clang  6.0.0
BackendUtil.cpp
Go to the documentation of this file.
1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
11 #include "clang/Basic/Diagnostic.h"
16 #include "clang/Frontend/Utils.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringSwitch.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Bitcode/BitcodeReader.h"
25 #include "llvm/Bitcode/BitcodeWriter.h"
26 #include "llvm/Bitcode/BitcodeWriterPass.h"
27 #include "llvm/CodeGen/RegAllocRegistry.h"
28 #include "llvm/CodeGen/SchedulerRegistry.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/IRPrintingPasses.h"
31 #include "llvm/IR/LegacyPassManager.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ModuleSummaryIndex.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/LTO/LTOBackend.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/MC/SubtargetFeature.h"
38 #include "llvm/Passes/PassBuilder.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/MemoryBuffer.h"
41 #include "llvm/Support/PrettyStackTrace.h"
42 #include "llvm/Support/TargetRegistry.h"
43 #include "llvm/Support/Timer.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include "llvm/CodeGen/TargetSubtargetInfo.h"
48 #include "llvm/Transforms/Coroutines.h"
49 #include "llvm/Transforms/IPO.h"
50 #include "llvm/Transforms/IPO/AlwaysInliner.h"
51 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
53 #include "llvm/Transforms/Instrumentation.h"
54 #include "llvm/Transforms/Instrumentation/BoundsChecking.h"
55 #include "llvm/Transforms/ObjCARC.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Scalar/GVN.h"
58 #include "llvm/Transforms/Utils/NameAnonGlobals.h"
59 #include "llvm/Transforms/Utils/SymbolRewriter.h"
60 #include <memory>
61 using namespace clang;
62 using namespace llvm;
63 
64 namespace {
65 
66 // Default filename used for profile generation.
67 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw";
68 
69 class EmitAssemblyHelper {
70  DiagnosticsEngine &Diags;
71  const HeaderSearchOptions &HSOpts;
72  const CodeGenOptions &CodeGenOpts;
73  const clang::TargetOptions &TargetOpts;
74  const LangOptions &LangOpts;
75  Module *TheModule;
76 
77  Timer CodeGenerationTime;
78 
79  std::unique_ptr<raw_pwrite_stream> OS;
80 
81  TargetIRAnalysis getTargetIRAnalysis() const {
82  if (TM)
83  return TM->getTargetIRAnalysis();
84 
85  return TargetIRAnalysis();
86  }
87 
88  void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM);
89 
90  /// Generates the TargetMachine.
91  /// Leaves TM unchanged if it is unable to create the target machine.
92  /// Some of our clang tests specify triples which are not built
93  /// into clang. This is okay because these tests check the generated
94  /// IR, and they require DataLayout which depends on the triple.
95  /// In this case, we allow this method to fail and not report an error.
96  /// When MustCreateTM is used, we print an error if we are unable to load
97  /// the requested target.
98  void CreateTargetMachine(bool MustCreateTM);
99 
100  /// Add passes necessary to emit assembly or LLVM IR.
101  ///
102  /// \return True on success.
103  bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
104  raw_pwrite_stream &OS);
105 
106 public:
107  EmitAssemblyHelper(DiagnosticsEngine &_Diags,
108  const HeaderSearchOptions &HeaderSearchOpts,
109  const CodeGenOptions &CGOpts,
110  const clang::TargetOptions &TOpts,
111  const LangOptions &LOpts, Module *M)
112  : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts),
113  TargetOpts(TOpts), LangOpts(LOpts), TheModule(M),
114  CodeGenerationTime("codegen", "Code Generation Time") {}
115 
116  ~EmitAssemblyHelper() {
117  if (CodeGenOpts.DisableFree)
118  BuryPointer(std::move(TM));
119  }
120 
121  std::unique_ptr<TargetMachine> TM;
122 
123  void EmitAssembly(BackendAction Action,
124  std::unique_ptr<raw_pwrite_stream> OS);
125 
126  void EmitAssemblyWithNewPassManager(BackendAction Action,
127  std::unique_ptr<raw_pwrite_stream> OS);
128 };
129 
130 // We need this wrapper to access LangOpts and CGOpts from extension functions
131 // that we add to the PassManagerBuilder.
132 class PassManagerBuilderWrapper : public PassManagerBuilder {
133 public:
134  PassManagerBuilderWrapper(const Triple &TargetTriple,
135  const CodeGenOptions &CGOpts,
136  const LangOptions &LangOpts)
137  : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts),
138  LangOpts(LangOpts) {}
139  const Triple &getTargetTriple() const { return TargetTriple; }
140  const CodeGenOptions &getCGOpts() const { return CGOpts; }
141  const LangOptions &getLangOpts() const { return LangOpts; }
142 
143 private:
144  const Triple &TargetTriple;
145  const CodeGenOptions &CGOpts;
146  const LangOptions &LangOpts;
147 };
148 }
149 
150 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
151  if (Builder.OptLevel > 0)
152  PM.add(createObjCARCAPElimPass());
153 }
154 
155 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
156  if (Builder.OptLevel > 0)
157  PM.add(createObjCARCExpandPass());
158 }
159 
160 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
161  if (Builder.OptLevel > 0)
162  PM.add(createObjCARCOptPass());
163 }
164 
165 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder,
166  legacy::PassManagerBase &PM) {
167  PM.add(createAddDiscriminatorsPass());
168 }
169 
170 static void addBoundsCheckingPass(const PassManagerBuilder &Builder,
171  legacy::PassManagerBase &PM) {
172  PM.add(createBoundsCheckingLegacyPass());
173 }
174 
175 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder,
176  legacy::PassManagerBase &PM) {
177  const PassManagerBuilderWrapper &BuilderWrapper =
178  static_cast<const PassManagerBuilderWrapper&>(Builder);
179  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
180  SanitizerCoverageOptions Opts;
181  Opts.CoverageType =
182  static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
183  Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
184  Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
185  Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
186  Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
187  Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
188  Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
189  Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
190  Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
191  Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
192  Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
193  Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
194  Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
195  PM.add(createSanitizerCoverageModulePass(Opts));
196 }
197 
198 // Check if ASan should use GC-friendly instrumentation for globals.
