving(value.getPointer());
4064  }
4065  static saved_type save(CodeGenFunction &CGF, type value) {
4066  return { DominatingLLVMValue::save(CGF, value.getPointer()),
4067  value.getAlignment() };
4068  }
4069  static type restore(CodeGenFunction &CGF, saved_type value) {
4070  return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
4071  value.Alignment);
4072  }
4073 };
4074 
4075 /// A specialization of DominatingValue for RValue.
4076 template <> struct DominatingValue<RValue> {
4077  typedef RValue type;
4078  class saved_type {
4079  enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
4080  AggregateAddress, ComplexAddress };
4081 
4082  llvm::Value *Value;
4083  unsigned K : 3;
4084  unsigned Align : 29;
4085  saved_type(llvm::Value *v, Kind k, unsigned a = 0)
4086  : Value(v), K(k), Align(a) {}
4087 
4088  public:
4089  static bool needsSaving(RValue value);
4090  static saved_type save(CodeGenFunction &CGF, RValue value);
4091  RValue restore(CodeGenFunction &CGF);
4092 
4093  // implementations in CGCleanup.cpp
4094  };
4095 
4096  static bool needsSaving(type value) {
4097  return saved_type::needsSaving(value);
4098  }
4099  static saved_type save(CodeGenFunction &CGF, type value) {
4100  return saved_type::save(CGF, value);
4101  }
4102  static type restore(CodeGenFunction &CGF, saved_type value) {
4103  return value.restore(CGF);
4104  }
4105 };
4106 
4107 } // end namespace CodeGen
4108 } // end namespace clang
4109 
4110 #endif
const llvm::DataLayout & getDataLayout() const
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:281
llvm::Value * getArrayInitIndex()
Get the index of the current ArrayInitLoopExpr, if any.
Optional< uint64_t > getStmtCount(const Stmt *S)
Check if an execution count is known for a given statement.
Definition: CodeGenPGO.h:64
This represents &#39;#pragma omp distribute simd&#39; composite directive.
Definition: StmtOpenMP.h:3194
Information about the layout of a __block variable.
Definition: CGBlocks.h:140
This represents &#39;#pragma omp master&#39; directive.
Definition: StmtOpenMP.h:1377
virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S)
Emit the captured statement body.
This represents &#39;#pragma omp task&#39; directive.
Definition: StmtOpenMP.h:1717
An instance of this class is created to represent a function declaration or definition.
Definition: Decl.h:1697
LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2283
Scheduling data for loop-based OpenMP directives.
Definition: OpenMPKinds.h:124
A (possibly-)qualified type.
Definition: Type.h:653
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:260
const CodeGenOptions & getCodeGenOpts() const
The class detects jumps which bypass local variables declaration: goto L; int a; L: ...
AlignmentSource
The source of the alignment of an l-value; an expression of confidence in the alignment actually matc...
Definition: CGValue.h:126
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
bool isSEHTryScope() const
Returns true inside SEH __try blocks.
llvm::LLVMContext & getLLVMContext()
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:26
FieldConstructionScope(CodeGenFunction &CGF, Address This)
Represents a &#39;co_return&#39; statement in the C++ Coroutines TS.
Definition: StmtCXX.h:432
Stmt - This represents one statement.
Definition: Stmt.h:66
IfStmt - This represents an if/then/else.
Definition: Stmt.h:933
static T * buildByrefHelpers(CodeGenModule &CGM, const BlockByrefInfo &byrefInfo, T &&generator)
Lazily build the copy and dispose helpers for a __block variable with the given information.
Definition: CGBlocks.cpp:2166
bool requiresCleanups() const
Determine whether this scope requires any cleanups.
C Language Family Type Representation.
OpaqueValueMapping(CodeGenFunction &CGF, const AbstractConditionalOperator *op)
Build the opaque value mapping for the given conditional operator if it&#39;s the GNU ...
This represents &#39;#pragma omp for simd&#39; directive.
Definition: StmtOpenMP.h:1127
Checking the &#39;this&#39; pointer for a constructor call.
bool hasVolatileMember() const
Definition: Decl.h:3564
bool hasLabelBeenSeenInCurrentScope() const
Return true if a label was seen in the current scope.
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
This represents &#39;#pragma omp teams distribute parallel for&#39; composite directive.
Definition: StmtOpenMP.h:3605
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
static saved_type save(CodeGenFunction &CGF, llvm::Value *value)
Try to save the given value.
static bool classof(const CGCapturedStmtInfo *)
Represents an attribute applied to a statement.