199 // First of all, there is no point if -fdata-sections is off (expect for MachO,
200 // where this is not a factor). Also, on ELF this feature requires an assembler
201 // extension that only works with -integrated-as at the moment.
202 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
203  if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
204  return false;
205  switch (T.getObjectFormat()) {
206  case Triple::MachO:
207  case Triple::COFF:
208  return true;
209  case Triple::ELF:
210  return CGOpts.DataSections && !CGOpts.DisableIntegratedAS;
211  default:
212  return false;
213  }
214 }
215 
216 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
217  legacy::PassManagerBase &PM) {
218  const PassManagerBuilderWrapper &BuilderWrapper =
219  static_cast<const PassManagerBuilderWrapper&>(Builder);
220  const Triple &T = BuilderWrapper.getTargetTriple();
221  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
222  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address);
223  bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope;
224  bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts);
225  PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover,
226  UseAfterScope));
227  PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover,
228  UseGlobalsGC));
229 }
230 
231 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder,
232  legacy::PassManagerBase &PM) {
233  PM.add(createAddressSanitizerFunctionPass(
234  /*CompileKernel*/ true,
235  /*Recover*/ true, /*UseAfterScope*/ false));
236  PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true,
237  /*Recover*/true));
238 }
239 
240 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
241  legacy::PassManagerBase &PM) {
242  const PassManagerBuilderWrapper &BuilderWrapper =
243  static_cast<const PassManagerBuilderWrapper &>(Builder);
244  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
245  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress);
246  PM.add(createHWAddressSanitizerPass(Recover));
247 }
248 
249 static void addMemorySanitizerPass(const PassManagerBuilder &Builder,
250  legacy::PassManagerBase &PM) {
251  const PassManagerBuilderWrapper &BuilderWrapper =
252  static_cast<const PassManagerBuilderWrapper&>(Builder);
253  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
254  int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins;
255  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory);
256  PM.add(createMemorySanitizerPass(TrackOrigins, Recover));
257 
258  // MemorySanitizer inserts complex instrumentation that mostly follows
259  // the logic of the original code, but operates on "shadow" values.
260  // It can benefit from re-running some general purpose optimization passes.
261  if (Builder.OptLevel > 0) {
262  PM.add(createEarlyCSEPass());
263  PM.add(createReassociatePass());
264  PM.add(createLICMPass());
265  PM.add(createGVNPass());
266  PM.add(createInstructionCombiningPass());
267  PM.add(createDeadStoreEliminationPass());
268  }
269 }
270 
271 static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
272  legacy::PassManagerBase &PM) {
273  PM.add(createThreadSanitizerPass());
274 }
275 
276 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder,
277  legacy::PassManagerBase &PM) {
278  const PassManagerBuilderWrapper &BuilderWrapper =
279  static_cast<const PassManagerBuilderWrapper&>(Builder);
280  const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
281  PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles));
282 }
283 
284 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder,
285  legacy::PassManagerBase &PM) {
286  const PassManagerBuilderWrapper &BuilderWrapper =
287  static_cast<const PassManagerBuilderWrapper&>(Builder);
288  const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
289  EfficiencySanitizerOptions Opts;
290  if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag))
291  Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag;
292  else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet))
293  Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet;
294  PM.add(createEfficiencySanitizerPass(Opts));
295 }
296 
297 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple,
298  const CodeGenOptions &CodeGenOpts) {
299  TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple);
300  if (!CodeGenOpts.SimplifyLibCalls)
301  TLII->disableAllFunctions();
302  else {
303  // Disable individual libc/libm calls in TargetLibraryInfo.
304  LibFunc F;
305  for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs())
306  if (TLII->getLibFunc(FuncName, F))
307  TLII->setUnavailable(F);
308  }
309 
310  switch (CodeGenOpts.getVecLib()) {
312  TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate);
313  break;
315  TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML);
316  break;
317  default:
318  break;
319  }
320  return TLII;
321 }
322 
323 static void addSymbolRewriterPass(const CodeGenOptions &Opts,
324  legacy::PassManager *MPM) {
325  llvm::SymbolRewriter::RewriteDescriptorList DL;
326 
327  llvm::SymbolRewriter::RewriteMapParser MapParser;
328  for (const auto &MapFile : Opts.RewriteMapFiles)
329  MapParser.parse(MapFile, &DL);
330 
331  MPM->add(createRewriteSymbolsPass(DL));
332 }
333 
334 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) {
335  switch (CodeGenOpts.OptimizationLevel) {
336  default:
337  llvm_unreachable("Invalid optimization level!");
338  case 0:
339  return CodeGenOpt::None;
340  case 1:
341  return CodeGenOpt::Less;
342  case 2:
343  return CodeGenOpt::Default; // O2/Os/Oz
344  case 3:
345  return CodeGenOpt::Aggressive;
346  }
347 }
348 
350 getCodeModel(const CodeGenOptions &CodeGenOpts) {
351  unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
352  .Case("small", llvm::CodeModel::Small)
353  .Case("kernel", llvm::CodeModel::Kernel)
354  .Case("medium", llvm::CodeModel::Medium)
355  .Case("large", llvm::CodeModel::Large)
356  .Case("default", ~1u)
357  .Default(~0u);
358  assert(CodeModel != ~0u && "invalid code model!");
359  if (CodeModel == ~1u)
360  return None;
361  return static_cast<llvm::CodeModel::Model>(CodeModel);
362 }
363 
364 static llvm::Reloc::Model getRelocModel(const CodeGenOptions &CodeGenOpts) {
365  // Keep this synced with the equivalent code in
366  // lib/Frontend/CompilerInvocation.cpp
368  RM = llvm::StringSwitch<llvm::Reloc::Model>(CodeGenOpts.RelocationModel)
369  .Case("static", llvm::Reloc::Static)
370  .Case("pic", llvm::Reloc::PIC_)
371  .Case("ropi", llvm::Reloc::ROPI)
372  .Case("rwpi", llvm::Reloc::RWPI)
373  .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI)
374  .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC);
375  assert(RM.hasValue() && "invalid PIC model!");
376  return *RM;
377 }
378 
379 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) {
380  if (Action == Backend_EmitObj)
381  return TargetMachine::CGFT_ObjectFile;
382  else if (Action == Backend_EmitMCNull)
383  return TargetMachine::CGFT_Null;
384  else {
385  assert(Action == Backend_EmitAssembly && "Invalid action!");
386  return TargetMachine::CGFT_AssemblyFile;
387  }
388 }
389 
390 static void initTargetOptions(llvm::TargetOptions &Options,
391  const CodeGenOptions &CodeGenOpts,
392  const clang::TargetOptions &TargetOpts,
393  const LangOptions &LangOpts,
394  const HeaderSearchOptions &HSOpts) {
395  Options.ThreadModel =
396  llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel)
397  .Case("posix", llvm::ThreadModel::POSIX)
398  .Case("single", llvm::ThreadModel::Single);
399 
400  // Set float ABI type.