Definition: Stmt.h:881
static Destroyer destroyARCStrongPrecise
llvm::Value * LoadCXXThis()
LoadCXXThis - Load the value of &#39;this&#39;.
The base class of the type hierarchy.
Definition: Type.h:1351
This represents &#39;#pragma omp target teams distribute&#39; combined directive.
Definition: StmtOpenMP.h:3742
Represents Objective-C&#39;s @throw statement.
Definition: StmtObjC.h:313
CGCapturedStmtInfo(const CapturedStmt &S, CapturedRegionKind K=CR_Default)
const RecordDecl * getCapturedRecordDecl() const
Retrieve the record declaration for captured variables.
Definition: Stmt.h:2176
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2558
void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, llvm::Value *Address)
virtual const FieldDecl * lookup(const VarDecl *VD) const
Lookup the captured field decl for a variable.
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1239
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:116
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:379
DominatingValue< T >::saved_type saveValueInCond(T value)
CGCapturedStmtInfo(CapturedRegionKind K=CR_Default)
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
const ParmVarDecl * getParamDecl(unsigned I) const
This represents &#39;#pragma omp parallel for&#39; directive.
Definition: StmtOpenMP.h:1498
void emitCounterIncrement(CGBuilderTy &Builder, const Stmt *S, llvm::Value *StepV)
Definition: CodeGenPGO.cpp:886
This represents &#39;#pragma omp target teams distribute parallel for&#39; combined directive.
Definition: StmtOpenMP.h:3810
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2397
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4035
static bool needsSaving(llvm::Value *value)
Answer whether the given value needs extra work to be saved.
static type restore(CodeGenFunction &CGF, saved_type value)
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const RValue &rv)
Represents a point when we exit a loop.
Definition: ProgramPoint.h:664
const CXXBaseSpecifier *const * path_const_iterator
Definition: Expr.h:2774
This represents &#39;#pragma omp target exit data&#39; directive.
Definition: StmtOpenMP.h:2409
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
TypeEvaluationKind
The kind of evaluation to perform on values of a particular type.
VarDecl - An instance of this class is created to represent a variable declaration or definition...
Definition: Decl.h:806
Address getObjectAddress(CodeGenFunction &CGF) const
Returns the address of the object within this declaration.
ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC &#39;id&#39; type.
Definition: ExprObjC.h:1436
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2637
RAII object to set/unset CodeGenFunction::IsSanitizerScope.
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6305
uint64_t getProfileCount(const Stmt *S)
Get the profiler&#39;s count for the given statement.
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:53
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
void setCurrentProfileCount(uint64_t Count)
Set the profiler&#39;s current count.
llvm::Value * getPointer() const
Definition: Address.h:38
static ConstantEmission forValue(llvm::Constant *C)
bool IsSanitizerScope
True if CodeGen currently emits code implementing sanitizer checks.
capture_iterator capture_begin()
Retrieve an iterator pointing to the first capture.
Definition: Stmt.h:2201
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:985
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3000
ParmVarDecl - Represents a parameter to a function.
Definition: Decl.h:1513
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:25
Defines the clang::Expr interface and subclasses for C++ expressions.
The collection of all-type qualifiers we support.
Definition: Type.h:152
EHScopeStack::stable_iterator PrologueCleanupDepth
PrologueCleanupDepth - The cleanup depth enclosing all the cleanups associated with the parameters...
A jump destination is an abstract label, branching to which may require a jump out through normal cle...
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:842
RecordDecl - Represents a struct/union/class.
Definition: Decl.h:3488
llvm::DenseMap< const VarDecl *, FieldDecl * > LambdaCaptureFields
LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
const TargetInfo & getTarget() const
An object to manage conditionally-evaluated expressions.
PeepholeProtection protectFromPeepholes(RValue rvalue)
protectFromPeepholes - Protect a value that we&#39;re intending to store to the side, but which will prob...
ConditionalCleanup stores the saved form of its parameters, then restores them and performs the clean...
Definition: EHScopeStack.h:198
ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
CGBlockInfo * FirstBlockInfo
FirstBlockInfo - The head of a singly-linked-list of block layouts.
void setScopeDepth(EHScopeStack::stable_iterator depth)
This represents &#39;#pragma omp parallel&#39; directive.
Definition: StmtOpenMP.h:255
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:149
llvm::SmallPtrSet< const CXXRecordDecl *, 4 > VisitedVirtualBasesSetTy
The scope used to remap some variables as private in the OpenMP loop body (or other captured region e...
SmallVector< Address, 1 > SEHCodeSlotStack
A stack of exception code slots.
FieldDecl - An instance of this class is created by Sema::ActOnField to represent a member of a struc...
Definition: Decl.h:2467
Definition: Format.h:1900
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
bool isReferenceType() const
Definition: Type.h:5954
Helper class with most of the code for saving a value for a conditional expression cleanup...
llvm::BasicBlock * getStartingBlock() const
Returns a block which will be executed prior to each evaluation of the conditional code...
This represents &#39;#pragma omp target simd&#39; directive.
Definition: StmtOpenMP.h:3330
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:926
Defines some OpenMP-specific enums and functions.
ExtVectorElementExpr - This represents access to specific elements of a vector, and may occur on the ...
Definition: Expr.h:4790
Address getAllocatedAddress() const
Returns the raw, allocated address, which is not necessarily the address of the object itself...
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:66
This represents &#39;#pragma omp barrier&#39; directive.
Definition: StmtOpenMP.h:1829
CleanupKind getCleanupKind(QualType::DestructionKind kind)
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:48
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp, [NSNumber numberWithInt:42]];.
Definition: ExprObjC.h:171
The this pointer adjustment as well as an optional return adjustment for a thunk. ...
Definition: ABI.h:179
This is a common base class for loop directives (&#39;omp simd&#39;, &#39;omp for&#39;, &#39;omp for simd&#39; etc...
Definition: StmtOpenMP.h:317
This represents &#39;#pragma omp critical&#39; directive.
Definition: StmtOpenMP.h:1424
const AstTypeMatcher< ComplexType > complexType
Matches C99 complex types.
bool isCleanupPadScope() const
Returns true while emitting a cleanuppad.
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition: CGExpr.cpp:173
const RValue & getOpaqueRValueMapping(const OpaqueValueExpr *e)
getOpaqueRValueMapping - Given an opaque value expression (which must be mapped to an r-value)...
void pushFullExprCleanup(CleanupKind kind, As... A)
pushFullExprCleanup - Push a cleanup to be run at the end of the current full-expression.
OpenMPDistScheduleClauseKind
OpenMP attributes for &#39;dist_schedule&#39; clause.
Definition: OpenMPKinds.h:100
bool isGLValue() const
Definition: Expr.h:252
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:1312
Describes an C or C++ initializer list.
Definition: Expr.h:3872
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:638
This represents &#39;#pragma omp distribute parallel for&#39; composite directive.
Definition: StmtOpenMP.h:3045
void setCurrentRegionCount(uint64_t Count)
Set the counter value for the current region.
Definition: CodeGenPGO.h:60
A class controlling the emission of a finally block.
This represents &#39;#pragma omp teams distribute parallel for simd&#39; composite directive.
Definition: StmtOpenMP.h:3534
BinaryOperatorKind
static bool hasScalarEvaluationKind(QualType T)
ForStmt - This represents a &#39;for (init;cond;inc)&#39; stmt.
Definition: Stmt.h:1207
InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:986
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
llvm::function_ref< std::pair< LValue, LValue > CodeGenFunction &, const OMPExecutableDirective &S)> CodeGenLoopBoundsTy
CGCapturedStmtRAII(CodeGenFunction &CGF, CGCapturedStmtInfo *NewCapturedStmtInfo)
LexicalScope(CodeGenFunction &CGF, SourceRange Range)
Enter a new cleanup scope.
RAII for correct setting/restoring of CapturedStmtInfo.
TBAAAccessInfo getTBAAAccessInfo(QualType AccessType)
getTBAAAccessInfo - Get TBAA information that describes an access to an object of the given type...
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:67
TypeDecl - Represents a declaration of a type.
Definition: Decl.h:2760
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2985
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const LValue &lv)
CXXForRangeStmt - This represents C++0x [stmt.ranged]&#39;s ranged for statement, represented as &#39;for (ra...
Definition: StmtCXX.h:128
bool IsOutlinedSEHHelper
True if the current function is an outlined SEH helper.
#define LIST_SANITIZER_CHECKS
This represents &#39;#pragma omp cancellation point&#39; directive.
Definition: StmtOpenMP.h:2664
void EmitAggregateAssign(Address DestPtr, Address SrcPtr, QualType EltTy)
EmitAggregateCopy - Emit an aggregate assignment.
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:51
field_iterator field_begin() const
Definition: Decl.cpp:3960
A stack of scopes which respond to exceptions, including cleanups and catch blocks.