401  assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
402  CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
403  "Invalid Floating Point ABI!");
404  Options.FloatABIType =
405  llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
406  .Case("soft", llvm::FloatABI::Soft)
407  .Case("softfp", llvm::FloatABI::Soft)
408  .Case("hard", llvm::FloatABI::Hard)
409  .Default(llvm::FloatABI::Default);
410 
411  // Set FP fusion mode.
412  switch (LangOpts.getDefaultFPContractMode()) {
414  // Preserve any contraction performed by the front-end. (Strict performs
415  // splitting of the muladd instrinsic in the backend.)
416  Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
417  break;
418  case LangOptions::FPC_On:
419  Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
420  break;
422  Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
423  break;
424  }
425 
426  Options.UseInitArray = CodeGenOpts.UseInitArray;
427  Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
428  Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections();
429  Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations;
430 
431  // Set EABI version.
432  Options.EABIVersion = TargetOpts.EABIVersion;
433 
434  if (LangOpts.SjLjExceptions)
435  Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
436  if (LangOpts.SEHExceptions)
437  Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
438  if (LangOpts.DWARFExceptions)
439  Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
440 
441  Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath;
442  Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath;
443  Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
444  Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath;
445  Options.StackAlignmentOverride = CodeGenOpts.StackAlignment;
446  Options.FunctionSections = CodeGenOpts.FunctionSections;
447  Options.DataSections = CodeGenOpts.DataSections;
448  Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
449  Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
450  Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
451 
452  if (CodeGenOpts.EnableSplitDwarf)
453  Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
454  Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
455  Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
456  Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm;
457  Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
458  Options.MCOptions.MCIncrementalLinkerCompatible =
459  CodeGenOpts.IncrementalLinkerCompatible;
460  Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations;
461  Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
462  Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
463  Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
464  Options.MCOptions.ABIName = TargetOpts.ABI;
465  for (const auto &Entry : HSOpts.UserEntries)
466  if (!Entry.IsFramework &&
467  (Entry.Group == frontend::IncludeDirGroup::Quoted ||
468  Entry.Group == frontend::IncludeDirGroup::Angled ||
469  Entry.Group == frontend::IncludeDirGroup::System))
470  Options.MCOptions.IASSearchPaths.push_back(
471  Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
472 }
473 
474 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM,
475  legacy::FunctionPassManager &FPM) {
476  // Handle disabling of all LLVM passes, where we want to preserve the
477  // internal module before any optimization.
478  if (CodeGenOpts.DisableLLVMPasses)
479  return;
480 
481  // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM
482  // manually (and not via PMBuilder), since some passes (eg. InstrProfiling)
483  // are inserted before PMBuilder ones - they'd get the default-constructed
484  // TLI with an unknown target otherwise.
485  Triple TargetTriple(TheModule->getTargetTriple());
486  std::unique_ptr<TargetLibraryInfoImpl> TLII(
487  createTLII(TargetTriple, CodeGenOpts));
488 
489  PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts);
490 
491  // At O0 and O1 we only run the always inliner which is more efficient. At
492  // higher optimization levels we run the normal inliner.
493  if (CodeGenOpts.OptimizationLevel <= 1) {
494  bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 &&
495  !CodeGenOpts.DisableLifetimeMarkers);
496  PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics);
497  } else {
498  // We do not want to inline hot callsites for SamplePGO module-summary build
499  // because profile annotation will happen again in ThinLTO backend, and we
500  // want the IR of the hot path to match the profile.
501  PMBuilder.Inliner = createFunctionInliningPass(
502  CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize,
503  (!CodeGenOpts.SampleProfileFile.empty() &&
504  CodeGenOpts.EmitSummaryIndex));
505  }
506 
507  PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel;
508  PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
509  PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
510  PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;
511 
512  PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;
513  PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions;
514  PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex;
515  PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO;
516  PMBuilder.RerollLoops = CodeGenOpts.RerollLoops;
517 
518  MPM.add(new TargetLibraryInfoWrapperPass(*TLII));
519 
520  if (TM)
521  TM->adjustPassManager(PMBuilder);
522 
523  if (CodeGenOpts.DebugInfoForProfiling ||
524  !CodeGenOpts.SampleProfileFile.empty())
525  PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
527 
528  // In ObjC ARC mode, add the main ARC optimization passes.
529  if (LangOpts.ObjCAutoRefCount) {
530  PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
532  PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
534  PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
536  }
537 
538  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) {
539  PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
541  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
543  }
544 
545  if (CodeGenOpts.SanitizeCoverageType ||
546  CodeGenOpts.SanitizeCoverageIndirectCalls ||
547  CodeGenOpts.SanitizeCoverageTraceCmp) {
548  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
550  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
552  }
553 
554  if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
555  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
557  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
559  }
560 
561  if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) {
562  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
564  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
566  }
567 
568  if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) {
569  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
571  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
573  }
574 
575  if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
576  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
578  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
580  }
581 
582  if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
583  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
585  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
587  }
588 
589  if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
590  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
592  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
594  }
595 
596  if (LangOpts.CoroutinesTS)
597  addCoroutinePassesToExtensionPoints(PMBuilder);
598 
599  if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) {
600  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
602  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
604  }
605 
606  // Set up the per-function pass manager.
607  FPM.add(new TargetLibraryInfoWrapperPass(*TLII));
608  if (CodeGenOpts.VerifyModule)
609  FPM.add(createVerifierPass());
610 
611  // Set up the per-module pass manager.
612  if (!CodeGenOpts.RewriteMapFiles.empty())
613  addSymbolRewriterPass(CodeGenOpts, &MPM);
614 
615  if (!CodeGenOpts.DisableGCov &&
616  (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) {
617  // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
618  // LLVM's -default-gcov-version flag is set to something invalid.
619  GCOVOptions Options;
620  Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
621  Options.EmitData = CodeGenOpts.EmitGcovArcs;
622  memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4);
623  Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum;
624  Options.NoRedZone = CodeGenOpts.DisableRedZone;
625  Options.FunctionNamesInData =
626  !CodeGenOpts.CoverageNoFunctionNamesInData;
627  Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody;
628  MPM.add(createGCOVProfilerPass(Options));
629  if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo)
630  MPM.add(createStripSymbolsPass(true));
631  }
632 
633  if (CodeGenOpts.hasProfileClangInstr()) {
634  InstrProfOptions Options;
635  Options.NoRedZone = CodeGenOpts.DisableRedZone;
636  Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
637  MPM.add(createInstrProfilingLegacyPass(Options));
638  }
639  if (CodeGenOpts.hasProfileIRInstr()) {
640  PMBuilder.EnablePGOInstrGen = true;
641  if (!CodeGenOpts.InstrProfileOutput.empty())
642  PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput;
643  else
644  PMBuilder.PGOInstrGen = DefaultProfileGenName;
645  }
646  if (CodeGenOpts.hasProfileIRUse())
647  PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath;
648 
649  if (!CodeGenOpts.SampleProfileFile.empty())
650  PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile;
651 
652  PMBuilder.populateFunctionPassManager(FPM);
653  PMBuilder.populateModulePassManager(MPM);
654 }
655 
656 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
657  SmallVector<const char *, 16> BackendArgs;
658  BackendArgs.push_back("clang"); // Fake program name.
659  if (!CodeGenOpts.DebugPass.empty()) {
660  BackendArgs.push_back("-debug-pass");
661  BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
662  }
663  if (!CodeGenOpts.LimitFloatPrecision.empty()) {
664  BackendArgs.push_back("-limit-float-precision");
665  BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
666  }
667  for (const std::string &BackendOption : CodeGenOpts.BackendOptions)
668  BackendArgs.push_back(BackendOption.c_str());
669  BackendArgs.push_back(nullptr);
670  llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
671  BackendArgs.data());
672 }
673 
674 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
675  // Create the TargetMachine for generating code.
676  std::string Error;
677  std::string Triple = TheModule->getTargetTriple();
678  const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
679  if (!TheTarget) {
680  if (MustCreateTM)
681  Diags.Report(diag::err_fe_unable_to_create_target) << Error;
682  return;
683  }
684 
686  std::string FeaturesStr =
687  llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
688  llvm::Reloc::Model RM = getRelocModel(CodeGenOpts);
689  CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts);
690 
691  llvm::TargetOptions Options;
692  initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts);
693  TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
694  Options, RM, CM, OptLevel));
695 }
696 
697 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
698  BackendAction Action,
699  raw_pwrite_stream &OS) {
700  // Add LibraryInfo.
701  llvm::Triple TargetTriple(TheModule->getTargetTriple());
702  std::unique_ptr<TargetLibraryInfoImpl> TLII(
703  createTLII(TargetTriple, CodeGenOpts));
704  CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
705 
706  // Normal mode, emit a .s or .o file by running the code generator. Note,
707  // this also adds codegenerator level optimization passes.
708  TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action);
709 
710  // Add ObjC ARC final-cleanup optimizations. This is done as part of the
711  // "codegen" passes so that it isn't run multiple times when there is
712  // inlining happening.
713  if (CodeGenOpts.OptimizationLevel > 0)
714  CodeGenPasses.add(createObjCARCContractPass());
715 
716  if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT,
717  /*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
718  Diags.Report(diag::err_fe_unable_to_interface_with_target);
719  return false;
720  }
721 
722  return true;
723 }
724 
726  std::unique_ptr<raw_pwrite_stream> OS) {
727  TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr);
728 
729  setCommandLineOpts(CodeGenOpts);
730 
731  bool UsesCodeGen = (Action != Backend_EmitNothing &&
732  Action != Backend_EmitBC &&
733  Action != Backend_EmitLL);
734  CreateTargetMachine(UsesCodeGen);
735 
736  if (UsesCodeGen && !TM)
737  return;
738  if (TM)
739  TheModule->setDataLayout(TM->createDataLayout());
740 
741  legacy::PassManager PerModulePasses;
742  PerModulePasses.add(
743  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
744 
745  legacy::FunctionPassManager PerFunctionPasses(TheModule);
746  PerFunctionPasses.add(
747  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
748 
749  CreatePasses(PerModulePasses, PerFunctionPasses);
750 
751  legacy::PassManager CodeGenPasses;
752  CodeGenPasses.add(
753  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
754 
755  std::unique_ptr<raw_fd_ostream> ThinLinkOS;
756 
757  switch (Action) {
758  case Backend_EmitNothing:
759  break;
760 
761  case Backend_EmitBC:
762  if (CodeGenOpts.EmitSummaryIndex) {
763  if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
764  std::error_code EC;
765  ThinLinkOS.reset(new llvm::raw_fd_ostream(
766  CodeGenOpts.ThinLinkBitcodeFile, EC,
767  llvm::sys::fs::F_None));
768  if (EC) {
769  Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile
770  << EC.message();
771  return;
772  }
773  }
774  PerModulePasses.add(
775  createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get()));
776  }
777  else
778  PerModulePasses.add(
779  createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists));
780  break;
781 
782  case Backend_EmitLL:
783  PerModulePasses.add(
784  createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
785  break;
786 
787  default:
788  if (!AddEmitPasses(CodeGenPasses, Action, *OS))
789  return;
790  }
791 
792  // Before executing passes, print the final values of the LLVM options.
793  cl::PrintOptionValues();
794 
795  // Run passes. For now we do all passes at once, but eventually we
796  // would like to have the option of streaming code generation.