Definition: EHScopeStack.h:100
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
This represents &#39;#pragma omp teams&#39; directive.
Definition: StmtOpenMP.h:2607
Denotes a cleanup that should run when a scope is exited using normal control flow (falling off the e...
Definition: EHScopeStack.h:85
Enums/classes describing ABI related information about constructors, destructors and thunks...
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2710
This represents &#39;#pragma omp teams distribute simd&#39; combined directive.
Definition: StmtOpenMP.h:3464
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1196
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1580
GlobalDecl CurGD
CurGD - The GlobalDecl for the current function being compiled.
Controls insertion of cancellation exit blocks in worksharing constructs.
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler&#39;s counter for the given statement by StepV.
uint64_t getCurrentProfileCount()
Get the profiler&#39;s current count.
CallLifetimeEnd(Address addr, llvm::Value *size)
llvm::function_ref< std::pair< llvm::Value *, llvm::Value * > CodeGenFunction &, const OMPExecutableDirective &S, Address LB, Address UB)> CodeGenDispatchBoundsTy
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
Definition: CGExpr.cpp:94
Represents an ObjC class declaration.
Definition: DeclObjC.h:1191
Checking the operand of a cast to a virtual base object.
JumpDest getJumpDestInCurrentScope(StringRef Name=StringRef())
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
llvm::AllocaInst * EHSelectorSlot
The selector slot.
Checking the operand of a load. Must be suitably sized and aligned.
~LexicalScope()
Exit this cleanup scope, emitting any accumulated cleanups.
Checking the &#39;this&#39; pointer for a call to a non-static member function.
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
ObjCPropertyImplDecl - Represents implementation declaration of a property in a class or category imp...
Definition: DeclObjC.h:2778
This represents &#39;#pragma omp target parallel for simd&#39; directive.
Definition: StmtOpenMP.h:3262
OpenMP 4.0 [2.4, Array Sections].
Definition: ExprOpenMP.h:45
Const iterator for iterating over Stmt * arrays that contain only Expr *.
Definition: Stmt.h:346
bool isValid() const
Definition: Address.h:36
CleanupKind Kind
The kind of cleanup to push: a value from the CleanupKind enumeration.
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2197
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:595
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3268
Describes the capture of either a variable, or &#39;this&#39;, or variable-length array type.
Definition: Stmt.h:2071
void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, llvm::Value *OffsetValue=nullptr)
const CodeGen::CGBlockInfo * BlockInfo
This represents &#39;#pragma omp taskgroup&#39; directive.
Definition: StmtOpenMP.h:1917
const TargetCodeGenInfo & getTargetCodeGenInfo()
CGBlockInfo - Information to generate a block literal.
Definition: CGBlocks.h:149
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
bool addPrivate(const VarDecl *LocalVD, llvm::function_ref< Address()> PrivateGen)
Registers LocalVD variable as a private and apply PrivateGen function for it to generate correspondin...
CleanupKind getARCCleanupKind()
Retrieves the default cleanup kind for an ARC cleanup.
bool isGlobalVarCaptured(const VarDecl *VD) const
Checks if the global variable is captured in current function.
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:3778
llvm::Value * ExceptionSlot
The exception slot.
void pushCleanupAfterFullExpr(CleanupKind Kind, As... A)
Queue a cleanup to be pushed after finishing the current full-expression.
LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
This represents &#39;#pragma omp distribute&#39; directive.
Definition: StmtOpenMP.h:2918
Exposes information about the current target.
Definition: TargetInfo.h:54
CXXDtorType
C++ destructor types.
Definition: ABI.h:34
llvm::BasicBlock * EHResumeBlock
EHResumeBlock - Unified block containing a call to llvm.eh.resume.
EHScopeStack::stable_iterator getScopeDepth() const
ValueDecl - Represent the declaration of a variable (in which case it is an lvalue) a function (in wh...
Definition: Decl.h:627
Expr - This represents one expression.
Definition: Expr.h:106
stable_iterator getInnermostNormalCleanup() const
Returns the innermost normal cleanup on the stack, or stable_end() if there are no normal cleanups...
Definition: EHScopeStack.h:356
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
const FunctionProtoType * T
llvm::function_ref< void(CodeGenFunction &, SourceLocation, const unsigned, const bool)> CodeGenOrderedTy
static ParamValue forIndirect(Address addr)
OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, RValue rvalue)
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
void ForceCleanup()
Force the emission of cleanups now, instead of waiting until this object is destroyed.
static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method)
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:4851
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2620
This represents &#39;#pragma omp target teams distribute parallel for simd&#39; combined directive.