797 
798  {
799  PrettyStackTraceString CrashInfo("Per-function optimization");
800 
801  PerFunctionPasses.doInitialization();
802  for (Function &F : *TheModule)
803  if (!F.isDeclaration())
804  PerFunctionPasses.run(F);
805  PerFunctionPasses.doFinalization();
806  }
807 
808  {
809  PrettyStackTraceString CrashInfo("Per-module optimization passes");
810  PerModulePasses.run(*TheModule);
811  }
812 
813  {
814  PrettyStackTraceString CrashInfo("Code generation");
815  CodeGenPasses.run(*TheModule);
816  }
817 }
818 
819 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
820  switch (Opts.OptimizationLevel) {
821  default:
822  llvm_unreachable("Invalid optimization level!");
823 
824  case 1:
825  return PassBuilder::O1;
826 
827  case 2:
828  switch (Opts.OptimizeSize) {
829  default:
830  llvm_unreachable("Invalide optimization level for size!");
831 
832  case 0:
833  return PassBuilder::O2;
834 
835  case 1:
836  return PassBuilder::Os;
837 
838  case 2:
839  return PassBuilder::Oz;
840  }
841 
842  case 3:
843  return PassBuilder::O3;
844  }
845 }
846 
847 /// A clean version of `EmitAssembly` that uses the new pass manager.
848 ///
849 /// Not all features are currently supported in this system, but where
850 /// necessary it falls back to the legacy pass manager to at least provide
851 /// basic functionality.
852 ///
853 /// This API is planned to have its functionality finished and then to replace
854 /// `EmitAssembly` at some point in the future when the default switches.
855 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager(
856  BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) {
857  TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr);
858  setCommandLineOpts(CodeGenOpts);
859 
860  // The new pass manager always makes a target machine available to passes
861  // during construction.
862  CreateTargetMachine(/*MustCreateTM*/ true);
863  if (!TM)
864  // This will already be diagnosed, just bail.
865  return;
866  TheModule->setDataLayout(TM->createDataLayout());
867 
868  Optional<PGOOptions> PGOOpt;
869 
870  if (CodeGenOpts.hasProfileIRInstr())
871  // -fprofile-generate.
872  PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty()
873  ? DefaultProfileGenName
874  : CodeGenOpts.InstrProfileOutput,
875  "", "", true, CodeGenOpts.DebugInfoForProfiling);
876  else if (CodeGenOpts.hasProfileIRUse())
877  // -fprofile-use.
878  PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false,
879  CodeGenOpts.DebugInfoForProfiling);
880  else if (!CodeGenOpts.SampleProfileFile.empty())
881  // -fprofile-sample-use
882  PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false,
883  CodeGenOpts.DebugInfoForProfiling);
884  else if (CodeGenOpts.DebugInfoForProfiling)
885  // -fdebug-info-for-profiling
886  PGOOpt = PGOOptions("", "", "", false, true);
887 
888  PassBuilder PB(TM.get(), PGOOpt);
889 
890  LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager);
891  FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager);
892  CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager);
893  ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager);
894 
895  // Register the AA manager first so that our version is the one used.
896  FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); });
897 
898  // Register the target library analysis directly and give it a customized
899  // preset TLI.
900  Triple TargetTriple(TheModule->getTargetTriple());
901  std::unique_ptr<TargetLibraryInfoImpl> TLII(
902  createTLII(TargetTriple, CodeGenOpts));
903  FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
904  MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
905 
906  // Register all the basic analyses with the managers.
907  PB.registerModuleAnalyses(MAM);
908  PB.registerCGSCCAnalyses(CGAM);
909  PB.registerFunctionAnalyses(FAM);
910  PB.registerLoopAnalyses(LAM);
911  PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
912 
913  ModulePassManager MPM(CodeGenOpts.DebugPassManager);
914 
915  if (!CodeGenOpts.DisableLLVMPasses) {
916  bool IsThinLTO = CodeGenOpts.EmitSummaryIndex;
917  bool IsLTO = CodeGenOpts.PrepareForLTO;
918 
919  if (CodeGenOpts.OptimizationLevel == 0) {
920  // Build a minimal pipeline based on the semantics required by Clang,
921  // which is just that always inlining occurs.
922  MPM.addPass(AlwaysInlinerPass());
923 
924  // At -O0 we directly run necessary sanitizer passes.
925  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
926  MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass()));
927 
928  // Lastly, add a semantically necessary pass for ThinLTO.
929  if (IsThinLTO)
930  MPM.addPass(NameAnonGlobalPass());
931  } else {
932  // Map our optimization levels into one of the distinct levels used to
933  // configure the pipeline.
934  PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts);
935 
936  // Register callbacks to schedule sanitizer passes at the appropriate part of
937  // the pipeline.
938  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
939  PB.registerScalarOptimizerLateEPCallback(
940  [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
941  FPM.addPass(BoundsCheckingPass());
942  });
943 
944  if (IsThinLTO) {
945  MPM = PB.buildThinLTOPreLinkDefaultPipeline(
946  Level, CodeGenOpts.DebugPassManager);
947  MPM.addPass(NameAnonGlobalPass());
948  } else if (IsLTO) {
949  MPM = PB.buildLTOPreLinkDefaultPipeline(Level,
950  CodeGenOpts.DebugPassManager);
951  } else {
952  MPM = PB.buildPerModuleDefaultPipeline(Level,
953  CodeGenOpts.DebugPassManager);
954  }
955  }
956  }
957 
958  // FIXME: We still use the legacy pass manager to do code generation. We
959  // create that pass manager here and use it as needed below.
960  legacy::PassManager CodeGenPasses;
961  bool NeedCodeGen = false;
962  Optional<raw_fd_ostream> ThinLinkOS;
963 
964  // Append any output we need to the pass manager.
965  switch (Action) {
966  case Backend_EmitNothing:
967  break;
968 
969  case Backend_EmitBC:
970  if (CodeGenOpts.EmitSummaryIndex) {
971  if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
972  std::error_code EC;
973  ThinLinkOS.emplace(CodeGenOpts.ThinLinkBitcodeFile, EC,
974  llvm::sys::fs::F_None);
975  if (EC) {
976  Diags.Report(diag::err_fe_unable_to_open_output)
977  << CodeGenOpts.ThinLinkBitcodeFile << EC.message();
978  return;
979  }
980  }
981  MPM.addPass(
982  ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &*ThinLinkOS : nullptr));
983  } else {
984  MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists,
985  CodeGenOpts.EmitSummaryIndex,
986  CodeGenOpts.EmitSummaryIndex));
987  }
988  break;
989 
990  case Backend_EmitLL:
991  MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
992  break;
993 
995  case Backend_EmitMCNull:
996  case Backend_EmitObj:
997  NeedCodeGen = true;
998  CodeGenPasses.add(
999  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
1000  if (!AddEmitPasses(CodeGenPasses, Action, *OS))
1001  // FIXME: Should we handle this error differently?
1002  return;
1003  break;
1004  }
1005 
1006  // Before executing passes, print the final values of the LLVM options.
1007  cl::PrintOptionValues();
1008 
1009  // Now that we have all of the passes ready, run them.
1010  {
1011  PrettyStackTraceString CrashInfo("Optimizer");
1012  MPM.run(*TheModule, MAM);
1013  }
1014 
1015  // Now if needed, run the legacy PM for codegen.
1016  if (NeedCodeGen) {
1017  PrettyStackTraceString CrashInfo("Code generation");
1018  CodeGenPasses.run(*TheModule);
1019  }
1020 }
1021 
1022 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) {
1023  Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef);
1024  if (!BMsOrErr)
1025  return BMsOrErr.takeError();
1026 
1027  // The bitcode file may contain multiple modules, we want the one that is
1028  // marked as being the ThinLTO module.
1029  for (BitcodeModule &BM : *BMsOrErr) {
1030  Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo();
1031  if (LTOInfo && LTOInfo->IsThinLTO)
1032  return BM;
1033  }
1034 
1035  return make_error<StringError>("Could not find module summary",
1036  inconvertibleErrorCode());
1037 }
1038 
1039 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M,
1040  const HeaderSearchOptions &HeaderOpts,
1041  const CodeGenOptions &CGOpts,
1042  const clang::TargetOptions &TOpts,
1043  const LangOptions &LOpts,
1044  std::unique_ptr<raw_pwrite_stream> OS,
1045  std::string SampleProfile,
1046  BackendAction Action) {
1047  StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
1048  ModuleToDefinedGVSummaries;
1049  CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
1050 
1051  setCommandLineOpts(CGOpts);
1052 
1053  // We can simply import the values mentioned in the combined index, since
1054  // we should only invoke this using the individual indexes written out
1055  // via a WriteIndexesThinBackend.
1056  FunctionImporter::ImportMapTy ImportList;
1057  for (auto &GlobalList : *CombinedIndex) {
1058  // Ignore entries for undefined references.
1059  if (GlobalList.second.SummaryList.empty())
1060  continue;
1061 
1062  auto GUID = GlobalList.first;
1063  assert(GlobalList.second.SummaryList.size() == 1 &&
1064  "Expected individual combined index to have one summary per GUID");
1065  auto &Summary = GlobalList.second.SummaryList[0];
1066  // Skip the summaries for the importing module. These are included to
1067  // e.g. record required linkage changes.
1068  if (Summary->modulePath() == M->getModuleIdentifier())
1069  continue;
1070  // Doesn't matter what value we plug in to the map, just needs an entry
1071  // to provoke importing by thinBackend.
1072  ImportList[Summary->modulePath()][GUID] = 1;
1073  }
1074 
1075  std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports;
1076  MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap;
1077 
1078  for (auto &I : ImportList) {
1079  ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr =
1080  llvm::MemoryBuffer::getFile(I.first());
1081  if (!MBOrErr) {
1082  errs() << "Error loading imported file '" << I.first()
1083  << "': " << MBOrErr.getError().message() << "\n";
1084  return;
1085  }
1086 
1087  Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr);
1088  if (!BMOrErr) {
1089  handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) {
1090  errs() << "Error loading imported file '" << I.first()
1091  << "': " << EIB.message() << '\n';
1092  });
1093  return;
1094  }
1095  ModuleMap.insert({I.first(), *BMOrErr});
1096 
1097  OwnedImports.push_back(std::move(*MBOrErr));
1098  }
1099  auto AddStream = [&](size_t Task) {
1100  return llvm::make_unique<lto::NativeObjectStream>(std::move(OS));
1101  };
1102  lto::Config Conf;
1103  Conf.CPU = TOpts.CPU;
1104  Conf.CodeModel = getCodeModel(CGOpts);
1105  Conf.MAttrs = TOpts.Features;
1106  Conf.RelocModel = getRelocModel(CGOpts);
1107  Conf.CGOptLevel = getCGOptLevel(CGOpts);
1108  initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts);
1109  Conf.SampleProfile = std::move(SampleProfile);
1110  Conf.UseNewPM = CGOpts.ExperimentalNewPassManager;
1111  Conf.DebugPassManager = CGOpts.DebugPassManager;
1112  switch (Action) {
1113  case Backend_EmitNothing:
1114  Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) {
1115  return false;
1116  };
1117  break;
1118  case Backend_EmitLL:
1119  Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1120  M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
1121  return false;
1122  };
1123  break;
1124  case Backend_EmitBC:
1125  Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1126  WriteBitcodeToFile(M, *OS, CGOpts.EmitLLVMUseLists);
1127  return false;
1128  };
1129  break;
1130  default:
1131  Conf.CGFileType = getCodeGenFileType(Action);
1132  break;
1133  }
1134  if (Error E = thinBackend(
1135  Conf, 0, AddStream, *M, *CombinedIndex, ImportList,
1136  ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) {
1137  handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1138  errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
1139  });
1140  }
1141 }
1142 
1144  const HeaderSearchOptions &HeaderOpts,
1145  const CodeGenOptions &CGOpts,
1146  const clang::TargetOptions &TOpts,
1147  const LangOptions &LOpts,
1148  const llvm::DataLayout &TDesc, Module *M,
1149  BackendAction Action,
1150  std::unique_ptr<raw_pwrite_stream> OS) {
1151  if (!CGOpts.ThinLTOIndexFile.empty()) {
1152  // If we are performing a ThinLTO importing compile, load the function index
1153  // into memory and pass it into runThinLTOBackend, which will run the
1154  // function importer and invoke LTO passes.