Definition: StmtOpenMP.h:3894
static saved_type save(CodeGenFunction &CGF, type value)
AggValueSlot CreateAggTemp(QualType T, const Twine &Name="tmp")
CreateAggTemp - Create a temporary memory object for the given aggregate type.
llvm::AllocaInst * NormalCleanupDest
i32s containing the indexes of the cleanup destinations.
#define bool
Definition: stdbool.h:31
unsigned Size
The size of the following cleanup object.
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:288
DeclContext * getDeclContext()
Definition: DeclBase.h:425
Represents Objective-C&#39;s @synchronized statement.
Definition: StmtObjC.h:262
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:429
CXXTryStmt - A C++ try block, including all handlers.
Definition: StmtCXX.h:65
~OMPPrivateScope()
Exit scope - all the mapped variables are restored.
This represents &#39;#pragma omp target teams distribute simd&#39; combined directive.
Definition: StmtOpenMP.h:3967
int Depth
Definition: ASTDiff.cpp:191
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
llvm::LLVMContext & getLLVMContext()
QualType getType() const
Definition: Expr.h:128
Checking the value assigned to a _Nonnull pointer. Must not be null.
An RAII object to record that we&#39;re evaluating a statement expression.
This represents &#39;#pragma omp for&#39; directive.
Definition: StmtOpenMP.h:1050
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:1417
This represents &#39;#pragma omp target teams&#39; directive.
Definition: StmtOpenMP.h:3683
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T)
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:903
JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, unsigned Index)
void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, QualType DestTy, QualType SrcTy)
SourceLocation getEnd() const
An object which temporarily prevents a value from being destroyed by aggressive peephole optimization...
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1717
OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, Address SizesArray, unsigned NumberOfTargetItems)
This represents &#39;#pragma omp cancel&#39; directive.
Definition: StmtOpenMP.h:2722
RunCleanupsScope(CodeGenFunction &CGF)
Enter a new cleanup scope.
const LangOptions & getLangOpts() const
ASTContext & getContext() const
do v
Definition: arm_acle.h:78
VarDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:1977
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:35
This represents &#39;#pragma omp flush&#39; directive.
Definition: StmtOpenMP.h:1990
This represents &#39;#pragma omp parallel for simd&#39; directive.
Definition: StmtOpenMP.h:1578
DoStmt - This represents a &#39;do/while&#39; stmt.
Definition: Stmt.h:1158
AsmStmt is the base class for GCCAsmStmt and MSAsmStmt.
Definition: Stmt.h:1465
void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, llvm::Value *OffsetValue=nullptr)
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, std::initializer_list< llvm::Value **> ValuesToReload={})
Takes the old cleanup stack size and emits the cleanup blocks that have been added.
Definition: CGCleanup.cpp:420
llvm::function_ref< void(CodeGenFunction &, const OMPLoopDirective &, JumpDest)> CodeGenLoopTy
This represents &#39;#pragma omp target enter data&#39; directive.
Definition: StmtOpenMP.h:2350
OMPPrivateScope(CodeGenFunction &CGF)
Enter a new OpenMP private scope.
llvm::SmallVector< VPtr, 4 > VPtrsVector
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:338
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:868
bool SawAsmBlock
Whether we processed a Microsoft-style asm block during CodeGen.
#define false
Definition: stdbool.h:33
MSVCIntrin
Definition: CGBuiltin.cpp:488
Kind
This captures a statement into a function.
Definition: Stmt.h:2058
Represents a call to an inherited base class constructor from an inheriting constructor.
Definition: ExprCXX.h:1400
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:4969
This represents &#39;#pragma omp single&#39; directive.
Definition: StmtOpenMP.h:1322
Encodes a location in the source.
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go...
A saved depth on the scope stack.
Definition: EHScopeStack.h:107
Represents a C++ temporary.
Definition: ExprCXX.h:1164
~RunCleanupsScope()
Exit this cleanup scope, emitting any accumulated cleanups.
llvm::BasicBlock * getUnreachableBlock()
void setBeforeOutermostConditional(llvm::Value *value, Address addr)
This is a basic class for representing single OpenMP executable directive.
Definition: StmtOpenMP.h:33
SmallVector< llvm::Value *, 8 > ObjCEHValueStack
ObjCEHValueStack - Stack of Objective-C exception values, used for rethrows.
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1842
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:164
const Decl * getDecl() const
Definition: GlobalDecl.h:64
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:487
Checking the operand of a cast to a base object.
OpenMPDirectiveKind
OpenMP directives.
Definition: OpenMPKinds.h:23
LabelDecl - Represents the declaration of a label.
Definition: Decl.h:459
An aggregate value slot.
Definition: CGValue.h:434
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:620
Per-function PGO state.
Definition: CodeGenPGO.h:29
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1964
void EmitStmt(const Stmt *S, ArrayRef< const Attr *> Attrs=None)
EmitStmt - Emit the code for the statement.
Definition: CGStmt.cpp:48
static type restore(CodeGenFunction &CGF, saved_type value)
OpenMPLinearClauseKind Modifier
Modifier of &#39;linear&#39; clause.
Definition: OpenMPClause.h:91
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
This represents &#39;#pragma omp taskwait&#39; directive.
Definition: StmtOpenMP.h:1873
SanitizerSet SanOpts
Sanitizers enabled for this function.
ObjCCategoryDecl - Represents a category declaration.
Definition: DeclObjC.h:2299
This is a basic class for representing single OpenMP clause.
Definition: OpenMPClause.h:51
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>, and corresponding __opencl_atomic_* for OpenCL 2.0.
Definition: Expr.h:5103
ObjCProtocolExpr used for protocol expression in Objective-C.
Definition: ExprObjC.h:474
TypeCheckKind
Situations in which we might emit a check for the suitability of a pointer or glvalue.
An aligned address.
Definition: Address.h:25
This represents &#39;#pragma omp target&#39; directive.
Definition: StmtOpenMP.h:2234
All available information about a concrete callee.
Definition: CGCall.h:66
LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, AlignmentSource Source=AlignmentSource::Type)
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target)
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
TargetCodeGenInfo - This class organizes various target-specific codegeneration issues, like target-specific attributes, builtins and so on.
Definition: TargetInfo.h:46
Checking the object expression in a non-static data member access.
This represents &#39;#pragma omp ordered&#39; directive.
Definition: StmtOpenMP.h:2045
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3488
static ParamValue forDirect(llvm::Value *value)
static llvm::Value * restore(CodeGenFunction &CGF, saved_type value)
This represents &#39;#pragma omp target update&#39; directive.
Definition: StmtOpenMP.h:2986
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:117
uint64_t getCurrentRegionCount() const
Return the counter value of the current region.
Definition: CodeGenPGO.h:55
const CGFunctionInfo * CurFnInfo
void Emit(CodeGenFunction &CGF, Flags flags) override
Emit the cleanup.
static ConstantEmission forReference(llvm::Constant *C)
void enterFullExpression(const ExprWithCleanups *E)
const TargetCodeGenInfo & getTargetHooks() const
static Destroyer destroyARCStrongImprecise
CXXCtorType
C++ constructor types.
Definition: ABI.h:25
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:3191
JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind)
FunctionArgList - Type for representing both the decl and type of parameters to a function...
Definition: CGCall.h:276
OpaqueValueExpr * getOpaqueValue() const
getOpaqueValue - Return the opaque value placeholder.
Definition: Expr.h:3385
CGFunctionInfo - Class to encapsulate the information about a function definition.
This class organizes the cross-function state that is used while generating LLVM code.
Dataflow Directional Tag Classes.
Class provides a way to call simple version of codegen for OpenMP region, or an advanced with possibl...
uint64_t SanitizerMask
Definition: Sanitizers.h:24
[C99 6.4.2.2] - A predefined identifier such as func.
Definition: Expr.h:1188
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1256
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2071
This represents &#39;#pragma omp section&#39; directive.
Definition: StmtOpenMP.h:1260
This represents &#39;#pragma omp teams distribute&#39; directive.
Definition: StmtOpenMP.h:3396
A scope within which we are constructing the fields of an object which might use a CXXDefaultInitExpr...
llvm::LoadInst * CreateAlignedLoad(llvm::Value *Addr, CharUnits Align, const llvm::Twine &Name="")
Definition: CGBuilder.h:91
Checking the bound value in a reference binding.
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we&#39;re currently emitting one branch or the other of a conditio...
This represents &#39;#pragma omp simd&#39; directive.
Definition: StmtOpenMP.h:985
Represents a &#39;co_yield&#39; expression.
Definition: ExprCXX.h:4387
Header for data within LifetimeExtendedCleanupStack.