1156  llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile,
1157  /*IgnoreEmptyThinLTOIndexFile*/true);
1158  if (!IndexOrErr) {
1159  logAllUnhandledErrors(IndexOrErr.takeError(), errs(),
1160  "Error loading index file '" +
1161  CGOpts.ThinLTOIndexFile + "': ");
1162  return;
1163  }
1164  std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr);
1165  // A null CombinedIndex means we should skip ThinLTO compilation
1166  // (LLVM will optionally ignore empty index files, returning null instead
1167  // of an error).
1168  bool DoThinLTOBackend = CombinedIndex != nullptr;
1169  if (DoThinLTOBackend) {
1170  runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts,
1171  LOpts, std::move(OS), CGOpts.SampleProfileFile, Action);
1172  return;
1173  }
1174  }
1175 
1176  EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M);
1177 
1178  if (CGOpts.ExperimentalNewPassManager)
1179  AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS));
1180  else
1181  AsmHelper.EmitAssembly(Action, std::move(OS));
1182 
1183  // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
1184  // DataLayout.
1185  if (AsmHelper.TM) {
1186  std::string DLDesc = M->getDataLayout().getStringRepresentation();
1187  if (DLDesc != TDesc.getStringRepresentation()) {
1188  unsigned DiagID = Diags.getCustomDiagID(
1189  DiagnosticsEngine::Error, "backend data layout '%0' does not match "
1190  "expected target description '%1'");
1191  Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation();
1192  }
1193  }
1194 }
1195 
1196 static const char* getSectionNameForBitcode(const Triple &T) {
1197  switch (T.getObjectFormat()) {
1198  case Triple::MachO:
1199  return "__LLVM,__bitcode";
1200  case Triple::COFF:
1201  case Triple::ELF:
1202  case Triple::Wasm:
1203  case Triple::UnknownObjectFormat:
1204  return ".llvmbc";
1205  }
1206  llvm_unreachable("Unimplemented ObjectFormatType");
1207 }
1208 
1209 static const char* getSectionNameForCommandline(const Triple &T) {
1210  switch (T.getObjectFormat()) {
1211  case Triple::MachO:
1212  return "__LLVM,__cmdline";
1213  case Triple::COFF:
1214  case Triple::ELF:
1215  case Triple::Wasm:
1216  case Triple::UnknownObjectFormat:
1217  return ".llvmcmd";
1218  }
1219  llvm_unreachable("Unimplemented ObjectFormatType");
1220 }
1221 
1222 // With -fembed-bitcode, save a copy of the llvm IR as data in the
1223 // __LLVM,__bitcode section.
1224 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
1225  llvm::MemoryBufferRef Buf) {
1226  if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
1227  return;
1228 
1229  // Save llvm.compiler.used and remote it.
1230  SmallVector<Constant*, 2> UsedArray;
1231  SmallSet<GlobalValue*, 4> UsedGlobals;
1232  Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0);
1233  GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true);
1234  for (auto *GV : UsedGlobals) {
1235  if (GV->getName() != "llvm.embedded.module" &&
1236  GV->getName() != "llvm.cmdline")
1237  UsedArray.push_back(
1238  ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1239  }
1240  if (Used)
1241  Used->eraseFromParent();
1242 
1243  // Embed the bitcode for the llvm module.
1244  std::string Data;
1245  ArrayRef<uint8_t> ModuleData;
1246  Triple T(M->getTargetTriple());
1247  // Create a constant that contains the bitcode.
1248  // In case of embedding a marker, ignore the input Buf and use the empty
1249  // ArrayRef. It is also legal to create a bitcode marker even Buf is empty.
1250  if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) {
1251  if (!isBitcode((const unsigned char *)Buf.getBufferStart(),
1252  (const unsigned char *)Buf.getBufferEnd())) {
1253  // If the input is LLVM Assembly, bitcode is produced by serializing
1254  // the module. Use-lists order need to be perserved in this case.
1255  llvm::raw_string_ostream OS(Data);
1256  llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
1257  ModuleData =
1258  ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
1259  } else
1260  // If the input is LLVM bitcode, write the input byte stream directly.
1261  ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
1262  Buf.getBufferSize());
1263  }
1264  llvm::Constant *ModuleConstant =
1265  llvm::ConstantDataArray::get(M->getContext(), ModuleData);
1266  llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1267  *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
1268  ModuleConstant);
1269  GV->setSection(getSectionNameForBitcode(T));
1270  UsedArray.push_back(
1271  ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1272  if (llvm::GlobalVariable *Old =
1273  M->getGlobalVariable("llvm.embedded.module", true)) {
1274  assert(Old->hasOneUse() &&
1275  "llvm.embedded.module can only be used once in llvm.compiler.used");
1276  GV->takeName(Old);
1277  Old->eraseFromParent();
1278  } else {
1279  GV->setName("llvm.embedded.module");
1280  }
1281 
1282  // Skip if only bitcode needs to be embedded.
1283  if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) {
1284  // Embed command-line options.
1285  ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()),
1286  CGOpts.CmdArgs.size());
1287  llvm::Constant *CmdConstant =
1288  llvm::ConstantDataArray::get(M->getContext(), CmdData);
1289  GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true,
1290  llvm::GlobalValue::PrivateLinkage,
1291  CmdConstant);
1292  GV->setSection(getSectionNameForCommandline(T));
1293  UsedArray.push_back(
1294  ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1295  if (llvm::GlobalVariable *Old =
1296  M->getGlobalVariable("llvm.cmdline", true)) {
1297  assert(Old->hasOneUse() &&
1298  "llvm.cmdline can only be used once in llvm.compiler.used");
1299  GV->takeName(Old);
1300  Old->eraseFromParent();
1301  } else {
1302  GV->setName("llvm.cmdline");
1303  }
1304  }
1305 
1306  if (UsedArray.empty())
1307  return;
1308 
1309  // Recreate llvm.compiler.used.