Checking the destination of a store. Must be suitably sized and aligned.
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2502
llvm::SmallVector< char, 256 > LifetimeExtendedCleanupStack
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:108
This represents &#39;#pragma omp atomic&#39; directive.
Definition: StmtOpenMP.h:2100
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
bool hasProfileClangInstr() const
Check if Clang profile instrumenation is on.
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:1600
Represents a __leave statement.
Definition: Stmt.h:2023
JumpDest ReturnBlock
ReturnBlock - Unified return block.
llvm::DenseMap< const Decl *, Address > DeclMapTy
Checking the operand of a static_cast to a derived reference type.
virtual StringRef getHelperName() const
Get the name of the capture helper.
static bool hasAggregateEvaluationKind(QualType T)
SwitchStmt - This represents a &#39;switch&#39; stmt.
Definition: Stmt.h:1011
ObjCImplementationDecl - Represents a class definition - this is where method definitions are specifi...
Definition: DeclObjC.h:2571
API for captured statement code generation.
static saved_type save(CodeGenFunction &CGF, type value)
static bool isObjCMethodWithTypeParams(const T *)
Represents the body of a coroutine.
Definition: StmtCXX.h:299
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:3976
llvm::Type * ConvertType(const TypeDecl *T)
const LValue & getOpaqueLValueMapping(const OpaqueValueExpr *e)
getOpaqueLValueMapping - Given an opaque value expression (which must be mapped to an l-value)...
Checking the operand of a static_cast to a derived pointer type.
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2121
Represents Objective-C&#39;s collection statement.
Definition: StmtObjC.h:24
CodeGenTypes & getTypes() const
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:3227
Implements C++ ABI-specific code generation functions.
Definition: CGCXXABI.h:44
unsigned getNumObjects() const
Definition: ExprCXX.h:3033
ObjCEncodeExpr, used for @encode in Objective-C.
Definition: ExprObjC.h:386
T * getAttr() const
Definition: DeclBase.h:531
A stack of loop information corresponding to loop nesting levels.
Definition: CGLoopInfo.h:93
This class organizes the cross-module state that is used while lowering AST types to LLVM types...
Definition: CodeGenTypes.h:120
Represents a call to a CUDA kernel function.
Definition: ExprCXX.h:203
bool isFunctionType() const
Definition: Type.h:5938
Represents a &#39;co_await&#39; expression.
Definition: ExprCXX.h:4304
llvm::AssertingVH< llvm::Instruction > AllocaInsertPt
AllocaInsertPoint - This is an instruction in the entry block before which we prefer to insert alloca...
void pushCleanupTuple(CleanupKind Kind, std::tuple< As... > A)
Push a lazily-created cleanup on the stack. Tuple version.
Definition: EHScopeStack.h:283
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:445
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat]...
Definition: APValue.h:38
llvm::Value * LoadCXXVTT()
LoadCXXVTT - Load the VTT parameter to base constructors/destructors have virtual bases...
ARCPreciseLifetime_t
Does an ARC strong l-value have precise lifetime?
Definition: CGValue.h:120
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:513
const Decl * CurFuncDecl
CurFuncDecl - Holds the Decl for the current outermost non-closure context.
A pair of helper functions for a __block variable.
GotoStmt - This represents a direct goto.
Definition: Stmt.h:1278
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const Expr *e)
X
Add a minimal nested name specifier fixit hint to allow lookup of a tag name from an outer enclosing ...
Definition: SemaDecl.cpp:13010
void setCurrentStmt(const Stmt *S)
If the execution count for the current statement is known, record that as the current count...
Definition: CodeGenPGO.h:75
llvm::DenseMap< const VarDecl *, llvm::Value * > NRVOFlags
A mapping from NRVO variables to the flags used to indicate when the NRVO has been applied to this va...
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2387
void unprotectFromPeepholes(PeepholeProtection protection)
A non-RAII class containing all the information about a bound opaque value.
This represents &#39;#pragma omp target parallel&#39; directive.
Definition: StmtOpenMP.h:2467
Represents a C++ struct/union/class.
Definition: DeclCXX.h:299
ContinueStmt - This represents a continue.
Definition: Stmt.h:1355
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block, taking care to avoid creation of branches from dummy blocks.
Definition: CGStmt.cpp:465
llvm::PointerIntPair< llvm::Value *, 1, bool > saved_type
llvm::BasicBlock * getInvokeDest()
BinaryConditionalOperator - The GNU extension to the conditional operator which allows the middle ope...
Definition: Expr.h:3342
LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, AlignmentSource Source=AlignmentSource::Type)
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:5745
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1964
static type restore(CodeGenFunction &CGF, saved_type value)
BuiltinCheckKind
Specifies which type of sanitizer check to apply when handling a particular builtin.
WhileStmt - This represents a &#39;while&#39; stmt.
Definition: Stmt.h:1102
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1170
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel)
unsigned kind
All of the diagnostics that can be emitted by the frontend.
Definition: DiagnosticIDs.h:61
Represents Objective-C&#39;s @try ... @catch ... @finally statement.
Definition: StmtObjC.h:154
capture_iterator capture_end() const
Retrieve an iterator pointing past the end of the sequence of captures.
Definition: Stmt.h:2206
bool AutoreleaseResult
In ARC, whether we should autorelease the return value.
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:50
This represents &#39;#pragma omp taskloop simd&#39; directive.
Definition: StmtOpenMP.h:2852
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1509
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2209
CGCapturedStmtInfo * CapturedStmtInfo
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::Instruction **callOrInvoke=nullptr)
const llvm::function_ref< void(CodeGenFunction &, llvm::Value *, const OMPTaskDataTy &)> TaskGenTy
This represents &#39;#pragma omp sections&#39; directive.
Definition: StmtOpenMP.h:1192
Struct with all informations about dynamic [sub]class needed to set vptr.
bool hasVolatileMember(QualType T)
hasVolatileMember - returns true if aggregate type has a volatile member.
This represents &#39;#pragma omp target data&#39; directive.
Definition: StmtOpenMP.h:2292
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:956
This structure provides a set of types that are commonly used during IR emission. ...
BreakStmt - This represents a break.
Definition: Stmt.h:1381
void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr)
Definition: CGDecl.cpp:951
CapturedRegionKind
The different kinds of captured statement.
Definition: CapturedStmt.h:17
void EmitBranchThroughCleanup(JumpDest Dest)
EmitBranchThroughCleanup - Emit a branch from the current insert block through the normal cleanup han...
Definition: CGCleanup.cpp:1034
QualType getType() const
Definition: Decl.h:638
#define true
Definition: stdbool.h:32
A trivial tuple used to represent a source range.
LValue - This represents an lvalue references.
Definition: CGValue.h:167
An abstract representation of regular/ObjC call/message targets.
This represents &#39;#pragma omp taskyield&#39; directive.
Definition: StmtOpenMP.h:1785
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:147
This represents &#39;#pragma omp distribute parallel for simd&#39; composite directive.
Definition: StmtOpenMP.h:3125
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2717
This represents &#39;#pragma omp parallel sections&#39; directive.
Definition: StmtOpenMP.h:1646
A Microsoft C++ __uuidof expression, which gets the _GUID that corresponds to the supplied type or ex...
Definition: ExprCXX.h:856
bool CurFuncIsThunk
In C++, whether we are code generating a thunk.
const LangOptions & getLangOpts() const
Expr * getCommon() const
getCommon - Return the common expression, written to the left of the condition.
Definition: Expr.h:3382
SourceLocation getBegin() const
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:182
OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, LValue lvalue)
Address CreateMemTemp(QualType T, const Twine &Name="tmp", bool CastToDefaultAddrSpace=true)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignment...
Definition: CGExpr.cpp:127
Represents Objective-C&#39;s @autoreleasepool Statement.
Definition: StmtObjC.h:345
OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
Build the opaque value mapping for an OpaqueValueExpr whose source expression is set to the expressio...
Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, bool followForward=true)
BuildBlockByrefAddress - Computes the location of the data in a variable which is declared as __block...
Definition: CGBlocks.cpp:2265
bool isLocalVarDeclOrParm() const
Similar to isLocalVarDecl but also includes parameters.
Definition: Decl.h:1104
This represents &#39;#pragma omp target parallel for&#39; directive.
Definition: StmtOpenMP.h:2527
llvm::SmallVector< const JumpDest *, 2 > SEHTryEpilogueStack
static OMPLinearClause * Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef< Expr *> VL, ArrayRef< Expr *> PL, ArrayRef< Expr *> IL, Expr *Step, Expr *CalcStep, Stmt *PreInit, Expr *PostUpdate)
Creates clause with a list of variables VL and a linear step Step.
bool Privatize()
Privatizes local variables previously registered as private.
void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty)
This represents &#39;#pragma omp taskloop&#39; directive.
Definition: StmtOpenMP.h:2787