1310  ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
1311  auto *NewUsed = new GlobalVariable(
1312  *M, ATy, false, llvm::GlobalValue::AppendingLinkage,
1313  llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
1314  NewUsed->setSection("llvm.metadata");
1315 }
std::string ProfileInstrumentUsePath
Name of the profile file to use as input for -fprofile-instr-use.
static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, const LangOptions &LOpts, std::unique_ptr< raw_pwrite_stream > OS, std::string SampleProfile, BackendAction Action)
Paths for &#39;#include <>&#39; added by &#39;-I&#39;.
static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
Emit human-readable LLVM assembly.
Definition: BackendUtil.h:34
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:26
Run CodeGen, but don&#39;t emit anything.
Definition: BackendUtil.h:36
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:101
The base class of the type hierarchy.
Definition: Type.h:1351
std::string SampleProfileFile
Name of the profile file to use with -fprofile-sample-use.
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1207
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2558
static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
std::vector< std::string > RewriteMapFiles
Set of files defining the rules for the symbol rewriting.
Don&#39;t emit anything (benchmarking mode)
Definition: BackendUtil.h:35
Options for controlling the target.
Definition: TargetOptions.h:26
std::string SplitDwarfFile
The name for the split debug info file that we&#39;ll break out.
std::string DebugPass
Enable additional debugging information.
SanitizerSet SanitizeRecover
Set of sanitizer checks that are non-fatal (i.e.
bool hasOneOf(SanitizerMask K) const
Check if one or more sanitizers are enabled.
Definition: Sanitizers.h:56
Emit LLVM bitcode files.
Definition: BackendUtil.h:33
std::vector< Entry > UserEntries
User specified include entries.
std::vector< uint8_t > CmdArgs
List of backend command-line options for -fembed-bitcode.
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:48
std::string CodeModel
The code model to use (-mcmodel).
Describes a module or submodule.
Definition: Module.h:65
BackendAction
Definition: BackendUtil.h:31
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:147
static void addThreadSanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
Defines the Diagnostic-related interfaces.
static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts)
static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts)
static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
std::string FloatABI
The ABI to use for passing floating point arguments.
std::string ThreadModel
The thread model to use.
char CoverageVersion[4]
The version string to put into coverage files.
std::string LimitFloatPrecision
The float precision limit to use, if non-empty.
Defines the clang::LangOptions interface.
const FunctionProtoType * T
static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
std::string RelocationModel
The name of the relocation model to use.
void print(raw_ostream &OS, unsigned Indent=0) const
Print the module map for this module to the given stream.
Definition: Module.cpp:360
static TargetLibraryInfoImpl * createTLII(llvm::Triple &TargetTriple, const CodeGenOptions &CodeGenOpts)
Emit native object files.
Definition: BackendUtil.h:37
Emit native assembly files.
Definition: BackendUtil.h:32
std::string CPU
If given, the name of the target CPU to generate code for.
Definition: TargetOptions.h:36
static llvm::Reloc::Model getRelocModel(const CodeGenOptions &CodeGenOpts)
std::string ABI
If given, the name of the target ABI to use.
Definition: TargetOptions.h:42
static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addSymbolRewriterPass(const CodeGenOptions &Opts, legacy::PassManager *MPM)
static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
Defines the clang::TargetOptions class.
std::vector< std::string > Features
The list of target specific features to enable or disable – this should be a list of strings startin...
Definition: TargetOptions.h:55
static void initTargetOptions(llvm::TargetOptions &Options, const CodeGenOptions &CodeGenOpts, const clang::TargetOptions &TargetOpts, const LangOptions &LangOpts, const HeaderSearchOptions &HSOpts)
static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts)
unsigned getCustomDiagID(Level L, const char(&FormatString)[N])
Return an ID for a diagnostic with the specified format string and level.
Definition: Diagnostic.h:691
llvm::EABI EABIVersion
The EABI version to use.
Definition: TargetOptions.h:45
&#39;#include ""&#39; paths, added by &#39;gcc -iquote&#39;.
std::string ThinLTOIndexFile
Name of the function summary index file to use for ThinLTO function importing.
Like Angled, but marks system directories.
static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action)
void EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf)
Dataflow Directional Tag Classes.
bool hasProfileIRUse() const
Check if IR level profile use is on.
void EmitBackendOutput(DiagnosticsEngine &Diags, const HeaderSearchOptions &, const CodeGenOptions &CGOpts, const TargetOptions &TOpts, const LangOptions &LOpts, const llvm::DataLayout &TDesc, llvm::Module *M, BackendAction Action, std::unique_ptr< raw_pwrite_stream > OS)
bool hasProfileClangInstr() const
Check if Clang profile instrumenation is on.
llvm::Expected< llvm::BitcodeModule > FindThinLTOModule(llvm::MemoryBufferRef MBRef)
static const char * getSectionNameForBitcode(const Triple &T)
static const char * getSectionNameForCommandline(const Triple &T)
void BuryPointer(const void *Ptr)
static void addBoundsCheckingPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static Optional< llvm::CodeModel::Model > getCodeModel(const CodeGenOptions &CodeGenOpts)
CodeGenOptions - Track various options which control how the code is optimized and passed to the back...
static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
bool hasProfileIRInstr() const
Check if IR level profile instrumentation is on.
const std::vector< std::string > & getNoBuiltinFuncs() const
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:50
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1509
static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
HeaderSearchOptions - Helper class for storing options related to the initialization of the HeaderSea...
std::string InstrProfileOutput
Name of the profile file to use as output for -fprofile-instr-generate and -fprofile-generate.
std::string ThinLinkBitcodeFile
Name of a file that can optionally be written with minimized bitcode to be used as input for the Thin...
std::vector< std::string > SanitizerBlacklistFiles
Paths to blacklist files specifying which objects (files, functions, variables) should not be instrum...
Definition: LangOptions.h:105
std::vector< std::string > BackendOptions
A list of command-line options to forward to the LLVM backend.
std::string Sysroot
If non-empty, the directory to use as a "virtual system root" for include paths.
static void addMemorySanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts)