clang  6.0.0
SemaType.cpp
Go to the documentation of this file.
1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements type-related semantic analysis.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/TypeLoc.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Lex/Preprocessor.h"
28 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/ScopeInfo.h"
33 #include "clang/Sema/Template.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallString.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/Support/ErrorHandling.h"
38 
39 using namespace clang;
40 
45 };
46 
47 /// isOmittedBlockReturnType - Return true if this declarator is missing a
48 /// return type because this is a omitted return type on a block literal.
49 static bool isOmittedBlockReturnType(const Declarator &D) {
52  return false;
53 
54  if (D.getNumTypeObjects() == 0)
55  return true; // ^{ ... }
56 
57  if (D.getNumTypeObjects() == 1 &&
59  return true; // ^(int X, float Y) { ... }
60 
61  return false;
62 }
63 
64 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
65 /// doesn't apply to the given type.
66 static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
67  QualType type) {
68  TypeDiagSelector WhichType;
69  bool useExpansionLoc = true;
70  switch (attr.getKind()) {
71  case AttributeList::AT_ObjCGC: WhichType = TDS_Pointer; break;
72  case AttributeList::AT_ObjCOwnership: WhichType = TDS_ObjCObjOrBlock; break;
73  default:
74  // Assume everything else was a function attribute.
75  WhichType = TDS_Function;
76  useExpansionLoc = false;
77  break;
78  }
79 
80  SourceLocation loc = attr.getLoc();
81  StringRef name = attr.getName()->getName();
82 
83  // The GC attributes are usually written with macros; special-case them.
84  IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
85  : nullptr;
86  if (useExpansionLoc && loc.isMacroID() && II) {
87  if (II->isStr("strong")) {
88  if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
89  } else if (II->isStr("weak")) {
90  if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
91  }
92  }
93 
94  S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
95  << type;
96 }
97 
98 // objc_gc applies to Objective-C pointers or, otherwise, to the
99 // smallest available pointer type (i.e. 'void*' in 'void**').
100 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
101  case AttributeList::AT_ObjCGC: \
102  case AttributeList::AT_ObjCOwnership
103 
104 // Calling convention attributes.
105 #define CALLING_CONV_ATTRS_CASELIST \
106  case AttributeList::AT_CDecl: \
107  case AttributeList::AT_FastCall: \
108  case AttributeList::AT_StdCall: \
109  case AttributeList::AT_ThisCall: \
110  case AttributeList::AT_RegCall: \
111  case AttributeList::AT_Pascal: \
112  case AttributeList::AT_SwiftCall: \
113  case AttributeList::AT_VectorCall: \
114  case AttributeList::AT_MSABI: \
115  case AttributeList::AT_SysVABI: \
116  case AttributeList::AT_Pcs: \
117  case AttributeList::AT_IntelOclBicc: \
118  case AttributeList::AT_PreserveMost: \
119  case AttributeList::AT_PreserveAll
120 
121 // Function type attributes.
122 #define FUNCTION_TYPE_ATTRS_CASELIST \
123  case AttributeList::AT_NSReturnsRetained: \
124  case AttributeList::AT_NoReturn: \
125  case AttributeList::AT_Regparm: \
126  case AttributeList::AT_AnyX86NoCallerSavedRegisters: \
127  CALLING_CONV_ATTRS_CASELIST
128 
129 // Microsoft-specific type qualifiers.
130 #define MS_TYPE_ATTRS_CASELIST \
131  case AttributeList::AT_Ptr32: \
132  case AttributeList::AT_Ptr64: \
133  case AttributeList::AT_SPtr: \
134  case AttributeList::AT_UPtr
135 
136 // Nullability qualifiers.
137 #define NULLABILITY_TYPE_ATTRS_CASELIST \
138  case AttributeList::AT_TypeNonNull: \
139  case AttributeList::AT_TypeNullable: \
140  case AttributeList::AT_TypeNullUnspecified
141 
142 namespace {
143  /// An object which stores processing state for the entire
144  /// GetTypeForDeclarator process.
145  class TypeProcessingState {
146  Sema &sema;
147 
148  /// The declarator being processed.
149  Declarator &declarator;
150 
151  /// The index of the declarator chunk we're currently processing.
152  /// May be the total number of valid chunks, indicating the
153  /// DeclSpec.
154  unsigned chunkIndex;
155 
156  /// Whether there are non-trivial modifications to the decl spec.
157  bool trivial;
158 
159  /// Whether we saved the attributes in the decl spec.
160  bool hasSavedAttrs;
161 
162  /// The original set of attributes on the DeclSpec.
164 
165  /// A list of attributes to diagnose the uselessness of when the
166  /// processing is complete.
167  SmallVector<AttributeList*, 2> ignoredTypeAttrs;
168 
169  public:
170  TypeProcessingState(Sema &sema, Declarator &declarator)
171  : sema(sema), declarator(declarator),
172  chunkIndex(declarator.getNumTypeObjects()),
173  trivial(true), hasSavedAttrs(false) {}
174 
175  Sema &getSema() const {
176  return sema;
177  }
178 
179  Declarator &getDeclarator() const {
180  return declarator;
181  }
182 
183  bool isProcessingDeclSpec() const {
184  return chunkIndex == declarator.getNumTypeObjects();
185  }
186 
187  unsigned getCurrentChunkIndex() const {
188  return chunkIndex;
189  }
190 
191  void setCurrentChunkIndex(unsigned idx) {
192  assert(idx <= declarator.getNumTypeObjects());
193  chunkIndex = idx;
194  }
195 
196  AttributeList *&getCurrentAttrListRef() const {
197  if (isProcessingDeclSpec())
198  return getMutableDeclSpec().getAttributes().getListRef();
199  return declarator.getTypeObject(chunkIndex).getAttrListRef();
200  }
201 
202  /// Save the current set of attributes on the DeclSpec.
203  void saveDeclSpecAttrs() {
204  // Don't try to save them multiple times.
205  if (hasSavedAttrs) return;
206 
207  DeclSpec &spec = getMutableDeclSpec();
208  for (AttributeList *attr = spec.getAttributes().getList(); attr;
209  attr = attr->getNext())
210  savedAttrs.push_back(attr);
211  trivial &= savedAttrs.empty();
212  hasSavedAttrs = true;
213  }
214 
215  /// Record that we had nowhere to put the given type attribute.
216  /// We will diagnose such attributes later.
217  void addIgnoredTypeAttr(AttributeList &attr) {
218  ignoredTypeAttrs.push_back(&attr);
219  }
220 
221  /// Diagnose all the ignored type attributes, given that the
222  /// declarator worked out to the given type.
223  void diagnoseIgnoredTypeAttrs(QualType type) const {
224  for (auto *Attr : ignoredTypeAttrs)
225  diagnoseBadTypeAttribute(getSema(), *Attr, type);
226  }
227 
228  ~TypeProcessingState() {
229  if (trivial) return;
230 
231  restoreDeclSpecAttrs();
232  }
233 
234  private:
235  DeclSpec &getMutableDeclSpec() const {
236  return const_cast<DeclSpec&>(declarator.getDeclSpec());
237  }
238 
239  void restoreDeclSpecAttrs() {
240  assert(hasSavedAttrs);
241 
242  if (savedAttrs.empty()) {
243  getMutableDeclSpec().getAttributes().set(nullptr);
244  return;
245  }
246 
247  getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
248  for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
249  savedAttrs[i]->setNext(savedAttrs[i+1]);
250  savedAttrs.back()->setNext(nullptr);
251  }
252  };
253 } // end anonymous namespace
254 
255 static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
256  attr.setNext(head);
257  head = &attr;
258 }
259 
260 static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
261  if (head == &attr) {
262  head = attr.getNext();
263  return;
264  }
265 
266  AttributeList *cur = head;
267  while (true) {
268  assert(cur && cur->getNext() && "ran out of attrs?");
269  if (cur->getNext() == &attr) {
270  cur->setNext(attr.getNext());
271  return;
272  }
273  cur = cur->getNext();
274  }
275 }
276 
278  AttributeList *&fromList,
279  AttributeList *&toList) {
280  spliceAttrOutOfList(attr, fromList);
281  spliceAttrIntoList(attr, toList);
282 }
283 
284 /// The location of a type attribute.
286  /// The attribute is in the decl-specifier-seq.
288  /// The attribute is part of a DeclaratorChunk.
290  /// The attribute is immediately after the declaration's name.
292 };
293 
294 static void processTypeAttrs(TypeProcessingState &state,
296  AttributeList *attrs);
297 
298 static bool handleFunctionTypeAttr(TypeProcessingState &state,
299  AttributeList &attr,
300  QualType &type);
301 
302 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
303  AttributeList &attr,
304  QualType &type);
305 
306 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
307  AttributeList &attr, QualType &type);
308 
309 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
310  AttributeList &attr, QualType &type);
311 
312 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
313  AttributeList &attr, QualType &type) {
314  if (attr.getKind() == AttributeList::AT_ObjCGC)
315  return handleObjCGCTypeAttr(state, attr, type);
316  assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
317  return handleObjCOwnershipTypeAttr(state, attr, type);
318 }
319 
320 /// Given the index of a declarator chunk, check whether that chunk
321 /// directly specifies the return type of a function and, if so, find
322 /// an appropriate place for it.
323 ///
324 /// \param i - a notional index which the search will start
325 /// immediately inside
326 ///
327 /// \param onlyBlockPointers Whether we should only look into block
328 /// pointer types (vs. all pointer types).
330  unsigned i,
331  bool onlyBlockPointers) {
332  assert(i <= declarator.getNumTypeObjects());
333 
334  DeclaratorChunk *result = nullptr;
335 
336  // First, look inwards past parens for a function declarator.
337  for (; i != 0; --i) {
338  DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
339  switch (fnChunk.Kind) {
341  continue;
342 
343  // If we find anything except a function, bail out.
350  return result;
351 
352  // If we do find a function declarator, scan inwards from that,
353  // looking for a (block-)pointer declarator.
355  for (--i; i != 0; --i) {
356  DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
357  switch (ptrChunk.Kind) {
363  continue;
364 
367  if (onlyBlockPointers)
368  continue;
369 
370  LLVM_FALLTHROUGH;
371 
373  result = &ptrChunk;
374  goto continue_outer;
375  }
376  llvm_unreachable("bad declarator chunk kind");
377  }
378 
379  // If we run out of declarators doing that, we're done.
380  return result;
381  }
382  llvm_unreachable("bad declarator chunk kind");
383 
384  // Okay, reconsider from our new point.
385  continue_outer: ;
386  }
387 
388  // Ran out of chunks, bail out.
389  return result;
390 }
391 
392 /// Given that an objc_gc attribute was written somewhere on a
393 /// declaration *other* than on the declarator itself (for which, use
394 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
395 /// didn't apply in whatever position it was written in, try to move
396 /// it to a more appropriate position.
397 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
398  AttributeList &attr,
399  QualType type) {
400  Declarator &declarator = state.getDeclarator();
401 
402  // Move it to the outermost normal or block pointer declarator.
403  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
404  DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
405  switch (chunk.Kind) {
408  // But don't move an ARC ownership attribute to the return type
409  // of a block.
410  DeclaratorChunk *destChunk = nullptr;
411  if (state.isProcessingDeclSpec() &&
412  attr.getKind() == AttributeList::AT_ObjCOwnership)
413  destChunk = maybeMovePastReturnType(declarator, i - 1,
414  /*onlyBlockPointers=*/true);
415  if (!destChunk) destChunk = &chunk;
416 
417  moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
418  destChunk->getAttrListRef());
419  return;
420  }
421 
424  continue;
425 
426  // We may be starting at the return type of a block.
428  if (state.isProcessingDeclSpec() &&
429  attr.getKind() == AttributeList::AT_ObjCOwnership) {
431  declarator, i,
432  /*onlyBlockPointers=*/true)) {
433  moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
434  dest->getAttrListRef());
435  return;
436  }
437  }
438  goto error;
439 
440  // Don't walk through these.
444  goto error;
445  }
446  }
447  error:
448 
449  diagnoseBadTypeAttribute(state.getSema(), attr, type);
450 }
451 
452 /// Distribute an objc_gc type attribute that was written on the
453 /// declarator.
454 static void
456  AttributeList &attr,
457  QualType &declSpecType) {
458  Declarator &declarator = state.getDeclarator();
459 
460  // objc_gc goes on the innermost pointer to something that's not a
461  // pointer.
462  unsigned innermost = -1U;
463  bool considerDeclSpec = true;
464  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
465  DeclaratorChunk &chunk = declarator.getTypeObject(i);
466  switch (chunk.Kind) {
469  innermost = i;
470  continue;
471 
477  continue;
478 
480  considerDeclSpec = false;
481  goto done;
482  }
483  }
484  done:
485 
486  // That might actually be the decl spec if we weren't blocked by
487  // anything in the declarator.
488  if (considerDeclSpec) {
489  if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
490  // Splice the attribute into the decl spec. Prevents the
491  // attribute from being applied multiple times and gives
492  // the source-location-filler something to work with.
493  state.saveDeclSpecAttrs();
494  moveAttrFromListToList(attr, declarator.getAttrListRef(),
495  declarator.getMutableDeclSpec().getAttributes().getListRef());
496  return;
497  }
498  }
499 
500  // Otherwise, if we found an appropriate chunk, splice the attribute
501  // into it.
502  if (innermost != -1U) {
503  moveAttrFromListToList(attr, declarator.getAttrListRef(),
504  declarator.getTypeObject(innermost).getAttrListRef());
505  return;
506  }
507 
508  // Otherwise, diagnose when we're done building the type.
509  spliceAttrOutOfList(attr, declarator.getAttrListRef());
510  state.addIgnoredTypeAttr(attr);
511 }
512 
513 /// A function type attribute was written somewhere in a declaration
514 /// *other* than on the declarator itself or in the decl spec. Given
515 /// that it didn't apply in whatever position it was written in, try
516 /// to move it to a more appropriate position.
517 static void distributeFunctionTypeAttr(TypeProcessingState &state,
518  AttributeList &attr,
519  QualType type) {
520  Declarator &declarator = state.getDeclarator();
521 
522  // Try to push the attribute from the return type of a function to
523  // the function itself.
524  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
525  DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
526  switch (chunk.Kind) {
528  moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
529  chunk.getAttrListRef());
530  return;
531 
539  continue;
540  }
541  }
542 
543  diagnoseBadTypeAttribute(state.getSema(), attr, type);
544 }
545 
546 /// Try to distribute a function type attribute to the innermost
547 /// function chunk or type. Returns true if the attribute was
548 /// distributed, false if no location was found.
549 static bool
551  AttributeList &attr,
552  AttributeList *&attrList,
553  QualType &declSpecType) {
554  Declarator &declarator = state.getDeclarator();
555 
556  // Put it on the innermost function chunk, if there is one.
557  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
558  DeclaratorChunk &chunk = declarator.getTypeObject(i);
559  if (chunk.Kind != DeclaratorChunk::Function) continue;
560 
561  moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
562  return true;
563  }
564 
565  return handleFunctionTypeAttr(state, attr, declSpecType);
566 }
567 
568 /// A function type attribute was written in the decl spec. Try to
569 /// apply it somewhere.
570 static void
572  AttributeList &attr,
573  QualType &declSpecType) {
574  state.saveDeclSpecAttrs();
575 
576  // C++11 attributes before the decl specifiers actually appertain to
577  // the declarators. Move them straight there. We don't support the
578  // 'put them wherever you like' semantics we allow for GNU attributes.
579  if (attr.isCXX11Attribute()) {
580  moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
581  state.getDeclarator().getAttrListRef());
582  return;
583  }
584 
585  // Try to distribute to the innermost.
587  state.getCurrentAttrListRef(),
588  declSpecType))
589  return;
590 
591  // If that failed, diagnose the bad attribute when the declarator is
592  // fully built.
593  state.addIgnoredTypeAttr(attr);
594 }
595 
596 /// A function type attribute was written on the declarator. Try to
597 /// apply it somewhere.
598 static void
600  AttributeList &attr,
601  QualType &declSpecType) {
602  Declarator &declarator = state.getDeclarator();
603 
604  // Try to distribute to the innermost.
606  declarator.getAttrListRef(),
607  declSpecType))
608  return;
609 
610  // If that failed, diagnose the bad attribute when the declarator is
611  // fully built.
612  spliceAttrOutOfList(attr, declarator.getAttrListRef());
613  state.addIgnoredTypeAttr(attr);
614 }
615 
616 /// \brief Given that there are attributes written on the declarator
617 /// itself, try to distribute any type attributes to the appropriate
618 /// declarator chunk.
619 ///
620 /// These are attributes like the following:
621 /// int f ATTR;
622 /// int (f ATTR)();
623 /// but not necessarily this:
624 /// int f() ATTR;
625 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
626  QualType &declSpecType) {
627  // Collect all the type attributes from the declarator itself.
628  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
629  AttributeList *attr = state.getDeclarator().getAttributes();
630  AttributeList *next;
631  do {
632  next = attr->getNext();
633 
634  // Do not distribute C++11 attributes. They have strict rules for what
635  // they appertain to.
636  if (attr->isCXX11Attribute())
637  continue;
638 
639  switch (attr->getKind()) {
641  distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
642  break;
643 
645  distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
646  break;
647 
649  // Microsoft type attributes cannot go after the declarator-id.
650  continue;
651 
653  // Nullability specifiers cannot go after the declarator-id.
654 
655  // Objective-C __kindof does not get distributed.
656  case AttributeList::AT_ObjCKindOf:
657  continue;
658 
659  default:
660  break;
661  }
662  } while ((attr = next));
663 }
664 
665 /// Add a synthetic '()' to a block-literal declarator if it is
666 /// required, given the return type.
667 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
668  QualType declSpecType) {
669  Declarator &declarator = state.getDeclarator();
670 
671  // First, check whether the declarator would produce a function,
672  // i.e. whether the innermost semantic chunk is a function.
673  if (declarator.isFunctionDeclarator()) {
674  // If so, make that declarator a prototyped declarator.
675  declarator.getFunctionTypeInfo().hasPrototype = true;
676  return;
677  }
678 
679  // If there are any type objects, the type as written won't name a
680  // function, regardless of the decl spec type. This is because a
681  // block signature declarator is always an abstract-declarator, and
682  // abstract-declarators can't just be parentheses chunks. Therefore
683  // we need to build a function chunk unless there are no type
684  // objects and the decl spec type is a function.
685  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
686  return;
687 
688  // Note that there *are* cases with invalid declarators where
689  // declarators consist solely of parentheses. In general, these
690  // occur only in failed efforts to make function declarators, so
691  // faking up the function chunk is still the right thing to do.
692 
693  // Otherwise, we need to fake up a function declarator.
694  SourceLocation loc = declarator.getLocStart();
695 
696  // ...and *prepend* it to the declarator.
697  SourceLocation NoLoc;
699  /*HasProto=*/true,
700  /*IsAmbiguous=*/false,
701  /*LParenLoc=*/NoLoc,
702  /*ArgInfo=*/nullptr,
703  /*NumArgs=*/0,
704  /*EllipsisLoc=*/NoLoc,
705  /*RParenLoc=*/NoLoc,
706  /*TypeQuals=*/0,
707  /*RefQualifierIsLvalueRef=*/true,
708  /*RefQualifierLoc=*/NoLoc,
709  /*ConstQualifierLoc=*/NoLoc,
710  /*VolatileQualifierLoc=*/NoLoc,
711  /*RestrictQualifierLoc=*/NoLoc,
712  /*MutableLoc=*/NoLoc, EST_None,
713  /*ESpecRange=*/SourceRange(),
714  /*Exceptions=*/nullptr,
715  /*ExceptionRanges=*/nullptr,
716  /*NumExceptions=*/0,
717  /*NoexceptExpr=*/nullptr,
718  /*ExceptionSpecTokens=*/nullptr,
719  /*DeclsInPrototype=*/None,
720  loc, loc, declarator));
721 
722  // For consistency, make sure the state still has us as processing
723  // the decl spec.
724  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
725  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
726 }
727 
729  unsigned &TypeQuals,
730  QualType TypeSoFar,
731  unsigned RemoveTQs,
732  unsigned DiagID) {
733  // If this occurs outside a template instantiation, warn the user about
734  // it; they probably didn't mean to specify a redundant qualifier.
735  typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
736  for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
739  QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
740  if (!(RemoveTQs & Qual.first))
741  continue;
742 
743  if (!S.inTemplateInstantiation()) {
744  if (TypeQuals & Qual.first)
745  S.Diag(Qual.second, DiagID)
746  << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
747  << FixItHint::CreateRemoval(Qual.second);
748  }
749 
750  TypeQuals &= ~Qual.first;
751  }
752 }
753 
754 /// Return true if this is omitted block return type. Also check type
755 /// attributes and type qualifiers when returning true.
756 static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
757  QualType Result) {
758  if (!isOmittedBlockReturnType(declarator))
759  return false;
760 
761  // Warn if we see type attributes for omitted return type on a block literal.
762  AttributeList *&attrs =
764  AttributeList *prev = nullptr;
765  for (AttributeList *cur = attrs; cur; cur = cur->getNext()) {
766  AttributeList &attr = *cur;
767  // Skip attributes that were marked to be invalid or non-type
768  // attributes.
769  if (attr.isInvalid() || !attr.isTypeAttr()) {
770  prev = cur;
771  continue;
772  }
773  S.Diag(attr.getLoc(),
774  diag::warn_block_literal_attributes_on_omitted_return_type)
775  << attr.getName();
776  // Remove cur from the list.
777  if (prev) {
778  prev->setNext(cur->getNext());
779  prev = cur;
780  } else {
781  attrs = cur->getNext();
782  }
783  }
784 
785  // Warn if we see type qualifiers for omitted return type on a block literal.
786  const DeclSpec &DS = declarator.getDeclSpec();
787  unsigned TypeQuals = DS.getTypeQualifiers();
788  diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
789  diag::warn_block_literal_qualifiers_on_omitted_return_type);
791 
792  return true;
793 }
794 
795 /// Apply Objective-C type arguments to the given type.
798  SourceRange typeArgsRange,
799  bool failOnError = false) {
800  // We can only apply type arguments to an Objective-C class type.
801  const auto *objcObjectType = type->getAs<ObjCObjectType>();
802  if (!objcObjectType || !objcObjectType->getInterface()) {
803  S.Diag(loc, diag::err_objc_type_args_non_class)
804  << type
805  << typeArgsRange;
806 
807  if (failOnError)
808  return QualType();
809  return type;
810  }
811 
812  // The class type must be parameterized.
813  ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
814  ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
815  if (!typeParams) {
816  S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
817  << objcClass->getDeclName()
818  << FixItHint::CreateRemoval(typeArgsRange);
819 
820  if (failOnError)
821  return QualType();
822 
823  return type;
824  }
825 
826  // The type must not already be specialized.
827  if (objcObjectType->isSpecialized()) {
828  S.Diag(loc, diag::err_objc_type_args_specialized_class)
829  << type
830  << FixItHint::CreateRemoval(typeArgsRange);
831 
832  if (failOnError)
833  return QualType();
834 
835  return type;
836  }
837 
838  // Check the type arguments.
839  SmallVector<QualType, 4> finalTypeArgs;
840  unsigned numTypeParams = typeParams->size();
841  bool anyPackExpansions = false;
842  for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
843  TypeSourceInfo *typeArgInfo = typeArgs[i];
844  QualType typeArg = typeArgInfo->getType();
845 
846  // Type arguments cannot have explicit qualifiers or nullability.
847  // We ignore indirect sources of these, e.g. behind typedefs or
848  // template arguments.
849  if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
850  bool diagnosed = false;
851  SourceRange rangeToRemove;
852  if (auto attr = qual.getAs<AttributedTypeLoc>()) {
853  rangeToRemove = attr.getLocalSourceRange();
854  if (attr.getTypePtr()->getImmediateNullability()) {
855  typeArg = attr.getTypePtr()->getModifiedType();
856  S.Diag(attr.getLocStart(),
857  diag::err_objc_type_arg_explicit_nullability)
858  << typeArg << FixItHint::CreateRemoval(rangeToRemove);
859  diagnosed = true;
860  }
861  }
862 
863  if (!diagnosed) {
864  S.Diag(qual.getLocStart(), diag::err_objc_type_arg_qualified)
865  << typeArg << typeArg.getQualifiers().getAsString()
866  << FixItHint::CreateRemoval(rangeToRemove);
867  }
868  }
869 
870  // Remove qualifiers even if they're non-local.
871  typeArg = typeArg.getUnqualifiedType();
872 
873  finalTypeArgs.push_back(typeArg);
874 
875  if (typeArg->getAs<PackExpansionType>())
876  anyPackExpansions = true;
877 
878  // Find the corresponding type parameter, if there is one.
879  ObjCTypeParamDecl *typeParam = nullptr;
880  if (!anyPackExpansions) {
881  if (i < numTypeParams) {
882  typeParam = typeParams->begin()[i];
883  } else {
884  // Too many arguments.
885  S.Diag(loc, diag::err_objc_type_args_wrong_arity)
886  << false
887  << objcClass->getDeclName()
888  << (unsigned)typeArgs.size()
889  << numTypeParams;
890  S.Diag(objcClass->getLocation(), diag::note_previous_decl)
891  << objcClass;
892 
893  if (failOnError)
894  return QualType();
895 
896  return type;
897  }
898  }
899 
900  // Objective-C object pointer types must be substitutable for the bounds.
901  if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
902  // If we don't have a type parameter to match against, assume
903  // everything is fine. There was a prior pack expansion that
904  // means we won't be able to match anything.
905  if (!typeParam) {
906  assert(anyPackExpansions && "Too many arguments?");
907  continue;
908  }
909 
910  // Retrieve the bound.
911  QualType bound = typeParam->getUnderlyingType();
912  const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
913 
914  // Determine whether the type argument is substitutable for the bound.
915  if (typeArgObjC->isObjCIdType()) {
916  // When the type argument is 'id', the only acceptable type
917  // parameter bound is 'id'.
918  if (boundObjC->isObjCIdType())
919  continue;
920  } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
921  // Otherwise, we follow the assignability rules.
922  continue;
923  }
924 
925  // Diagnose the mismatch.
926  S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
927  diag::err_objc_type_arg_does_not_match_bound)
928  << typeArg << bound << typeParam->getDeclName();
929  S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
930  << typeParam->getDeclName();
931 
932  if (failOnError)
933  return QualType();
934 
935  return type;
936  }
937 
938  // Block pointer types are permitted for unqualified 'id' bounds.
939  if (typeArg->isBlockPointerType()) {
940  // If we don't have a type parameter to match against, assume
941  // everything is fine. There was a prior pack expansion that
942  // means we won't be able to match anything.
943  if (!typeParam) {
944  assert(anyPackExpansions && "Too many arguments?");
945  continue;
946  }
947 
948  // Retrieve the bound.
949  QualType bound = typeParam->getUnderlyingType();
951  continue;
952 
953  // Diagnose the mismatch.
954  S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
955  diag::err_objc_type_arg_does_not_match_bound)
956  << typeArg << bound << typeParam->getDeclName();
957  S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
958  << typeParam->getDeclName();
959 
960  if (failOnError)
961  return QualType();
962 
963  return type;
964  }
965 
966  // Dependent types will be checked at instantiation time.
967  if (typeArg->isDependentType()) {
968  continue;
969  }
970 
971  // Diagnose non-id-compatible type arguments.
972  S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
973  diag::err_objc_type_arg_not_id_compatible)
974  << typeArg
975  << typeArgInfo->getTypeLoc().getSourceRange();
976 
977  if (failOnError)
978  return QualType();
979 
980  return type;
981  }
982 
983  // Make sure we didn't have the wrong number of arguments.
984  if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
985  S.Diag(loc, diag::err_objc_type_args_wrong_arity)
986  << (typeArgs.size() < typeParams->size())
987  << objcClass->getDeclName()
988  << (unsigned)finalTypeArgs.size()
989  << (unsigned)numTypeParams;
990  S.Diag(objcClass->getLocation(), diag::note_previous_decl)
991  << objcClass;
992 
993  if (failOnError)
994  return QualType();
995 
996  return type;
997  }
998 
999  // Success. Form the specialized type.
1000  return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
1001 }
1002 
1004  SourceLocation ProtocolLAngleLoc,
1005  ArrayRef<ObjCProtocolDecl *> Protocols,
1006  ArrayRef<SourceLocation> ProtocolLocs,
1007  SourceLocation ProtocolRAngleLoc,
1008  bool FailOnError) {
1009  QualType Result = QualType(Decl->getTypeForDecl(), 0);
1010  if (!Protocols.empty()) {
1011  bool HasError;
1012  Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1013  HasError);
1014  if (HasError) {
1015  Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
1016  << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1017  if (FailOnError) Result = QualType();
1018  }
1019  if (FailOnError && Result.isNull())
1020  return QualType();
1021  }
1022 
1023  return Result;
1024 }
1025 
1027  SourceLocation Loc,
1028  SourceLocation TypeArgsLAngleLoc,
1029  ArrayRef<TypeSourceInfo *> TypeArgs,
1030  SourceLocation TypeArgsRAngleLoc,
1031  SourceLocation ProtocolLAngleLoc,
1032  ArrayRef<ObjCProtocolDecl *> Protocols,
1033  ArrayRef<SourceLocation> ProtocolLocs,
1034  SourceLocation ProtocolRAngleLoc,
1035  bool FailOnError) {
1036  QualType Result = BaseType;
1037  if (!TypeArgs.empty()) {
1038  Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
1039  SourceRange(TypeArgsLAngleLoc,
1040  TypeArgsRAngleLoc),
1041  FailOnError);
1042  if (FailOnError && Result.isNull())
1043  return QualType();
1044  }
1045 
1046  if (!Protocols.empty()) {
1047  bool HasError;
1048  Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1049  HasError);
1050  if (HasError) {
1051  Diag(Loc, diag::err_invalid_protocol_qualifiers)
1052  << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1053  if (FailOnError) Result = QualType();
1054  }
1055  if (FailOnError && Result.isNull())
1056  return QualType();
1057  }
1058 
1059  return Result;
1060 }
1061 
1063  SourceLocation lAngleLoc,
1064  ArrayRef<Decl *> protocols,
1065  ArrayRef<SourceLocation> protocolLocs,
1066  SourceLocation rAngleLoc) {
1067  // Form id<protocol-list>.
1068  QualType Result = Context.getObjCObjectType(
1069  Context.ObjCBuiltinIdTy, { },
1070  llvm::makeArrayRef(
1071  (ObjCProtocolDecl * const *)protocols.data(),
1072  protocols.size()),
1073  false);
1074  Result = Context.getObjCObjectPointerType(Result);
1075 
1076  TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1077  TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1078 
1079  auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1080  ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1081 
1082  auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1083  .castAs<ObjCObjectTypeLoc>();
1084  ObjCObjectTL.setHasBaseTypeAsWritten(false);
1085  ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1086 
1087  // No type arguments.
1088  ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1089  ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1090 
1091  // Fill in protocol qualifiers.
1092  ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1093  ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1094  for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1095  ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1096 
1097  // We're done. Return the completed type to the parser.
1098  return CreateParsedType(Result, ResultTInfo);
1099 }
1100 
1102  Scope *S,
1103  SourceLocation Loc,
1104  ParsedType BaseType,
1105  SourceLocation TypeArgsLAngleLoc,
1106  ArrayRef<ParsedType> TypeArgs,
1107  SourceLocation TypeArgsRAngleLoc,
1108  SourceLocation ProtocolLAngleLoc,
1109  ArrayRef<Decl *> Protocols,
1110  ArrayRef<SourceLocation> ProtocolLocs,
1111  SourceLocation ProtocolRAngleLoc) {
1112  TypeSourceInfo *BaseTypeInfo = nullptr;
1113  QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1114  if (T.isNull())
1115  return true;
1116 
1117  // Handle missing type-source info.
1118  if (!BaseTypeInfo)
1119  BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1120 
1121  // Extract type arguments.
1122  SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1123  for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
1124  TypeSourceInfo *TypeArgInfo = nullptr;
1125  QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1126  if (TypeArg.isNull()) {
1127  ActualTypeArgInfos.clear();
1128  break;
1129  }
1130 
1131  assert(TypeArgInfo && "No type source info?");
1132  ActualTypeArgInfos.push_back(TypeArgInfo);
1133  }
1134 
1135  // Build the object type.
1136  QualType Result = BuildObjCObjectType(
1137  T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1138  TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1139  ProtocolLAngleLoc,
1140  llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1141  Protocols.size()),
1142  ProtocolLocs, ProtocolRAngleLoc,
1143  /*FailOnError=*/false);
1144 
1145  if (Result == T)
1146  return BaseType;
1147 
1148  // Create source information for this type.
1149  TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1150  TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1151 
1152  // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1153  // object pointer type. Fill in source information for it.
1154  if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1155  // The '*' is implicit.
1156  ObjCObjectPointerTL.setStarLoc(SourceLocation());
1157  ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1158  }
1159 
1160  if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1161  // Protocol qualifier information.
1162  if (OTPTL.getNumProtocols() > 0) {
1163  assert(OTPTL.getNumProtocols() == Protocols.size());
1164  OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1165  OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1166  for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1167  OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
1168  }
1169 
1170  // We're done. Return the completed type to the parser.
1171  return CreateParsedType(Result, ResultTInfo);
1172  }
1173 
1174  auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1175 
1176  // Type argument information.
1177  if (ObjCObjectTL.getNumTypeArgs() > 0) {
1178  assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size());
1179  ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1180  ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1181  for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1182  ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1183  } else {
1184  ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1185  ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1186  }
1187 
1188  // Protocol qualifier information.
1189  if (ObjCObjectTL.getNumProtocols() > 0) {
1190  assert(ObjCObjectTL.getNumProtocols() == Protocols.size());
1191  ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1192  ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1193  for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1194  ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1195  } else {
1196  ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1197  ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1198  }
1199 
1200  // Base type.
1201  ObjCObjectTL.setHasBaseTypeAsWritten(true);
1202  if (ObjCObjectTL.getType() == T)
1203  ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1204  else
1205  ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1206 
1207  // We're done. Return the completed type to the parser.
1208  return CreateParsedType(Result, ResultTInfo);
1209 }
1210 
1211 static OpenCLAccessAttr::Spelling getImageAccess(const AttributeList *Attrs) {
1212  if (Attrs) {
1213  const AttributeList *Next = Attrs;
1214  do {
1215  const AttributeList &Attr = *Next;
1216  Next = Attr.getNext();
1217  if (Attr.getKind() == AttributeList::AT_OpenCLAccess) {
1218  return static_cast<OpenCLAccessAttr::Spelling>(
1219  Attr.getSemanticSpelling());
1220  }
1221  } while (Next);
1222  }
1223  return OpenCLAccessAttr::Keyword_read_only;
1224 }
1225 
1226 /// \brief Convert the specified declspec to the appropriate type
1227 /// object.
1228 /// \param state Specifies the declarator containing the declaration specifier
1229 /// to be converted, along with other associated processing state.
1230 /// \returns The type described by the declaration specifiers. This function
1231 /// never returns null.
1232 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1233  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1234  // checking.
1235 
1236  Sema &S = state.getSema();
1237  Declarator &declarator = state.getDeclarator();
1238  const DeclSpec &DS = declarator.getDeclSpec();
1239  SourceLocation DeclLoc = declarator.getIdentifierLoc();
1240  if (DeclLoc.isInvalid())
1241  DeclLoc = DS.getLocStart();
1242 
1243  ASTContext &Context = S.Context;
1244 
1245  QualType Result;
1246  switch (DS.getTypeSpecType()) {
1247  case DeclSpec::TST_void:
1248  Result = Context.VoidTy;
1249  break;
1250  case DeclSpec::TST_char:
1252  Result = Context.CharTy;
1253  else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
1254  Result = Context.SignedCharTy;
1255  else {
1256  assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
1257  "Unknown TSS value");
1258  Result = Context.UnsignedCharTy;
1259  }
1260  break;
1261  case DeclSpec::TST_wchar:
1263  Result = Context.WCharTy;
1264  else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
1265  S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
1266  << DS.getSpecifierName(DS.getTypeSpecType(),
1267  Context.getPrintingPolicy());
1268  Result = Context.getSignedWCharType();
1269  } else {
1270  assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
1271  "Unknown TSS value");
1272  S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
1273  << DS.getSpecifierName(DS.getTypeSpecType(),
1274  Context.getPrintingPolicy());
1275  Result = Context.getUnsignedWCharType();
1276  }
1277  break;
1278  case DeclSpec::TST_char16:
1279  assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1280  "Unknown TSS value");
1281  Result = Context.Char16Ty;
1282  break;
1283  case DeclSpec::TST_char32:
1284  assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1285  "Unknown TSS value");
1286  Result = Context.Char32Ty;
1287  break;
1289  // If this is a missing declspec in a block literal return context, then it
1290  // is inferred from the return statements inside the block.
1291  // The declspec is always missing in a lambda expr context; it is either
1292  // specified with a trailing return type or inferred.
1293  if (S.getLangOpts().CPlusPlus14 &&
1295  // In C++1y, a lambda's implicit return type is 'auto'.
1296  Result = Context.getAutoDeductType();
1297  break;
1298  } else if (declarator.getContext() ==
1300  checkOmittedBlockReturnType(S, declarator,
1301  Context.DependentTy)) {
1302  Result = Context.DependentTy;
1303  break;
1304  }
1305 
1306  // Unspecified typespec defaults to int in C90. However, the C90 grammar
1307  // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1308  // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1309  // Note that the one exception to this is function definitions, which are
1310  // allowed to be completely missing a declspec. This is handled in the
1311  // parser already though by it pretending to have seen an 'int' in this
1312  // case.
1313  if (S.getLangOpts().ImplicitInt) {
1314  // In C89 mode, we only warn if there is a completely missing declspec
1315  // when one is not allowed.
1316  if (DS.isEmpty()) {
1317  S.Diag(DeclLoc, diag::ext_missing_declspec)
1318  << DS.getSourceRange()
1319  << FixItHint::CreateInsertion(DS.getLocStart(), "int");
1320  }
1321  } else if (!DS.hasTypeSpecifier()) {
1322  // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1323  // "At least one type specifier shall be given in the declaration
1324  // specifiers in each declaration, and in the specifier-qualifier list in
1325  // each struct declaration and type name."
1326  if (S.getLangOpts().CPlusPlus) {
1327  S.Diag(DeclLoc, diag::err_missing_type_specifier)
1328  << DS.getSourceRange();
1329 
1330  // When this occurs in C++ code, often something is very broken with the
1331  // value being declared, poison it as invalid so we don't get chains of
1332  // errors.
1333  declarator.setInvalidType(true);
1334  } else if (S.getLangOpts().OpenCLVersion >= 200 && DS.isTypeSpecPipe()){
1335  S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1336  << DS.getSourceRange();
1337  declarator.setInvalidType(true);
1338  } else {
1339  S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1340  << DS.getSourceRange();
1341  }
1342  }
1343 
1344  LLVM_FALLTHROUGH;
1345  case DeclSpec::TST_int: {
1347  switch (DS.getTypeSpecWidth()) {
1348  case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
1349  case DeclSpec::TSW_short: Result = Context.ShortTy; break;
1350  case DeclSpec::TSW_long: Result = Context.LongTy; break;
1352  Result = Context.LongLongTy;
1353 
1354  // 'long long' is a C99 or C++11 feature.
1355  if (!S.getLangOpts().C99) {
1356  if (S.getLangOpts().CPlusPlus)
1357  S.Diag(DS.getTypeSpecWidthLoc(),
1358  S.getLangOpts().CPlusPlus11 ?
1359  diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1360  else
1361  S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1362  }
1363  break;
1364  }
1365  } else {
1366  switch (DS.getTypeSpecWidth()) {
1367  case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
1368  case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
1369  case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
1371  Result = Context.UnsignedLongLongTy;
1372 
1373  // 'long long' is a C99 or C++11 feature.
1374  if (!S.getLangOpts().C99) {
1375  if (S.getLangOpts().CPlusPlus)
1376  S.Diag(DS.getTypeSpecWidthLoc(),
1377  S.getLangOpts().CPlusPlus11 ?
1378  diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1379  else
1380  S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1381  }
1382  break;
1383  }
1384  }
1385  break;
1386  }
1387  case DeclSpec::TST_int128:
1388  if (!S.Context.getTargetInfo().hasInt128Type())
1389  S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1390  << "__int128";
1392  Result = Context.UnsignedInt128Ty;
1393  else
1394  Result = Context.Int128Ty;
1395  break;
1396  case DeclSpec::TST_float16: Result = Context.Float16Ty; break;
1397  case DeclSpec::TST_half: Result = Context.HalfTy; break;
1398  case DeclSpec::TST_float: Result = Context.FloatTy; break;
1399  case DeclSpec::TST_double:
1401  Result = Context.LongDoubleTy;
1402  else
1403  Result = Context.DoubleTy;
1404  break;
1407  S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1408  << "__float128";
1409  Result = Context.Float128Ty;
1410  break;
1411  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
1412  break;
1413  case DeclSpec::TST_decimal32: // _Decimal32
1414  case DeclSpec::TST_decimal64: // _Decimal64
1415  case DeclSpec::TST_decimal128: // _Decimal128
1416  S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1417  Result = Context.IntTy;
1418  declarator.setInvalidType(true);
1419  break;
1420  case DeclSpec::TST_class:
1421  case DeclSpec::TST_enum:
1422  case DeclSpec::TST_union:
1423  case DeclSpec::TST_struct:
1424  case DeclSpec::TST_interface: {
1425  TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
1426  if (!D) {
1427  // This can happen in C++ with ambiguous lookups.
1428  Result = Context.IntTy;
1429  declarator.setInvalidType(true);
1430  break;
1431  }
1432 
1433  // If the type is deprecated or unavailable, diagnose it.
1435 
1436  assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
1437  DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
1438 
1439  // TypeQuals handled by caller.
1440  Result = Context.getTypeDeclType(D);
1441 
1442  // In both C and C++, make an ElaboratedType.
1443  ElaboratedTypeKeyword Keyword
1445  Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
1446  break;
1447  }
1448  case DeclSpec::TST_typename: {
1449  assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
1450  DS.getTypeSpecSign() == 0 &&
1451  "Can't handle qualifiers on typedef names yet!");
1452  Result = S.GetTypeFromParser(DS.getRepAsType());
1453  if (Result.isNull()) {
1454  declarator.setInvalidType(true);
1455  }
1456 
1457  // TypeQuals handled by caller.
1458  break;
1459  }
1461  // FIXME: Preserve type source info.
1462  Result = S.GetTypeFromParser(DS.getRepAsType());
1463  assert(!Result.isNull() && "Didn't get a type for typeof?");
1464  if (!Result->isDependentType())
1465  if (const TagType *TT = Result->getAs<TagType>())
1466  S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1467  // TypeQuals handled by caller.
1468  Result = Context.getTypeOfType(Result);
1469  break;
1470  case DeclSpec::TST_typeofExpr: {
1471  Expr *E = DS.getRepAsExpr();
1472  assert(E && "Didn't get an expression for typeof?");
1473  // TypeQuals handled by caller.
1474  Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
1475  if (Result.isNull()) {
1476  Result = Context.IntTy;
1477  declarator.setInvalidType(true);
1478  }
1479  break;
1480  }
1481  case DeclSpec::TST_decltype: {
1482  Expr *E = DS.getRepAsExpr();
1483  assert(E && "Didn't get an expression for decltype?");
1484  // TypeQuals handled by caller.
1485  Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
1486  if (Result.isNull()) {
1487  Result = Context.IntTy;
1488  declarator.setInvalidType(true);
1489  }
1490  break;
1491  }
1493  Result = S.GetTypeFromParser(DS.getRepAsType());
1494  assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
1495  Result = S.BuildUnaryTransformType(Result,
1497  DS.getTypeSpecTypeLoc());
1498  if (Result.isNull()) {
1499  Result = Context.IntTy;
1500  declarator.setInvalidType(true);
1501  }
1502  break;
1503 
1504  case DeclSpec::TST_auto:
1505  Result = Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false);
1506  break;
1507 
1509  Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1510  break;
1511 
1514  /*IsDependent*/ false);
1515  break;
1516 
1518  Result = Context.UnknownAnyTy;
1519  break;
1520 
1521  case DeclSpec::TST_atomic:
1522  Result = S.GetTypeFromParser(DS.getRepAsType());
1523  assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1524  Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1525  if (Result.isNull()) {
1526  Result = Context.IntTy;
1527  declarator.setInvalidType(true);
1528  }
1529  break;
1530 
1531 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
1532  case DeclSpec::TST_##ImgType##_t: \
1533  switch (getImageAccess(DS.getAttributes().getList())) { \
1534  case OpenCLAccessAttr::Keyword_write_only: \
1535  Result = Context.Id##WOTy; break; \
1536  case OpenCLAccessAttr::Keyword_read_write: \
1537  Result = Context.Id##RWTy; break; \
1538  case OpenCLAccessAttr::Keyword_read_only: \
1539  Result = Context.Id##ROTy; break; \
1540  } \
1541  break;
1542 #include "clang/Basic/OpenCLImageTypes.def"
1543 
1544  case DeclSpec::TST_error:
1545  Result = Context.IntTy;
1546  declarator.setInvalidType(true);
1547  break;
1548  }
1549 
1550  if (S.getLangOpts().OpenCL &&
1552  declarator.setInvalidType(true);
1553 
1554  // Handle complex types.
1555  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1556  if (S.getLangOpts().Freestanding)
1557  S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1558  Result = Context.getComplexType(Result);
1559  } else if (DS.isTypeAltiVecVector()) {
1560  unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1561  assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1563  if (DS.isTypeAltiVecPixel())
1564  VecKind = VectorType::AltiVecPixel;
1565  else if (DS.isTypeAltiVecBool())
1566  VecKind = VectorType::AltiVecBool;
1567  Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1568  }
1569 
1570  // FIXME: Imaginary.
1571  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1572  S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1573 
1574  // Before we process any type attributes, synthesize a block literal
1575  // function declarator if necessary.
1576  if (declarator.getContext() == DeclaratorContext::BlockLiteralContext)
1578 
1579  // Apply any type attributes from the decl spec. This may cause the
1580  // list of type attributes to be temporarily saved while the type
1581  // attributes are pushed around.
1582  // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1583  if (!DS.isTypeSpecPipe())
1584  processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes().getList());
1585 
1586  // Apply const/volatile/restrict qualifiers to T.
1587  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1588  // Warn about CV qualifiers on function types.
1589  // C99 6.7.3p8:
1590  // If the specification of a function type includes any type qualifiers,
1591  // the behavior is undefined.
1592  // C++11 [dcl.fct]p7:
1593  // The effect of a cv-qualifier-seq in a function declarator is not the
1594  // same as adding cv-qualification on top of the function type. In the
1595  // latter case, the cv-qualifiers are ignored.
1596  if (TypeQuals && Result->isFunctionType()) {
1598  S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1599  S.getLangOpts().CPlusPlus
1600  ? diag::warn_typecheck_function_qualifiers_ignored
1601  : diag::warn_typecheck_function_qualifiers_unspecified);
1602  // No diagnostic for 'restrict' or '_Atomic' applied to a
1603  // function type; we'll diagnose those later, in BuildQualifiedType.
1604  }
1605 
1606  // C++11 [dcl.ref]p1:
1607  // Cv-qualified references are ill-formed except when the
1608  // cv-qualifiers are introduced through the use of a typedef-name
1609  // or decltype-specifier, in which case the cv-qualifiers are ignored.
1610  //
1611  // There don't appear to be any other contexts in which a cv-qualified
1612  // reference type could be formed, so the 'ill-formed' clause here appears
1613  // to never happen.
1614  if (TypeQuals && Result->isReferenceType()) {
1616  S, DS, TypeQuals, Result,
1618  diag::warn_typecheck_reference_qualifiers);
1619  }
1620 
1621  // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1622  // than once in the same specifier-list or qualifier-list, either directly
1623  // or via one or more typedefs."
1624  if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1625  && TypeQuals & Result.getCVRQualifiers()) {
1626  if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1627  S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1628  << "const";
1629  }
1630 
1631  if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1632  S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1633  << "volatile";
1634  }
1635 
1636  // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1637  // produce a warning in this case.
1638  }
1639 
1640  QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1641 
1642  // If adding qualifiers fails, just use the unqualified type.
1643  if (Qualified.isNull())
1644  declarator.setInvalidType(true);
1645  else
1646  Result = Qualified;
1647  }
1648 
1649  assert(!Result.isNull() && "This function should not return a null type");
1650  return Result;
1651 }
1652 
1653 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1654  if (Entity)
1655  return Entity.getAsString();
1656 
1657  return "type name";
1658 }
1659 
1661  Qualifiers Qs, const DeclSpec *DS) {
1662  if (T.isNull())
1663  return QualType();
1664 
1665  // Ignore any attempt to form a cv-qualified reference.
1666  if (T->isReferenceType()) {
1667  Qs.removeConst();
1668  Qs.removeVolatile();
1669  }
1670 
1671  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1672  // object or incomplete types shall not be restrict-qualified."
1673  if (Qs.hasRestrict()) {
1674  unsigned DiagID = 0;
1675  QualType ProblemTy;
1676 
1677  if (T->isAnyPointerType() || T->isReferenceType() ||
1678  T->isMemberPointerType()) {
1679  QualType EltTy;
1680  if (T->isObjCObjectPointerType())
1681  EltTy = T;
1682  else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1683  EltTy = PTy->getPointeeType();
1684  else
1685  EltTy = T->getPointeeType();
1686 
1687  // If we have a pointer or reference, the pointee must have an object
1688  // incomplete type.
1689  if (!EltTy->isIncompleteOrObjectType()) {
1690  DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1691  ProblemTy = EltTy;
1692  }
1693  } else if (!T->isDependentType()) {
1694  DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1695  ProblemTy = T;
1696  }
1697 
1698  if (DiagID) {
1699  Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1700  Qs.removeRestrict();
1701  }
1702  }
1703 
1704  return Context.getQualifiedType(T, Qs);
1705 }
1706 
1708  unsigned CVRAU, const DeclSpec *DS) {
1709  if (T.isNull())
1710  return QualType();
1711 
1712  // Ignore any attempt to form a cv-qualified reference.
1713  if (T->isReferenceType())
1714  CVRAU &=
1716 
1717  // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1718  // TQ_unaligned;
1719  unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1720 
1721  // C11 6.7.3/5:
1722  // If the same qualifier appears more than once in the same
1723  // specifier-qualifier-list, either directly or via one or more typedefs,
1724  // the behavior is the same as if it appeared only once.
1725  //
1726  // It's not specified what happens when the _Atomic qualifier is applied to
1727  // a type specified with the _Atomic specifier, but we assume that this
1728  // should be treated as if the _Atomic qualifier appeared multiple times.
1729  if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1730  // C11 6.7.3/5:
1731  // If other qualifiers appear along with the _Atomic qualifier in a
1732  // specifier-qualifier-list, the resulting type is the so-qualified
1733  // atomic type.
1734  //
1735  // Don't need to worry about array types here, since _Atomic can't be
1736  // applied to such types.
1738  T = BuildAtomicType(QualType(Split.Ty, 0),
1739  DS ? DS->getAtomicSpecLoc() : Loc);
1740  if (T.isNull())
1741  return T;
1742  Split.Quals.addCVRQualifiers(CVR);
1743  return BuildQualifiedType(T, Loc, Split.Quals);
1744  }
1745 
1748  return BuildQualifiedType(T, Loc, Q, DS);
1749 }
1750 
1751 /// \brief Build a paren type including \p T.
1753  return Context.getParenType(T);
1754 }
1755 
1756 /// Given that we're building a pointer or reference to the given
1758  SourceLocation loc,
1759  bool isReference) {
1760  // Bail out if retention is unrequired or already specified.
1761  if (!type->isObjCLifetimeType() ||
1763  return type;
1764 
1766 
1767  // If the object type is const-qualified, we can safely use
1768  // __unsafe_unretained. This is safe (because there are no read
1769  // barriers), and it'll be safe to coerce anything but __weak* to
1770  // the resulting type.
1771  if (type.isConstQualified()) {
1772  implicitLifetime = Qualifiers::OCL_ExplicitNone;
1773 
1774  // Otherwise, check whether the static type does not require
1775  // retaining. This currently only triggers for Class (possibly
1776  // protocol-qualifed, and arrays thereof).
1777  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1778  implicitLifetime = Qualifiers::OCL_ExplicitNone;
1779 
1780  // If we are in an unevaluated context, like sizeof, skip adding a
1781  // qualification.
1782  } else if (S.isUnevaluatedContext()) {
1783  return type;
1784 
1785  // If that failed, give an error and recover using __strong. __strong
1786  // is the option most likely to prevent spurious second-order diagnostics,
1787  // like when binding a reference to a field.
1788  } else {
1789  // These types can show up in private ivars in system headers, so
1790  // we need this to not be an error in those cases. Instead we
1791  // want to delay.
1795  diag::err_arc_indirect_no_ownership, type, isReference));
1796  } else {
1797  S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1798  }
1799  implicitLifetime = Qualifiers::OCL_Strong;
1800  }
1801  assert(implicitLifetime && "didn't infer any lifetime!");
1802 
1803  Qualifiers qs;
1804  qs.addObjCLifetime(implicitLifetime);
1805  return S.Context.getQualifiedType(type, qs);
1806 }
1807 
1808 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1809  std::string Quals =
1811 
1812  switch (FnTy->getRefQualifier()) {
1813  case RQ_None:
1814  break;
1815 
1816  case RQ_LValue:
1817  if (!Quals.empty())
1818  Quals += ' ';
1819  Quals += '&';
1820  break;
1821 
1822  case RQ_RValue:
1823  if (!Quals.empty())
1824  Quals += ' ';
1825  Quals += "&&";
1826  break;
1827  }
1828 
1829  return Quals;
1830 }
1831 
1832 namespace {
1833 /// Kinds of declarator that cannot contain a qualified function type.
1834 ///
1835 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1836 /// a function type with a cv-qualifier or a ref-qualifier can only appear
1837 /// at the topmost level of a type.
1838 ///
1839 /// Parens and member pointers are permitted. We don't diagnose array and
1840 /// function declarators, because they don't allow function types at all.
1841 ///
1842 /// The values of this enum are used in diagnostics.
1843 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1844 } // end anonymous namespace
1845 
1846 /// Check whether the type T is a qualified function type, and if it is,
1847 /// diagnose that it cannot be contained within the given kind of declarator.
1849  QualifiedFunctionKind QFK) {
1850  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1851  const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1852  if (!FPT || (FPT->getTypeQuals() == 0 && FPT->getRefQualifier() == RQ_None))
1853  return false;
1854 
1855  S.Diag(Loc, diag::err_compound_qualified_function_type)
1856  << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1858  return true;
1859 }
1860 
1861 /// \brief Build a pointer type.
1862 ///
1863 /// \param T The type to which we'll be building a pointer.
1864 ///
1865 /// \param Loc The location of the entity whose type involves this
1866 /// pointer type or, if there is no such entity, the location of the
1867 /// type that will have pointer type.
1868 ///
1869 /// \param Entity The name of the entity that involves the pointer
1870 /// type, if known.
1871 ///
1872 /// \returns A suitable pointer type, if there are no
1873 /// errors. Otherwise, returns a NULL type.
1875  SourceLocation Loc, DeclarationName Entity) {
1876  if (T->isReferenceType()) {
1877  // C++ 8.3.2p4: There shall be no ... pointers to references ...
1878  Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1879  << getPrintableNameForEntity(Entity) << T;
1880  return QualType();
1881  }
1882 
1883  if (T->isFunctionType() && getLangOpts().OpenCL) {
1884  Diag(Loc, diag::err_opencl_function_pointer);
1885  return QualType();
1886  }
1887 
1888  if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1889  return QualType();
1890 
1891  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1892 
1893  // In ARC, it is forbidden to build pointers to unqualified pointers.
1894  if (getLangOpts().ObjCAutoRefCount)
1895  T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1896 
1897  // Build the pointer type.
1898  return Context.getPointerType(T);
1899 }
1900 
1901 /// \brief Build a reference type.
1902 ///
1903 /// \param T The type to which we'll be building a reference.
1904 ///
1905 /// \param Loc The location of the entity whose type involves this
1906 /// reference type or, if there is no such entity, the location of the
1907 /// type that will have reference type.
1908 ///
1909 /// \param Entity The name of the entity that involves the reference
1910 /// type, if known.
1911 ///
1912 /// \returns A suitable reference type, if there are no
1913 /// errors. Otherwise, returns a NULL type.
1915  SourceLocation Loc,
1916  DeclarationName Entity) {
1917  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1918  "Unresolved overloaded function type");
1919 
1920  // C++0x [dcl.ref]p6:
1921  // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1922  // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1923  // type T, an attempt to create the type "lvalue reference to cv TR" creates
1924  // the type "lvalue reference to T", while an attempt to create the type
1925  // "rvalue reference to cv TR" creates the type TR.
1926  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1927 
1928  // C++ [dcl.ref]p4: There shall be no references to references.
1929  //
1930  // According to C++ DR 106, references to references are only
1931  // diagnosed when they are written directly (e.g., "int & &"),
1932  // but not when they happen via a typedef:
1933  //
1934  // typedef int& intref;
1935  // typedef intref& intref2;
1936  //
1937  // Parser::ParseDeclaratorInternal diagnoses the case where
1938  // references are written directly; here, we handle the
1939  // collapsing of references-to-references as described in C++0x.
1940  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1941 
1942  // C++ [dcl.ref]p1:
1943  // A declarator that specifies the type "reference to cv void"
1944  // is ill-formed.
1945  if (T->isVoidType()) {
1946  Diag(Loc, diag::err_reference_to_void);
1947  return QualType();
1948  }
1949 
1950  if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
1951  return QualType();
1952 
1953  // In ARC, it is forbidden to build references to unqualified pointers.
1954  if (getLangOpts().ObjCAutoRefCount)
1955  T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1956 
1957  // Handle restrict on references.
1958  if (LValueRef)
1959  return Context.getLValueReferenceType(T, SpelledAsLValue);
1960  return Context.getRValueReferenceType(T);
1961 }
1962 
1963 /// \brief Build a Read-only Pipe type.
1964 ///
1965 /// \param T The type to which we'll be building a Pipe.
1966 ///
1967 /// \param Loc We do not use it for now.
1968 ///
1969 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
1970 /// NULL type.
1972  return Context.getReadPipeType(T);
1973 }
1974 
1975 /// \brief Build a Write-only Pipe type.
1976 ///
1977 /// \param T The type to which we'll be building a Pipe.
1978 ///
1979 /// \param Loc We do not use it for now.
1980 ///
1981 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
1982 /// NULL type.
1984  return Context.getWritePipeType(T);
1985 }
1986 
1987 /// Check whether the specified array size makes the array type a VLA. If so,
1988 /// return true, if not, return the size of the array in SizeVal.
1989 static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1990  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1991  // (like gnu99, but not c99) accept any evaluatable value as an extension.
1992  class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1993  public:
1994  VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1995 
1996  void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
1997  }
1998 
1999  void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
2000  S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
2001  }
2002  } Diagnoser;
2003 
2004  return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
2005  S.LangOpts.GNUMode ||
2006  S.LangOpts.OpenCL).isInvalid();
2007 }
2008 
2009 /// \brief Build an array type.
2010 ///
2011 /// \param T The type of each element in the array.
2012 ///
2013 /// \param ASM C99 array size modifier (e.g., '*', 'static').
2014 ///
2015 /// \param ArraySize Expression describing the size of the array.
2016 ///
2017 /// \param Brackets The range from the opening '[' to the closing ']'.
2018 ///
2019 /// \param Entity The name of the entity that involves the array
2020 /// type, if known.
2021 ///
2022 /// \returns A suitable array type, if there are no errors. Otherwise,
2023 /// returns a NULL type.
2025  Expr *ArraySize, unsigned Quals,
2026  SourceRange Brackets, DeclarationName Entity) {
2027 
2028  SourceLocation Loc = Brackets.getBegin();
2029  if (getLangOpts().CPlusPlus) {
2030  // C++ [dcl.array]p1:
2031  // T is called the array element type; this type shall not be a reference
2032  // type, the (possibly cv-qualified) type void, a function type or an
2033  // abstract class type.
2034  //
2035  // C++ [dcl.array]p3:
2036  // When several "array of" specifications are adjacent, [...] only the
2037  // first of the constant expressions that specify the bounds of the arrays
2038  // may be omitted.
2039  //
2040  // Note: function types are handled in the common path with C.
2041  if (T->isReferenceType()) {
2042  Diag(Loc, diag::err_illegal_decl_array_of_references)
2043  << getPrintableNameForEntity(Entity) << T;
2044  return QualType();
2045  }
2046 
2047  if (T->isVoidType() || T->isIncompleteArrayType()) {
2048  Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
2049  return QualType();
2050  }
2051 
2052  if (RequireNonAbstractType(Brackets.getBegin(), T,
2053  diag::err_array_of_abstract_type))
2054  return QualType();
2055 
2056  // Mentioning a member pointer type for an array type causes us to lock in
2057  // an inheritance model, even if it's inside an unused typedef.
2058  if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2059  if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2060  if (!MPTy->getClass()->isDependentType())
2061  (void)isCompleteType(Loc, T);
2062 
2063  } else {
2064  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2065  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2066  if (RequireCompleteType(Loc, T,
2067  diag::err_illegal_decl_array_incomplete_type))
2068  return QualType();
2069  }
2070 
2071  if (T->isFunctionType()) {
2072  Diag(Loc, diag::err_illegal_decl_array_of_functions)
2073  << getPrintableNameForEntity(Entity) << T;
2074  return QualType();
2075  }
2076 
2077  if (const RecordType *EltTy = T->getAs<RecordType>()) {
2078  // If the element type is a struct or union that contains a variadic
2079  // array, accept it as a GNU extension: C99 6.7.2.1p2.
2080  if (EltTy->getDecl()->hasFlexibleArrayMember())
2081  Diag(Loc, diag::ext_flexible_array_in_array) << T;
2082  } else if (T->isObjCObjectType()) {
2083  Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2084  return QualType();
2085  }
2086 
2087  // Do placeholder conversions on the array size expression.
2088  if (ArraySize && ArraySize->hasPlaceholderType()) {
2089  ExprResult Result = CheckPlaceholderExpr(ArraySize);
2090  if (Result.isInvalid()) return QualType();
2091  ArraySize = Result.get();
2092  }
2093 
2094  // Do lvalue-to-rvalue conversions on the array size expression.
2095  if (ArraySize && !ArraySize->isRValue()) {
2096  ExprResult Result = DefaultLvalueConversion(ArraySize);
2097  if (Result.isInvalid())
2098  return QualType();
2099 
2100  ArraySize = Result.get();
2101  }
2102 
2103  // C99 6.7.5.2p1: The size expression shall have integer type.
2104  // C++11 allows contextual conversions to such types.
2105  if (!getLangOpts().CPlusPlus11 &&
2106  ArraySize && !ArraySize->isTypeDependent() &&
2107  !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2108  Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
2109  << ArraySize->getType() << ArraySize->getSourceRange();
2110  return QualType();
2111  }
2112 
2113  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2114  if (!ArraySize) {
2115  if (ASM == ArrayType::Star)
2116  T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2117  else
2118  T = Context.getIncompleteArrayType(T, ASM, Quals);
2119  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2120  T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2121  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
2122  !T->isConstantSizeType()) ||
2123  isArraySizeVLA(*this, ArraySize, ConstVal)) {
2124  // Even in C++11, don't allow contextual conversions in the array bound
2125  // of a VLA.
2126  if (getLangOpts().CPlusPlus11 &&
2127  !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2128  Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
2129  << ArraySize->getType() << ArraySize->getSourceRange();
2130  return QualType();
2131  }
2132 
2133  // C99: an array with an element type that has a non-constant-size is a VLA.
2134  // C99: an array with a non-ICE size is a VLA. We accept any expression
2135  // that we can fold to a non-zero positive value as an extension.
2136  T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2137  } else {
2138  // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2139  // have a value greater than zero.
2140  if (ConstVal.isSigned() && ConstVal.isNegative()) {
2141  if (Entity)
2142  Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
2143  << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
2144  else
2145  Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
2146  << ArraySize->getSourceRange();
2147  return QualType();
2148  }
2149  if (ConstVal == 0) {
2150  // GCC accepts zero sized static arrays. We allow them when
2151  // we're not in a SFINAE context.
2152  Diag(ArraySize->getLocStart(),
2153  isSFINAEContext()? diag::err_typecheck_zero_array_size
2154  : diag::ext_typecheck_zero_array_size)
2155  << ArraySize->getSourceRange();
2156 
2157  if (ASM == ArrayType::Static) {
2158  Diag(ArraySize->getLocStart(),
2159  diag::warn_typecheck_zero_static_array_size)
2160  << ArraySize->getSourceRange();
2161  ASM = ArrayType::Normal;
2162  }
2163  } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
2164  !T->isIncompleteType() && !T->isUndeducedType()) {
2165  // Is the array too large?
2166  unsigned ActiveSizeBits
2167  = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
2168  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2169  Diag(ArraySize->getLocStart(), diag::err_array_too_large)
2170  << ConstVal.toString(10)
2171  << ArraySize->getSourceRange();
2172  return QualType();
2173  }
2174  }
2175 
2176  T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
2177  }
2178 
2179  // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2180  if (getLangOpts().OpenCL && T->isVariableArrayType()) {
2181  Diag(Loc, diag::err_opencl_vla);
2182  return QualType();
2183  }
2184 
2185  if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
2186  if (getLangOpts().CUDA) {
2187  // CUDA device code doesn't support VLAs.
2188  CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget();
2189  } else if (!getLangOpts().OpenMP ||
2190  shouldDiagnoseTargetSupportFromOpenMP()) {
2191  // Some targets don't support VLAs.
2192  Diag(Loc, diag::err_vla_unsupported);
2193  return QualType();
2194  }
2195  }
2196 
2197  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
2198  if (!getLangOpts().C99) {
2199  if (T->isVariableArrayType()) {
2200  // Prohibit the use of VLAs during template argument deduction.
2201  if (isSFINAEContext()) {
2202  Diag(Loc, diag::err_vla_in_sfinae);
2203  return QualType();
2204  }
2205  // Just extwarn about VLAs.
2206  else
2207  Diag(Loc, diag::ext_vla);
2208  } else if (ASM != ArrayType::Normal || Quals != 0)
2209  Diag(Loc,
2210  getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
2211  : diag::ext_c99_array_usage) << ASM;
2212  }
2213 
2214  if (T->isVariableArrayType()) {
2215  // Warn about VLAs for -Wvla.
2216  Diag(Loc, diag::warn_vla_used);
2217  }
2218 
2219  // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2220  // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2221  // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2222  if (getLangOpts().OpenCL) {
2223  const QualType ArrType = Context.getBaseElementType(T);
2224  if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2225  ArrType->isSamplerT() || ArrType->isImageType()) {
2226  Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2227  return QualType();
2228  }
2229  }
2230 
2231  return T;
2232 }
2233 
2234 /// \brief Build an ext-vector type.
2235 ///
2236 /// Run the required checks for the extended vector type.
2238  SourceLocation AttrLoc) {
2239  // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2240  // in conjunction with complex types (pointers, arrays, functions, etc.).
2241  //
2242  // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2243  // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2244  // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2245  // of bool aren't allowed.
2246  if ((!T->isDependentType() && !T->isIntegerType() &&
2247  !T->isRealFloatingType()) ||
2248  T->isBooleanType()) {
2249  Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2250  return QualType();
2251  }
2252 
2253  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2254  llvm::APSInt vecSize(32);
2255  if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
2256  Diag(AttrLoc, diag::err_attribute_argument_type)
2257  << "ext_vector_type" << AANT_ArgumentIntegerConstant
2258  << ArraySize->getSourceRange();
2259  return QualType();
2260  }
2261 
2262  // Unlike gcc's vector_size attribute, the size is specified as the
2263  // number of elements, not the number of bytes.
2264  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
2265 
2266  if (vectorSize == 0) {
2267  Diag(AttrLoc, diag::err_attribute_zero_size)
2268  << ArraySize->getSourceRange();
2269  return QualType();
2270  }
2271 
2272  if (VectorType::isVectorSizeTooLarge(vectorSize)) {
2273  Diag(AttrLoc, diag::err_attribute_size_too_large)
2274  << ArraySize->getSourceRange();
2275  return QualType();
2276  }
2277 
2278  return Context.getExtVectorType(T, vectorSize);
2279  }
2280 
2281  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2282 }
2283 
2285  if (T->isArrayType() || T->isFunctionType()) {
2286  Diag(Loc, diag::err_func_returning_array_function)
2287  << T->isFunctionType() << T;
2288  return true;
2289  }
2290 
2291  // Functions cannot return half FP.
2292  if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2293  Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2294  FixItHint::CreateInsertion(Loc, "*");
2295  return true;
2296  }
2297 
2298  // Methods cannot return interface types. All ObjC objects are
2299  // passed by reference.
2300  if (T->isObjCObjectType()) {
2301  Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2302  << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2303  return true;
2304  }
2305 
2306  return false;
2307 }
2308 
2309 /// Check the extended parameter information. Most of the necessary
2310 /// checking should occur when applying the parameter attribute; the
2311 /// only other checks required are positional restrictions.
2314  llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2315  assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
2316 
2317  bool hasCheckedSwiftCall = false;
2318  auto checkForSwiftCC = [&](unsigned paramIndex) {
2319  // Only do this once.
2320  if (hasCheckedSwiftCall) return;
2321  hasCheckedSwiftCall = true;
2322  if (EPI.ExtInfo.getCC() == CC_Swift) return;
2323  S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2324  << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI());
2325  };
2326 
2327  for (size_t paramIndex = 0, numParams = paramTypes.size();
2328  paramIndex != numParams; ++paramIndex) {
2329  switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2330  // Nothing interesting to check for orindary-ABI parameters.
2332  continue;
2333 
2334  // swift_indirect_result parameters must be a prefix of the function
2335  // arguments.
2337  checkForSwiftCC(paramIndex);
2338  if (paramIndex != 0 &&
2339  EPI.ExtParameterInfos[paramIndex - 1].getABI()
2341  S.Diag(getParamLoc(paramIndex),
2342  diag::err_swift_indirect_result_not_first);
2343  }
2344  continue;
2345 
2347  checkForSwiftCC(paramIndex);
2348  continue;
2349 
2350  // swift_error parameters must be preceded by a swift_context parameter.
2352  checkForSwiftCC(paramIndex);
2353  if (paramIndex == 0 ||
2354  EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2356  S.Diag(getParamLoc(paramIndex),
2357  diag::err_swift_error_result_not_after_swift_context);
2358  }
2359  continue;
2360  }
2361  llvm_unreachable("bad ABI kind");
2362  }
2363 }
2364 
2366  MutableArrayRef<QualType> ParamTypes,
2367  SourceLocation Loc, DeclarationName Entity,
2368  const FunctionProtoType::ExtProtoInfo &EPI) {
2369  bool Invalid = false;
2370 
2371  Invalid |= CheckFunctionReturnType(T, Loc);
2372 
2373  for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2374  // FIXME: Loc is too inprecise here, should use proper locations for args.
2375  QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2376  if (ParamType->isVoidType()) {
2377  Diag(Loc, diag::err_param_with_void_type);
2378  Invalid = true;
2379  } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2380  // Disallow half FP arguments.
2381  Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2382  FixItHint::CreateInsertion(Loc, "*");
2383  Invalid = true;
2384  }
2385 
2386  ParamTypes[Idx] = ParamType;
2387  }
2388 
2389  if (EPI.ExtParameterInfos) {
2390  checkExtParameterInfos(*this, ParamTypes, EPI,
2391  [=](unsigned i) { return Loc; });
2392  }
2393 
2394  if (EPI.ExtInfo.getProducesResult()) {
2395  // This is just a warning, so we can't fail to build if we see it.
2396  checkNSReturnsRetainedReturnType(Loc, T);
2397  }
2398 
2399  if (Invalid)
2400  return QualType();
2401 
2402  return Context.getFunctionType(T, ParamTypes, EPI);
2403 }
2404 
2405 /// \brief Build a member pointer type \c T Class::*.
2406 ///
2407 /// \param T the type to which the member pointer refers.
2408 /// \param Class the class type into which the member pointer points.
2409 /// \param Loc the location where this type begins
2410 /// \param Entity the name of the entity that will have this member pointer type
2411 ///
2412 /// \returns a member pointer type, if successful, or a NULL type if there was
2413 /// an error.
2415  SourceLocation Loc,
2416  DeclarationName Entity) {
2417  // Verify that we're not building a pointer to pointer to function with
2418  // exception specification.
2419  if (CheckDistantExceptionSpec(T)) {
2420  Diag(Loc, diag::err_distant_exception_spec);
2421  return QualType();
2422  }
2423 
2424  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2425  // with reference type, or "cv void."
2426  if (T->isReferenceType()) {
2427  Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2428  << getPrintableNameForEntity(Entity) << T;
2429  return QualType();
2430  }
2431 
2432  if (T->isVoidType()) {
2433  Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2434  << getPrintableNameForEntity(Entity);
2435  return QualType();
2436  }
2437 
2438  if (!Class->isDependentType() && !Class->isRecordType()) {
2439  Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2440  return QualType();
2441  }
2442 
2443  // Adjust the default free function calling convention to the default method
2444  // calling convention.
2445  bool IsCtorOrDtor =
2448  if (T->isFunctionType())
2449  adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
2450 
2451  return Context.getMemberPointerType(T, Class.getTypePtr());
2452 }
2453 
2454 /// \brief Build a block pointer type.
2455 ///
2456 /// \param T The type to which we'll be building a block pointer.
2457 ///
2458 /// \param Loc The source location, used for diagnostics.
2459 ///
2460 /// \param Entity The name of the entity that involves the block pointer
2461 /// type, if known.
2462 ///
2463 /// \returns A suitable block pointer type, if there are no
2464 /// errors. Otherwise, returns a NULL type.
2466  SourceLocation Loc,
2467  DeclarationName Entity) {
2468  if (!T->isFunctionType()) {
2469  Diag(Loc, diag::err_nonfunction_block_type);
2470  return QualType();
2471  }
2472 
2473  if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2474  return QualType();
2475 
2476  return Context.getBlockPointerType(T);
2477 }
2478 
2480  QualType QT = Ty.get();
2481  if (QT.isNull()) {
2482  if (TInfo) *TInfo = nullptr;
2483  return QualType();
2484  }
2485 
2486  TypeSourceInfo *DI = nullptr;
2487  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2488  QT = LIT->getType();
2489  DI = LIT->getTypeSourceInfo();
2490  }
2491 
2492  if (TInfo) *TInfo = DI;
2493  return QT;
2494 }
2495 
2496 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2497  Qualifiers::ObjCLifetime ownership,
2498  unsigned chunkIndex);
2499 
2500 /// Given that this is the declaration of a parameter under ARC,
2501 /// attempt to infer attributes and such for pointer-to-whatever
2502 /// types.
2503 static void inferARCWriteback(TypeProcessingState &state,
2504  QualType &declSpecType) {
2505  Sema &S = state.getSema();
2506  Declarator &declarator = state.getDeclarator();
2507 
2508  // TODO: should we care about decl qualifiers?
2509 
2510  // Check whether the declarator has the expected form. We walk
2511  // from the inside out in order to make the block logic work.
2512  unsigned outermostPointerIndex = 0;
2513  bool isBlockPointer = false;
2514  unsigned numPointers = 0;
2515  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2516  unsigned chunkIndex = i;
2517  DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2518  switch (chunk.Kind) {
2520  // Ignore parens.
2521  break;
2522 
2525  // Count the number of pointers. Treat references
2526  // interchangeably as pointers; if they're mis-ordered, normal
2527  // type building will discover that.
2528  outermostPointerIndex = chunkIndex;
2529  numPointers++;
2530  break;
2531 
2533  // If we have a pointer to block pointer, that's an acceptable
2534  // indirect reference; anything else is not an application of
2535  // the rules.
2536  if (numPointers != 1) return;
2537  numPointers++;
2538  outermostPointerIndex = chunkIndex;
2539  isBlockPointer = true;
2540 
2541  // We don't care about pointer structure in return values here.
2542  goto done;
2543 
2544  case DeclaratorChunk::Array: // suppress if written (id[])?
2547  case DeclaratorChunk::Pipe:
2548  return;
2549  }
2550  }
2551  done:
2552 
2553  // If we have *one* pointer, then we want to throw the qualifier on
2554  // the declaration-specifiers, which means that it needs to be a
2555  // retainable object type.
2556  if (numPointers == 1) {
2557  // If it's not a retainable object type, the rule doesn't apply.
2558  if (!declSpecType->isObjCRetainableType()) return;
2559 
2560  // If it already has lifetime, don't do anything.
2561  if (declSpecType.getObjCLifetime()) return;
2562 
2563  // Otherwise, modify the type in-place.
2564  Qualifiers qs;
2565 
2566  if (declSpecType->isObjCARCImplicitlyUnretainedType())
2568  else
2570  declSpecType = S.Context.getQualifiedType(declSpecType, qs);
2571 
2572  // If we have *two* pointers, then we want to throw the qualifier on
2573  // the outermost pointer.
2574  } else if (numPointers == 2) {
2575  // If we don't have a block pointer, we need to check whether the
2576  // declaration-specifiers gave us something that will turn into a
2577  // retainable object pointer after we slap the first pointer on it.
2578  if (!isBlockPointer && !declSpecType->isObjCObjectType())
2579  return;
2580 
2581  // Look for an explicit lifetime attribute there.
2582  DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
2583  if (chunk.Kind != DeclaratorChunk::Pointer &&
2585  return;
2586  for (const AttributeList *attr = chunk.getAttrs(); attr;
2587  attr = attr->getNext())
2588  if (attr->getKind() == AttributeList::AT_ObjCOwnership)
2589  return;
2590 
2592  outermostPointerIndex);
2593 
2594  // Any other number of pointers/references does not trigger the rule.
2595  } else return;
2596 
2597  // TODO: mark whether we did this inference?
2598 }
2599 
2600 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2601  SourceLocation FallbackLoc,
2602  SourceLocation ConstQualLoc,
2603  SourceLocation VolatileQualLoc,
2604  SourceLocation RestrictQualLoc,
2605  SourceLocation AtomicQualLoc,
2606  SourceLocation UnalignedQualLoc) {
2607  if (!Quals)
2608  return;
2609 
2610  struct Qual {
2611  const char *Name;
2612  unsigned Mask;
2613  SourceLocation Loc;
2614  } const QualKinds[5] = {
2615  { "const", DeclSpec::TQ_const, ConstQualLoc },
2616  { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
2617  { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
2618  { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
2619  { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
2620  };
2621 
2622  SmallString<32> QualStr;
2623  unsigned NumQuals = 0;
2624  SourceLocation Loc;
2625  FixItHint FixIts[5];
2626 
2627  // Build a string naming the redundant qualifiers.
2628  for (auto &E : QualKinds) {
2629  if (Quals & E.Mask) {
2630  if (!QualStr.empty()) QualStr += ' ';
2631  QualStr += E.Name;
2632 
2633  // If we have a location for the qualifier, offer a fixit.
2634  SourceLocation QualLoc = E.Loc;
2635  if (QualLoc.isValid()) {
2636  FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2637  if (Loc.isInvalid() ||
2638  getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2639  Loc = QualLoc;
2640  }
2641 
2642  ++NumQuals;
2643  }
2644  }
2645 
2646  Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2647  << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2648 }
2649 
2650 // Diagnose pointless type qualifiers on the return type of a function.
2652  Declarator &D,
2653  unsigned FunctionChunkIndex) {
2654  if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
2655  // FIXME: TypeSourceInfo doesn't preserve location information for
2656  // qualifiers.
2657  S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2658  RetTy.getLocalCVRQualifiers(),
2659  D.getIdentifierLoc());
2660  return;
2661  }
2662 
2663  for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2664  End = D.getNumTypeObjects();
2665  OuterChunkIndex != End; ++OuterChunkIndex) {
2666  DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2667  switch (OuterChunk.Kind) {
2669  continue;
2670 
2671  case DeclaratorChunk::Pointer: {
2672  DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2674  diag::warn_qual_return_type,
2675  PTI.TypeQuals,
2676  SourceLocation(),
2682  return;
2683  }
2684 
2690  case DeclaratorChunk::Pipe:
2691  // FIXME: We can't currently provide an accurate source location and a
2692  // fix-it hint for these.
2693  unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2694  S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2695  RetTy.getCVRQualifiers() | AtomicQual,
2696  D.getIdentifierLoc());
2697  return;
2698  }
2699 
2700  llvm_unreachable("unknown declarator chunk kind");
2701  }
2702 
2703  // If the qualifiers come from a conversion function type, don't diagnose
2704  // them -- they're not necessarily redundant, since such a conversion
2705  // operator can be explicitly called as "x.operator const int()".
2707  return;
2708 
2709  // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2710  // which are present there.
2711  S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2713  D.getIdentifierLoc(),
2719 }
2720 
2721 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
2722  TypeSourceInfo *&ReturnTypeInfo) {
2723  Sema &SemaRef = state.getSema();
2724  Declarator &D = state.getDeclarator();
2725  QualType T;
2726  ReturnTypeInfo = nullptr;
2727 
2728  // The TagDecl owned by the DeclSpec.
2729  TagDecl *OwnedTagDecl = nullptr;
2730 
2731  switch (D.getName().getKind()) {
2737  T = ConvertDeclSpecToType(state);
2738 
2739  if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
2740  OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2741  // Owned declaration is embedded in declarator.
2742  OwnedTagDecl->setEmbeddedInDeclarator(true);
2743  }
2744  break;
2745 
2749  // Constructors and destructors don't have return types. Use
2750  // "void" instead.
2751  T = SemaRef.Context.VoidTy;
2752  processTypeAttrs(state, T, TAL_DeclSpec,
2754  break;
2755 
2757  // Deduction guides have a trailing return type and no type in their
2758  // decl-specifier sequence. Use a placeholder return type for now.
2759  T = SemaRef.Context.DependentTy;
2760  break;
2761 
2763  // The result type of a conversion function is the type that it
2764  // converts to.
2766  &ReturnTypeInfo);
2767  break;
2768  }
2769 
2770  if (D.getAttributes())
2772 
2773  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
2774  if (DeducedType *Deduced = T->getContainedDeducedType()) {
2775  AutoType *Auto = dyn_cast<AutoType>(Deduced);
2776  int Error = -1;
2777 
2778  // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
2779  // class template argument deduction)?
2780  bool IsCXXAutoType =
2781  (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
2782 
2783  switch (D.getContext()) {
2785  // Declared return type of a lambda-declarator is implicit and is always
2786  // 'auto'.
2787  break;
2791  Error = 0;
2792  break;
2794  // In C++14, generic lambdas allow 'auto' in their parameters.
2795  if (!SemaRef.getLangOpts().CPlusPlus14 ||
2796  !Auto || Auto->getKeyword() != AutoTypeKeyword::Auto)
2797  Error = 16;
2798  else {
2799  // If auto is mentioned in a lambda parameter context, convert it to a
2800  // template parameter type.
2801  sema::LambdaScopeInfo *LSI = SemaRef.getCurLambda();
2802  assert(LSI && "No LambdaScopeInfo on the stack!");
2803  const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
2804  const unsigned AutoParameterPosition = LSI->AutoTemplateParams.size();
2805  const bool IsParameterPack = D.hasEllipsis();
2806 
2807  // Create the TemplateTypeParmDecl here to retrieve the corresponding
2808  // template parameter type. Template parameters are temporarily added
2809  // to the TU until the associated TemplateDecl is created.
2810  TemplateTypeParmDecl *CorrespondingTemplateParam =
2812  SemaRef.Context, SemaRef.Context.getTranslationUnitDecl(),
2813  /*KeyLoc*/SourceLocation(), /*NameLoc*/D.getLocStart(),
2814  TemplateParameterDepth, AutoParameterPosition,
2815  /*Identifier*/nullptr, false, IsParameterPack);
2816  LSI->AutoTemplateParams.push_back(CorrespondingTemplateParam);
2817  // Replace the 'auto' in the function parameter with this invented
2818  // template type parameter.
2819  // FIXME: Retain some type sugar to indicate that this was written
2820  // as 'auto'.
2821  T = SemaRef.ReplaceAutoType(
2822  T, QualType(CorrespondingTemplateParam->getTypeForDecl(), 0));
2823  }
2824  break;
2828  break;
2829  bool Cxx = SemaRef.getLangOpts().CPlusPlus;
2830  switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
2831  case TTK_Enum: llvm_unreachable("unhandled tag kind");
2832  case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
2833  case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
2834  case TTK_Class: Error = 5; /* Class member */ break;
2835  case TTK_Interface: Error = 6; /* Interface member */ break;
2836  }
2837  if (D.getDeclSpec().isFriendSpecified())
2838  Error = 20; // Friend type
2839  break;
2840  }
2843  Error = 7; // Exception declaration
2844  break;
2846  if (isa<DeducedTemplateSpecializationType>(Deduced))
2847  Error = 19; // Template parameter
2848  else if (!SemaRef.getLangOpts().CPlusPlus17)
2849  Error = 8; // Template parameter (until C++17)
2850  break;
2852  Error = 9; // Block literal
2853  break;
2855  Error = 10; // Template type argument
2856  break;
2859  Error = 12; // Type alias
2860  break;
2862  if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
2863  Error = 13; // Function return type
2864  break;
2866  if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
2867  Error = 14; // conversion-type-id
2868  break;
2870  if (isa<DeducedTemplateSpecializationType>(Deduced))
2871  break;
2872  LLVM_FALLTHROUGH;
2874  Error = 15; // Generic
2875  break;
2881  // FIXME: P0091R3 (erroneously) does not permit class template argument
2882  // deduction in conditions, for-init-statements, and other declarations
2883  // that are not simple-declarations.
2884  break;
2886  // FIXME: P0091R3 does not permit class template argument deduction here,
2887  // but we follow GCC and allow it anyway.
2888  if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
2889  Error = 17; // 'new' type
2890  break;
2892  Error = 18; // K&R function parameter
2893  break;
2894  }
2895 
2897  Error = 11;
2898 
2899  // In Objective-C it is an error to use 'auto' on a function declarator
2900  // (and everywhere for '__auto_type').
2901  if (D.isFunctionDeclarator() &&
2902  (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
2903  Error = 13;
2904 
2905  bool HaveTrailing = false;
2906 
2907  // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
2908  // contains a trailing return type. That is only legal at the outermost
2909  // level. Check all declarator chunks (outermost first) anyway, to give
2910  // better diagnostics.
2911  // We don't support '__auto_type' with trailing return types.
2912  // FIXME: Should we only do this for 'auto' and not 'decltype(auto)'?
2913  if (SemaRef.getLangOpts().CPlusPlus11 && IsCXXAutoType &&
2914  D.hasTrailingReturnType()) {
2915  HaveTrailing = true;
2916  Error = -1;
2917  }
2918 
2919  SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
2921  AutoRange = D.getName().getSourceRange();
2922 
2923  if (Error != -1) {
2924  unsigned Kind;
2925  if (Auto) {
2926  switch (Auto->getKeyword()) {
2927  case AutoTypeKeyword::Auto: Kind = 0; break;
2928  case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
2929  case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
2930  }
2931  } else {
2932  assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
2933  "unknown auto type");
2934  Kind = 3;
2935  }
2936 
2937  auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
2938  TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
2939 
2940  SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
2941  << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
2942  << QualType(Deduced, 0) << AutoRange;
2943  if (auto *TD = TN.getAsTemplateDecl())
2944  SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
2945 
2946  T = SemaRef.Context.IntTy;
2947  D.setInvalidType(true);
2948  } else if (!HaveTrailing) {
2949  // If there was a trailing return type, we already got
2950  // warn_cxx98_compat_trailing_return_type in the parser.
2951  SemaRef.Diag(AutoRange.getBegin(),
2952  diag::warn_cxx98_compat_auto_type_specifier)
2953  << AutoRange;
2954  }
2955  }
2956 
2957  if (SemaRef.getLangOpts().CPlusPlus &&
2958  OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
2959  // Check the contexts where C++ forbids the declaration of a new class
2960  // or enumeration in a type-specifier-seq.
2961  unsigned DiagID = 0;
2962  switch (D.getContext()) {
2964  // Class and enumeration definitions are syntactically not allowed in
2965  // trailing return types.
2966  llvm_unreachable("parser should not have allowed this");
2967  break;
2975  // C++11 [dcl.type]p3:
2976  // A type-specifier-seq shall not define a class or enumeration unless
2977  // it appears in the type-id of an alias-declaration (7.1.3) that is not
2978  // the declaration of a template-declaration.
2980  break;
2982  DiagID = diag::err_type_defined_in_alias_template;
2983  break;
2992  DiagID = diag::err_type_defined_in_type_specifier;
2993  break;
2999  // C++ [dcl.fct]p6:
3000  // Types shall not be defined in return or parameter types.
3001  DiagID = diag::err_type_defined_in_param_type;
3002  break;
3004  // C++ 6.4p2:
3005  // The type-specifier-seq shall not contain typedef and shall not declare
3006  // a new class or enumeration.
3007  DiagID = diag::err_type_defined_in_condition;
3008  break;
3009  }
3010 
3011  if (DiagID != 0) {
3012  SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3013  << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3014  D.setInvalidType(true);
3015  }
3016  }
3017 
3018  assert(!T.isNull() && "This function should not return a null type");
3019  return T;
3020 }
3021 
3022 /// Produce an appropriate diagnostic for an ambiguity between a function
3023 /// declarator and a C++ direct-initializer.
3025  DeclaratorChunk &DeclType, QualType RT) {
3026  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3027  assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
3028 
3029  // If the return type is void there is no ambiguity.
3030  if (RT->isVoidType())
3031  return;
3032 
3033  // An initializer for a non-class type can have at most one argument.
3034  if (!RT->isRecordType() && FTI.NumParams > 1)
3035  return;
3036 
3037  // An initializer for a reference must have exactly one argument.
3038  if (RT->isReferenceType() && FTI.NumParams != 1)
3039  return;
3040 
3041  // Only warn if this declarator is declaring a function at block scope, and
3042  // doesn't have a storage class (such as 'extern') specified.
3043  if (!D.isFunctionDeclarator() ||
3048  return;
3049 
3050  // Inside a condition, a direct initializer is not permitted. We allow one to
3051  // be parsed in order to give better diagnostics in condition parsing.
3053  return;
3054 
3055  SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3056 
3057  S.Diag(DeclType.Loc,
3058  FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3059  : diag::warn_empty_parens_are_function_decl)
3060  << ParenRange;
3061 
3062  // If the declaration looks like:
3063  // T var1,
3064  // f();
3065  // and name lookup finds a function named 'f', then the ',' was
3066  // probably intended to be a ';'.
3067  if (!D.isFirstDeclarator() && D.getIdentifier()) {
3070  if (Comma.getFileID() != Name.getFileID() ||
3071  Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3074  if (S.LookupName(Result, S.getCurScope()))
3075  S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3077  << D.getIdentifier();
3078  Result.suppressDiagnostics();
3079  }
3080  }
3081 
3082  if (FTI.NumParams > 0) {
3083  // For a declaration with parameters, eg. "T var(T());", suggest adding
3084  // parens around the first parameter to turn the declaration into a
3085  // variable declaration.
3086  SourceRange Range = FTI.Params[0].Param->getSourceRange();
3087  SourceLocation B = Range.getBegin();
3088  SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3089  // FIXME: Maybe we should suggest adding braces instead of parens
3090  // in C++11 for classes that don't have an initializer_list constructor.
3091  S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3092  << FixItHint::CreateInsertion(B, "(")
3093  << FixItHint::CreateInsertion(E, ")");
3094  } else {
3095  // For a declaration without parameters, eg. "T var();", suggest replacing
3096  // the parens with an initializer to turn the declaration into a variable
3097  // declaration.
3098  const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3099 
3100  // Empty parens mean value-initialization, and no parens mean
3101  // default initialization. These are equivalent if the default
3102  // constructor is user-provided or if zero-initialization is a
3103  // no-op.
3104  if (RD && RD->hasDefinition() &&
3105  (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3106  S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3107  << FixItHint::CreateRemoval(ParenRange);
3108  else {
3109  std::string Init =
3110  S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3111  if (Init.empty() && S.LangOpts.CPlusPlus11)
3112  Init = "{}";
3113  if (!Init.empty())
3114  S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3115  << FixItHint::CreateReplacement(ParenRange, Init);
3116  }
3117  }
3118 }
3119 
3120 /// Produce an appropriate diagnostic for a declarator with top-level
3121 /// parentheses.
3124  assert(Paren.Kind == DeclaratorChunk::Paren &&
3125  "do not have redundant top-level parentheses");
3126 
3127  // This is a syntactic check; we're not interested in cases that arise
3128  // during template instantiation.
3129  if (S.inTemplateInstantiation())
3130  return;
3131 
3132  // Check whether this could be intended to be a construction of a temporary
3133  // object in C++ via a function-style cast.
3134  bool CouldBeTemporaryObject =
3135  S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3136  !D.isInvalidType() && D.getIdentifier() &&
3138  (T->isRecordType() || T->isDependentType()) &&
3140 
3141  bool StartsWithDeclaratorId = true;
3142  for (auto &C : D.type_objects()) {
3143  switch (C.Kind) {
3145  if (&C == &Paren)
3146  continue;
3147  LLVM_FALLTHROUGH;
3149  StartsWithDeclaratorId = false;
3150  continue;
3151 
3153  if (!C.Arr.NumElts)
3154  CouldBeTemporaryObject = false;
3155  continue;
3156 
3158  // FIXME: Suppress the warning here if there is no initializer; we're
3159  // going to give an error anyway.
3160  // We assume that something like 'T (&x) = y;' is highly likely to not
3161  // be intended to be a temporary object.
3162  CouldBeTemporaryObject = false;
3163  StartsWithDeclaratorId = false;
3164  continue;
3165 
3167  // In a new-type-id, function chunks require parentheses.
3169  return;
3170  // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3171  // redundant-parens warning, but we don't know whether the function
3172  // chunk was syntactically valid as an expression here.
3173  CouldBeTemporaryObject = false;
3174  continue;
3175 
3178  case DeclaratorChunk::Pipe:
3179  // These cannot appear in expressions.
3180  CouldBeTemporaryObject = false;
3181  StartsWithDeclaratorId = false;
3182  continue;
3183  }
3184  }
3185 
3186  // FIXME: If there is an initializer, assume that this is not intended to be
3187  // a construction of a temporary object.
3188 
3189  // Check whether the name has already been declared; if not, this is not a
3190  // function-style cast.
3191  if (CouldBeTemporaryObject) {
3194  if (!S.LookupName(Result, S.getCurScope()))
3195  CouldBeTemporaryObject = false;
3196  Result.suppressDiagnostics();
3197  }
3198 
3199  SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3200 
3201  if (!CouldBeTemporaryObject) {
3202  // If we have A (::B), the parentheses affect the meaning of the program.
3203  // Suppress the warning in that case. Don't bother looking at the DeclSpec
3204  // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3205  // formally unambiguous.
3206  if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3207  for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3208  NNS = NNS->getPrefix()) {
3209  if (NNS->getKind() == NestedNameSpecifier::Global)
3210  return;
3211  }
3212  }
3213 
3214  S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3215  << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3216  << FixItHint::CreateRemoval(Paren.EndLoc);
3217  return;
3218  }
3219 
3220  S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3221  << ParenRange << D.getIdentifier();
3222  auto *RD = T->getAsCXXRecordDecl();
3223  if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3224  S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3225  << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3226  << D.getIdentifier();
3227  // FIXME: A cast to void is probably a better suggestion in cases where it's
3228  // valid (when there is no initializer and we're not in a condition).
3229  S.Diag(D.getLocStart(), diag::note_function_style_cast_add_parentheses)
3232  S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3233  << FixItHint::CreateRemoval(Paren.Loc)
3234  << FixItHint::CreateRemoval(Paren.EndLoc);
3235 }
3236 
3237 /// Helper for figuring out the default CC for a function declarator type. If
3238 /// this is the outermost chunk, then we can determine the CC from the
3239 /// declarator context. If not, then this could be either a member function
3240 /// type or normal function type.
3241 static CallingConv
3244  unsigned ChunkIndex) {
3245  assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
3246 
3247  // Check for an explicit CC attribute.
3248  for (auto Attr = FTI.AttrList; Attr; Attr = Attr->getNext()) {
3249  switch (Attr->getKind()) {
3251  // Ignore attributes that don't validate or can't apply to the
3252  // function type. We'll diagnose the failure to apply them in
3253  // handleFunctionTypeAttr.
3254  CallingConv CC;
3255  if (!S.CheckCallingConvAttr(*Attr, CC) &&
3256  (!FTI.isVariadic || supportsVariadicCall(CC))) {
3257  return CC;
3258  }
3259  break;
3260  }
3261 
3262  default:
3263  break;
3264  }
3265  }
3266 
3267  bool IsCXXInstanceMethod = false;
3268 
3269  if (S.getLangOpts().CPlusPlus) {
3270  // Look inwards through parentheses to see if this chunk will form a
3271  // member pointer type or if we're the declarator. Any type attributes
3272  // between here and there will override the CC we choose here.
3273  unsigned I = ChunkIndex;
3274  bool FoundNonParen = false;
3275  while (I && !FoundNonParen) {
3276  --I;
3278  FoundNonParen = true;
3279  }
3280 
3281  if (FoundNonParen) {
3282  // If we're not the declarator, we're a regular function type unless we're
3283  // in a member pointer.
3284  IsCXXInstanceMethod =
3287  // This can only be a call operator for a lambda, which is an instance
3288  // method.
3289  IsCXXInstanceMethod = true;
3290  } else {
3291  // We're the innermost decl chunk, so must be a function declarator.
3292  assert(D.isFunctionDeclarator());
3293 
3294  // If we're inside a record, we're declaring a method, but it could be
3295  // explicitly or implicitly static.
3296  IsCXXInstanceMethod =
3299  !D.isStaticMember();
3300  }
3301  }
3302 
3304  IsCXXInstanceMethod);
3305 
3306  // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3307  // and AMDGPU targets, hence it cannot be treated as a calling
3308  // convention attribute. This is the simplest place to infer
3309  // calling convention for OpenCL kernels.
3310  if (S.getLangOpts().OpenCL) {
3311  for (const AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
3312  Attr; Attr = Attr->getNext()) {
3313  if (Attr->getKind() == AttributeList::AT_OpenCLKernel) {
3314  CC = CC_OpenCLKernel;
3315  break;
3316  }
3317  }
3318  }
3319 
3320  return CC;
3321 }
3322 
3323 namespace {
3324  /// A simple notion of pointer kinds, which matches up with the various
3325  /// pointer declarators.
3326  enum class SimplePointerKind {
3327  Pointer,
3328  BlockPointer,
3329  MemberPointer,
3330  Array,
3331  };
3332 } // end anonymous namespace
3333 
3335  switch (nullability) {
3337  if (!Ident__Nonnull)
3338  Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3339  return Ident__Nonnull;
3340 
3342  if (!Ident__Nullable)
3343  Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3344  return Ident__Nullable;
3345 
3347  if (!Ident__Null_unspecified)
3348  Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3349  return Ident__Null_unspecified;
3350  }
3351  llvm_unreachable("Unknown nullability kind.");
3352 }
3353 
3354 /// Retrieve the identifier "NSError".
3356  if (!Ident_NSError)
3357  Ident_NSError = PP.getIdentifierInfo("NSError");
3358 
3359  return Ident_NSError;
3360 }
3361 
3362 /// Check whether there is a nullability attribute of any kind in the given
3363 /// attribute list.
3364 static bool hasNullabilityAttr(const AttributeList *attrs) {
3365  for (const AttributeList *attr = attrs; attr;
3366  attr = attr->getNext()) {
3367  if (attr->getKind() == AttributeList::AT_TypeNonNull ||
3368  attr->getKind() == AttributeList::AT_TypeNullable ||
3369  attr->getKind() == AttributeList::AT_TypeNullUnspecified)
3370  return true;
3371  }
3372 
3373  return false;
3374 }
3375 
3376 namespace {
3377  /// Describes the kind of a pointer a declarator describes.
3379  // Not a pointer.
3380  NonPointer,
3381  // Single-level pointer.
3382  SingleLevelPointer,
3383  // Multi-level pointer (of any pointer kind).
3384  MultiLevelPointer,
3385  // CFFooRef*
3386  MaybePointerToCFRef,
3387  // CFErrorRef*
3388  CFErrorRefPointer,
3389  // NSError**
3390  NSErrorPointerPointer,
3391  };
3392 
3393  /// Describes a declarator chunk wrapping a pointer that marks inference as
3394  /// unexpected.
3395  // These values must be kept in sync with diagnostics.
3397  /// Pointer is top-level.
3398  None = -1,
3399  /// Pointer is an array element.
3400  Array = 0,
3401  /// Pointer is the referent type of a C++ reference.
3402  Reference = 1
3403  };
3404 } // end anonymous namespace
3405 
3406 /// Classify the given declarator, whose type-specified is \c type, based on
3407 /// what kind of pointer it refers to.
3408 ///
3409 /// This is used to determine the default nullability.
3410 static PointerDeclaratorKind
3412  PointerWrappingDeclaratorKind &wrappingKind) {
3413  unsigned numNormalPointers = 0;
3414 
3415  // For any dependent type, we consider it a non-pointer.
3416  if (type->isDependentType())
3417  return PointerDeclaratorKind::NonPointer;
3418 
3419  // Look through the declarator chunks to identify pointers.
3420  for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3421  DeclaratorChunk &chunk = declarator.getTypeObject(i);
3422  switch (chunk.Kind) {
3424  if (numNormalPointers == 0)
3425  wrappingKind = PointerWrappingDeclaratorKind::Array;
3426  break;
3427 
3429  case DeclaratorChunk::Pipe:
3430  break;
3431 
3434  return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3435  : PointerDeclaratorKind::SingleLevelPointer;
3436 
3438  break;
3439 
3441  if (numNormalPointers == 0)
3442  wrappingKind = PointerWrappingDeclaratorKind::Reference;
3443  break;
3444 
3446  ++numNormalPointers;
3447  if (numNormalPointers > 2)
3448  return PointerDeclaratorKind::MultiLevelPointer;
3449  break;
3450  }
3451  }
3452 
3453  // Then, dig into the type specifier itself.
3454  unsigned numTypeSpecifierPointers = 0;
3455  do {
3456  // Decompose normal pointers.
3457  if (auto ptrType = type->getAs<PointerType>()) {
3458  ++numNormalPointers;
3459 
3460  if (numNormalPointers > 2)
3461  return PointerDeclaratorKind::MultiLevelPointer;
3462 
3463  type = ptrType->getPointeeType();
3464  ++numTypeSpecifierPointers;
3465  continue;
3466  }
3467 
3468  // Decompose block pointers.
3469  if (type->getAs<BlockPointerType>()) {
3470  return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3471  : PointerDeclaratorKind::SingleLevelPointer;
3472  }
3473 
3474  // Decompose member pointers.
3475  if (type->getAs<MemberPointerType>()) {
3476  return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3477  : PointerDeclaratorKind::SingleLevelPointer;
3478  }
3479 
3480  // Look at Objective-C object pointers.
3481  if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
3482  ++numNormalPointers;
3483  ++numTypeSpecifierPointers;
3484 
3485  // If this is NSError**, report that.
3486  if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
3487  if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
3488  numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3489  return PointerDeclaratorKind::NSErrorPointerPointer;
3490  }
3491  }
3492 
3493  break;
3494  }
3495 
3496  // Look at Objective-C class types.
3497  if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
3498  if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
3499  if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
3500  return PointerDeclaratorKind::NSErrorPointerPointer;
3501  }
3502 
3503  break;
3504  }
3505 
3506  // If at this point we haven't seen a pointer, we won't see one.
3507  if (numNormalPointers == 0)
3508  return PointerDeclaratorKind::NonPointer;
3509 
3510  if (auto recordType = type->getAs<RecordType>()) {
3511  RecordDecl *recordDecl = recordType->getDecl();
3512 
3513  bool isCFError = false;
3514  if (S.CFError) {
3515  // If we already know about CFError, test it directly.
3516  isCFError = (S.CFError == recordDecl);
3517  } else {
3518  // Check whether this is CFError, which we identify based on its bridge
3519  // to NSError. CFErrorRef used to be declared with "objc_bridge" but is
3520  // now declared with "objc_bridge_mutable", so look for either one of
3521  // the two attributes.
3522  if (recordDecl->getTagKind() == TTK_Struct && numNormalPointers > 0) {
3523  IdentifierInfo *bridgedType = nullptr;
3524  if (auto bridgeAttr = recordDecl->getAttr<ObjCBridgeAttr>())
3525  bridgedType = bridgeAttr->getBridgedType();
3526  else if (auto bridgeAttr =
3527  recordDecl->getAttr<ObjCBridgeMutableAttr>())
3528  bridgedType = bridgeAttr->getBridgedType();
3529 
3530  if (bridgedType == S.getNSErrorIdent()) {
3531  S.CFError = recordDecl;
3532  isCFError = true;
3533  }
3534  }
3535  }
3536 
3537  // If this is CFErrorRef*, report it as such.
3538  if (isCFError && numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3539  return PointerDeclaratorKind::CFErrorRefPointer;
3540  }
3541  break;
3542  }
3543 
3544  break;
3545  } while (true);
3546 
3547  switch (numNormalPointers) {
3548  case 0:
3549  return PointerDeclaratorKind::NonPointer;
3550 
3551  case 1:
3552  return PointerDeclaratorKind::SingleLevelPointer;
3553 
3554  case 2:
3555  return PointerDeclaratorKind::MaybePointerToCFRef;
3556 
3557  default:
3558  return PointerDeclaratorKind::MultiLevelPointer;
3559  }
3560 }
3561 
3563  SourceLocation loc) {
3564  // If we're anywhere in a function, method, or closure context, don't perform
3565  // completeness checks.
3566  for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
3567  if (ctx->isFunctionOrMethod())
3568  return FileID();
3569 
3570  if (ctx->isFileContext())
3571  break;
3572  }
3573 
3574  // We only care about the expansion location.
3575  loc = S.SourceMgr.getExpansionLoc(loc);
3576  FileID file = S.SourceMgr.getFileID(loc);
3577  if (file.isInvalid())
3578  return FileID();
3579 
3580  // Retrieve file information.
3581  bool invalid = false;
3582  const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
3583  if (invalid || !sloc.isFile())
3584  return FileID();
3585 
3586  // We don't want to perform completeness checks on the main file or in
3587  // system headers.
3588  const SrcMgr::FileInfo &fileInfo = sloc.getFile();
3589  if (fileInfo.getIncludeLoc().isInvalid())
3590  return FileID();
3591  if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
3593  return FileID();
3594  }
3595 
3596  return file;
3597 }
3598 
3599 /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
3600 /// taking into account whitespace before and after.
3602  SourceLocation PointerLoc,
3604  assert(PointerLoc.isValid());
3605  if (PointerLoc.isMacroID())
3606  return;
3607 
3608  SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
3609  if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
3610  return;
3611 
3612  const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
3613  if (!NextChar)
3614  return;
3615 
3616  SmallString<32> InsertionTextBuf{" "};
3617  InsertionTextBuf += getNullabilitySpelling(Nullability);
3618  InsertionTextBuf += " ";
3619  StringRef InsertionText = InsertionTextBuf.str();
3620 
3621  if (isWhitespace(*NextChar)) {
3622  InsertionText = InsertionText.drop_back();
3623  } else if (NextChar[-1] == '[') {
3624  if (NextChar[0] == ']')
3625  InsertionText = InsertionText.drop_back().drop_front();
3626  else
3627  InsertionText = InsertionText.drop_front();
3628  } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
3629  !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
3630  InsertionText = InsertionText.drop_back().drop_front();
3631  }
3632 
3633  Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
3634 }
3635 
3637  SimplePointerKind PointerKind,
3638  SourceLocation PointerLoc,
3639  SourceLocation PointerEndLoc) {
3640  assert(PointerLoc.isValid());
3641 
3642  if (PointerKind == SimplePointerKind::Array) {
3643  S.Diag(PointerLoc, diag::warn_nullability_missing_array);
3644  } else {
3645  S.Diag(PointerLoc, diag::warn_nullability_missing)
3646  << static_cast<unsigned>(PointerKind);
3647  }
3648 
3649  auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
3650  if (FixItLoc.isMacroID())
3651  return;
3652 
3653  auto addFixIt = [&](NullabilityKind Nullability) {
3654  auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
3655  Diag << static_cast<unsigned>(Nullability);
3656  Diag << static_cast<unsigned>(PointerKind);
3657  fixItNullability(S, Diag, FixItLoc, Nullability);
3658  };
3659  addFixIt(NullabilityKind::Nullable);
3660  addFixIt(NullabilityKind::NonNull);
3661 }
3662 
3663 /// Complains about missing nullability if the file containing \p pointerLoc
3664 /// has other uses of nullability (either the keywords or the \c assume_nonnull
3665 /// pragma).
3666 ///
3667 /// If the file has \e not seen other uses of nullability, this particular
3668 /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
3669 static void
3671  SourceLocation pointerLoc,
3672  SourceLocation pointerEndLoc = SourceLocation()) {
3673  // Determine which file we're performing consistency checking for.
3674  FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
3675  if (file.isInvalid())
3676  return;
3677 
3678  // If we haven't seen any type nullability in this file, we won't warn now
3679  // about anything.
3680  FileNullability &fileNullability = S.NullabilityMap[file];
3681  if (!fileNullability.SawTypeNullability) {
3682  // If this is the first pointer declarator in the file, and the appropriate
3683  // warning is on, record it in case we need to diagnose it retroactively.
3684  diag::kind diagKind;
3685  if (pointerKind == SimplePointerKind::Array)
3686  diagKind = diag::warn_nullability_missing_array;
3687  else
3688  diagKind = diag::warn_nullability_missing;
3689 
3690  if (fileNullability.PointerLoc.isInvalid() &&
3691  !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
3692  fileNullability.PointerLoc = pointerLoc;
3693  fileNullability.PointerEndLoc = pointerEndLoc;
3694  fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
3695  }
3696 
3697  return;
3698  }
3699 
3700  // Complain about missing nullability.
3701  emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
3702 }
3703 
3704 /// Marks that a nullability feature has been used in the file containing
3705 /// \p loc.
3706 ///
3707 /// If this file already had pointer types in it that were missing nullability,
3708 /// the first such instance is retroactively diagnosed.
3709 ///
3710 /// \sa checkNullabilityConsistency
3713  if (file.isInvalid())
3714  return;
3715 
3716  FileNullability &fileNullability = S.NullabilityMap[file];
3717  if (fileNullability.SawTypeNullability)
3718  return;
3719  fileNullability.SawTypeNullability = true;
3720 
3721  // If we haven't seen any type nullability before, now we have. Retroactively
3722  // diagnose the first unannotated pointer, if there was one.
3723  if (fileNullability.PointerLoc.isInvalid())
3724  return;
3725 
3726  auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
3728  fileNullability.PointerEndLoc);
3729 }
3730 
3731 /// Returns true if any of the declarator chunks before \p endIndex include a
3732 /// level of indirection: array, pointer, reference, or pointer-to-member.
3733 ///
3734 /// Because declarator chunks are stored in outer-to-inner order, testing
3735 /// every chunk before \p endIndex is testing all chunks that embed the current
3736 /// chunk as part of their type.
3737 ///
3738 /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
3739 /// end index, in which case all chunks are tested.
3740 static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
3741  unsigned i = endIndex;
3742  while (i != 0) {
3743  // Walk outwards along the declarator chunks.
3744  --i;
3745  const DeclaratorChunk &DC = D.getTypeObject(i);
3746  switch (DC.Kind) {
3748  break;
3753  return true;
3756  case DeclaratorChunk::Pipe:
3757  // These are invalid anyway, so just ignore.
3758  break;
3759  }
3760  }
3761  return false;
3762 }
3763 
3764 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
3765  QualType declSpecType,
3766  TypeSourceInfo *TInfo) {
3767  // The TypeSourceInfo that this function returns will not be a null type.
3768  // If there is an error, this function will fill in a dummy type as fallback.
3769  QualType T = declSpecType;
3770  Declarator &D = state.getDeclarator();
3771  Sema &S = state.getSema();
3772  ASTContext &Context = S.Context;
3773  const LangOptions &LangOpts = S.getLangOpts();
3774 
3775  // The name we're declaring, if any.
3776  DeclarationName Name;
3777  if (D.getIdentifier())
3778  Name = D.getIdentifier();
3779 
3780  // Does this declaration declare a typedef-name?
3781  bool IsTypedefName =
3785 
3786  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
3787  bool IsQualifiedFunction = T->isFunctionProtoType() &&
3788  (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
3789  T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
3790 
3791  // If T is 'decltype(auto)', the only declarators we can have are parens
3792  // and at most one function declarator if this is a function declaration.
3793  // If T is a deduced class template specialization type, we can have no
3794  // declarator chunks at all.
3795  if (auto *DT = T->getAs<DeducedType>()) {
3796  const AutoType *AT = T->getAs<AutoType>();
3797  bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
3798  if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
3799  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3800  unsigned Index = E - I - 1;
3801  DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
3802  unsigned DiagId = IsClassTemplateDeduction
3803  ? diag::err_deduced_class_template_compound_type
3804  : diag::err_decltype_auto_compound_type;
3805  unsigned DiagKind = 0;
3806  switch (DeclChunk.Kind) {
3808  // FIXME: Rejecting this is a little silly.
3809  if (IsClassTemplateDeduction) {
3810  DiagKind = 4;
3811  break;
3812  }
3813  continue;
3815  if (IsClassTemplateDeduction) {
3816  DiagKind = 3;
3817  break;
3818  }
3819  unsigned FnIndex;
3820  if (D.isFunctionDeclarationContext() &&
3821  D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
3822  continue;
3823  DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
3824  break;
3825  }
3829  DiagKind = 0;
3830  break;
3832  DiagKind = 1;
3833  break;
3835  DiagKind = 2;
3836  break;
3837  case DeclaratorChunk::Pipe:
3838  break;
3839  }
3840 
3841  S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
3842  D.setInvalidType(true);
3843  break;
3844  }
3845  }
3846  }
3847 
3848  // Determine whether we should infer _Nonnull on pointer types.
3849  Optional<NullabilityKind> inferNullability;
3850  bool inferNullabilityCS = false;
3851  bool inferNullabilityInnerOnly = false;
3852  bool inferNullabilityInnerOnlyComplete = false;
3853 
3854  // Are we in an assume-nonnull region?
3855  bool inAssumeNonNullRegion = false;
3856  SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
3857  if (assumeNonNullLoc.isValid()) {
3858  inAssumeNonNullRegion = true;
3859  recordNullabilitySeen(S, assumeNonNullLoc);
3860  }
3861 
3862  // Whether to complain about missing nullability specifiers or not.
3863  enum {
3864  /// Never complain.
3865  CAMN_No,
3866  /// Complain on the inner pointers (but not the outermost
3867  /// pointer).
3868  CAMN_InnerPointers,
3869  /// Complain about any pointers that don't have nullability
3870  /// specified or inferred.
3871  CAMN_Yes
3872  } complainAboutMissingNullability = CAMN_No;
3873  unsigned NumPointersRemaining = 0;
3874  auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
3875 
3876  if (IsTypedefName) {
3877  // For typedefs, we do not infer any nullability (the default),
3878  // and we only complain about missing nullability specifiers on
3879  // inner pointers.
3880  complainAboutMissingNullability = CAMN_InnerPointers;
3881 
3882  if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
3883  !T->getNullability(S.Context)) {
3884  // Note that we allow but don't require nullability on dependent types.
3885  ++NumPointersRemaining;
3886  }
3887 
3888  for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
3889  DeclaratorChunk &chunk = D.getTypeObject(i);
3890  switch (chunk.Kind) {
3893  case DeclaratorChunk::Pipe:
3894  break;
3895 
3898  ++NumPointersRemaining;
3899  break;
3900 
3903  continue;
3904 
3906  ++NumPointersRemaining;
3907  continue;
3908  }
3909  }
3910  } else {
3911  bool isFunctionOrMethod = false;
3912  switch (auto context = state.getDeclarator().getContext()) {
3917  isFunctionOrMethod = true;
3918  LLVM_FALLTHROUGH;
3919 
3921  if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
3922  complainAboutMissingNullability = CAMN_No;
3923  break;
3924  }
3925 
3926  // Weak properties are inferred to be nullable.
3927  if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
3928  inferNullability = NullabilityKind::Nullable;
3929  break;
3930  }
3931 
3932  LLVM_FALLTHROUGH;
3933 
3936  complainAboutMissingNullability = CAMN_Yes;
3937 
3938  // Nullability inference depends on the type and declarator.
3939  auto wrappingKind = PointerWrappingDeclaratorKind::None;
3940  switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
3941  case PointerDeclaratorKind::NonPointer:
3942  case PointerDeclaratorKind::MultiLevelPointer:
3943  // Cannot infer nullability.
3944  break;
3945 
3946  case PointerDeclaratorKind::SingleLevelPointer:
3947  // Infer _Nonnull if we are in an assumes-nonnull region.
3948  if (inAssumeNonNullRegion) {
3949  complainAboutInferringWithinChunk = wrappingKind;
3950  inferNullability = NullabilityKind::NonNull;
3951  inferNullabilityCS =
3954  }
3955  break;
3956 
3957  case PointerDeclaratorKind::CFErrorRefPointer:
3958  case PointerDeclaratorKind::NSErrorPointerPointer:
3959  // Within a function or method signature, infer _Nullable at both
3960  // levels.
3961  if (isFunctionOrMethod && inAssumeNonNullRegion)
3962  inferNullability = NullabilityKind::Nullable;
3963  break;
3964 
3965  case PointerDeclaratorKind::MaybePointerToCFRef:
3966  if (isFunctionOrMethod) {
3967  // On pointer-to-pointer parameters marked cf_returns_retained or
3968  // cf_returns_not_retained, if the outer pointer is explicit then
3969  // infer the inner pointer as _Nullable.
3970  auto hasCFReturnsAttr = [](const AttributeList *NextAttr) -> bool {
3971  while (NextAttr) {
3972  if (NextAttr->getKind() == AttributeList::AT_CFReturnsRetained ||
3973  NextAttr->getKind() == AttributeList::AT_CFReturnsNotRetained)
3974  return true;
3975  NextAttr = NextAttr->getNext();
3976  }
3977  return false;
3978  };
3979  if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
3980  if (hasCFReturnsAttr(D.getAttributes()) ||
3981  hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
3982  hasCFReturnsAttr(D.getDeclSpec().getAttributes().getList())) {
3983  inferNullability = NullabilityKind::Nullable;
3984  inferNullabilityInnerOnly = true;
3985  }
3986  }
3987  }
3988  break;
3989  }
3990  break;
3991  }
3992 
3994  complainAboutMissingNullability = CAMN_Yes;
3995  break;
3996 
4013  // Don't infer in these contexts.
4014  break;
4015  }
4016  }
4017 
4018  // Local function that returns true if its argument looks like a va_list.
4019  auto isVaList = [&S](QualType T) -> bool {
4020  auto *typedefTy = T->getAs<TypedefType>();
4021  if (!typedefTy)
4022  return false;
4023  TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4024  do {
4025  if (typedefTy->getDecl() == vaListTypedef)
4026  return true;
4027  if (auto *name = typedefTy->getDecl()->getIdentifier())
4028  if (name->isStr("va_list"))
4029  return true;
4030  typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4031  } while (typedefTy);
4032  return false;
4033  };
4034 
4035  // Local function that checks the nullability for a given pointer declarator.
4036  // Returns true if _Nonnull was inferred.
4037  auto inferPointerNullability = [&](SimplePointerKind pointerKind,
4038  SourceLocation pointerLoc,
4039  SourceLocation pointerEndLoc,
4040  AttributeList *&attrs) -> AttributeList * {
4041  // We've seen a pointer.
4042  if (NumPointersRemaining > 0)
4043  --NumPointersRemaining;
4044 
4045  // If a nullability attribute is present, there's nothing to do.
4046  if (hasNullabilityAttr(attrs))
4047  return nullptr;
4048 
4049  // If we're supposed to infer nullability, do so now.
4050  if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4051  AttributeList::Syntax syntax
4052  = inferNullabilityCS ? AttributeList::AS_ContextSensitiveKeyword
4054  AttributeList *nullabilityAttr = state.getDeclarator().getAttributePool()
4055  .create(
4057  *inferNullability),
4058  SourceRange(pointerLoc),
4059  nullptr, SourceLocation(),
4060  nullptr, 0, syntax);
4061 
4062  spliceAttrIntoList(*nullabilityAttr, attrs);
4063 
4064  if (inferNullabilityCS) {
4065  state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4066  ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4067  }
4068 
4069  if (pointerLoc.isValid() &&
4070  complainAboutInferringWithinChunk !=
4072  auto Diag =
4073  S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4074  Diag << static_cast<int>(complainAboutInferringWithinChunk);
4076  }
4077 
4078  if (inferNullabilityInnerOnly)
4079  inferNullabilityInnerOnlyComplete = true;
4080  return nullabilityAttr;
4081  }
4082 
4083  // If we're supposed to complain about missing nullability, do so
4084  // now if it's truly missing.
4085  switch (complainAboutMissingNullability) {
4086  case CAMN_No:
4087  break;
4088 
4089  case CAMN_InnerPointers:
4090  if (NumPointersRemaining == 0)
4091  break;
4092  LLVM_FALLTHROUGH;
4093 
4094  case CAMN_Yes:
4095  checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4096  }
4097  return nullptr;
4098  };
4099 
4100  // If the type itself could have nullability but does not, infer pointer
4101  // nullability and perform consistency checking.
4102  if (S.CodeSynthesisContexts.empty()) {
4103  if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4104  !T->getNullability(S.Context)) {
4105  if (isVaList(T)) {
4106  // Record that we've seen a pointer, but do nothing else.
4107  if (NumPointersRemaining > 0)
4108  --NumPointersRemaining;
4109  } else {
4110  SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4111  if (T->isBlockPointerType())
4112  pointerKind = SimplePointerKind::BlockPointer;
4113  else if (T->isMemberPointerType())
4114  pointerKind = SimplePointerKind::MemberPointer;
4115 
4116  if (auto *attr = inferPointerNullability(
4117  pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4118  D.getDeclSpec().getLocEnd(),
4120  T = Context.getAttributedType(
4121  AttributedType::getNullabilityAttrKind(*inferNullability),T,T);
4122  attr->setUsedAsTypeAttr();
4123  }
4124  }
4125  }
4126 
4127  if (complainAboutMissingNullability == CAMN_Yes &&
4128  T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
4129  D.isPrototypeContext() &&
4131  checkNullabilityConsistency(S, SimplePointerKind::Array,
4133  }
4134  }
4135 
4136  // Walk the DeclTypeInfo, building the recursive type as we go.
4137  // DeclTypeInfos are ordered from the identifier out, which is
4138  // opposite of what we want :).
4139  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4140  unsigned chunkIndex = e - i - 1;
4141  state.setCurrentChunkIndex(chunkIndex);
4142  DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4143  IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4144  switch (DeclType.Kind) {
4146  if (i == 0)
4147  warnAboutRedundantParens(S, D, T);
4148  T = S.BuildParenType(T);
4149  break;
4151  // If blocks are disabled, emit an error.
4152  if (!LangOpts.Blocks)
4153  S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4154 
4155  // Handle pointer nullability.
4156  inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4157  DeclType.EndLoc, DeclType.getAttrListRef());
4158 
4159  T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4160  if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4161  // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4162  // qualified with const.
4163  if (LangOpts.OpenCL)
4164  DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4165  T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4166  }
4167  break;
4169  // Verify that we're not building a pointer to pointer to function with
4170  // exception specification.
4171  if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4172  S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4173  D.setInvalidType(true);
4174  // Build the type anyway.
4175  }
4176 
4177  // Handle pointer nullability
4178  inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4179  DeclType.EndLoc, DeclType.getAttrListRef());
4180 
4181  if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
4182  T = Context.getObjCObjectPointerType(T);
4183  if (DeclType.Ptr.TypeQuals)
4184  T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4185  break;
4186  }
4187 
4188  // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4189  // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4190  // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4191  if (LangOpts.OpenCL) {
4192  if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4193  T->isBlockPointerType()) {
4194  S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4195  D.setInvalidType(true);
4196  }
4197  }
4198 
4199  T = S.BuildPointerType(T, DeclType.Loc, Name);
4200  if (DeclType.Ptr.TypeQuals)
4201  T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4202  break;
4204  // Verify that we're not building a reference to pointer to function with
4205  // exception specification.
4206  if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4207  S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4208  D.setInvalidType(true);
4209  // Build the type anyway.
4210  }
4211  T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4212 
4213  if (DeclType.Ref.HasRestrict)
4214  T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4215  break;
4216  }
4217  case DeclaratorChunk::Array: {
4218  // Verify that we're not building an array of pointers to function with
4219  // exception specification.
4220  if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4221  S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4222  D.setInvalidType(true);
4223  // Build the type anyway.
4224  }
4225  DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4226  Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4228  if (ATI.isStar)
4229  ASM = ArrayType::Star;
4230  else if (ATI.hasStatic)
4231  ASM = ArrayType::Static;
4232  else
4233  ASM = ArrayType::Normal;
4234  if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
4235  // FIXME: This check isn't quite right: it allows star in prototypes
4236  // for function definitions, and disallows some edge cases detailed
4237  // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4238  S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4239  ASM = ArrayType::Normal;
4240  D.setInvalidType(true);
4241  }
4242 
4243  // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4244  // shall appear only in a declaration of a function parameter with an
4245  // array type, ...
4246  if (ASM == ArrayType::Static || ATI.TypeQuals) {
4247  if (!(D.isPrototypeContext() ||
4249  S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
4250  (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4251  // Remove the 'static' and the type qualifiers.
4252  if (ASM == ArrayType::Static)
4253  ASM = ArrayType::Normal;
4254  ATI.TypeQuals = 0;
4255  D.setInvalidType(true);
4256  }
4257 
4258  // C99 6.7.5.2p1: ... and then only in the outermost array type
4259  // derivation.
4260  if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4261  S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
4262  (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4263  if (ASM == ArrayType::Static)
4264  ASM = ArrayType::Normal;
4265  ATI.TypeQuals = 0;
4266  D.setInvalidType(true);
4267  }
4268  }
4269  const AutoType *AT = T->getContainedAutoType();
4270  // Allow arrays of auto if we are a generic lambda parameter.
4271  // i.e. [](auto (&array)[5]) { return array[0]; }; OK
4272  if (AT &&
4274  // We've already diagnosed this for decltype(auto).
4275  if (!AT->isDecltypeAuto())
4276  S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
4277  << getPrintableNameForEntity(Name) << T;
4278  T = QualType();
4279  break;
4280  }
4281 
4282  // Array parameters can be marked nullable as well, although it's not
4283  // necessary if they're marked 'static'.
4284  if (complainAboutMissingNullability == CAMN_Yes &&
4285  !hasNullabilityAttr(DeclType.getAttrs()) &&
4286  ASM != ArrayType::Static &&
4287  D.isPrototypeContext() &&
4288  !hasOuterPointerLikeChunk(D, chunkIndex)) {
4289  checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4290  }
4291 
4292  T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4293  SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4294  break;
4295  }
4297  // If the function declarator has a prototype (i.e. it is not () and
4298  // does not have a K&R-style identifier list), then the arguments are part
4299  // of the type, otherwise the argument list is ().
4300  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4301  IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
4302 
4303  // Check for auto functions and trailing return type and adjust the
4304  // return type accordingly.
4305  if (!D.isInvalidType()) {
4306  // trailing-return-type is only required if we're declaring a function,
4307  // and not, for instance, a pointer to a function.
4308  if (D.getDeclSpec().hasAutoTypeSpec() &&
4309  !FTI.hasTrailingReturnType() && chunkIndex == 0 &&
4310  !S.getLangOpts().CPlusPlus14) {
4313  ? diag::err_auto_missing_trailing_return
4314  : diag::err_deduced_return_type);
4315  T = Context.IntTy;
4316  D.setInvalidType(true);
4317  } else if (FTI.hasTrailingReturnType()) {
4318  // T must be exactly 'auto' at this point. See CWG issue 681.
4319  if (isa<ParenType>(T)) {
4320  S.Diag(D.getLocStart(),
4321  diag::err_trailing_return_in_parens)
4322  << T << D.getSourceRange();
4323  D.setInvalidType(true);
4324  } else if (D.getName().getKind() ==
4326  if (T != Context.DependentTy) {
4327  S.Diag(D.getDeclSpec().getLocStart(),
4328  diag::err_deduction_guide_with_complex_decl)
4329  << D.getSourceRange();
4330  D.setInvalidType(true);
4331  }
4333  (T.hasQualifiers() || !isa<AutoType>(T) ||
4334  cast<AutoType>(T)->getKeyword() !=
4337  diag::err_trailing_return_without_auto)
4338  << T << D.getDeclSpec().getSourceRange();
4339  D.setInvalidType(true);
4340  }
4341  T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4342  if (T.isNull()) {
4343  // An error occurred parsing the trailing return type.
4344  T = Context.IntTy;
4345  D.setInvalidType(true);
4346  }
4347  }
4348  }
4349 
4350  // C99 6.7.5.3p1: The return type may not be a function or array type.
4351  // For conversion functions, we'll diagnose this particular error later.
4352  if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4353  (D.getName().getKind() !=
4355  unsigned diagID = diag::err_func_returning_array_function;
4356  // Last processing chunk in block context means this function chunk
4357  // represents the block.
4358  if (chunkIndex == 0 &&
4360  diagID = diag::err_block_returning_array_function;
4361  S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4362  T = Context.IntTy;
4363  D.setInvalidType(true);
4364  }
4365 
4366  // Do not allow returning half FP value.
4367  // FIXME: This really should be in BuildFunctionType.
4368  if (T->isHalfType()) {
4369  if (S.getLangOpts().OpenCL) {
4370  if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
4371  S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4372  << T << 0 /*pointer hint*/;
4373  D.setInvalidType(true);
4374  }
4375  } else if (!S.getLangOpts().HalfArgsAndReturns) {
4376  S.Diag(D.getIdentifierLoc(),
4377  diag::err_parameters_retval_cannot_have_fp16_type) << 1;
4378  D.setInvalidType(true);
4379  }
4380  }
4381 
4382  if (LangOpts.OpenCL) {
4383  // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
4384  // function.
4385  if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
4386  T->isPipeType()) {
4387  S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4388  << T << 1 /*hint off*/;
4389  D.setInvalidType(true);
4390  }
4391  // OpenCL doesn't support variadic functions and blocks
4392  // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
4393  // We also allow here any toolchain reserved identifiers.
4394  if (FTI.isVariadic &&
4395  !(D.getIdentifier() &&
4396  ((D.getIdentifier()->getName() == "printf" &&
4397  LangOpts.OpenCLVersion >= 120) ||
4398  D.getIdentifier()->getName().startswith("__")))) {
4399  S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
4400  D.setInvalidType(true);
4401  }
4402  }
4403 
4404  // Methods cannot return interface types. All ObjC objects are
4405  // passed by reference.
4406  if (T->isObjCObjectType()) {
4407  SourceLocation DiagLoc, FixitLoc;
4408  if (TInfo) {
4409  DiagLoc = TInfo->getTypeLoc().getLocStart();
4410  FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getLocEnd());
4411  } else {
4412  DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
4413  FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getLocEnd());
4414  }
4415  S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
4416  << 0 << T
4417  << FixItHint::CreateInsertion(FixitLoc, "*");
4418 
4419  T = Context.getObjCObjectPointerType(T);
4420  if (TInfo) {
4421  TypeLocBuilder TLB;
4422  TLB.pushFullCopy(TInfo->getTypeLoc());
4424  TLoc.setStarLoc(FixitLoc);
4425  TInfo = TLB.getTypeSourceInfo(Context, T);
4426  }
4427 
4428  D.setInvalidType(true);
4429  }
4430 
4431  // cv-qualifiers on return types are pointless except when the type is a
4432  // class type in C++.
4433  if ((T.getCVRQualifiers() || T->isAtomicType()) &&
4434  !(S.getLangOpts().CPlusPlus &&
4435  (T->isDependentType() || T->isRecordType()))) {
4436  if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
4438  // [6.9.1/3] qualified void return is invalid on a C
4439  // function definition. Apparently ok on declarations and
4440  // in C++ though (!)
4441  S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
4442  } else
4443  diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
4444  }
4445 
4446  // Objective-C ARC ownership qualifiers are ignored on the function
4447  // return type (by type canonicalization). Complain if this attribute
4448  // was written here.
4449  if (T.getQualifiers().hasObjCLifetime()) {
4450  SourceLocation AttrLoc;
4451  if (chunkIndex + 1 < D.getNumTypeObjects()) {
4452  DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
4453  for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
4454  Attr; Attr = Attr->getNext()) {
4455  if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
4456  AttrLoc = Attr->getLoc();
4457  break;
4458  }
4459  }
4460  }
4461  if (AttrLoc.isInvalid()) {
4462  for (const AttributeList *Attr
4463  = D.getDeclSpec().getAttributes().getList();
4464  Attr; Attr = Attr->getNext()) {
4465  if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
4466  AttrLoc = Attr->getLoc();
4467  break;
4468  }
4469  }
4470  }
4471 
4472  if (AttrLoc.isValid()) {
4473  // The ownership attributes are almost always written via
4474  // the predefined
4475  // __strong/__weak/__autoreleasing/__unsafe_unretained.
4476  if (AttrLoc.isMacroID())
4477  AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
4478 
4479  S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
4480  << T.getQualifiers().getObjCLifetime();
4481  }
4482  }
4483 
4484  if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
4485  // C++ [dcl.fct]p6:
4486  // Types shall not be defined in return or parameter types.
4487  TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
4488  S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
4489  << Context.getTypeDeclType(Tag);
4490  }
4491 
4492  // Exception specs are not allowed in typedefs. Complain, but add it
4493  // anyway.
4494  if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
4495  S.Diag(FTI.getExceptionSpecLocBeg(),
4496  diag::err_exception_spec_in_typedef)
4499 
4500  // If we see "T var();" or "T var(T());" at block scope, it is probably
4501  // an attempt to initialize a variable, not a function declaration.
4502  if (FTI.isAmbiguous)
4503  warnAboutAmbiguousFunction(S, D, DeclType, T);
4504 
4505  FunctionType::ExtInfo EI(getCCForDeclaratorChunk(S, D, FTI, chunkIndex));
4506 
4507  if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
4508  && !LangOpts.OpenCL) {
4509  // Simple void foo(), where the incoming T is the result type.
4510  T = Context.getFunctionNoProtoType(T, EI);
4511  } else {
4512  // We allow a zero-parameter variadic function in C if the
4513  // function is marked with the "overloadable" attribute. Scan
4514  // for this attribute now.
4515  if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
4516  bool Overloadable = false;
4517  for (const AttributeList *Attrs = D.getAttributes();
4518  Attrs; Attrs = Attrs->getNext()) {
4519  if (Attrs->getKind() == AttributeList::AT_Overloadable) {
4520  Overloadable = true;
4521  break;
4522  }
4523  }
4524 
4525  if (!Overloadable)
4526  S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
4527  }
4528 
4529  if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
4530  // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
4531  // definition.
4532  S.Diag(FTI.Params[0].IdentLoc,
4533  diag::err_ident_list_in_fn_declaration);
4534  D.setInvalidType(true);
4535  // Recover by creating a K&R-style function type.
4536  T = Context.getFunctionNoProtoType(T, EI);
4537  break;
4538  }
4539 
4541  EPI.ExtInfo = EI;
4542  EPI.Variadic = FTI.isVariadic;
4544  EPI.TypeQuals = FTI.TypeQuals;
4545  EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
4547  : RQ_RValue;
4548 
4549  // Otherwise, we have a function with a parameter list that is
4550  // potentially variadic.
4551  SmallVector<QualType, 16> ParamTys;
4552  ParamTys.reserve(FTI.NumParams);
4553 
4555  ExtParameterInfos(FTI.NumParams);
4556  bool HasAnyInterestingExtParameterInfos = false;
4557 
4558  for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
4559  ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
4560  QualType ParamTy = Param->getType();
4561  assert(!ParamTy.isNull() && "Couldn't parse type?");
4562 
4563  // Look for 'void'. void is allowed only as a single parameter to a
4564  // function with no other parameters (C99 6.7.5.3p10). We record
4565  // int(void) as a FunctionProtoType with an empty parameter list.
4566  if (ParamTy->isVoidType()) {
4567  // If this is something like 'float(int, void)', reject it. 'void'
4568  // is an incomplete type (C99 6.2.5p19) and function decls cannot
4569  // have parameters of incomplete type.
4570  if (FTI.NumParams != 1 || FTI.isVariadic) {
4571  S.Diag(DeclType.Loc, diag::err_void_only_param);
4572  ParamTy = Context.IntTy;
4573  Param->setType(ParamTy);
4574  } else if (FTI.Params[i].Ident) {
4575  // Reject, but continue to parse 'int(void abc)'.
4576  S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
4577  ParamTy = Context.IntTy;
4578  Param->setType(ParamTy);
4579  } else {
4580  // Reject, but continue to parse 'float(const void)'.
4581  if (ParamTy.hasQualifiers())
4582  S.Diag(DeclType.Loc, diag::err_void_param_qualified);
4583 
4584  // Do not add 'void' to the list.
4585  break;
4586  }
4587  } else if (ParamTy->isHalfType()) {
4588  // Disallow half FP parameters.
4589  // FIXME: This really should be in BuildFunctionType.
4590  if (S.getLangOpts().OpenCL) {
4591  if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
4592  S.Diag(Param->getLocation(),
4593  diag::err_opencl_half_param) << ParamTy;
4594  D.setInvalidType();
4595  Param->setInvalidDecl();
4596  }
4597  } else if (!S.getLangOpts().HalfArgsAndReturns) {
4598  S.Diag(Param->getLocation(),
4599  diag::err_parameters_retval_cannot_have_fp16_type) << 0;
4600  D.setInvalidType();
4601  }
4602  } else if (!FTI.hasPrototype) {
4603  if (ParamTy->isPromotableIntegerType()) {
4604  ParamTy = Context.getPromotedIntegerType(ParamTy);
4605  Param->setKNRPromoted(true);
4606  } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
4607  if (BTy->getKind() == BuiltinType::Float) {
4608  ParamTy = Context.DoubleTy;
4609  Param->setKNRPromoted(true);
4610  }
4611  }
4612  }
4613 
4614  if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
4615  ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
4616  HasAnyInterestingExtParameterInfos = true;
4617  }
4618 
4619  if (auto attr = Param->getAttr<ParameterABIAttr>()) {
4620  ExtParameterInfos[i] =
4621  ExtParameterInfos[i].withABI(attr->getABI());
4622  HasAnyInterestingExtParameterInfos = true;
4623  }
4624 
4625  if (Param->hasAttr<PassObjectSizeAttr>()) {
4626  ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
4627  HasAnyInterestingExtParameterInfos = true;
4628  }
4629 
4630  if (Param->hasAttr<NoEscapeAttr>()) {
4631  ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
4632  HasAnyInterestingExtParameterInfos = true;
4633  }
4634 
4635  ParamTys.push_back(ParamTy);
4636  }
4637 
4638  if (HasAnyInterestingExtParameterInfos) {
4639  EPI.ExtParameterInfos = ExtParameterInfos.data();
4640  checkExtParameterInfos(S, ParamTys, EPI,
4641  [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
4642  }
4643 
4644  SmallVector<QualType, 4> Exceptions;
4645  SmallVector<ParsedType, 2> DynamicExceptions;
4646  SmallVector<SourceRange, 2> DynamicExceptionRanges;
4647  Expr *NoexceptExpr = nullptr;
4648 
4649  if (FTI.getExceptionSpecType() == EST_Dynamic) {
4650  // FIXME: It's rather inefficient to have to split into two vectors
4651  // here.
4652  unsigned N = FTI.getNumExceptions();
4653  DynamicExceptions.reserve(N);
4654  DynamicExceptionRanges.reserve(N);
4655  for (unsigned I = 0; I != N; ++I) {
4656  DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
4657  DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
4658  }
4659  } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
4660  NoexceptExpr = FTI.NoexceptExpr;
4661  }
4662 
4664  FTI.getExceptionSpecType(),
4665  DynamicExceptions,
4666  DynamicExceptionRanges,
4667  NoexceptExpr,
4668  Exceptions,
4669  EPI.ExceptionSpec);
4670 
4671  T = Context.getFunctionType(T, ParamTys, EPI);
4672  }
4673  break;
4674  }
4676  // The scope spec must refer to a class, or be dependent.
4677  CXXScopeSpec &SS = DeclType.Mem.Scope();
4678  QualType ClsType;
4679 
4680  // Handle pointer nullability.
4681  inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
4682  DeclType.EndLoc, DeclType.getAttrListRef());
4683 
4684  if (SS.isInvalid()) {
4685  // Avoid emitting extra errors if we already errored on the scope.
4686  D.setInvalidType(true);
4687  } else if (S.isDependentScopeSpecifier(SS) ||
4688  dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
4689  NestedNameSpecifier *NNS = SS.getScopeRep();
4690  NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
4691  switch (NNS->getKind()) {
4693  ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
4694  NNS->getAsIdentifier());
4695  break;
4696 
4701  llvm_unreachable("Nested-name-specifier must name a type");
4702 
4705  ClsType = QualType(NNS->getAsType(), 0);
4706  // Note: if the NNS has a prefix and ClsType is a nondependent
4707  // TemplateSpecializationType, then the NNS prefix is NOT included
4708  // in ClsType; hence we wrap ClsType into an ElaboratedType.
4709  // NOTE: in particular, no wrap occurs if ClsType already is an
4710  // Elaborated, DependentName, or DependentTemplateSpecialization.
4711  if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
4712  ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
4713  break;
4714  }
4715  } else {
4716  S.Diag(DeclType.Mem.Scope().getBeginLoc(),
4717  diag::err_illegal_decl_mempointer_in_nonclass)
4718  << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
4719  << DeclType.Mem.Scope().getRange();
4720  D.setInvalidType(true);
4721  }
4722 
4723  if (!ClsType.isNull())
4724  T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
4725  D.getIdentifier());
4726  if (T.isNull()) {
4727  T = Context.IntTy;
4728  D.setInvalidType(true);
4729  } else if (DeclType.Mem.TypeQuals) {
4730  T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
4731  }
4732  break;
4733  }
4734 
4735  case DeclaratorChunk::Pipe: {
4736  T = S.BuildReadPipeType(T, DeclType.Loc);
4737  processTypeAttrs(state, T, TAL_DeclSpec,
4739  break;
4740  }
4741  }
4742 
4743  if (T.isNull()) {
4744  D.setInvalidType(true);
4745  T = Context.IntTy;
4746  }
4747 
4748  // See if there are any attributes on this declarator chunk.
4749  processTypeAttrs(state, T, TAL_DeclChunk,
4750  const_cast<AttributeList *>(DeclType.getAttrs()));
4751  }
4752 
4753  // GNU warning -Wstrict-prototypes
4754  // Warn if a function declaration is without a prototype.
4755  // This warning is issued for all kinds of unprototyped function
4756  // declarations (i.e. function type typedef, function pointer etc.)
4757  // C99 6.7.5.3p14:
4758  // The empty list in a function declarator that is not part of a definition
4759  // of that function specifies that no information about the number or types
4760  // of the parameters is supplied.
4761  if (!LangOpts.CPlusPlus && D.getFunctionDefinitionKind() == FDK_Declaration) {
4762  bool IsBlock = false;
4763  for (const DeclaratorChunk &DeclType : D.type_objects()) {
4764  switch (DeclType.Kind) {
4766  IsBlock = true;
4767  break;
4769  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4770  if (FTI.NumParams == 0 && !FTI.isVariadic)
4771  S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
4772  << IsBlock
4773  << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
4774  IsBlock = false;
4775  break;
4776  }
4777  default:
4778  break;
4779  }
4780  }
4781  }
4782 
4783  assert(!T.isNull() && "T must not be null after this point");
4784 
4785  if (LangOpts.CPlusPlus && T->isFunctionType()) {
4786  const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
4787  assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
4788 
4789  // C++ 8.3.5p4:
4790  // A cv-qualifier-seq shall only be part of the function type
4791  // for a nonstatic member function, the function type to which a pointer
4792  // to member refers, or the top-level function type of a function typedef
4793  // declaration.
4794  //
4795  // Core issue 547 also allows cv-qualifiers on function types that are
4796  // top-level template type arguments.
4797  enum { NonMember, Member, DeductionGuide } Kind = NonMember;
4799  Kind = DeductionGuide;
4800  else if (!D.getCXXScopeSpec().isSet()) {
4804  Kind = Member;
4805  } else {
4807  if (!DC || DC->isRecord())
4808  Kind = Member;
4809  }
4810 
4811  // C++11 [dcl.fct]p6 (w/DR1417):
4812  // An attempt to specify a function type with a cv-qualifier-seq or a
4813  // ref-qualifier (including by typedef-name) is ill-formed unless it is:
4814  // - the function type for a non-static member function,
4815  // - the function type to which a pointer to member refers,
4816  // - the top-level function type of a function typedef declaration or
4817  // alias-declaration,
4818  // - the type-id in the default argument of a type-parameter, or
4819  // - the type-id of a template-argument for a type-parameter
4820  //
4821  // FIXME: Checking this here is insufficient. We accept-invalid on:
4822  //
4823  // template<typename T> struct S { void f(T); };
4824  // S<int() const> s;
4825  //
4826  // ... for instance.
4827  if (IsQualifiedFunction &&
4828  !(Kind == Member &&
4830  !IsTypedefName &&
4832  SourceLocation Loc = D.getLocStart();
4833  SourceRange RemovalRange;
4834  unsigned I;
4835  if (D.isFunctionDeclarator(I)) {
4836  SmallVector<SourceLocation, 4> RemovalLocs;
4837  const DeclaratorChunk &Chunk = D.getTypeObject(I);
4838  assert(Chunk.Kind == DeclaratorChunk::Function);
4839  if (Chunk.Fun.hasRefQualifier())
4840  RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
4841  if (Chunk.Fun.TypeQuals & Qualifiers::Const)
4842  RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
4843  if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
4844  RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
4845  if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
4846  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
4847  if (!RemovalLocs.empty()) {
4848  std::sort(RemovalLocs.begin(), RemovalLocs.end(),
4850  RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
4851  Loc = RemovalLocs.front();
4852  }
4853  }
4854 
4855  S.Diag(Loc, diag::err_invalid_qualified_function_type)
4856  << Kind << D.isFunctionDeclarator() << T
4858  << FixItHint::CreateRemoval(RemovalRange);
4859 
4860  // Strip the cv-qualifiers and ref-qualifiers from the type.
4862  EPI.TypeQuals = 0;
4863  EPI.RefQualifier = RQ_None;
4864 
4865  T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
4866  EPI);
4867  // Rebuild any parens around the identifier in the function type.
4868  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4870  break;
4871  T = S.BuildParenType(T);
4872  }
4873  }
4874  }
4875 
4876  // Apply any undistributed attributes from the declarator.
4878 
4879  // Diagnose any ignored type attributes.
4880  state.diagnoseIgnoredTypeAttrs(T);
4881 
4882  // C++0x [dcl.constexpr]p9:
4883  // A constexpr specifier used in an object declaration declares the object
4884  // as const.
4885  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
4886  T.addConst();
4887  }
4888 
4889  // If there was an ellipsis in the declarator, the declaration declares a
4890  // parameter pack whose type may be a pack expansion type.
4891  if (D.hasEllipsis()) {
4892  // C++0x [dcl.fct]p13:
4893  // A declarator-id or abstract-declarator containing an ellipsis shall
4894  // only be used in a parameter-declaration. Such a parameter-declaration
4895  // is a parameter pack (14.5.3). [...]
4896  switch (D.getContext()) {
4899  // C++0x [dcl.fct]p13:
4900  // [...] When it is part of a parameter-declaration-clause, the
4901  // parameter pack is a function parameter pack (14.5.3). The type T
4902  // of the declarator-id of the function parameter pack shall contain
4903  // a template parameter pack; each template parameter pack in T is
4904  // expanded by the function parameter pack.
4905  //
4906  // We represent function parameter packs as function parameters whose
4907  // type is a pack expansion.
4908  if (!T->containsUnexpandedParameterPack()) {
4909  S.Diag(D.getEllipsisLoc(),
4910  diag::err_function_parameter_pack_without_parameter_packs)
4911  << T << D.getSourceRange();
4913  } else {
4914  T = Context.getPackExpansionType(T, None);
4915  }
4916  break;
4918  // C++0x [temp.param]p15:
4919  // If a template-parameter is a [...] is a parameter-declaration that
4920  // declares a parameter pack (8.3.5), then the template-parameter is a
4921  // template parameter pack (14.5.3).
4922  //
4923  // Note: core issue 778 clarifies that, if there are any unexpanded
4924  // parameter packs in the type of the non-type template parameter, then
4925  // it expands those parameter packs.
4927  T = Context.getPackExpansionType(T, None);
4928  else
4929  S.Diag(D.getEllipsisLoc(),
4930  LangOpts.CPlusPlus11
4931  ? diag::warn_cxx98_compat_variadic_templates
4932  : diag::ext_variadic_templates);
4933  break;
4934 
4937  case DeclaratorContext::ObjCParameterContext: // FIXME: special diagnostic
4938  // here?
4939  case DeclaratorContext::ObjCResultContext: // FIXME: special diagnostic
4940  // here?
4958  // FIXME: We may want to allow parameter packs in block-literal contexts
4959  // in the future.
4960  S.Diag(D.getEllipsisLoc(),
4961  diag::err_ellipsis_in_declarator_not_parameter);
4963  break;
4964  }
4965  }
4966 
4967  assert(!T.isNull() && "T must not be null at the end of this function");
4968  if (D.isInvalidType())
4969  return Context.getTrivialTypeSourceInfo(T);
4970 
4971  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
4972 }
4973 
4974 /// GetTypeForDeclarator - Convert the type for the specified
4975 /// declarator to Type instances.
4976 ///
4977 /// The result of this call will never be null, but the associated
4978 /// type may be a null type if there's an unrecoverable error.
4980  // Determine the type of the declarator. Not all forms of declarator
4981  // have a type.
4982 
4983  TypeProcessingState state(*this, D);
4984 
4985  TypeSourceInfo *ReturnTypeInfo = nullptr;
4986  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
4987  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
4988  inferARCWriteback(state, T);
4989 
4990  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
4991 }
4992 
4994  QualType &declSpecTy,
4995  Qualifiers::ObjCLifetime ownership) {
4996  if (declSpecTy->isObjCRetainableType() &&
4997  declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
4998  Qualifiers qs;
4999  qs.addObjCLifetime(ownership);
5000  declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5001  }
5002 }
5003 
5004 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5005  Qualifiers::ObjCLifetime ownership,
5006  unsigned chunkIndex) {
5007  Sema &S = state.getSema();
5008  Declarator &D = state.getDeclarator();
5009 
5010  // Look for an explicit lifetime attribute.
5011  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5012  for (const AttributeList *attr = chunk.getAttrs(); attr;
5013  attr = attr->getNext())
5014  if (attr->getKind() == AttributeList::AT_ObjCOwnership)
5015  return;
5016 
5017  const char *attrStr = nullptr;
5018  switch (ownership) {
5019  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
5020  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5021  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5022  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5023  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5024  }
5025 
5026  IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5027  Arg->Ident = &S.Context.Idents.get(attrStr);
5028  Arg->Loc = SourceLocation();
5029 
5030  ArgsUnion Args(Arg);
5031 
5032  // If there wasn't one, add one (with an invalid source location
5033  // so that we don't make an AttributedType for it).
5034  AttributeList *attr = D.getAttributePool()
5035  .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
5036  /*scope*/ nullptr, SourceLocation(),
5037  /*args*/ &Args, 1, AttributeList::AS_GNU);
5038  spliceAttrIntoList(*attr, chunk.getAttrListRef());
5039 
5040  // TODO: mark whether we did this inference?
5041 }
5042 
5043 /// \brief Used for transferring ownership in casts resulting in l-values.
5044 static void transferARCOwnership(TypeProcessingState &state,
5045  QualType &declSpecTy,
5046  Qualifiers::ObjCLifetime ownership) {
5047  Sema &S = state.getSema();
5048  Declarator &D = state.getDeclarator();
5049 
5050  int inner = -1;
5051  bool hasIndirection = false;
5052  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5053  DeclaratorChunk &chunk = D.getTypeObject(i);
5054  switch (chunk.Kind) {
5056  // Ignore parens.
5057  break;
5058 
5062  if (inner != -1)
5063  hasIndirection = true;
5064  inner = i;
5065  break;
5066 
5068  if (inner != -1)
5069  transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5070  return;
5071 
5074  case DeclaratorChunk::Pipe:
5075  return;
5076  }
5077  }
5078 
5079  if (inner == -1)
5080  return;
5081 
5082  DeclaratorChunk &chunk = D.getTypeObject(inner);
5083  if (chunk.Kind == DeclaratorChunk::Pointer) {
5084  if (declSpecTy->isObjCRetainableType())
5085  return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5086  if (declSpecTy->isObjCObjectType() && hasIndirection)
5087  return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5088  } else {
5089  assert(chunk.Kind == DeclaratorChunk::Array ||
5090  chunk.Kind == DeclaratorChunk::Reference);
5091  return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5092  }
5093 }
5094 
5096  TypeProcessingState state(*this, D);
5097 
5098  TypeSourceInfo *ReturnTypeInfo = nullptr;
5099  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5100 
5101  if (getLangOpts().ObjC1) {
5102  Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5103  if (ownership != Qualifiers::OCL_None)
5104  transferARCOwnership(state, declSpecTy, ownership);
5105  }
5106 
5107  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5108 }
5109 
5110 /// Map an AttributedType::Kind to an AttributeList::Kind.
5112  switch (kind) {
5114  return AttributeList::AT_AddressSpace;
5116  return AttributeList::AT_Regparm;
5118  return AttributeList::AT_VectorSize;
5120  return AttributeList::AT_NeonVectorType;
5122  return AttributeList::AT_NeonPolyVectorType;
5124  return AttributeList::AT_ObjCGC;
5127  return AttributeList::AT_ObjCOwnership;
5129  return AttributeList::AT_NoReturn;
5131  return AttributeList::AT_CDecl;
5133  return AttributeList::AT_FastCall;
5135  return AttributeList::AT_StdCall;
5137  return AttributeList::AT_ThisCall;
5139  return AttributeList::AT_RegCall;
5141  return AttributeList::AT_Pascal;
5143  return AttributeList::AT_SwiftCall;
5145  return AttributeList::AT_VectorCall;
5148  return AttributeList::AT_Pcs;
5150  return AttributeList::AT_IntelOclBicc;
5152  return AttributeList::AT_MSABI;
5154  return AttributeList::AT_SysVABI;
5156  return AttributeList::AT_PreserveMost;
5158  return AttributeList::AT_PreserveAll;
5160  return AttributeList::AT_Ptr32;
5162  return AttributeList::AT_Ptr64;
5164  return AttributeList::AT_SPtr;
5166  return AttributeList::AT_UPtr;
5168  return AttributeList::AT_TypeNonNull;
5170  return AttributeList::AT_TypeNullable;
5172  return AttributeList::AT_TypeNullUnspecified;
5174  return AttributeList::AT_ObjCKindOf;
5176  return AttributeList::AT_NSReturnsRetained;
5177  }
5178  llvm_unreachable("unexpected attribute kind!");
5179 }
5180 
5182  const AttributeList *attrs,
5183  const AttributeList *DeclAttrs = nullptr) {
5184  // DeclAttrs and attrs cannot be both empty.
5185  assert((attrs || DeclAttrs) &&
5186  "no type attributes in the expected location!");
5187 
5188  AttributeList::Kind parsedKind = getAttrListKind(TL.getAttrKind());
5189  // Try to search for an attribute of matching kind in attrs list.
5190  while (attrs && attrs->getKind() != parsedKind)
5191  attrs = attrs->getNext();
5192  if (!attrs) {
5193  // No matching type attribute in attrs list found.
5194  // Try searching through C++11 attributes in the declarator attribute list.
5195  while (DeclAttrs && (!DeclAttrs->isCXX11Attribute() ||
5196  DeclAttrs->getKind() != parsedKind))
5197  DeclAttrs = DeclAttrs->getNext();
5198  attrs = DeclAttrs;
5199  }
5200 
5201  assert(attrs && "no matching type attribute in expected location!");
5202 
5203  TL.setAttrNameLoc(attrs->getLoc());
5204  if (TL.hasAttrExprOperand()) {
5205  assert(attrs->isArgExpr(0) && "mismatched attribute operand kind");
5206  TL.setAttrExprOperand(attrs->getArgAsExpr(0));
5207  } else if (TL.hasAttrEnumOperand()) {
5208  assert((attrs->isArgIdent(0) || attrs->isArgExpr(0)) &&
5209  "unexpected attribute operand kind");
5210  if (attrs->isArgIdent(0))
5211  TL.setAttrEnumOperandLoc(attrs->getArgAsIdent(0)->Loc);
5212  else
5214  }
5215 
5216  // FIXME: preserve this information to here.
5217  if (TL.hasAttrOperand())
5219 }
5220 
5221 namespace {
5222  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5223  ASTContext &Context;
5224  const DeclSpec &DS;
5225 
5226  public:
5227  TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
5228  : Context(Context), DS(DS) {}
5229 
5230  void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5232  Visit(TL.getModifiedLoc());
5233  }
5234  void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5235  Visit(TL.getUnqualifiedLoc());
5236  }
5237  void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5238  TL.setNameLoc(DS.getTypeSpecTypeLoc());
5239  }
5240  void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5241  TL.setNameLoc(DS.getTypeSpecTypeLoc());
5242  // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5243  // addition field. What we have is good enough for dispay of location
5244  // of 'fixit' on interface name.
5245  TL.setNameEndLoc(DS.getLocEnd());
5246  }
5247  void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5248  TypeSourceInfo *RepTInfo = nullptr;
5249  Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5250  TL.copy(RepTInfo->getTypeLoc());
5251  }
5252  void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5253  TypeSourceInfo *RepTInfo = nullptr;
5254  Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5255  TL.copy(RepTInfo->getTypeLoc());
5256  }
5257  void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5258  TypeSourceInfo *TInfo = nullptr;
5259  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5260 
5261  // If we got no declarator info from previous Sema routines,
5262  // just fill with the typespec loc.
5263  if (!TInfo) {
5264  TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5265  return;
5266  }
5267 
5268  TypeLoc OldTL = TInfo->getTypeLoc();
5269  if (TInfo->getType()->getAs<ElaboratedType>()) {
5270  ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5273  TL.copy(NamedTL);
5274  } else {
5276  assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
5277  }
5278 
5279  }
5280  void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5281  assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
5284  }
5285  void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5286  assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
5289  assert(DS.getRepAsType());
5290  TypeSourceInfo *TInfo = nullptr;
5291  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5292  TL.setUnderlyingTInfo(TInfo);
5293  }
5294  void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5295  // FIXME: This holds only because we only have one unary transform.
5297  TL.setKWLoc(DS.getTypeSpecTypeLoc());
5299  assert(DS.getRepAsType());
5300  TypeSourceInfo *TInfo = nullptr;
5301  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5302  TL.setUnderlyingTInfo(TInfo);
5303  }
5304  void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5305  // By default, use the source location of the type specifier.
5307  if (TL.needsExtraLocalData()) {
5308  // Set info for the written builtin specifiers.
5310  // Try to have a meaningful source location.
5311  if (TL.getWrittenSignSpec() != TSS_unspecified)
5315  }
5316  }
5317  void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5318  ElaboratedTypeKeyword Keyword
5320  if (DS.getTypeSpecType() == TST_typename) {
5321  TypeSourceInfo *TInfo = nullptr;
5322  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5323  if (TInfo) {
5324  TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
5325  return;
5326  }
5327  }
5328  TL.setElaboratedKeywordLoc(Keyword != ETK_None
5329  ? DS.getTypeSpecTypeLoc()
5330  : SourceLocation());
5331  const CXXScopeSpec& SS = DS.getTypeSpecScope();
5332  TL.setQualifierLoc(SS.getWithLocInContext(Context));
5333  Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
5334  }
5335  void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
5336  assert(DS.getTypeSpecType() == TST_typename);
5337  TypeSourceInfo *TInfo = nullptr;
5338  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5339  assert(TInfo);
5340  TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
5341  }
5342  void VisitDependentTemplateSpecializationTypeLoc(
5344  assert(DS.getTypeSpecType() == TST_typename);
5345  TypeSourceInfo *TInfo = nullptr;
5346  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5347  assert(TInfo);
5348  TL.copy(
5349  TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
5350  }
5351  void VisitTagTypeLoc(TagTypeLoc TL) {
5353  }
5354  void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
5355  // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
5356  // or an _Atomic qualifier.
5357  if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
5358  TL.setKWLoc(DS.getTypeSpecTypeLoc());
5360 
5361  TypeSourceInfo *TInfo = nullptr;
5362  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5363  assert(TInfo);
5364  TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5365  } else {
5366  TL.setKWLoc(DS.getAtomicSpecLoc());
5367  // No parens, to indicate this was spelled as an _Atomic qualifier.
5369  Visit(TL.getValueLoc());
5370  }
5371  }
5372 
5373  void VisitPipeTypeLoc(PipeTypeLoc TL) {
5374  TL.setKWLoc(DS.getTypeSpecTypeLoc());
5375 
5376  TypeSourceInfo *TInfo = nullptr;
5377  Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5378  TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5379  }
5380 
5381  void VisitTypeLoc(TypeLoc TL) {
5382  // FIXME: add other typespec types and change this to an assert.
5383  TL.initialize(Context, DS.getTypeSpecTypeLoc());
5384  }
5385  };
5386 
5387  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
5388  ASTContext &Context;
5389  const DeclaratorChunk &Chunk;
5390 
5391  public:
5392  DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
5393  : Context(Context), Chunk(Chunk) {}
5394 
5395  void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5396  llvm_unreachable("qualified type locs not expected here!");
5397  }
5398  void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
5399  llvm_unreachable("decayed type locs not expected here!");
5400  }
5401 
5402  void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5403  fillAttributedTypeLoc(TL, Chunk.getAttrs());
5404  }
5405  void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
5406  // nothing
5407  }
5408  void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
5409  assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
5410  TL.setCaretLoc(Chunk.Loc);
5411  }
5412  void VisitPointerTypeLoc(PointerTypeLoc TL) {
5413  assert(Chunk.Kind == DeclaratorChunk::Pointer);
5414  TL.setStarLoc(Chunk.Loc);
5415  }
5416  void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5417  assert(Chunk.Kind == DeclaratorChunk::Pointer);
5418  TL.setStarLoc(Chunk.Loc);
5419  }
5420  void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
5421  assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
5422  const CXXScopeSpec& SS = Chunk.Mem.Scope();
5423  NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
5424 
5425  const Type* ClsTy = TL.getClass();
5426  QualType ClsQT = QualType(ClsTy, 0);
5427  TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
5428  // Now copy source location info into the type loc component.
5429  TypeLoc ClsTL = ClsTInfo->getTypeLoc();
5430  switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
5432  assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
5433  {
5436  DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
5437  DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
5438  }
5439  break;
5440 
5443  if (isa<ElaboratedType>(ClsTy)) {
5444  ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
5446  ETLoc.setQualifierLoc(NNSLoc.getPrefix());
5447  TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
5448  NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
5449  } else {
5450  ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
5451  }
5452  break;
5453 
5458  llvm_unreachable("Nested-name-specifier must name a type");
5459  }
5460 
5461  // Finally fill in MemberPointerLocInfo fields.
5462  TL.setStarLoc(Chunk.Loc);
5463  TL.setClassTInfo(ClsTInfo);
5464  }
5465  void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
5466  assert(Chunk.Kind == DeclaratorChunk::Reference);
5467  // 'Amp' is misleading: this might have been originally
5468  /// spelled with AmpAmp.
5469  TL.setAmpLoc(Chunk.Loc);
5470  }
5471  void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
5472  assert(Chunk.Kind == DeclaratorChunk::Reference);
5473  assert(!Chunk.Ref.LValueRef);
5474  TL.setAmpAmpLoc(Chunk.Loc);
5475  }
5476  void VisitArrayTypeLoc(ArrayTypeLoc TL) {
5477  assert(Chunk.Kind == DeclaratorChunk::Array);
5478  TL.setLBracketLoc(Chunk.Loc);
5479  TL.setRBracketLoc(Chunk.EndLoc);
5480  TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
5481  }
5482  void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
5483  assert(Chunk.Kind == DeclaratorChunk::Function);
5484  TL.setLocalRangeBegin(Chunk.Loc);
5485  TL.setLocalRangeEnd(Chunk.EndLoc);
5486 
5487  const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
5488  TL.setLParenLoc(FTI.getLParenLoc());
5489  TL.setRParenLoc(FTI.getRParenLoc());
5490  for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
5491  ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5492  TL.setParam(tpi++, Param);
5493  }
5495  }
5496  void VisitParenTypeLoc(ParenTypeLoc TL) {
5497  assert(Chunk.Kind == DeclaratorChunk::Paren);
5498  TL.setLParenLoc(Chunk.Loc);
5499  TL.setRParenLoc(Chunk.EndLoc);
5500  }
5501  void VisitPipeTypeLoc(PipeTypeLoc TL) {
5502  assert(Chunk.Kind == DeclaratorChunk::Pipe);
5503  TL.setKWLoc(Chunk.Loc);
5504  }
5505 
5506  void VisitTypeLoc(TypeLoc TL) {
5507  llvm_unreachable("unsupported TypeLoc kind in declarator!");
5508  }
5509  };
5510 } // end anonymous namespace
5511 
5512 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
5513  SourceLocation Loc;
5514  switch (Chunk.Kind) {
5518  case DeclaratorChunk::Pipe:
5519  llvm_unreachable("cannot be _Atomic qualified");
5520 
5523  break;
5524 
5528  // FIXME: Provide a source location for the _Atomic keyword.
5529  break;
5530  }
5531 
5532  ATL.setKWLoc(Loc);
5533  ATL.setParensRange(SourceRange());
5534 }
5535 
5537  const AttributeList *Attrs) {
5538  while (Attrs && Attrs->getKind() != AttributeList::AT_AddressSpace)
5539  Attrs = Attrs->getNext();
5540 
5541  assert(Attrs && "no address_space attribute found at the expected location!");
5542 
5543  DASTL.setAttrNameLoc(Attrs->getLoc());
5544  DASTL.setAttrExprOperand(Attrs->getArgAsExpr(0));
5546 }
5547 
5548 /// \brief Create and instantiate a TypeSourceInfo with type source information.
5549 ///
5550 /// \param T QualType referring to the type as written in source code.
5551 ///
5552 /// \param ReturnTypeInfo For declarators whose return type does not show
5553 /// up in the normal place in the declaration specifiers (such as a C++
5554 /// conversion function), this pointer will refer to a type source information
5555 /// for that return type.
5558  TypeSourceInfo *ReturnTypeInfo) {
5559  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
5560  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
5561  const AttributeList *DeclAttrs = D.getAttributes();
5562 
5563  // Handle parameter packs whose type is a pack expansion.
5564  if (isa<PackExpansionType>(T)) {
5565  CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
5566  CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
5567  }
5568 
5569  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5570 
5571  if (DependentAddressSpaceTypeLoc DASTL =
5572  CurrTL.getAs<DependentAddressSpaceTypeLoc>()) {
5574  CurrTL = DASTL.getPointeeTypeLoc().getUnqualifiedLoc();
5575  }
5576 
5577  // An AtomicTypeLoc might be produced by an atomic qualifier in this
5578  // declarator chunk.
5579  if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
5580  fillAtomicQualLoc(ATL, D.getTypeObject(i));
5581  CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
5582  }
5583 
5584  while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
5585  fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs(), DeclAttrs);
5586  CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5587  }
5588 
5589  // FIXME: Ordering here?
5590  while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
5591  CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5592 
5593  DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
5594  CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
5595  }
5596 
5597  // If we have different source information for the return type, use
5598  // that. This really only applies to C++ conversion functions.
5599  if (ReturnTypeInfo) {
5600  TypeLoc TL = ReturnTypeInfo->getTypeLoc();
5601  assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
5602  memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
5603  } else {
5604  TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
5605  }
5606 
5607  return TInfo;
5608 }
5609 
5610 /// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
5612  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
5613  // and Sema during declaration parsing. Try deallocating/caching them when
5614  // it's appropriate, instead of allocating them and keeping them around.
5615  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
5616  TypeAlignment);
5617  new (LocT) LocInfoType(T, TInfo);
5618  assert(LocT->getTypeClass() != T->getTypeClass() &&
5619  "LocInfoType's TypeClass conflicts with an existing Type class");
5620  return ParsedType::make(QualType(LocT, 0));
5621 }
5622 
5623 void LocInfoType::getAsStringInternal(std::string &Str,
5624  const PrintingPolicy &Policy) const {
5625  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
5626  " was used directly instead of getting the QualType through"
5627  " GetTypeFromParser");
5628 }
5629 
5631  // C99 6.7.6: Type names have no identifier. This is already validated by
5632  // the parser.
5633  assert(D.getIdentifier() == nullptr &&
5634  "Type name should have no identifier!");
5635 
5636  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5637  QualType T = TInfo->getType();
5638  if (D.isInvalidType())
5639  return true;
5640 
5641  // Make sure there are no unused decl attributes on the declarator.
5642  // We don't want to do this for ObjC parameters because we're going
5643  // to apply them to the actual parameter declaration.
5644  // Likewise, we don't want to do this for alias declarations, because
5645  // we are actually going to build a declaration from this eventually.
5650 
5651  if (getLangOpts().CPlusPlus) {
5652  // Check that there are no default arguments (C++ only).
5653  CheckExtraCXXDefaultArguments(D);
5654  }
5655 
5656  return CreateParsedType(T, TInfo);
5657 }
5658 
5660  QualType T = Context.getObjCInstanceType();
5661  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
5662  return CreateParsedType(T, TInfo);
5663 }
5664 
5665 //===----------------------------------------------------------------------===//
5666 // Type Attribute Processing
5667 //===----------------------------------------------------------------------===//
5668 
5669 /// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
5670 /// is uninstantiated. If instantiated it will apply the appropriate address space
5671 /// to the type. This function allows dependent template variables to be used in
5672 /// conjunction with the address_space attribute
5674  SourceLocation AttrLoc) {
5675  if (!AddrSpace->isValueDependent()) {
5676 
5677  // If this type is already address space qualified, reject it.
5678  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
5679  // by qualifiers for two or more different address spaces."
5680  if (T.getAddressSpace() != LangAS::Default) {
5681  Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
5682  return QualType();
5683  }
5684 
5685  llvm::APSInt addrSpace(32);
5686  if (!AddrSpace->isIntegerConstantExpr(addrSpace, Context)) {
5687  Diag(AttrLoc, diag::err_attribute_argument_type)
5688  << "'address_space'" << AANT_ArgumentIntegerConstant
5689  << AddrSpace->getSourceRange();
5690  return QualType();
5691  }
5692 
5693  // Bounds checking.
5694  if (addrSpace.isSigned()) {
5695  if (addrSpace.isNegative()) {
5696  Diag(AttrLoc, diag::err_attribute_address_space_negative)
5697  << AddrSpace->getSourceRange();
5698  return QualType();
5699  }
5700  addrSpace.setIsSigned(false);
5701  }
5702 
5703  llvm::APSInt max(addrSpace.getBitWidth());
5704  max =
5706  if (addrSpace > max) {
5707  Diag(AttrLoc, diag::err_attribute_address_space_too_high)
5708  << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
5709  return QualType();
5710  }
5711 
5712  LangAS ASIdx =
5713  getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
5714 
5715  return Context.getAddrSpaceQualType(T, ASIdx);
5716  }
5717 
5718  // A check with similar intentions as checking if a type already has an
5719  // address space except for on a dependent types, basically if the
5720  // current type is already a DependentAddressSpaceType then its already
5721  // lined up to have another address space on it and we can't have
5722  // multiple address spaces on the one pointer indirection
5723  if (T->getAs<DependentAddressSpaceType>()) {
5724  Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
5725  return QualType();
5726  }
5727 
5728  return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
5729 }
5730 
5731 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
5732 /// specified type. The attribute contains 1 argument, the id of the address
5733 /// space for the type.
5735  const AttributeList &Attr, Sema &S){
5736  // If this type is already address space qualified, reject it.
5737  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
5738  // qualifiers for two or more different address spaces."
5739  if (Type.getAddressSpace() != LangAS::Default) {
5740  S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
5741  Attr.setInvalid();
5742  return;
5743  }
5744 
5745  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
5746  // qualified by an address-space qualifier."
5747  if (Type->isFunctionType()) {
5748  S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
5749  Attr.setInvalid();
5750  return;
5751  }
5752 
5753  LangAS ASIdx;
5754  if (Attr.getKind() == AttributeList::AT_AddressSpace) {
5755 
5756  // Check the attribute arguments.
5757  if (Attr.getNumArgs() != 1) {
5758  S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
5759  << Attr.getName() << 1;
5760  Attr.setInvalid();
5761  return;
5762  }
5763 
5764  Expr *ASArgExpr;
5765  if (Attr.isArgIdent(0)) {
5766  // Special case where the argument is a template id.
5767  CXXScopeSpec SS;
5768  SourceLocation TemplateKWLoc;
5769  UnqualifiedId id;
5770  id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
5771 
5772  ExprResult AddrSpace = S.ActOnIdExpression(
5773  S.getCurScope(), SS, TemplateKWLoc, id, false, false);
5774  if (AddrSpace.isInvalid())
5775  return;
5776 
5777  ASArgExpr = static_cast<Expr *>(AddrSpace.get());
5778  } else {
5779  ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
5780  }
5781 
5782  // Create the DependentAddressSpaceType or append an address space onto
5783  // the type.
5784  QualType T = S.BuildAddressSpaceAttr(Type, ASArgExpr, Attr.getLoc());
5785 
5786  if (!T.isNull())
5787  Type = T;
5788  else
5789  Attr.setInvalid();
5790  } else {
5791  // The keyword-based type attributes imply which address space to use.
5792  switch (Attr.getKind()) {
5793  case AttributeList::AT_OpenCLGlobalAddressSpace:
5794  ASIdx = LangAS::opencl_global; break;
5795  case AttributeList::AT_OpenCLLocalAddressSpace:
5796  ASIdx = LangAS::opencl_local; break;
5797  case AttributeList::AT_OpenCLConstantAddressSpace:
5798  ASIdx = LangAS::opencl_constant; break;
5799  case AttributeList::AT_OpenCLGenericAddressSpace:
5800  ASIdx = LangAS::opencl_generic; break;
5801  case AttributeList::AT_OpenCLPrivateAddressSpace:
5802  ASIdx = LangAS::opencl_private; break;
5803  default:
5804  llvm_unreachable("Invalid address space");
5805  }
5806 
5807  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
5808  }
5809 }
5810 
5811 /// Does this type have a "direct" ownership qualifier? That is,
5812 /// is it written like "__strong id", as opposed to something like
5813 /// "typeof(foo)", where that happens to be strong?
5815  // Fast path: no qualifier at all.
5816  assert(type.getQualifiers().hasObjCLifetime());
5817 
5818  while (true) {
5819  // __strong id
5820  if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
5821  if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
5822  return true;
5823 
5824  type = attr->getModifiedType();
5825 
5826  // X *__strong (...)
5827  } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
5828  type = paren->getInnerType();
5829 
5830  // That's it for things we want to complain about. In particular,
5831  // we do not want to look through typedefs, typeof(expr),
5832  // typeof(type), or any other way that the type is somehow
5833  // abstracted.
5834  } else {
5835 
5836  return false;
5837  }
5838  }
5839 }
5840 
5841 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
5842 /// attribute on the specified type.
5843 ///
5844 /// Returns 'true' if the attribute was handled.
5845 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
5846  AttributeList &attr,
5847  QualType &type) {
5848  bool NonObjCPointer = false;
5849 
5850  if (!type->isDependentType() && !type->isUndeducedType()) {
5851  if (const PointerType *ptr = type->getAs<PointerType>()) {
5852  QualType pointee = ptr->getPointeeType();
5853  if (pointee->isObjCRetainableType() || pointee->isPointerType())
5854  return false;
5855  // It is important not to lose the source info that there was an attribute
5856  // applied to non-objc pointer. We will create an attributed type but
5857  // its type will be the same as the original type.
5858  NonObjCPointer = true;
5859  } else if (!type->isObjCRetainableType()) {
5860  return false;
5861  }
5862 
5863  // Don't accept an ownership attribute in the declspec if it would
5864  // just be the return type of a block pointer.
5865  if (state.isProcessingDeclSpec()) {
5866  Declarator &D = state.getDeclarator();
5868  /*onlyBlockPointers=*/true))
5869  return false;
5870  }
5871  }
5872 
5873  Sema &S = state.getSema();
5874  SourceLocation AttrLoc = attr.getLoc();
5875  if (AttrLoc.isMacroID())
5876  AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
5877 
5878  if (!attr.isArgIdent(0)) {
5879  S.Diag(AttrLoc, diag::err_attribute_argument_type)
5880  << attr.getName() << AANT_ArgumentString;
5881  attr.setInvalid();
5882  return true;
5883  }
5884 
5885  IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
5886  Qualifiers::ObjCLifetime lifetime;
5887  if (II->isStr("none"))
5888  lifetime = Qualifiers::OCL_ExplicitNone;
5889  else if (II->isStr("strong"))
5890  lifetime = Qualifiers::OCL_Strong;
5891  else if (II->isStr("weak"))
5892  lifetime = Qualifiers::OCL_Weak;
5893  else if (II->isStr("autoreleasing"))
5894  lifetime = Qualifiers::OCL_Autoreleasing;
5895  else {
5896  S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
5897  << attr.getName() << II;
5898  attr.setInvalid();
5899  return true;
5900  }
5901 
5902  // Just ignore lifetime attributes other than __weak and __unsafe_unretained
5903  // outside of ARC mode.
5904  if (!S.getLangOpts().ObjCAutoRefCount &&
5905  lifetime != Qualifiers::OCL_Weak &&
5906  lifetime != Qualifiers::OCL_ExplicitNone) {
5907  return true;
5908  }
5909 
5910  SplitQualType underlyingType = type.split();
5911 
5912  // Check for redundant/conflicting ownership qualifiers.
5913  if (Qualifiers::ObjCLifetime previousLifetime
5914  = type.getQualifiers().getObjCLifetime()) {
5915  // If it's written directly, that's an error.
5916  if (hasDirectOwnershipQualifier(type)) {
5917  S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
5918  << type;
5919  return true;
5920  }
5921 
5922  // Otherwise, if the qualifiers actually conflict, pull sugar off
5923  // and remove the ObjCLifetime qualifiers.
5924  if (previousLifetime != lifetime) {
5925  // It's possible to have multiple local ObjCLifetime qualifiers. We
5926  // can't stop after we reach a type that is directly qualified.
5927  const Type *prevTy = nullptr;
5928  while (!prevTy || prevTy != underlyingType.Ty) {
5929  prevTy = underlyingType.Ty;
5930  underlyingType = underlyingType.getSingleStepDesugaredType();
5931  }
5932  underlyingType.Quals.removeObjCLifetime();
5933  }
5934  }
5935 
5936  underlyingType.Quals.addObjCLifetime(lifetime);
5937 
5938  if (NonObjCPointer) {
5939  StringRef name = attr.getName()->getName();
5940  switch (lifetime) {
5941  case Qualifiers::OCL_None:
5943  break;
5944  case Qualifiers::OCL_Strong: name = "__strong"; break;
5945  case Qualifiers::OCL_Weak: name = "__weak"; break;
5946  case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
5947  }
5948  S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
5949  << TDS_ObjCObjOrBlock << type;
5950  }
5951 
5952  // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
5953  // because having both 'T' and '__unsafe_unretained T' exist in the type
5954  // system causes unfortunate widespread consistency problems. (For example,
5955  // they're not considered compatible types, and we mangle them identicially
5956  // as template arguments.) These problems are all individually fixable,
5957  // but it's easier to just not add the qualifier and instead sniff it out
5958  // in specific places using isObjCInertUnsafeUnretainedType().
5959  //
5960  // Doing this does means we miss some trivial consistency checks that
5961  // would've triggered in ARC, but that's better than trying to solve all
5962  // the coexistence problems with __unsafe_unretained.
5963  if (!S.getLangOpts().ObjCAutoRefCount &&
5964  lifetime == Qualifiers::OCL_ExplicitNone) {
5965  type = S.Context.getAttributedType(
5967  type, type);
5968  return true;
5969  }
5970 
5971  QualType origType = type;
5972  if (!NonObjCPointer)
5973  type = S.Context.getQualifiedType(underlyingType);
5974 
5975  // If we have a valid source location for the attribute, use an
5976  // AttributedType instead.
5977  if (AttrLoc.isValid())
5979  origType, type);
5980 
5981  auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
5982  unsigned diagnostic, QualType type) {
5987  diagnostic, type, /*ignored*/ 0));
5988  } else {
5989  S.Diag(loc, diagnostic);
5990  }
5991  };
5992 
5993  // Sometimes, __weak isn't allowed.
5994  if (lifetime == Qualifiers::OCL_Weak &&
5995  !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
5996 
5997  // Use a specialized diagnostic if the runtime just doesn't support them.
5998  unsigned diagnostic =
5999  (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6000  : diag::err_arc_weak_no_runtime);
6001 
6002  // In any case, delay the diagnostic until we know what we're parsing.
6003  diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6004 
6005  attr.setInvalid();
6006  return true;
6007  }
6008 
6009  // Forbid __weak for class objects marked as
6010  // objc_arc_weak_reference_unavailable
6011  if (lifetime == Qualifiers::OCL_Weak) {
6012  if (const ObjCObjectPointerType *ObjT =
6013  type->getAs<ObjCObjectPointerType>()) {
6014  if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6015  if (Class->isArcWeakrefUnavailable()) {
6016  S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6017  S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6018  diag::note_class_declared);
6019  }
6020  }
6021  }
6022  }
6023 
6024  return true;
6025 }
6026 
6027 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6028 /// attribute on the specified type. Returns true to indicate that
6029 /// the attribute was handled, false to indicate that the type does
6030 /// not permit the attribute.
6031 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
6032  AttributeList &attr,
6033  QualType &type) {
6034  Sema &S = state.getSema();
6035 
6036  // Delay if this isn't some kind of pointer.
6037  if (!type->isPointerType() &&
6038  !type->isObjCObjectPointerType() &&
6039  !type->isBlockPointerType())
6040  return false;
6041 
6042  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6043  S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6044  attr.setInvalid();
6045  return true;
6046  }
6047 
6048  // Check the attribute arguments.
6049  if (!attr.isArgIdent(0)) {
6050  S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6051  << attr.getName() << AANT_ArgumentString;
6052  attr.setInvalid();
6053  return true;
6054  }
6055  Qualifiers::GC GCAttr;
6056  if (attr.getNumArgs() > 1) {
6057  S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6058  << attr.getName() << 1;
6059  attr.setInvalid();
6060  return true;
6061  }
6062 
6063  IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6064  if (II->isStr("weak"))
6065  GCAttr = Qualifiers::Weak;
6066  else if (II->isStr("strong"))
6067  GCAttr = Qualifiers::Strong;
6068  else {
6069  S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6070  << attr.getName() << II;
6071  attr.setInvalid();
6072  return true;
6073  }
6074 
6075  QualType origType = type;
6076  type = S.Context.getObjCGCQualType(origType, GCAttr);
6077 
6078  // Make an attributed type to preserve the source information.
6079  if (attr.getLoc().isValid())
6081  origType, type);
6082 
6083  return true;
6084 }
6085 
6086 namespace {
6087  /// A helper class to unwrap a type down to a function for the
6088  /// purposes of applying attributes there.
6089  ///
6090  /// Use:
6091  /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
6092  /// if (unwrapped.isFunctionType()) {
6093  /// const FunctionType *fn = unwrapped.get();
6094  /// // change fn somehow
6095  /// T = unwrapped.wrap(fn);
6096  /// }
6097  struct FunctionTypeUnwrapper {
6098  enum WrapKind {
6099  Desugar,
6100  Attributed,
6101  Parens,
6102  Pointer,
6103  BlockPointer,
6104  Reference,
6105  MemberPointer
6106  };
6107 
6108  QualType Original;
6109  const FunctionType *Fn;
6110  SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6111 
6112  FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6113  while (true) {
6114  const Type *Ty = T.getTypePtr();
6115  if (isa<FunctionType>(Ty)) {
6116  Fn = cast<FunctionType>(Ty);
6117  return;
6118  } else if (isa<ParenType>(Ty)) {
6119  T = cast<ParenType>(Ty)->getInnerType();
6120  Stack.push_back(Parens);
6121  } else if (isa<PointerType>(Ty)) {
6122  T = cast<PointerType>(Ty)->getPointeeType();
6123  Stack.push_back(Pointer);
6124  } else if (isa<BlockPointerType>(Ty)) {
6125  T = cast<BlockPointerType>(Ty)->getPointeeType();
6126  Stack.push_back(BlockPointer);
6127  } else if (isa<MemberPointerType>(Ty)) {
6128  T = cast<MemberPointerType>(Ty)->getPointeeType();
6129  Stack.push_back(MemberPointer);
6130  } else if (isa<ReferenceType>(Ty)) {
6131  T = cast<ReferenceType>(Ty)->getPointeeType();
6132  Stack.push_back(Reference);
6133  } else if (isa<AttributedType>(Ty)) {
6134  T = cast<AttributedType>(Ty)->getEquivalentType();
6135  Stack.push_back(Attributed);
6136  } else {
6137  const Type *DTy = Ty->getUnqualifiedDesugaredType();
6138  if (Ty == DTy) {
6139  Fn = nullptr;
6140  return;
6141  }
6142 
6143  T = QualType(DTy, 0);
6144  Stack.push_back(Desugar);
6145  }
6146  }
6147  }
6148 
6149  bool isFunctionType() const { return (Fn != nullptr); }
6150  const FunctionType *get() const { return Fn; }
6151 
6152  QualType wrap(Sema &S, const FunctionType *New) {
6153  // If T wasn't modified from the unwrapped type, do nothing.
6154  if (New == get()) return Original;
6155 
6156  Fn = New;
6157  return wrap(S.Context, Original, 0);
6158  }
6159 
6160  private:
6161  QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6162  if (I == Stack.size())
6163  return C.getQualifiedType(Fn, Old.getQualifiers());
6164 
6165  // Build up the inner type, applying the qualifiers from the old
6166  // type to the new type.
6167  SplitQualType SplitOld = Old.split();
6168 
6169  // As a special case, tail-recurse if there are no qualifiers.
6170  if (SplitOld.Quals.empty())
6171  return wrap(C, SplitOld.Ty, I);
6172  return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6173  }
6174 
6175  QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6176  if (I == Stack.size()) return QualType(Fn, 0);
6177 
6178  switch (static_cast<WrapKind>(Stack[I++])) {
6179  case Desugar:
6180  // This is the point at which we potentially lose source
6181  // information.
6182  return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6183 
6184  case Attributed:
6185  return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6186 
6187  case Parens: {
6188  QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6189  return C.getParenType(New);
6190  }
6191 
6192  case Pointer: {
6193  QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
6194  return C.getPointerType(New);
6195  }
6196 
6197  case BlockPointer: {
6198  QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
6199  return C.getBlockPointerType(New);
6200  }
6201 
6202  case MemberPointer: {
6203  const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
6204  QualType New = wrap(C, OldMPT->getPointeeType(), I);
6205  return C.getMemberPointerType(New, OldMPT->getClass());
6206  }
6207 
6208  case Reference: {
6209  const ReferenceType *OldRef = cast<ReferenceType>(Old);
6210  QualType New = wrap(C, OldRef->getPointeeType(), I);
6211  if (isa<LValueReferenceType>(OldRef))
6212  return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
6213  else
6214  return C.getRValueReferenceType(New);
6215  }
6216  }
6217 
6218  llvm_unreachable("unknown wrapping kind");
6219  }
6220  };
6221 } // end anonymous namespace
6222 
6223 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
6225  QualType &Type) {
6226  Sema &S = State.getSema();
6227 
6228  AttributeList::Kind Kind = Attr.getKind();
6229  QualType Desugared = Type;
6230  const AttributedType *AT = dyn_cast<AttributedType>(Type);
6231  while (AT) {
6232  AttributedType::Kind CurAttrKind = AT->getAttrKind();
6233 
6234  // You cannot specify duplicate type attributes, so if the attribute has
6235  // already been applied, flag it.
6236  if (getAttrListKind(CurAttrKind) == Kind) {
6237  S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute_exact)
6238  << Attr.getName();
6239  return true;
6240  }
6241 
6242  // You cannot have both __sptr and __uptr on the same type, nor can you
6243  // have __ptr32 and __ptr64.
6244  if ((CurAttrKind == AttributedType::attr_ptr32 &&
6245  Kind == AttributeList::AT_Ptr64) ||
6246  (CurAttrKind == AttributedType::attr_ptr64 &&
6247  Kind == AttributeList::AT_Ptr32)) {
6248  S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
6249  << "'__ptr32'" << "'__ptr64'";
6250  return true;
6251  } else if ((CurAttrKind == AttributedType::attr_sptr &&
6252  Kind == AttributeList::AT_UPtr) ||
6253  (CurAttrKind == AttributedType::attr_uptr &&
6254  Kind == AttributeList::AT_SPtr)) {
6255  S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
6256  << "'__sptr'" << "'__uptr'";
6257  return true;
6258  }
6259 
6260  Desugared = AT->getEquivalentType();
6261  AT = dyn_cast<AttributedType>(Desugared);
6262  }
6263 
6264  // Pointer type qualifiers can only operate on pointer types, but not
6265  // pointer-to-member types.
6266  if (!isa<PointerType>(Desugared)) {
6267  if (Type->isMemberPointerType())
6268  S.Diag(Attr.getLoc(), diag::err_attribute_no_member_pointers)
6269  << Attr.getName();
6270  else
6271  S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
6272  << Attr.getName() << 0;
6273  return true;
6274  }
6275 
6277  switch (Kind) {
6278  default: llvm_unreachable("Unknown attribute kind");
6279  case AttributeList::AT_Ptr32: TAK = AttributedType::attr_ptr32; break;
6280  case AttributeList::AT_Ptr64: TAK = AttributedType::attr_ptr64; break;
6281  case AttributeList::AT_SPtr: TAK = AttributedType::attr_sptr; break;
6282  case AttributeList::AT_UPtr: TAK = AttributedType::attr_uptr; break;
6283  }
6284 
6285  Type = S.Context.getAttributedType(TAK, Type, Type);
6286  return false;
6287 }
6288 
6290  NullabilityKind nullability,
6291  SourceLocation nullabilityLoc,
6292  bool isContextSensitive,
6293  bool allowOnArrayType) {
6294  recordNullabilitySeen(*this, nullabilityLoc);
6295 
6296  // Check for existing nullability attributes on the type.
6297  QualType desugared = type;
6298  while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
6299  // Check whether there is already a null
6300  if (auto existingNullability = attributed->getImmediateNullability()) {
6301  // Duplicated nullability.
6302  if (nullability == *existingNullability) {
6303  Diag(nullabilityLoc, diag::warn_nullability_duplicate)
6304  << DiagNullabilityKind(nullability, isContextSensitive)
6305  << FixItHint::CreateRemoval(nullabilityLoc);
6306 
6307  break;
6308  }
6309 
6310  // Conflicting nullability.
6311  Diag(nullabilityLoc, diag::err_nullability_conflicting)
6312  << DiagNullabilityKind(nullability, isContextSensitive)
6313  << DiagNullabilityKind(*existingNullability, false);
6314  return true;
6315  }
6316 
6317  desugared = attributed->getModifiedType();
6318  }
6319 
6320  // If there is already a different nullability specifier, complain.
6321  // This (unlike the code above) looks through typedefs that might
6322  // have nullability specifiers on them, which means we cannot
6323  // provide a useful Fix-It.
6324  if (auto existingNullability = desugared->getNullability(Context)) {
6325  if (nullability != *existingNullability) {
6326  Diag(nullabilityLoc, diag::err_nullability_conflicting)
6327  << DiagNullabilityKind(nullability, isContextSensitive)
6328  << DiagNullabilityKind(*existingNullability, false);
6329 
6330  // Try to find the typedef with the existing nullability specifier.
6331  if (auto typedefType = desugared->getAs<TypedefType>()) {
6332  TypedefNameDecl *typedefDecl = typedefType->getDecl();
6333  QualType underlyingType = typedefDecl->getUnderlyingType();
6334  if (auto typedefNullability
6335  = AttributedType::stripOuterNullability(underlyingType)) {
6336  if (*typedefNullability == *existingNullability) {
6337  Diag(typedefDecl->getLocation(), diag::note_nullability_here)
6338  << DiagNullabilityKind(*existingNullability, false);
6339  }
6340  }
6341  }
6342 
6343  return true;
6344  }
6345  }
6346 
6347  // If this definitely isn't a pointer type, reject the specifier.
6348  if (!desugared->canHaveNullability() &&
6349  !(allowOnArrayType && desugared->isArrayType())) {
6350  Diag(nullabilityLoc, diag::err_nullability_nonpointer)
6351  << DiagNullabilityKind(nullability, isContextSensitive) << type;
6352  return true;
6353  }
6354 
6355  // For the context-sensitive keywords/Objective-C property
6356  // attributes, require that the type be a single-level pointer.
6357  if (isContextSensitive) {
6358  // Make sure that the pointee isn't itself a pointer type.
6359  const Type *pointeeType;
6360  if (desugared->isArrayType())
6361  pointeeType = desugared->getArrayElementTypeNoTypeQual();
6362  else
6363  pointeeType = desugared->getPointeeType().getTypePtr();
6364 
6365  if (pointeeType->isAnyPointerType() ||
6366  pointeeType->isObjCObjectPointerType() ||
6367  pointeeType->isMemberPointerType()) {
6368  Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
6369  << DiagNullabilityKind(nullability, true)
6370  << type;
6371  Diag(nullabilityLoc, diag::note_nullability_type_specifier)
6372  << DiagNullabilityKind(nullability, false)
6373  << type
6374  << FixItHint::CreateReplacement(nullabilityLoc,
6375  getNullabilitySpelling(nullability));
6376  return true;
6377  }
6378  }
6379 
6380  // Form the attributed type.
6381  type = Context.getAttributedType(
6382  AttributedType::getNullabilityAttrKind(nullability), type, type);
6383  return false;
6384 }
6385 
6387  if (isa<ObjCTypeParamType>(type)) {
6388  // Build the attributed type to record where __kindof occurred.
6390  type, type);
6391  return false;
6392  }
6393 
6394  // Find out if it's an Objective-C object or object pointer type;
6395  const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
6396  const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
6397  : type->getAs<ObjCObjectType>();
6398 
6399  // If not, we can't apply __kindof.
6400  if (!objType) {
6401  // FIXME: Handle dependent types that aren't yet object types.
6402  Diag(loc, diag::err_objc_kindof_nonobject)
6403  << type;
6404  return true;
6405  }
6406 
6407  // Rebuild the "equivalent" type, which pushes __kindof down into
6408  // the object type.
6409  // There is no need to apply kindof on an unqualified id type.
6410  QualType equivType = Context.getObjCObjectType(
6411  objType->getBaseType(), objType->getTypeArgsAsWritten(),
6412  objType->getProtocols(),
6413  /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
6414 
6415  // If we started with an object pointer type, rebuild it.
6416  if (ptrType) {
6417  equivType = Context.getObjCObjectPointerType(equivType);
6418  if (auto nullability = type->getNullability(Context)) {
6419  auto attrKind = AttributedType::getNullabilityAttrKind(*nullability);
6420  equivType = Context.getAttributedType(attrKind, equivType, equivType);
6421  }
6422  }
6423 
6424  // Build the attributed type to record where __kindof occurred.
6426  type,
6427  equivType);
6428 
6429  return false;
6430 }
6431 
6432 /// Map a nullability attribute kind to a nullability kind.
6434  switch (kind) {
6435  case AttributeList::AT_TypeNonNull:
6436  return NullabilityKind::NonNull;
6437 
6438  case AttributeList::AT_TypeNullable:
6440 
6441  case AttributeList::AT_TypeNullUnspecified:
6443 
6444  default:
6445  llvm_unreachable("not a nullability attribute kind");
6446  }
6447 }
6448 
6449 /// Distribute a nullability type attribute that cannot be applied to
6450 /// the type specifier to a pointer, block pointer, or member pointer
6451 /// declarator, complaining if necessary.
6452 ///
6453 /// \returns true if the nullability annotation was distributed, false
6454 /// otherwise.
6455 static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
6456  QualType type,
6457  AttributeList &attr) {
6458  Declarator &declarator = state.getDeclarator();
6459 
6460  /// Attempt to move the attribute to the specified chunk.
6461  auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
6462  // If there is already a nullability attribute there, don't add
6463  // one.
6464  if (hasNullabilityAttr(chunk.getAttrListRef()))
6465  return false;
6466 
6467  // Complain about the nullability qualifier being in the wrong
6468  // place.
6469  enum {
6470  PK_Pointer,
6471  PK_BlockPointer,
6472  PK_MemberPointer,
6473  PK_FunctionPointer,
6474  PK_MemberFunctionPointer,
6475  } pointerKind
6476  = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
6477  : PK_Pointer)
6478  : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
6479  : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
6480 
6481  auto diag = state.getSema().Diag(attr.getLoc(),
6482  diag::warn_nullability_declspec)
6485  << type
6486  << static_cast<unsigned>(pointerKind);
6487 
6488  // FIXME: MemberPointer chunks don't carry the location of the *.
6489  if (chunk.Kind != DeclaratorChunk::MemberPointer) {
6490  diag << FixItHint::CreateRemoval(attr.getLoc())
6492  state.getSema().getPreprocessor()
6493  .getLocForEndOfToken(chunk.Loc),
6494  " " + attr.getName()->getName().str() + " ");
6495  }
6496 
6497  moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
6498  chunk.getAttrListRef());
6499  return true;
6500  };
6501 
6502  // Move it to the outermost pointer, member pointer, or block
6503  // pointer declarator.
6504  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
6505  DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
6506  switch (chunk.Kind) {
6510  return moveToChunk(chunk, false);
6511 
6514  continue;
6515 
6517  // Try to move past the return type to a function/block/member
6518  // function pointer.
6520  declarator, i,
6521  /*onlyBlockPointers=*/false)) {
6522  return moveToChunk(*dest, true);
6523  }
6524 
6525  return false;
6526 
6527  // Don't walk through these.
6529  case DeclaratorChunk::Pipe:
6530  return false;
6531  }
6532  }
6533 
6534  return false;
6535 }
6536 
6538  assert(!Attr.isInvalid());
6539  switch (Attr.getKind()) {
6540  default:
6541  llvm_unreachable("not a calling convention attribute");
6542  case AttributeList::AT_CDecl:
6544  case AttributeList::AT_FastCall:
6546  case AttributeList::AT_StdCall:
6548  case AttributeList::AT_ThisCall:
6550  case AttributeList::AT_RegCall:
6552  case AttributeList::AT_Pascal:
6554  case AttributeList::AT_SwiftCall:
6556  case AttributeList::AT_VectorCall:
6558  case AttributeList::AT_Pcs: {
6559  // The attribute may have had a fixit applied where we treated an
6560  // identifier as a string literal. The contents of the string are valid,
6561  // but the form may not be.
6562  StringRef Str;
6563  if (Attr.isArgExpr(0))
6564  Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
6565  else
6566  Str = Attr.getArgAsIdent(0)->Ident->getName();
6567  return llvm::StringSwitch<AttributedType::Kind>(Str)
6568  .Case("aapcs", AttributedType::attr_pcs)
6569  .Case("aapcs-vfp", AttributedType::attr_pcs_vfp);
6570  }
6571  case AttributeList::AT_IntelOclBicc:
6573  case AttributeList::AT_MSABI:
6575  case AttributeList::AT_SysVABI:
6577  case AttributeList::AT_PreserveMost:
6579  case AttributeList::AT_PreserveAll:
6581  }
6582  llvm_unreachable("unexpected attribute kind!");
6583 }
6584 
6585 /// Process an individual function attribute. Returns true to
6586 /// indicate that the attribute was handled, false if it wasn't.
6587 static bool handleFunctionTypeAttr(TypeProcessingState &state,
6588  AttributeList &attr,
6589  QualType &type) {
6590  Sema &S = state.getSema();
6591 
6592  FunctionTypeUnwrapper unwrapped(S, type);
6593 
6594  if (attr.getKind() == AttributeList::AT_NoReturn) {
6595  if (S.CheckNoReturnAttr(attr))
6596  return true;
6597 
6598  // Delay if this is not a function type.
6599  if (!unwrapped.isFunctionType())
6600  return false;
6601 
6602  // Otherwise we can process right away.
6603  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
6604  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6605  return true;
6606  }
6607 
6608  // ns_returns_retained is not always a type attribute, but if we got
6609  // here, we're treating it as one right now.
6610  if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
6611  if (attr.getNumArgs()) return true;
6612 
6613  // Delay if this is not a function type.
6614  if (!unwrapped.isFunctionType())
6615  return false;
6616 
6617  // Check whether the return type is reasonable.
6619  unwrapped.get()->getReturnType()))
6620  return true;
6621 
6622  // Only actually change the underlying type in ARC builds.
6623  QualType origType = type;
6624  if (state.getSema().getLangOpts().ObjCAutoRefCount) {
6626  = unwrapped.get()->getExtInfo().withProducesResult(true);
6627  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6628  }
6630  origType, type);
6631  return true;
6632  }
6633 
6634  if (attr.getKind() == AttributeList::AT_AnyX86NoCallerSavedRegisters) {
6635  if (S.CheckNoCallerSavedRegsAttr(attr))
6636  return true;
6637 
6638  // Delay if this is not a function type.
6639  if (!unwrapped.isFunctionType())
6640  return false;
6641 
6643  unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
6644  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6645  return true;
6646  }
6647 
6648  if (attr.getKind() == AttributeList::AT_Regparm) {
6649  unsigned value;
6650  if (S.CheckRegparmAttr(attr, value))
6651  return true;
6652 
6653  // Delay if this is not a function type.
6654  if (!unwrapped.isFunctionType())
6655  return false;
6656 
6657  // Diagnose regparm with fastcall.
6658  const FunctionType *fn = unwrapped.get();
6659  CallingConv CC = fn->getCallConv();
6660  if (CC == CC_X86FastCall) {
6661  S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
6663  << "regparm";
6664  attr.setInvalid();
6665  return true;
6666  }
6667 
6669  unwrapped.get()->getExtInfo().withRegParm(value);
6670  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6671  return true;
6672  }
6673 
6674  // Delay if the type didn't work out to a function.
6675  if (!unwrapped.isFunctionType()) return false;
6676 
6677  // Otherwise, a calling convention.
6678  CallingConv CC;
6679  if (S.CheckCallingConvAttr(attr, CC))
6680  return true;
6681 
6682  const FunctionType *fn = unwrapped.get();
6683  CallingConv CCOld = fn->getCallConv();
6684  AttributedType::Kind CCAttrKind = getCCTypeAttrKind(attr);
6685 
6686  if (CCOld != CC) {
6687  // Error out on when there's already an attribute on the type
6688  // and the CCs don't match.
6689  const AttributedType *AT = S.getCallingConvAttributedType(type);
6690  if (AT && AT->getAttrKind() != CCAttrKind) {
6691  S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
6694  attr.setInvalid();
6695  return true;
6696  }
6697  }
6698 
6699  // Diagnose use of variadic functions with calling conventions that
6700  // don't support them (e.g. because they're callee-cleanup).
6701  // We delay warning about this on unprototyped function declarations
6702  // until after redeclaration checking, just in case we pick up a
6703  // prototype that way. And apparently we also "delay" warning about
6704  // unprototyped function types in general, despite not necessarily having
6705  // much ability to diagnose it later.
6706  if (!supportsVariadicCall(CC)) {
6707  const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
6708  if (FnP && FnP->isVariadic()) {
6709  unsigned DiagID = diag::err_cconv_varargs;
6710 
6711  // stdcall and fastcall are ignored with a warning for GCC and MS
6712  // compatibility.
6713  bool IsInvalid = true;
6714  if (CC == CC_X86StdCall || CC == CC_X86FastCall) {
6715  DiagID = diag::warn_cconv_varargs;
6716  IsInvalid = false;
6717  }
6718 
6719  S.Diag(attr.getLoc(), DiagID) << FunctionType::getNameForCallConv(CC);
6720  if (IsInvalid) attr.setInvalid();
6721  return true;
6722  }
6723  }
6724 
6725  // Also diagnose fastcall with regparm.
6726  if (CC == CC_X86FastCall && fn->getHasRegParm()) {
6727  S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
6729  attr.setInvalid();
6730  return true;
6731  }
6732 
6733  // Modify the CC from the wrapped function type, wrap it all back, and then
6734  // wrap the whole thing in an AttributedType as written. The modified type
6735  // might have a different CC if we ignored the attribute.
6736  QualType Equivalent;
6737  if (CCOld == CC) {
6738  Equivalent = type;
6739  } else {
6740  auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
6741  Equivalent =
6742  unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6743  }
6744  type = S.Context.getAttributedType(CCAttrKind, type, Equivalent);
6745  return true;
6746 }
6747 
6749  QualType R = T.IgnoreParens();
6750  while (const AttributedType *AT = dyn_cast<AttributedType>(R)) {
6751  if (AT->isCallingConv())
6752  return true;
6753  R = AT->getModifiedType().IgnoreParens();
6754  }
6755  return false;
6756 }
6757 
6758 void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
6759  SourceLocation Loc) {
6760  FunctionTypeUnwrapper Unwrapped(*this, T);
6761  const FunctionType *FT = Unwrapped.get();
6762  bool IsVariadic = (isa<FunctionProtoType>(FT) &&
6763  cast<FunctionProtoType>(FT)->isVariadic());
6764  CallingConv CurCC = FT->getCallConv();
6765  CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
6766 
6767  if (CurCC == ToCC)
6768  return;
6769 
6770  // MS compiler ignores explicit calling convention attributes on structors. We
6771  // should do the same.
6772  if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
6773  // Issue a warning on ignored calling convention -- except of __stdcall.
6774  // Again, this is what MS compiler does.
6775  if (CurCC != CC_X86StdCall)
6776  Diag(Loc, diag::warn_cconv_structors)
6778  // Default adjustment.
6779  } else {
6780  // Only adjust types with the default convention. For example, on Windows
6781  // we should adjust a __cdecl type to __thiscall for instance methods, and a
6782  // __thiscall type to __cdecl for static methods.
6783  CallingConv DefaultCC =
6784  Context.getDefaultCallingConvention(IsVariadic, IsStatic);
6785 
6786  if (CurCC != DefaultCC || DefaultCC == ToCC)
6787  return;
6788 
6789  if (hasExplicitCallingConv(T))
6790  return;
6791  }
6792 
6793  FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
6794  QualType Wrapped = Unwrapped.wrap(*this, FT);
6795  T = Context.getAdjustedType(T, Wrapped);
6796 }
6797 
6798 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
6799 /// and float scalars, although arrays, pointers, and function return values are
6800 /// allowed in conjunction with this construct. Aggregates with this attribute
6801 /// are invalid, even if they are of the same size as a corresponding scalar.
6802 /// The raw attribute should contain precisely 1 argument, the vector size for
6803 /// the variable, measured in bytes. If curType and rawAttr are well formed,
6804 /// this routine will return a new vector type.
6805 static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
6806  Sema &S) {
6807  // Check the attribute arguments.
6808  if (Attr.getNumArgs() != 1) {
6809  S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6810  << Attr.getName() << 1;
6811  Attr.setInvalid();
6812  return;
6813  }
6814  Expr *sizeExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6815  llvm::APSInt vecSize(32);
6816  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
6817  !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
6818  S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
6820  << sizeExpr->getSourceRange();
6821  Attr.setInvalid();
6822  return;
6823  }
6824  // The base type must be integer (not Boolean or enumeration) or float, and
6825  // can't already be a vector.
6826  if (!CurType->isBuiltinType() || CurType->isBooleanType() ||
6827  (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
6828  S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
6829  Attr.setInvalid();
6830  return;
6831  }
6832  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
6833  // vecSize is specified in bytes - convert to bits.
6834  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
6835 
6836  // the vector size needs to be an integral multiple of the type size.
6837  if (vectorSize % typeSize) {
6838  S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
6839  << sizeExpr->getSourceRange();
6840  Attr.setInvalid();
6841  return;
6842  }
6843  if (VectorType::isVectorSizeTooLarge(vectorSize / typeSize)) {
6844  S.Diag(Attr.getLoc(), diag::err_attribute_size_too_large)
6845  << sizeExpr->getSourceRange();
6846  Attr.setInvalid();
6847  return;
6848  }
6849  if (vectorSize == 0) {
6850  S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
6851  << sizeExpr->getSourceRange();
6852  Attr.setInvalid();
6853  return;
6854  }
6855 
6856  // Success! Instantiate the vector type, the number of elements is > 0, and
6857  // not required to be a power of 2, unlike GCC.
6858  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
6860 }
6861 
6862 /// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
6863 /// a type.
6864 static void HandleExtVectorTypeAttr(QualType &CurType,
6865  const AttributeList &Attr,
6866  Sema &S) {
6867  // check the attribute arguments.
6868  if (Attr.getNumArgs() != 1) {
6869  S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6870  << Attr.getName() << 1;
6871  return;
6872  }
6873 
6874  Expr *sizeExpr;
6875 
6876  // Special case where the argument is a template id.
6877  if (Attr.isArgIdent(0)) {
6878  CXXScopeSpec SS;
6879  SourceLocation TemplateKWLoc;
6880  UnqualifiedId id;
6881  id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
6882 
6883  ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
6884  id, false, false);
6885  if (Size.isInvalid())
6886  return;
6887 
6888  sizeExpr = Size.get();
6889  } else {
6890  sizeExpr = Attr.getArgAsExpr(0);
6891  }
6892 
6893  // Create the vector type.
6894  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
6895  if (!T.isNull())
6896  CurType = T;
6897 }
6898 
6900  VectorType::VectorKind VecKind, Sema &S) {
6901  const BuiltinType *BTy = Ty->getAs<BuiltinType>();
6902  if (!BTy)
6903  return false;
6904 
6905  llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
6906 
6907  // Signed poly is mathematically wrong, but has been baked into some ABIs by
6908  // now.
6909  bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
6910  Triple.getArch() == llvm::Triple::aarch64_be;
6911  if (VecKind == VectorType::NeonPolyVector) {
6912  if (IsPolyUnsigned) {
6913  // AArch64 polynomial vectors are unsigned and support poly64.
6914  return BTy->getKind() == BuiltinType::UChar ||
6915  BTy->getKind() == BuiltinType::UShort ||
6916  BTy->getKind() == BuiltinType::ULong ||
6917  BTy->getKind() == BuiltinType::ULongLong;
6918  } else {
6919  // AArch32 polynomial vector are signed.
6920  return BTy->getKind() == BuiltinType::SChar ||
6921  BTy->getKind() == BuiltinType::Short;
6922  }
6923  }
6924 
6925  // Non-polynomial vector types: the usual suspects are allowed, as well as
6926  // float64_t on AArch64.
6927  bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
6928  Triple.getArch() == llvm::Triple::aarch64_be;
6929 
6930  if (Is64Bit && BTy->getKind() == BuiltinType::Double)
6931  return true;
6932 
6933  return BTy->getKind() == BuiltinType::SChar ||
6934  BTy->getKind() == BuiltinType::UChar ||
6935  BTy->getKind() == BuiltinType::Short ||
6936  BTy->getKind() == BuiltinType::UShort ||
6937  BTy->getKind() == BuiltinType::Int ||
6938  BTy->getKind() == BuiltinType::UInt ||
6939  BTy->getKind() == BuiltinType::Long ||
6940  BTy->getKind() == BuiltinType::ULong ||
6941  BTy->getKind() == BuiltinType::LongLong ||
6942  BTy->getKind() == BuiltinType::ULongLong ||
6943  BTy->getKind() == BuiltinType::Float ||
6944  BTy->getKind() == BuiltinType::Half;
6945 }
6946 
6947 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
6948 /// "neon_polyvector_type" attributes are used to create vector types that
6949 /// are mangled according to ARM's ABI. Otherwise, these types are identical
6950 /// to those created with the "vector_size" attribute. Unlike "vector_size"
6951 /// the argument to these Neon attributes is the number of vector elements,
6952 /// not the vector size in bytes. The vector width and element type must
6953 /// match one of the standard Neon vector types.
6954 static void HandleNeonVectorTypeAttr(QualType& CurType,
6955  const AttributeList &Attr, Sema &S,
6956  VectorType::VectorKind VecKind) {
6957  // Target must have NEON
6958  if (!S.Context.getTargetInfo().hasFeature("neon")) {
6959  S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr.getName();
6960  Attr.setInvalid();
6961  return;
6962  }
6963  // Check the attribute arguments.
6964  if (Attr.getNumArgs() != 1) {
6965  S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6966  << Attr.getName() << 1;
6967  Attr.setInvalid();
6968  return;
6969  }
6970  // The number of elements must be an ICE.
6971  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6972  llvm::APSInt numEltsInt(32);
6973  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
6974  !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
6975  S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
6977  << numEltsExpr->getSourceRange();
6978  Attr.setInvalid();
6979  return;
6980  }
6981  // Only certain element types are supported for Neon vectors.
6982  if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
6983  S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
6984  Attr.setInvalid();
6985  return;
6986  }
6987 
6988  // The total size of the vector must be 64 or 128 bits.
6989  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
6990  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
6991  unsigned vecSize = typeSize * numElts;
6992  if (vecSize != 64 && vecSize != 128) {
6993  S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
6994  Attr.setInvalid();
6995  return;
6996  }
6997 
6998  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
6999 }
7000 
7001 /// Handle OpenCL Access Qualifier Attribute.
7002 static void HandleOpenCLAccessAttr(QualType &CurType, const AttributeList &Attr,
7003  Sema &S) {
7004  // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
7005  if (!(CurType->isImageType() || CurType->isPipeType())) {
7006  S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
7007  Attr.setInvalid();
7008  return;
7009  }
7010 
7011  if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
7012  QualType PointeeTy = TypedefTy->desugar();
7013  S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
7014 
7015  std::string PrevAccessQual;
7016  switch (cast<BuiltinType>(PointeeTy.getTypePtr())->getKind()) {
7017  #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7018  case BuiltinType::Id: \
7019  PrevAccessQual = #Access; \
7020  break;
7021  #include "clang/Basic/OpenCLImageTypes.def"
7022  default:
7023  assert(0 && "Unable to find corresponding image type.");
7024  }
7025 
7026  S.Diag(TypedefTy->getDecl()->getLocStart(),
7027  diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
7028  } else if (CurType->isPipeType()) {
7029  if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
7030  QualType ElemType = CurType->getAs<PipeType>()->getElementType();
7031  CurType = S.Context.getWritePipeType(ElemType);
7032  }
7033  }
7034 }
7035 
7036 static void deduceOpenCLImplicitAddrSpace(TypeProcessingState &State,
7037  QualType &T, TypeAttrLocation TAL) {
7038  Declarator &D = State.getDeclarator();
7039 
7040  // Handle the cases where address space should not be deduced.
7041  //
7042  // The pointee type of a pointer type is alwasy deduced since a pointer always
7043  // points to some memory location which should has an address space.
7044  //
7045  // There are situations that at the point of certain declarations, the address
7046  // space may be unknown and better to be left as default. For example, when
7047  // definining a typedef or struct type, they are not associated with any
7048  // specific address space. Later on, they may be used with any address space
7049  // to declare a variable.
7050  //
7051  // The return value of a function is r-value, therefore should not have
7052  // address space.
7053  //
7054  // The void type does not occupy memory, therefore should not have address
7055  // space, except when it is used as a pointee type.
7056  //
7057  // Since LLVM assumes function type is in default address space, it should not
7058  // have address space.
7059  auto ChunkIndex = State.getCurrentChunkIndex();
7060  bool IsPointee =
7061  ChunkIndex > 0 &&
7062  (D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Pointer ||
7063  D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::BlockPointer);
7064  bool IsFuncReturnType =
7065  ChunkIndex > 0 &&
7066  D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Function;
7067  bool IsFuncType =
7068  ChunkIndex < D.getNumTypeObjects() &&
7069  D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function;
7070  if ( // Do not deduce addr space for function return type and function type,
7071  // otherwise it will fail some sema check.
7072  IsFuncReturnType || IsFuncType ||
7073  // Do not deduce addr space for member types of struct, except the pointee
7074  // type of a pointer member type.
7075  (D.getContext() == DeclaratorContext::MemberContext && !IsPointee) ||
7076  // Do not deduce addr space for types used to define a typedef and the
7077  // typedef itself, except the pointee type of a pointer type which is used
7078  // to define the typedef.
7080  !IsPointee) ||
7081  // Do not deduce addr space of the void type, e.g. in f(void), otherwise
7082  // it will fail some sema check.
7083  (T->isVoidType() && !IsPointee))
7084  return;
7085 
7086  LangAS ImpAddr;
7087  // Put OpenCL automatic variable in private address space.
7088  // OpenCL v1.2 s6.5:
7089  // The default address space name for arguments to a function in a
7090  // program, or local variables of a function is __private. All function
7091  // arguments shall be in the __private address space.
7092  if (State.getSema().getLangOpts().OpenCLVersion <= 120) {
7093  ImpAddr = LangAS::opencl_private;
7094  } else {
7095  // If address space is not set, OpenCL 2.0 defines non private default
7096  // address spaces for some cases:
7097  // OpenCL 2.0, section 6.5:
7098  // The address space for a variable at program scope or a static variable
7099  // inside a function can either be __global or __constant, but defaults to
7100  // __global if not specified.
7101  // (...)
7102  // Pointers that are declared without pointing to a named address space
7103  // point to the generic address space.
7104  if (IsPointee) {
7105  ImpAddr = LangAS::opencl_generic;
7106  } else {
7108  ImpAddr = LangAS::opencl_global;
7109  } else {
7112  ImpAddr = LangAS::opencl_global;
7113  } else {
7114  ImpAddr = LangAS::opencl_private;
7115  }
7116  }
7117  }
7118  }
7119  T = State.getSema().Context.getAddrSpaceQualType(T, ImpAddr);
7120 }
7121 
7122 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
7123  TypeAttrLocation TAL, AttributeList *attrs) {
7124  // Scan through and apply attributes to this type where it makes sense. Some
7125  // attributes (such as __address_space__, __vector_size__, etc) apply to the
7126  // type, but others can be present in the type specifiers even though they
7127  // apply to the decl. Here we apply type attributes and ignore the rest.
7128 
7129  while (attrs) {
7130  AttributeList &attr = *attrs;
7131  attrs = attr.getNext(); // reset to the next here due to early loop continue
7132  // stmts
7133 
7134  // Skip attributes that were marked to be invalid.
7135  if (attr.isInvalid())
7136  continue;
7137 
7138  if (attr.isCXX11Attribute()) {
7139  // [[gnu::...]] attributes are treated as declaration attributes, so may
7140  // not appertain to a DeclaratorChunk, even if we handle them as type
7141  // attributes.
7142  if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
7143  if (TAL == TAL_DeclChunk) {
7144  state.getSema().Diag(attr.getLoc(),
7145  diag::warn_cxx11_gnu_attribute_on_type)
7146  << attr.getName();
7147  continue;
7148  }
7149  } else if (TAL != TAL_DeclChunk) {
7150  // Otherwise, only consider type processing for a C++11 attribute if
7151  // it's actually been applied to a type.
7152  continue;
7153  }
7154  }
7155 
7156  // If this is an attribute we can handle, do so now,
7157  // otherwise, add it to the FnAttrs list for rechaining.
7158  switch (attr.getKind()) {
7159  default:
7160  // A C++11 attribute on a declarator chunk must appertain to a type.
7161  if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
7162  state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
7163  << attr.getName();
7164  attr.setUsedAsTypeAttr();
7165  }
7166  break;
7167 
7169  if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
7170  state.getSema().Diag(attr.getLoc(),
7171  diag::warn_unknown_attribute_ignored)
7172  << attr.getName();
7173  break;
7174 
7176  break;
7177 
7178  case AttributeList::AT_MayAlias:
7179  // FIXME: This attribute needs to actually be handled, but if we ignore
7180  // it it breaks large amounts of Linux software.
7181  attr.setUsedAsTypeAttr();
7182  break;
7183  case AttributeList::AT_OpenCLPrivateAddressSpace:
7184  case AttributeList::AT_OpenCLGlobalAddressSpace:
7185  case AttributeList::AT_OpenCLLocalAddressSpace:
7186  case AttributeList::AT_OpenCLConstantAddressSpace:
7187  case AttributeList::AT_OpenCLGenericAddressSpace:
7188  case AttributeList::AT_AddressSpace:
7189  HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
7190  attr.setUsedAsTypeAttr();
7191  break;
7193  if (!handleObjCPointerTypeAttr(state, attr, type))
7194  distributeObjCPointerTypeAttr(state, attr, type);
7195  attr.setUsedAsTypeAttr();
7196  break;
7197  case AttributeList::AT_VectorSize:
7198  HandleVectorSizeAttr(type, attr, state.getSema());
7199  attr.setUsedAsTypeAttr();
7200  break;
7201  case AttributeList::AT_ExtVectorType:
7202  HandleExtVectorTypeAttr(type, attr, state.getSema());
7203  attr.setUsedAsTypeAttr();
7204  break;
7205  case AttributeList::AT_NeonVectorType:
7206  HandleNeonVectorTypeAttr(type, attr, state.getSema(),
7208  attr.setUsedAsTypeAttr();
7209  break;
7210  case AttributeList::AT_NeonPolyVectorType:
7211  HandleNeonVectorTypeAttr(type, attr, state.getSema(),
7213  attr.setUsedAsTypeAttr();
7214  break;
7215  case AttributeList::AT_OpenCLAccess:
7216  HandleOpenCLAccessAttr(type, attr, state.getSema());
7217  attr.setUsedAsTypeAttr();
7218  break;
7219 
7221  if (!handleMSPointerTypeQualifierAttr(state, attr, type))
7222  attr.setUsedAsTypeAttr();
7223  break;
7224 
7225 
7227  // Either add nullability here or try to distribute it. We
7228  // don't want to distribute the nullability specifier past any
7229  // dependent type, because that complicates the user model.
7230  if (type->canHaveNullability() || type->isDependentType() ||
7231  type->isArrayType() ||
7232  !distributeNullabilityTypeAttr(state, type, attr)) {
7233  unsigned endIndex;
7234  if (TAL == TAL_DeclChunk)
7235  endIndex = state.getCurrentChunkIndex();
7236  else
7237  endIndex = state.getDeclarator().getNumTypeObjects();
7238  bool allowOnArrayType =
7239  state.getDeclarator().isPrototypeContext() &&
7240  !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
7241  if (state.getSema().checkNullabilityTypeSpecifier(
7242  type,
7244  attr.getLoc(),
7246  allowOnArrayType)) {
7247  attr.setInvalid();
7248  }
7249 
7250  attr.setUsedAsTypeAttr();
7251  }
7252  break;
7253 
7254  case AttributeList::AT_ObjCKindOf:
7255  // '__kindof' must be part of the decl-specifiers.
7256  switch (TAL) {
7257  case TAL_DeclSpec:
7258  break;
7259 
7260  case TAL_DeclChunk:
7261  case TAL_DeclName:
7262  state.getSema().Diag(attr.getLoc(),
7263  diag::err_objc_kindof_wrong_position)
7264  << FixItHint::CreateRemoval(attr.getLoc())
7266  state.getDeclarator().getDeclSpec().getLocStart(), "__kindof ");
7267  break;
7268  }
7269 
7270  // Apply it regardless.
7271  if (state.getSema().checkObjCKindOfType(type, attr.getLoc()))
7272  attr.setInvalid();
7273  attr.setUsedAsTypeAttr();
7274  break;
7275 
7277  attr.setUsedAsTypeAttr();
7278 
7279  // Never process function type attributes as part of the
7280  // declaration-specifiers.
7281  if (TAL == TAL_DeclSpec)
7282  distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
7283 
7284  // Otherwise, handle the possible delays.
7285  else if (!handleFunctionTypeAttr(state, attr, type))
7286  distributeFunctionTypeAttr(state, attr, type);
7287  break;
7288  }
7289  }
7290 
7291  if (!state.getSema().getLangOpts().OpenCL ||
7292  type.getAddressSpace() != LangAS::Default)
7293  return;
7294 
7295  deduceOpenCLImplicitAddrSpace(state, type, TAL);
7296 }
7297 
7299  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
7300  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
7301  if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
7302  auto *Def = Var->getDefinition();
7303  if (!Def) {
7304  SourceLocation PointOfInstantiation = E->getExprLoc();
7305  InstantiateVariableDefinition(PointOfInstantiation, Var);
7306  Def = Var->getDefinition();
7307 
7308  // If we don't already have a point of instantiation, and we managed
7309  // to instantiate a definition, this is the point of instantiation.
7310  // Otherwise, we don't request an end-of-TU instantiation, so this is
7311  // not a point of instantiation.
7312  // FIXME: Is this really the right behavior?
7313  if (Var->getPointOfInstantiation().isInvalid() && Def) {
7314  assert(Var->getTemplateSpecializationKind() ==
7316  "explicit instantiation with no point of instantiation");
7317  Var->setTemplateSpecializationKind(
7318  Var->getTemplateSpecializationKind(), PointOfInstantiation);
7319  }
7320  }
7321 
7322  // Update the type to the definition's type both here and within the
7323  // expression.
7324  if (Def) {
7325  DRE->setDecl(Def);
7326  QualType T = Def->getType();
7327  DRE->setType(T);
7328  // FIXME: Update the type on all intervening expressions.
7329  E->setType(T);
7330  }
7331 
7332  // We still go on to try to complete the type independently, as it
7333  // may also require instantiations or diagnostics if it remains
7334  // incomplete.
7335  }
7336  }
7337  }
7338 }
7339 
7340 /// \brief Ensure that the type of the given expression is complete.
7341 ///
7342 /// This routine checks whether the expression \p E has a complete type. If the
7343 /// expression refers to an instantiable construct, that instantiation is
7344 /// performed as needed to complete its type. Furthermore
7345 /// Sema::RequireCompleteType is called for the expression's type (or in the
7346 /// case of a reference type, the referred-to type).
7347 ///
7348 /// \param E The expression whose type is required to be complete.
7349 /// \param Diagnoser The object that will emit a diagnostic if the type is
7350 /// incomplete.
7351 ///
7352 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
7353 /// otherwise.
7355  QualType T = E->getType();
7356 
7357  // Incomplete array types may be completed by the initializer attached to
7358  // their definitions. For static data members of class templates and for
7359  // variable templates, we need to instantiate the definition to get this
7360  // initializer and complete the type.
7361  if (T->isIncompleteArrayType()) {
7362  completeExprArrayBound(E);
7363  T = E->getType();
7364  }
7365 
7366  // FIXME: Are there other cases which require instantiating something other
7367  // than the type to complete the type of an expression?
7368 
7369  return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
7370 }
7371 
7372 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
7373  BoundTypeDiagnoser<> Diagnoser(DiagID);
7374  return RequireCompleteExprType(E, Diagnoser);
7375 }
7376 
7377 /// @brief Ensure that the type T is a complete type.
7378 ///
7379 /// This routine checks whether the type @p T is complete in any
7380 /// context where a complete type is required. If @p T is a complete
7381 /// type, returns false. If @p T is a class template specialization,
7382 /// this routine then attempts to perform class template
7383 /// instantiation. If instantiation fails, or if @p T is incomplete
7384 /// and cannot be completed, issues the diagnostic @p diag (giving it
7385 /// the type @p T) and returns true.
7386 ///
7387 /// @param Loc The location in the source that the incomplete type
7388 /// diagnostic should refer to.
7389 ///
7390 /// @param T The type that this routine is examining for completeness.
7391 ///
7392 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
7393 /// @c false otherwise.
7395  TypeDiagnoser &Diagnoser) {
7396  if (RequireCompleteTypeImpl(Loc, T, &Diagnoser))
7397  return true;
7398  if (const TagType *Tag = T->getAs<TagType>()) {
7399  if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
7400  Tag->getDecl()->setCompleteDefinitionRequired();
7401  Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
7402  }
7403  }
7404  return false;
7405 }
7406 
7408  llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
7409  if (!Suggested)
7410  return false;
7411 
7412  // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
7413  // and isolate from other C++ specific checks.
7415  D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
7416  false /*StrictTypeSpelling*/, true /*Complain*/,
7417  true /*ErrorOnTagTypeMismatch*/);
7418  return Ctx.IsStructurallyEquivalent(D, Suggested);
7419 }
7420 
7421 /// \brief Determine whether there is any declaration of \p D that was ever a
7422 /// definition (perhaps before module merging) and is currently visible.
7423 /// \param D The definition of the entity.
7424 /// \param Suggested Filled in with the declaration that should be made visible
7425 /// in order to provide a definition of this entity.
7426 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
7427 /// not defined. This only matters for enums with a fixed underlying
7428 /// type, since in all other cases, a type is complete if and only if it
7429 /// is defined.
7431  bool OnlyNeedComplete) {
7432  // Easy case: if we don't have modules, all declarations are visible.
7433  if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
7434  return true;
7435 
7436  // If this definition was instantiated from a template, map back to the
7437  // pattern from which it was instantiated.
7438  if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
7439  // We're in the middle of defining it; this definition should be treated
7440  // as visible.
7441  return true;
7442  } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
7443  if (auto *Pattern = RD->getTemplateInstantiationPattern())
7444  RD = Pattern;
7445  D = RD->getDefinition();
7446  } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
7447  if (auto *Pattern = ED->getTemplateInstantiationPattern())
7448  ED = Pattern;
7449  if (OnlyNeedComplete && ED->isFixed()) {
7450  // If the enum has a fixed underlying type, and we're only looking for a
7451  // complete type (not a definition), any visible declaration of it will
7452  // do.
7453  *Suggested = nullptr;
7454  for (auto *Redecl : ED->redecls()) {
7455  if (isVisible(Redecl))
7456  return true;
7457  if (Redecl->isThisDeclarationADefinition() ||
7458  (Redecl->isCanonicalDecl() && !*Suggested))
7459  *Suggested = Redecl;
7460  }
7461  return false;
7462  }
7463  D = ED->getDefinition();
7464  } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
7465  if (auto *Pattern = FD->getTemplateInstantiationPattern())
7466  FD = Pattern;
7467  D = FD->getDefinition();
7468  } else if (auto *VD = dyn_cast<VarDecl>(D)) {
7469  if (auto *Pattern = VD->getTemplateInstantiationPattern())
7470  VD = Pattern;
7471  D = VD->getDefinition();
7472  }
7473  assert(D && "missing definition for pattern of instantiated definition");
7474 
7475  *Suggested = D;
7476  if (isVisible(D))
7477  return true;
7478 
7479  // The external source may have additional definitions of this entity that are
7480  // visible, so complete the redeclaration chain now and ask again.
7481  if (auto *Source = Context.getExternalSource()) {
7482  Source->CompleteRedeclChain(D);
7483  return isVisible(D);
7484  }
7485 
7486  return false;
7487 }
7488 
7489 /// Locks in the inheritance model for the given class and all of its bases.
7491  RD = RD->getMostRecentDecl();
7492  if (!RD->hasAttr<MSInheritanceAttr>()) {
7493  MSInheritanceAttr::Spelling IM;
7494 
7497  IM = RD->calculateInheritanceModel();
7498  break;
7500  IM = MSInheritanceAttr::Keyword_single_inheritance;
7501  break;
7503  IM = MSInheritanceAttr::Keyword_multiple_inheritance;
7504  break;
7506  IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
7507  break;
7508  }
7509 
7510  RD->addAttr(MSInheritanceAttr::CreateImplicit(
7511  S.getASTContext(), IM,
7512  /*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
7516  : RD->getSourceRange()));
7518  }
7519 }
7520 
7521 /// \brief The implementation of RequireCompleteType
7522 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
7523  TypeDiagnoser *Diagnoser) {
7524  // FIXME: Add this assertion to make sure we always get instantiation points.
7525  // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
7526  // FIXME: Add this assertion to help us flush out problems with
7527  // checking for dependent types and type-dependent expressions.
7528  //
7529  // assert(!T->isDependentType() &&
7530  // "Can't ask whether a dependent type is complete");
7531 
7532  // We lock in the inheritance model once somebody has asked us to ensure
7533  // that a pointer-to-member type is complete.
7534  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
7535  if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
7536  if (!MPTy->getClass()->isDependentType()) {
7537  (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
7538  assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
7539  }
7540  }
7541  }
7542 
7543  NamedDecl *Def = nullptr;
7544  bool Incomplete = T->isIncompleteType(&Def);
7545 
7546  // Check that any necessary explicit specializations are visible. For an
7547  // enum, we just need the declaration, so don't check this.
7548  if (Def && !isa<EnumDecl>(Def))
7549  checkSpecializationVisibility(Loc, Def);
7550 
7551  // If we have a complete type, we're done.
7552  if (!Incomplete) {
7553  // If we know about the definition but it is not visible, complain.
7554  NamedDecl *SuggestedDef = nullptr;
7555  if (Def &&
7556  !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
7557  // If the user is going to see an error here, recover by making the
7558  // definition visible.
7559  bool TreatAsComplete = Diagnoser && !isSFINAEContext();
7560  if (Diagnoser)
7561  diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition,
7562  /*Recover*/TreatAsComplete);
7563  return !TreatAsComplete;
7564  }
7565 
7566  return false;
7567  }
7568 
7569  const TagType *Tag = T->getAs<TagType>();
7570  const ObjCInterfaceType *IFace = T->getAs<ObjCInterfaceType>();
7571 
7572  // If there's an unimported definition of this type in a module (for
7573  // instance, because we forward declared it, then imported the definition),
7574  // import that definition now.
7575  //
7576  // FIXME: What about other cases where an import extends a redeclaration
7577  // chain for a declaration that can be accessed through a mechanism other
7578  // than name lookup (eg, referenced in a template, or a variable whose type
7579  // could be completed by the module)?
7580  //
7581  // FIXME: Should we map through to the base array element type before
7582  // checking for a tag type?
7583  if (Tag || IFace) {
7584  NamedDecl *D =
7585  Tag ? static_cast<NamedDecl *>(Tag->getDecl()) : IFace->getDecl();
7586 
7587  // Avoid diagnosing invalid decls as incomplete.
7588  if (D->isInvalidDecl())
7589  return true;
7590 
7591  // Give the external AST source a chance to complete the type.
7592  if (auto *Source = Context.getExternalSource()) {
7593  if (Tag) {
7594  TagDecl *TagD = Tag->getDecl();
7595  if (TagD->hasExternalLexicalStorage())
7596  Source->CompleteType(TagD);
7597  } else {
7598  ObjCInterfaceDecl *IFaceD = IFace->getDecl();
7599  if (IFaceD->hasExternalLexicalStorage())
7600  Source->CompleteType(IFace->getDecl());
7601  }
7602  // If the external source completed the type, go through the motions
7603  // again to ensure we're allowed to use the completed type.
7604  if (!T->isIncompleteType())
7605  return RequireCompleteTypeImpl(Loc, T, Diagnoser);
7606  }
7607  }
7608 
7609  // If we have a class template specialization or a class member of a
7610  // class template specialization, or an array with known size of such,
7611  // try to instantiate it.
7612  QualType MaybeTemplate = T;
7613  while (const ConstantArrayType *Array
7614  = Context.getAsConstantArrayType(MaybeTemplate))
7615  MaybeTemplate = Array->getElementType();
7616  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
7617  bool Instantiated = false;
7618  bool Diagnosed = false;
7619  if (ClassTemplateSpecializationDecl *ClassTemplateSpec
7620  = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
7621  if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
7622  Diagnosed = InstantiateClassTemplateSpecialization(
7623  Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
7624  /*Complain=*/Diagnoser);
7625  Instantiated = true;
7626  }
7627  } else if (CXXRecordDecl *Rec
7628  = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
7630  if (!Rec->isBeingDefined() && Pattern) {
7631  MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
7632  assert(MSI && "Missing member specialization information?");
7633  // This record was instantiated from a class within a template.
7634  if (MSI->getTemplateSpecializationKind() !=
7636  Diagnosed = InstantiateClass(Loc, Rec, Pattern,
7637  getTemplateInstantiationArgs(Rec),
7639  /*Complain=*/Diagnoser);
7640  Instantiated = true;
7641  }
7642  }
7643  }
7644 
7645  if (Instantiated) {
7646  // Instantiate* might have already complained that the template is not
7647  // defined, if we asked it to.
7648  if (Diagnoser && Diagnosed)
7649  return true;
7650  // If we instantiated a definition, check that it's usable, even if
7651  // instantiation produced an error, so that repeated calls to this
7652  // function give consistent answers.
7653  if (!T->isIncompleteType())
7654  return RequireCompleteTypeImpl(Loc, T, Diagnoser);
7655  }
7656  }
7657 
7658  // FIXME: If we didn't instantiate a definition because of an explicit
7659  // specialization declaration, check that it's visible.
7660 
7661  if (!Diagnoser)
7662  return true;
7663 
7664  Diagnoser->diagnose(*this, Loc, T);
7665 
7666  // If the type was a forward declaration of a class/struct/union
7667  // type, produce a note.
7668  if (Tag && !Tag->getDecl()->isInvalidDecl())
7669  Diag(Tag->getDecl()->getLocation(),
7670  Tag->isBeingDefined() ? diag::note_type_being_defined
7671  : diag::note_forward_declaration)
7672  << QualType(Tag, 0);
7673 
7674  // If the Objective-C class was a forward declaration, produce a note.
7675  if (IFace && !IFace->getDecl()->isInvalidDecl())
7676  Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
7677 
7678  // If we have external information that we can use to suggest a fix,
7679  // produce a note.
7680  if (ExternalSource)
7681  ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
7682 
7683  return true;
7684 }
7685 
7687  unsigned DiagID) {
7688  BoundTypeDiagnoser<> Diagnoser(DiagID);
7689  return RequireCompleteType(Loc, T, Diagnoser);
7690 }
7691 
7692 /// \brief Get diagnostic %select index for tag kind for
7693 /// literal type diagnostic message.
7694 /// WARNING: Indexes apply to particular diagnostics only!
7695 ///
7696 /// \returns diagnostic %select index.
7698  switch (Tag) {
7699  case TTK_Struct: return 0;
7700  case TTK_Interface: return 1;
7701  case TTK_Class: return 2;
7702  default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
7703  }
7704 }
7705 
7706 /// @brief Ensure that the type T is a literal type.
7707 ///
7708 /// This routine checks whether the type @p T is a literal type. If @p T is an
7709 /// incomplete type, an attempt is made to complete it. If @p T is a literal
7710 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
7711 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
7712 /// it the type @p T), along with notes explaining why the type is not a
7713 /// literal type, and returns true.
7714 ///
7715 /// @param Loc The location in the source that the non-literal type
7716 /// diagnostic should refer to.
7717 ///
7718 /// @param T The type that this routine is examining for literalness.
7719 ///
7720 /// @param Diagnoser Emits a diagnostic if T is not a literal type.
7721 ///
7722 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
7723 /// @c false otherwise.
7725  TypeDiagnoser &Diagnoser) {
7726  assert(!T->isDependentType() && "type should not be dependent");
7727 
7728  QualType ElemType = Context.getBaseElementType(T);
7729  if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
7730  T->isLiteralType(Context))
7731  return false;
7732 
7733  Diagnoser.diagnose(*this, Loc, T);
7734 
7735  if (T->isVariableArrayType())
7736  return true;
7737 
7738  const RecordType *RT = ElemType->getAs<RecordType>();
7739  if (!RT)
7740  return true;
7741 
7742  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7743 
7744  // A partially-defined class type can't be a literal type, because a literal
7745  // class type must have a trivial destructor (which can't be checked until
7746  // the class definition is complete).
7747  if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
7748  return true;
7749 
7750  // If the class has virtual base classes, then it's not an aggregate, and
7751  // cannot have any constexpr constructors or a trivial default constructor,
7752  // so is non-literal. This is better to diagnose than the resulting absence
7753  // of constexpr constructors.
7754  if (RD->getNumVBases()) {
7755  Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
7757  for (const auto &I : RD->vbases())
7758  Diag(I.getLocStart(), diag::note_constexpr_virtual_base_here)
7759  << I.getSourceRange();
7760  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
7762  Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
7763  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
7764  for (const auto &I : RD->bases()) {
7765  if (!I.getType()->isLiteralType(Context)) {
7766  Diag(I.getLocStart(),
7767  diag::note_non_literal_base_class)
7768  << RD << I.getType() << I.getSourceRange();
7769  return true;
7770  }
7771  }
7772  for (const auto *I : RD->fields()) {
7773  if (!I->getType()->isLiteralType(Context) ||
7774  I->getType().isVolatileQualified()) {
7775  Diag(I->getLocation(), diag::note_non_literal_field)
7776  << RD << I << I->getType()
7777  << I->getType().isVolatileQualified();
7778  return true;
7779  }
7780  }
7781  } else if (!RD->hasTrivialDestructor()) {
7782  // All fields and bases are of literal types, so have trivial destructors.
7783  // If this class's destructor is non-trivial it must be user-declared.
7784  CXXDestructorDecl *Dtor = RD->getDestructor();
7785  assert(Dtor && "class has literal fields and bases but no dtor?");
7786  if (!Dtor)
7787  return true;
7788 
7789  Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
7790  diag::note_non_literal_user_provided_dtor :
7791  diag::note_non_literal_nontrivial_dtor) << RD;
7792  if (!Dtor->isUserProvided())
7793  SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
7794  }
7795 
7796  return true;
7797 }
7798 
7799 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
7800  BoundTypeDiagnoser<> Diagnoser(DiagID);
7801  return RequireLiteralType(Loc, T, Diagnoser);
7802 }
7803 
7804 /// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
7805 /// and qualified by the nested-name-specifier contained in SS.
7807  const CXXScopeSpec &SS, QualType T) {
7808  if (T.isNull())
7809  return T;
7810  NestedNameSpecifier *NNS;
7811  if (SS.isValid())
7812  NNS = SS.getScopeRep();
7813  else {
7814  if (Keyword == ETK_None)
7815  return T;
7816  NNS = nullptr;
7817  }
7818  return Context.getElaboratedType(Keyword, NNS, T);
7819 }
7820 
7822  ExprResult ER = CheckPlaceholderExpr(E);
7823  if (ER.isInvalid()) return QualType();
7824  E = ER.get();
7825 
7826  if (!getLangOpts().CPlusPlus && E->refersToBitField())
7827  Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
7828 
7829  if (!E->isTypeDependent()) {
7830  QualType T = E->getType();
7831  if (const TagType *TT = T->getAs<TagType>())
7832  DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
7833  }
7834  return Context.getTypeOfExprType(E);
7835 }
7836 
7837 /// getDecltypeForExpr - Given an expr, will return the decltype for
7838 /// that expression, according to the rules in C++11
7839 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
7841  if (E->isTypeDependent())
7842  return S.Context.DependentTy;
7843 
7844  // C++11 [dcl.type.simple]p4:
7845  // The type denoted by decltype(e) is defined as follows:
7846  //
7847  // - if e is an unparenthesized id-expression or an unparenthesized class
7848  // member access (5.2.5), decltype(e) is the type of the entity named
7849  // by e. If there is no such entity, or if e names a set of overloaded
7850  // functions, the program is ill-formed;
7851  //
7852  // We apply the same rules for Objective-C ivar and property references.
7853  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
7854  if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
7855  return VD->getType();
7856  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
7857  if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
7858  return FD->getType();
7859  } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
7860  return IR->getDecl()->getType();
7861  } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
7862  if (PR->isExplicitProperty())
7863  return PR->getExplicitProperty()->getType();
7864  } else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
7865  return PE->getType();
7866  }
7867 
7868  // C++11 [expr.lambda.prim]p18:
7869  // Every occurrence of decltype((x)) where x is a possibly
7870  // parenthesized id-expression that names an entity of automatic
7871  // storage duration is treated as if x were transformed into an
7872  // access to a corresponding data member of the closure type that
7873  // would have been declared if x were an odr-use of the denoted
7874  // entity.
7875  using namespace sema;
7876  if (S.getCurLambda()) {
7877  if (isa<ParenExpr>(E)) {
7878  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
7879  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
7880  QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
7881  if (!T.isNull())
7882  return S.Context.getLValueReferenceType(T);
7883  }
7884  }
7885  }
7886  }
7887 
7888 
7889  // C++11 [dcl.type.simple]p4:
7890  // [...]
7891  QualType T = E->getType();
7892  switch (E->getValueKind()) {
7893  // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
7894  // type of e;
7895  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
7896  // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
7897  // type of e;
7898  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
7899  // - otherwise, decltype(e) is the type of e.
7900  case VK_RValue: break;
7901  }
7902 
7903  return T;
7904 }
7905 
7907  bool AsUnevaluated) {
7908  ExprResult ER = CheckPlaceholderExpr(E);
7909  if (ER.isInvalid()) return QualType();
7910  E = ER.get();
7911 
7912  if (AsUnevaluated && CodeSynthesisContexts.empty() &&
7913  E->HasSideEffects(Context, false)) {
7914  // The expression operand for decltype is in an unevaluated expression
7915  // context, so side effects could result in unintended consequences.
7916  Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
7917  }
7918 
7919  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
7920 }
7921 
7924  SourceLocation Loc) {
7925  switch (UKind) {
7927  if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
7928  Diag(Loc, diag::err_only_enums_have_underlying_types);
7929  return QualType();
7930  } else {
7931  QualType Underlying = BaseType;
7932  if (!BaseType->isDependentType()) {
7933  // The enum could be incomplete if we're parsing its definition or
7934  // recovering from an error.
7935  NamedDecl *FwdDecl = nullptr;
7936  if (BaseType->isIncompleteType(&FwdDecl)) {
7937  Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
7938  Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
7939  return QualType();
7940  }
7941 
7942  EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
7943  assert(ED && "EnumType has no EnumDecl");
7944 
7945  DiagnoseUseOfDecl(ED, Loc);
7946 
7947  Underlying = ED->getIntegerType();
7948  assert(!Underlying.isNull());
7949  }
7950  return Context.getUnaryTransformType(BaseType, Underlying,
7952  }
7953  }
7954  llvm_unreachable("unknown unary transform type");
7955 }
7956 
7958  if (!T->isDependentType()) {
7959  // FIXME: It isn't entirely clear whether incomplete atomic types
7960  // are allowed or not; for simplicity, ban them for the moment.
7961  if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
7962  return QualType();
7963 
7964  int DisallowedKind = -1;
7965  if (T->isArrayType())
7966  DisallowedKind = 1;
7967  else if (T->isFunctionType())
7968  DisallowedKind = 2;
7969  else if (T->isReferenceType())
7970  DisallowedKind = 3;
7971  else if (T->isAtomicType())
7972  DisallowedKind = 4;
7973  else if (T.hasQualifiers())
7974  DisallowedKind = 5;
7975  else if (!T.isTriviallyCopyableType(Context))
7976  // Some other non-trivially-copyable type (probably a C++ class)
7977  DisallowedKind = 6;
7978 
7979  if (DisallowedKind != -1) {
7980  Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
7981  return QualType();
7982  }
7983 
7984  // FIXME: Do we need any handling for ARC here?
7985  }
7986 
7987  // Build the pointer type.
7988  return Context.getAtomicType(T);
7989 }
FileNullabilityMap NullabilityMap
A mapping that describes the nullability we&#39;ve seen in each header file.
Definition: Sema.h:481
Abstract class used to diagnose incomplete types.
Definition: Sema.h:1483
bool CheckNoCallerSavedRegsAttr(const AttributeList &attr)
ParsedType getTrailingReturnType() const
Get the trailing-return-type for this function declarator.
Definition: DeclSpec.h:1453
ObjCPropertyRefExpr - A dot-syntax expression to access an ObjC property.
Definition: ExprObjC.h:577
static void checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind, SourceLocation pointerLoc, SourceLocation pointerEndLoc=SourceLocation())
Complains about missing nullability if the file containing pointerLoc has other uses of nullability (...
Definition: SemaType.cpp:3670
static CallingConv getCCForDeclaratorChunk(Sema &S, Declarator &D, const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex)
Helper for figuring out the default CC for a function declarator type.
Definition: SemaType.cpp:3242
QualType getDecltypeType(Expr *e, QualType UnderlyingType) const
C++11 decltype.
bool CheckNoReturnAttr(const AttributeList &attr)
AttributePool & getAttributePool() const
Definition: DeclSpec.h:1850
static void HandleExtVectorTypeAttr(QualType &CurType, const AttributeList &Attr, Sema &S)
Process the OpenCL-like ext_vector_type attribute when it occurs on a type.
Definition: SemaType.cpp:6864
ParameterABI getABI() const
Return the ABI treatment of this parameter.
Definition: Type.h:3302
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Defines the clang::ASTContext interface.
QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const
Return the uniqued reference to the type for an address space qualified type with the specified type ...
Represents a type that was referred to using an elaborated type keyword, e.g., struct S...
Definition: Type.h:4784
TypeLoc getValueLoc() const
Definition: TypeLoc.h:2270
static bool handleObjCPointerTypeAttr(TypeProcessingState &state, AttributeList &attr, QualType &type)
Definition: SemaType.cpp:312
unsigned UnalignedQualLoc
The location of the __unaligned-qualifier, if any.
Definition: DeclSpec.h:1161
const Type * Ty
The locally-unqualified type.
Definition: Type.h:594
QualType getObjCObjectType(QualType Base, ObjCProtocolDecl *const *Protocols, unsigned NumProtocols) const
Legacy interface: cannot provide type arguments or __kindof.
CanQualType LongLongTy
Definition: ASTContext.h:1004
static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag)
Get diagnostic select index for tag kind for literal type diagnostic message.
Definition: SemaType.cpp:7697
const internal::VariadicDynCastAllOfMatcher< Decl, TypedefDecl > typedefDecl
Matches typedef declarations.
ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo)
Package the given type and TSI into a ParsedType.
Definition: SemaType.cpp:5611
QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl, SourceLocation ProtocolLAngleLoc, ArrayRef< ObjCProtocolDecl *> Protocols, ArrayRef< SourceLocation > ProtocolLocs, SourceLocation ProtocolRAngleLoc, bool FailOnError=false)
Build an Objective-C type parameter type.
Definition: SemaType.cpp:1003
DeclaratorChunk::FunctionTypeInfo & getFunctionTypeInfo()
getFunctionTypeInfo - Retrieves the function type info object (looking through parentheses).
Definition: DeclSpec.h:2237
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
unsigned RefQualifierIsLValueRef
Whether the ref-qualifier (if any) is an lvalue reference.
Definition: DeclSpec.h:1243
static bool isOmittedBlockReturnType(const Declarator &D)
isOmittedBlockReturnType - Return true if this declarator is missing a return type because this is a ...
Definition: SemaType.cpp:49
no exception specification
QualType BuildFunctionType(QualType T, MutableArrayRef< QualType > ParamTypes, SourceLocation Loc, DeclarationName Entity, const FunctionProtoType::ExtProtoInfo &EPI)
Build a function type.
Definition: SemaType.cpp:2365
This is a discriminated union of FileInfo and ExpansionInfo.
QualType getAdjustedParameterType(QualType T) const
Perform adjustment on the parameter type of a function.
PtrTy get() const
Definition: Ownership.h:74
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2283
RefQualifierKind getRefQualifier() const
Retrieve the ref-qualifier associated with this function type.
Definition: Type.h:3630
QualType BuildWritePipeType(QualType T, SourceLocation Loc)
Build a Write-only Pipe type.
Definition: SemaType.cpp:1983
A (possibly-)qualified type.
Definition: Type.h:653
ASTConsumer & Consumer
Definition: Sema.h:317
bool isBlockPointerType() const
Definition: Type.h:5950
base_class_range bases()
Definition: DeclCXX.h:773
bool isArrayType() const
Definition: Type.h:5991
bool isMemberPointerType() const
Definition: Type.h:5973
void setStarLoc(SourceLocation Loc)
Definition: TypeLoc.h:1347
Wrapper for source info for tag types.
Definition: TypeLoc.h:702
static void distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state, AttributeList &attr, QualType &declSpecType)
Distribute an objc_gc type attribute that was written on the declarator.
Definition: SemaType.cpp:455
AttributeList * getNext() const
SourceRange getSourceRange() const LLVM_READONLY
Return the source range that covers this unqualified-id.
Definition: DeclSpec.h:1110
static const TSS TSS_unsigned
Definition: DeclSpec.h:268
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this attribute.
QualType BuildUnaryTransformType(QualType BaseType, UnaryTransformType::UTTKind UKind, SourceLocation Loc)
Definition: SemaType.cpp:7922
__auto_type (GNU extension)
const DeclaratorChunk & getTypeObject(unsigned i) const
Return the specified TypeInfo from this declarator.
Definition: DeclSpec.h:2148
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc...
Definition: Sema.h:2994
void setNameEndLoc(SourceLocation Loc)
Definition: TypeLoc.h:1143
static const TST TST_wchar
Definition: DeclSpec.h:275
CanQualType Char32Ty
Definition: ASTContext.h:1003
#define CALLING_CONV_ATTRS_CASELIST
Definition: SemaType.cpp:105
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false)
Perform unqualified name lookup starting from a given scope.
void setKWLoc(SourceLocation Loc)
Definition: TypeLoc.h:2334
The attribute is immediately after the declaration&#39;s name.
Definition: SemaType.cpp:291
void setRParenLoc(SourceLocation Loc)
Definition: TypeLoc.h:1443
TypeLoc getNextTypeLoc() const
Get the next TypeLoc pointed by this TypeLoc, e.g for "int*" the TypeLoc is a PointerLoc and next Typ...
Definition: TypeLoc.h:169
void setStarLoc(SourceLocation Loc)
Definition: TypeLoc.h:1278
const internal::VariadicDynCastAllOfMatcher< Decl, RecordDecl > recordDecl
Matches class, struct, and union declarations.
NullabilityKind
Describes the nullability of a particular type.
Definition: Specifiers.h:282
void setExceptionSpecRange(SourceRange R)
Definition: TypeLoc.h:1457
Kind getKind() const
Definition: Type.h:2164
QualType BuildObjCObjectType(QualType BaseType, SourceLocation Loc, SourceLocation TypeArgsLAngleLoc, ArrayRef< TypeSourceInfo *> TypeArgs, SourceLocation TypeArgsRAngleLoc, SourceLocation ProtocolLAngleLoc, ArrayRef< ObjCProtocolDecl *> Protocols, ArrayRef< SourceLocation > ProtocolLocs, SourceLocation ProtocolRAngleLoc, bool FailOnError=false)
Build an Objective-C object pointer type.
Definition: SemaType.cpp:1026
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3056
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:456
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:790
TypeLoc getValueLoc() const
Definition: TypeLoc.h:2329
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:1893
void setEmbeddedInDeclarator(bool isInDeclarator)
Definition: Decl.h:3115
unsigned getNumVBases() const
Retrieves the number of virtual base classes of this class.
Definition: DeclCXX.h:788
bool hasPlaceholderType() const
Returns whether this expression has a placeholder type.
Definition: Expr.h:472
TypedefDecl - Represents the declaration of a typedef-name via the &#39;typedef&#39; type specifier...
Definition: Decl.h:2898
void addConst()
Add the const type qualifier to this QualType.
Definition: Type.h:815
Microsoft&#39;s &#39;__super&#39; specifier, stored as a CXXRecordDecl* of the class it appeared in...
bool isRecordType() const
Definition: Type.h:6015
bool isDecltypeAuto() const
Definition: Type.h:4412
static const TST TST_typeofExpr
Definition: DeclSpec.h:296
QualType getQualifiedType(SplitQualType split) const
Un-split a SplitQualType.
Definition: ASTContext.h:1880
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue=true) const
Return the uniqued reference to the type for an lvalue reference to the specified type...
const Type * getTypeForDecl() const
Definition: Decl.h:2784
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
Definition: Sema.h:1270
static const TST TST_char16
Definition: DeclSpec.h:276
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
static NullabilityKind mapNullabilityAttrKind(AttributeList::Kind kind)
Map a nullability attribute kind to a nullability kind.
Definition: SemaType.cpp:6433
bool isVariadic() const
Definition: Type.h:3615
TagDecl * getDecl() const
Definition: Type.cpp:3037
WrittenBuiltinSpecs & getWrittenBuiltinSpecs()
Definition: TypeLoc.h:570
void setType(QualType t)
Definition: Expr.h:129
NestedNameSpecifier * getPrefix() const
Return the prefix of this nested name specifier.
Defines the C++ template declaration subclasses.
static void processTypeAttrs(TypeProcessingState &state, QualType &type, TypeAttrLocation TAL, AttributeList *attrs)
Definition: SemaType.cpp:7122
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:4401
IdentifierInfo * Ident
Definition: AttributeList.h:75
SmallVector< CodeSynthesisContext, 16 > CodeSynthesisContexts
List of active code synthesis contexts.
Definition: Sema.h:7167
QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM, Expr *ArraySize, unsigned Quals, SourceRange Brackets, DeclarationName Entity)
Build an array type.
Definition: SemaType.cpp:2024
ObjCTypeParamList * getTypeParamList() const
Retrieve the type parameters of this class.
Definition: DeclObjC.cpp:301
const char * getCharacterData(SourceLocation SL, bool *Invalid=nullptr) const
Return a pointer to the start of the specified location in the appropriate spelling MemoryBuffer...
SourceLocation getVolatileQualifierLoc() const
Retrieve the location of the &#39;volatile&#39; qualifier, if any.
Definition: DeclSpec.h:1408
A constructor named via a template-id.
QualType getBlockPointerType(QualType T) const
Return the uniqued reference to the type for a block of the specified type.
SourceLocation getLParenLoc() const
Definition: DeclSpec.h:1373
The base class of the type hierarchy.
Definition: Type.h:1351
bool hasTrailingReturnType() const
Determine whether a trailing return type was written (at any level) within this declarator.
Definition: DeclSpec.h:2350
CanQualType LongTy
Definition: ASTContext.h:1004
DiagnosticsEngine & getDiagnostics() const
One instance of this struct is used for each type in a declarator that is parsed. ...
Definition: DeclSpec.h:1124
SourceLocation EndLoc
EndLoc - If valid, the place where this chunck ends.
Definition: DeclSpec.h:1132
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset=0)
Calls Lexer::getLocForEndOfToken()
Definition: Sema.cpp:45
bool isFunctionDeclarator(unsigned &idx) const
isFunctionDeclarator - This method returns true if the declarator is a function declarator (looking t...
Definition: DeclSpec.h:2206
Wrapper for source info for typedefs.
Definition: TypeLoc.h:665
static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk)
Definition: SemaType.cpp:5512
static const char * getSpecifierName(DeclSpec::TST T, const PrintingPolicy &Policy)
Turn a type-specifier-type into a string like "_Bool" or "union".
Definition: DeclSpec.cpp:495
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:671
The attribute is part of a DeclaratorChunk.
Definition: SemaType.cpp:289
A container of type source information.
Definition: Decl.h:86
bool getHasRegParm() const
Definition: Type.h:3203
bool hasConstexprNonCopyMoveConstructor() const
Determine whether this class has at least one constexpr constructor other than the copy or move const...
Definition: DeclCXX.h:1326
static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS, unsigned &TypeQuals, QualType TypeSoFar, unsigned RemoveTQs, unsigned DiagID)
Definition: SemaType.cpp:728
static void transferARCOwnership(TypeProcessingState &state, QualType &declSpecTy, Qualifiers::ObjCLifetime ownership)
Used for transferring ownership in casts resulting in l-values.
Definition: SemaType.cpp:5044
AttributeList *& getAttrListRef()
Definition: DeclSpec.h:2377
An overloaded operator name, e.g., operator+.
bool getSuppressSystemWarnings() const
Definition: Diagnostic.h:541
Wrapper for source info for pointers decayed from arrays and functions.
Definition: TypeLoc.h:1232
Abstract base class used for diagnosing integer constant expression violations.
Definition: Sema.h:9804
QualType getAtomicType(QualType T) const
Return the uniqued reference to the atomic type for the specified type.
SourceLocation getEllipsisLoc() const
Definition: DeclSpec.h:1377
SourceLocation getLocalBeginLoc() const
Retrieve the location of the beginning of this component of the nested-name-specifier.
#define NULLABILITY_TYPE_ATTRS_CASELIST
Definition: SemaType.cpp:137
CanQualType HalfTy
Definition: ASTContext.h:1008
unsigned RestrictQualLoc
The location of the restrict-qualifier, if any.
Definition: DeclSpec.h:1155
static AttributedType::Kind getCCTypeAttrKind(AttributeList &Attr)
Definition: SemaType.cpp:6537
const AttributedType * getCallingConvAttributedType(QualType T) const
Get the outermost AttributedType node that sets a calling convention.
Definition: SemaDecl.cpp:2854
bool isCompleteDefinition() const
isCompleteDefinition - Return true if this decl has its body fully specified.
Definition: Decl.h:3097
bool checkObjCKindOfType(QualType &type, SourceLocation loc)
Check the application of the Objective-C &#39;__kindof&#39; qualifier to the given type.
Definition: SemaType.cpp:6386
void setParensRange(SourceRange range)
Definition: TypeLoc.h:1866
An identifier, stored as an IdentifierInfo*.
QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace, SourceLocation AttrLoc)
BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression is uninstantiated.
Definition: SemaType.cpp:5673
bool isFunctionDeclarationContext() const
Return true if this declaration appears in a context where a function declarator would be a function ...
Definition: DeclSpec.h:2260
VarDecl - An instance of this class is created to represent a variable declaration or definition...
Definition: Decl.h:806
unsigned isStar
True if this dimension was [*]. In this case, NumElts is null.
Definition: DeclSpec.h:1185
static DeclaratorChunk * maybeMovePastReturnType(Declarator &declarator, unsigned i, bool onlyBlockPointers)
Given the index of a declarator chunk, check whether that chunk directly specifies the return type of...
Definition: SemaType.cpp:329
static const TST TST_underlyingType
Definition: DeclSpec.h:299
bool isArgIdent(unsigned Arg) const
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1752
void removeObjCLifetime()
Definition: Type.h:347
LangAS getLangASFromTargetAS(unsigned TargetAS)
Definition: AddressSpaces.h:67
void initialize(ASTContext &Context, SourceLocation Loc) const
Initializes this to state that every location in this type is the given location. ...
Definition: TypeLoc.h:191
DiagnosticsEngine & Diags
Definition: Sema.h:318
Wrapper for source info for member pointers.
Definition: TypeLoc.h:1301
bool isEnumeralType() const
Definition: Type.h:6019
Wrapper of type source information for a type with non-trivial direct qualifiers. ...
Definition: TypeLoc.h:272
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6305
CanQualType Float128Ty
Definition: ASTContext.h:1007
DeclContext * computeDeclContext(QualType T)
Compute the DeclContext that is associated with the given type.
The "union" keyword.
Definition: Type.h:4694
unsigned getParsedSpecifiers() const
Return a bitmask of which flavors of specifiers this DeclSpec includes.
Definition: DeclSpec.cpp:411
Extra information about a function prototype.
Definition: Type.h:3387
LangAS
Defines the address space values used by the address space qualifier of QualType. ...
Definition: AddressSpaces.h:26
Represents a C++17 deduced template specialization type.
Definition: Type.h:4437
The "__interface" keyword.
Definition: Type.h:4691
static const TST TST_interface
Definition: DeclSpec.h:292
static const TST TST_char
Definition: DeclSpec.h:274
A namespace, stored as a NamespaceDecl*.
QualType getMemberPointerType(QualType T, const Type *Cls) const
Return the uniqued reference to the type for a member pointer to the specified type in the specified ...
bool hasTrivialDefaultConstructor() const
Determine whether this class has a trivial default constructor (C++11 [class.ctor]p5).
Definition: DeclCXX.h:1311
TypeLoc getNamedTypeLoc() const
Definition: TypeLoc.h:2034
bool isInvalidDecl() const
Definition: DeclBase.h:546
void setAttrOperandParensRange(SourceRange range)
Definition: TypeLoc.h:1759
bool hasTypeSpecifier() const
Return true if any type-specifier has been found.
Definition: DeclSpec.h:589
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:38
SpecifierKind getKind() const
Determine what kind of nested name specifier is stored.
bool hasDefinition() const
Definition: DeclCXX.h:738
unsigned getNumExceptions() const
Get the number of dynamic exception specifications.
Definition: DeclSpec.h:1436
TemplateSpecializationKind getTemplateSpecializationKind() const
Determine what kind of template specialization this is.
Definition: DeclTemplate.h:629
ParmVarDecl - Represents a parameter to a function.
Definition: Decl.h:1513
static bool handleFunctionTypeAttr(TypeProcessingState &state, AttributeList &attr, QualType &type)
Process an individual function attribute.
Definition: SemaType.cpp:6587
OpenCLOptions & getOpenCLOptions()
Definition: Sema.h:1194
AttributeList * getList() const
void setQualifierLoc(NestedNameSpecifierLoc QualifierLoc)
Definition: TypeLoc.h:2014
SourceLocation Loc
Definition: AttributeList.h:74
The collection of all-type qualifiers we support.
Definition: Type.h:152
bool isVariableArrayType() const
Definition: Type.h:6003
PipeType - OpenCL20.
Definition: Type.h:5648
bool needsExtraLocalData() const
Definition: TypeLoc.h:577
SourceRange getTypeSpecWidthRange() const
Definition: DeclSpec.h:505
void setParensRange(SourceRange Range)
Definition: TypeLoc.h:2306
static const TST TST_unknown_anytype
Definition: DeclSpec.h:302
bool canHaveNullability(bool ResultIfUnknown=true) const
Determine whether the given type can have a nullability specifier applied to it, i.e., if it is any kind of pointer type.
Definition: Type.cpp:3616
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:56
MSInheritanceAttr::Spelling calculateInheritanceModel() const
Calculate what the inheritance model would be for this class.
QualType BuildMemberPointerType(QualType T, QualType Class, SourceLocation Loc, DeclarationName Entity)
Build a member pointer type T Class::*.
Definition: SemaType.cpp:2414
const AstTypeMatcher< RecordType > recordType
Matches record types (e.g.
RecordDecl - Represents a struct/union/class.
Definition: Decl.h:3488
SourceLocation getLoc() const
__ptr16, alignas(...), etc.
bool isEmpty() const
Determine whether this is an empty class in the sense of (C++11 [meta.unary.prop]).
Definition: DeclCXX.h:1279
DeclarationName getDeclName() const
getDeclName - Get the actual, stored name of the declaration, which may be a special name...
Definition: Decl.h:291
bool isDependentScopeSpecifier(const CXXScopeSpec &SS)
Expr * NoexceptExpr
Pointer to the expression in the noexcept-specifier of this function, if it has one.
Definition: DeclSpec.h:1320
TypeSpecifierSign getWrittenSignSpec() const
Definition: TypeLoc.h:597
FunctionType::ExtInfo ExtInfo
Definition: Type.h:3388
Represents a class template specialization, which refers to a class template with a given set of temp...
One of these records is kept for each identifier that is lexed.
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:859
void setLocalRangeEnd(SourceLocation L)
Definition: TypeLoc.h:1427
static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc, QualifiedFunctionKind QFK)
Check whether the type T is a qualified function type, and if it is, diagnose that it cannot be conta...
Definition: SemaType.cpp:1848
Kind getKind() const
static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex)
Returns true if any of the declarator chunks before endIndex include a level of indirection: array...
Definition: SemaType.cpp:3740
SourceLocation getExceptionSpecLocBeg() const
Definition: DeclSpec.h:1385
static void distributeFunctionTypeAttr(TypeProcessingState &state, AttributeList &attr, QualType type)
A function type attribute was written somewhere in a declaration other than on the declarator itself ...
Definition: SemaType.cpp:517
const WrittenBuiltinSpecs & getWrittenBuiltinSpecs() const
Definition: DeclSpec.h:750
static const TST TST_decimal32
Definition: DeclSpec.h:286
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
QualType IgnoreParens() const
Returns the specified type after dropping any outer-level parentheses.
Definition: Type.h:965
UnionParsedType ConversionFunctionId
When Kind == IK_ConversionFunctionId, the type that the conversion function names.
Definition: DeclSpec.h:946
void removeRestrict()
Definition: Type.h:287
Represents a class type in Objective C.
Definition: Type.h:5184
static void deduceOpenCLImplicitAddrSpace(TypeProcessingState &State, QualType &T, TypeAttrLocation TAL)
Definition: SemaType.cpp:7036
llvm::PointerUnion< Expr *, IdentifierLoc * > ArgsUnion
A union of the various pointer types that can be passed to an AttributeList as an argument...
Definition: AttributeList.h:83
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:149
A C++ nested-name-specifier augmented with source location information.
is ARM Neon vector
Definition: Type.h:2930
bool inTemplateInstantiation() const
Determine whether we are currently performing template instantiation.
Definition: Sema.h:7393
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:3496
LineState State
SourceLocation getTypeSpecTypeLoc() const
Definition: DeclSpec.h:508
bool isObjCLifetimeType() const
Returns true if objects of this type have lifetime semantics under ARC.
Definition: Type.cpp:3844
QualType BuildParenType(QualType T)
Build a paren type including T.
Definition: SemaType.cpp:1752
void setBuiltinLoc(SourceLocation Loc)
Definition: TypeLoc.h:554
bool isSpelledAsLValue() const
Definition: Type.h:2435
field_range fields() const
Definition: Decl.h:3619
void setRBracketLoc(SourceLocation Loc)
Definition: TypeLoc.h:1546
static SourceLocation getFromRawEncoding(unsigned Encoding)
Turn a raw encoding of a SourceLocation object into a real SourceLocation.
static bool distributeNullabilityTypeAttr(TypeProcessingState &state, QualType type, AttributeList &attr)
Distribute a nullability type attribute that cannot be applied to the type specifier to a pointer...
Definition: SemaType.cpp:6455
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
QualType getDependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, const IdentifierInfo *Name, QualType Canon=QualType()) const
static const TST TST_class
Definition: DeclSpec.h:293
void checkExceptionSpecification(bool IsTopLevel, ExceptionSpecificationType EST, ArrayRef< ParsedType > DynamicExceptions, ArrayRef< SourceRange > DynamicExceptionRanges, Expr *NoexceptExpr, SmallVectorImpl< QualType > &Exceptions, FunctionProtoType::ExceptionSpecInfo &ESI)
Check the given exception-specification and update the exception specification information with the r...
FieldDecl - An instance of this class is created by Sema::ActOnField to represent a member of a struc...
Definition: Decl.h:2467
const Type * getAsType() const
Retrieve the type stored in this nested name specifier.
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state, AttributeList &attr, QualType &type)
handleObjCOwnershipTypeAttr - Process an objc_ownership attribute on the specified type...
Definition: SemaType.cpp:5845
QualType getElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, QualType NamedType) const
void removeConst()
Definition: Type.h:273
unsigned TypeQuals
The type qualifiers: const/volatile/restrict/__unaligned The qualifier bitmask values are the same as...
Definition: DeclSpec.h:1247
static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A)
checkUnusedDeclAttributes - Check a list of attributes to see if it contains any decl attributes that...
static const TST TST_double
Definition: DeclSpec.h:282
static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr, QualType type)
diagnoseBadTypeAttribute - Diagnoses a type attribute which doesn&#39;t apply to the given type...
Definition: SemaType.cpp:66
bool hasAutoTypeSpec() const
Definition: DeclSpec.h:519
bool isReferenceType() const
Definition: Type.h:5954
void setElaboratedKeywordLoc(SourceLocation Loc)
Definition: TypeLoc.h:2064
static std::string getPrintableNameForEntity(DeclarationName Entity)
Definition: SemaType.cpp:1653
virtual SourceRange getSourceRange() const LLVM_READONLY
Source range that this declaration covers.
Definition: DeclBase.h:404
ParsedType ActOnObjCInstanceType(SourceLocation Loc)
The parser has parsed the context-sensitive type &#39;instancetype&#39; in an Objective-C message declaration...
Definition: SemaType.cpp:5659
static const TST TST_error
Definition: DeclSpec.h:307
bool hasStructuralCompatLayout(Decl *D, Decl *Suggested)
Determine if D and Suggested have a structurally compatible layout as described in C11 6...
Definition: SemaType.cpp:7407
static const TST TST_enum
Definition: DeclSpec.h:289
static void maybeSynthesizeBlockSignature(TypeProcessingState &state, QualType declSpecType)
Add a synthetic &#39;()&#39; to a block-literal declarator if it is required, given the return type...
Definition: SemaType.cpp:667
SourceLocation getLocStart() const LLVM_READONLY
Definition: DeclSpec.h:1877
TypeLoc getNextTypeLoc() const
Definition: TypeLoc.h:400
static const TSW TSW_unspecified
Definition: DeclSpec.h:253
void copy(DependentTemplateSpecializationTypeLoc Loc)
Definition: TypeLoc.h:2208
bool hasTagDefinition() const
Definition: DeclSpec.cpp:402
void setUnderlyingTInfo(TypeSourceInfo *TInfo)
Definition: TypeLoc.h:1947
TSC getTypeSpecComplex() const
Definition: DeclSpec.h:475
Wrapper of type source information for a type with no direct qualifiers.
Definition: TypeLoc.h:246
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:48
const AstTypeMatcher< TypedefType > typedefType
Matches typedef types.
i32 captured_struct **param SharedsTy A type which contains references the shared variables *param Shareds Context with the list of shared variables from the p *TaskFunction *param Data Additional data for task generation like final * state
SourceLocation getRestrictQualifierLoc() const
Retrieve the location of the &#39;restrict&#39; qualifier, if any.
Definition: DeclSpec.h:1413
std::pair< NullabilityKind, bool > DiagNullabilityKind
A nullability kind paired with a bit indicating whether it used a context-sensitive keyword...
Definition: Diagnostic.h:1202
A user-defined literal name, e.g., operator "" _i.
IdentifierTable & Idents
Definition: ASTContext.h:537
unsigned getTypeQuals() const
Definition: Type.h:3627
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:107
bool isInvalidType() const
Definition: DeclSpec.h:2412
Values of this type can be null.
static void inferARCWriteback(TypeProcessingState &state, QualType &declSpecType)
Given that this is the declaration of a parameter under ARC, attempt to infer attributes and such for...
Definition: SemaType.cpp:2503
bool getProducesResult() const
Definition: Type.h:3127
PointerTypeInfo Ptr
Definition: DeclSpec.h:1491
void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor, SourceLocation Loc)
Adjust the calling convention of a method to be the ABI default if it wasn&#39;t specified explicitly...
Definition: SemaType.cpp:6758
bool isInvalid() const
TypeSpecifierWidth getWrittenWidthSpec() const
Definition: TypeLoc.h:613
This parameter (which must have pointer type) uses the special Swift context-pointer ABI treatment...
Represents a C++ unqualified-id that has been parsed.
Definition: DeclSpec.h:910
bool findMacroSpelling(SourceLocation &loc, StringRef name)
Looks through the macro-expansion chain for the given location, looking for a macro expansion with th...
Definition: Sema.cpp:1294
IdentifierInfo * getAsIdentifier() const
Retrieve the identifier stored in this nested name specifier.
bool hasNonLiteralTypeFieldsOrBases() const
Determine whether this class has a non-literal or/ volatile type non-static data member or base class...
Definition: DeclCXX.h:1445
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:522
static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state, TypeSourceInfo *&ReturnTypeInfo)
Definition: SemaType.cpp:2721
Represents the results of name lookup.
Definition: Lookup.h:32
PtrTy get() const
Definition: Ownership.h:162
static void HandleVectorSizeAttr(QualType &CurType, const AttributeList &Attr, Sema &S)
HandleVectorSizeAttribute - this attribute is only applicable to integral and float scalars...
Definition: SemaType.cpp:6805
An lvalue ref-qualifier was provided (&).
Definition: Type.h:1307
unsigned ConstQualLoc
The location of the const-qualifier, if any.
Definition: DeclSpec.h:1149
bool refersToBitField() const
Returns true if this expression is a gl-value that potentially refers to a bit-field.
Definition: Expr.h:437
static void fixItNullability(Sema &S, DiagnosticBuilder &Diag, SourceLocation PointerLoc, NullabilityKind Nullability)
Creates a fix-it to insert a C-style nullability keyword at pointerLoc, taking into account whitespac...
Definition: SemaType.cpp:3601
LLVM_READONLY bool isWhitespace(unsigned char c)
Return true if this character is horizontal or vertical ASCII whitespace: &#39; &#39;, &#39;\t&#39;, &#39;\f&#39;, &#39;\v&#39;, &#39;\n&#39;, &#39;\r&#39;.
Definition: CharInfo.h:88
void setCaretLoc(SourceLocation Loc)
Definition: TypeLoc.h:1291
TagKind getTagKind() const
Definition: Decl.h:3156
static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head)
Definition: SemaType.cpp:260
static PointerDeclaratorKind classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator, PointerWrappingDeclaratorKind &wrappingKind)
Classify the given declarator, whose type-specified is type, based on what kind of pointer it refers ...
Definition: SemaType.cpp:3411
const FileInfo & getFile() const
bool checkOpenCLDisabledTypeDeclSpec(const DeclSpec &DS, QualType T)
Check if type T corresponding to declaration specifier DS is disabled due to required OpenCL extensio...
Definition: Sema.cpp:1820
bool isTriviallyCopyableType(const ASTContext &Context) const
Return true if this is a trivially copyable type (C++0x [basic.types]p9)
Definition: Type.cpp:2166
bool isTypeSpecPipe() const
Definition: DeclSpec.h:483
const Type * getClass() const
Definition: TypeLoc.h:1313
Wrapper for source info for functions.
Definition: TypeLoc.h:1396
static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec)
Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
Definition: Type.cpp:2439
ArrayTypeInfo Arr
Definition: DeclSpec.h:1493
static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state, AttributeList &attr, QualType &type)
Definition: SemaType.cpp:6223
static bool hasDirectOwnershipQualifier(QualType type)
Does this type have a "direct" ownership qualifier? That is, is it written like "__strong id"...
Definition: SemaType.cpp:5814
Whether values of this type can be null is (explicitly) unspecified.
An x-value expression is a reference to an object with independent storage but which can be "moved"...
Definition: Specifiers.h:116
ExprValueKind getValueKind() const
getValueKind - The value kind that this expression produces.
Definition: Expr.h:405
static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state, QualType &declSpecType)
Given that there are attributes written on the declarator itself, try to distribute any type attribut...
Definition: SemaType.cpp:625
SourceLocation getExpansionLoc(SourceLocation Loc) const
Given a SourceLocation object Loc, return the expansion location referenced by the ID...
unsigned getNumTypeObjects() const
Return the number of types applied to this declarator.
Definition: DeclSpec.h:2144
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:635
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition: Type.h:1633
bool CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC, const FunctionDecl *FD=nullptr)
void addCVRQualifiers(unsigned mask)
Definition: Type.h:303
static TemplateTypeParmDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation KeyLoc, SourceLocation NameLoc, unsigned D, unsigned P, IdentifierInfo *Id, bool Typename, bool ParameterPack)
TypeDecl - Represents a declaration of a type.
Definition: Decl.h:2760
void AddInnermostTypeInfo(const DeclaratorChunk &TI)
Add a new innermost chunk to this declarator.
Definition: DeclSpec.h:2139
IdentifierLoc * getArgAsIdent(unsigned Arg) const
const Type * getClass() const
Definition: Type.h:2536
void expandBuiltinRange(SourceRange Range)
Definition: TypeLoc.h:558
enum clang::DeclaratorChunk::@198 Kind
TSS getTypeSpecSign() const
Definition: DeclSpec.h:476
CanQualType LongDoubleTy
Definition: ASTContext.h:1007
Values of this type can never be null.
QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc)
Given a variable, determine the type that a reference to that variable will have in the given scope...
Definition: SemaExpr.cpp:14731
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:39
Wrapper for source info for ObjC interfaces.
Definition: TypeLoc.h:1118
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:5718
QualType BuildExtVectorType(QualType T, Expr *ArraySize, SourceLocation AttrLoc)
Build an ext-vector type.
Definition: SemaType.cpp:2237
static unsigned getNumAddressingBits(const ASTContext &Context, QualType ElementType, const llvm::APInt &NumElements)
Determine the number of bits required to address a member of.
Definition: Type.cpp:100
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
Represents an Objective-C protocol declaration.
Definition: DeclObjC.h:2083
#define MS_TYPE_ATTRS_CASELIST
Definition: SemaType.cpp:130
void setUnaligned(bool flag)
Definition: Type.h:313
bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const
Definition: Type.cpp:3746
static FileID getNullabilityCompletenessCheckFileID(Sema &S, SourceLocation loc)
Definition: SemaType.cpp:3562
Preprocessor & PP
Definition: Sema.h:315
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1404
const LangOptions & getLangOpts() const
Definition: Sema.h:1193
SourceLocation getConstSpecLoc() const
Definition: DeclSpec.h:540
bool isTypeDependent() const
isTypeDependent - Determines whether this expression is type-dependent (C++ [temp.dep.expr]), which means that its type could change from one template instantiation to the next.
Definition: Expr.h:167
const CXXScopeSpec & getCXXScopeSpec() const
getCXXScopeSpec - Return the C++ scope specifier (global scope or nested-name-specifier) that is part...
Definition: DeclSpec.h:1856
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:1458
void setLocalRangeBegin(SourceLocation L)
Definition: TypeLoc.h:1419
static void transferARCOwnershipToDeclSpec(Sema &S, QualType &declSpecTy, Qualifiers::ObjCLifetime ownership)
Definition: SemaType.cpp:4993
bool isUnevaluatedContext() const
Determines whether we are currently in a context that is not evaluated as per C++ [expr] p5...
Definition: Sema.h:7422
Represents an ObjC class declaration.
Definition: DeclObjC.h:1191
const Type * getUnqualifiedDesugaredType() const
Return the specified type with any "sugar" removed from the type, removing any typedefs, typeofs, etc., as well as any qualifiers.
Definition: Type.cpp:379
void copy(ElaboratedTypeLoc Loc)
Definition: TypeLoc.h:2042
SourceLocation getLocStart() const LLVM_READONLY
Definition: DeclSpec.h:501
SourceLocation getIncludeLoc() const
SourceRange getSourceRange() const LLVM_READONLY
Definition: DeclSpec.h:500
is ARM Neon polynomial vector
Definition: Type.h:2933
SmallVector< TemplateTypeParmDecl *, 4 > AutoTemplateParams
Store the list of the auto parameters for a generic lambda.
Definition: ScopeInfo.h:779
void removeVolatile()
Definition: Type.h:280
NameKind getNameKind() const
getNameKind - Determine what kind of name this is.
NestedNameSpecifierLoc getWithLocInContext(ASTContext &Context) const
Retrieve a nested-name-specifier with location information, copied into the given AST context...
Definition: DeclSpec.cpp:143
IdentifierInfo * getIdentifier() const
Definition: DeclSpec.h:2106
CanQualType UnsignedCharTy
Definition: ASTContext.h:1005
void setAttrNameLoc(SourceLocation loc)
Definition: TypeLoc.h:1738
const LangOptions & LangOpts
Definition: Sema.h:314
static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy)
Definition: SemaType.cpp:1808
void setKWLoc(SourceLocation Loc)
Definition: TypeLoc.h:1935
This parameter (which must have pointer-to-pointer type) uses the special Swift error-result ABI trea...
uint8_t PointerKind
Which kind of pointer declarator we saw.
Definition: Sema.h:237
This object can be modified without requiring retains or releases.
Definition: Type.h:173
static const TST TST_float
Definition: DeclSpec.h:281
TyLocType push(QualType T)
Pushes space for a new TypeLoc of the given type.
void getAsStringInternal(std::string &Str, const PrintingPolicy &Policy) const
Definition: SemaType.cpp:5623
bool isExpressionContext() const
Determine whether this declaration appears in a context where an expression could appear...
Definition: DeclSpec.h:2298
bool IsStructurallyEquivalent(Decl *D1, Decl *D2)
Determine whether the two declarations are structurally equivalent.
ExtInfo withCallingConv(CallingConv cc) const
Definition: Type.h:3177
void * getOpaqueData() const
Get the pointer where source information is stored.
Definition: TypeLoc.h:139
bool isIntegralOrUnscopedEnumerationType() const
Determine whether this type is an integral or unscoped enumeration type.
Definition: Type.cpp:1735
bool isHalfType() const
Definition: Type.h:6175
QualType BuildBlockPointerType(QualType T, SourceLocation Loc, DeclarationName Entity)
Build a block pointer type.
Definition: SemaType.cpp:2465
TypeResult actOnObjCTypeArgsAndProtocolQualifiers(Scope *S, SourceLocation Loc, ParsedType BaseType, SourceLocation TypeArgsLAngleLoc, ArrayRef< ParsedType > TypeArgs, SourceLocation TypeArgsRAngleLoc, SourceLocation ProtocolLAngleLoc, ArrayRef< Decl *> Protocols, ArrayRef< SourceLocation > ProtocolLocs, SourceLocation ProtocolRAngleLoc)
Build a specialized and/or protocol-qualified Objective-C type.
Definition: SemaType.cpp:1101
static OpenCLAccessAttr::Spelling getImageAccess(const AttributeList *Attrs)
Definition: SemaType.cpp:1211
bool hasAttr() const
Definition: DeclBase.h:535
bool hasUserProvidedDefaultConstructor() const
Whether this class has a user-provided default constructor per C++11.
Definition: DeclCXX.h:942
DeclSpec & getMutableDeclSpec()
getMutableDeclSpec - Return a non-const version of the DeclSpec.
Definition: DeclSpec.h:1848
QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType, UnaryTransformType::UTTKind UKind) const
Unary type transforms.
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:274
static const TSW TSW_long
Definition: DeclSpec.h:255
CXXRecordDecl * getMostRecentDecl()
Definition: DeclCXX.h:722
static bool handleObjCGCTypeAttr(TypeProcessingState &state, AttributeList &attr, QualType &type)
handleObjCGCTypeAttr - Process the attribute((objc_gc)) type attribute on the specified type...
Definition: SemaType.cpp:6031
A little helper class used to produce diagnostics.
Definition: Diagnostic.h:955
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1590
SourceLocation getUnalignedSpecLoc() const
Definition: DeclSpec.h:544
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3268
void setParensRange(SourceRange Range)
Definition: TypeLoc.h:1959
Holds a QualType and a TypeSourceInfo* that came out of a declarator parsing.
Definition: LocInfoType.h:29
QualType getDependentAddressSpaceType(QualType PointeeType, Expr *AddrSpaceExpr, SourceLocation AttrLoc) const
QualType applyObjCProtocolQualifiers(QualType type, ArrayRef< ObjCProtocolDecl *> protocols, bool &hasError, bool allowOnPointerType=false) const
Apply Objective-C protocol qualifiers to the given type.
static void checkExtParameterInfos(Sema &S, ArrayRef< QualType > paramTypes, const FunctionProtoType::ExtProtoInfo &EPI, llvm::function_ref< SourceLocation(unsigned)> getParamLoc)
Check the extended parameter information.
Definition: SemaType.cpp:2312
unsigned NumParams
NumParams - This is the number of formal parameters specified by the declarator.
Definition: DeclSpec.h:1270
ArraySizeModifier
Capture whether this is a normal array (e.g.
Definition: Type.h:2564
bool hasQualifiers() const
Determine whether this type has any qualifiers.
Definition: Type.h:5793
unsigned TypeQuals
The type qualifiers: const/volatile/restrict/unaligned/atomic.
Definition: DeclSpec.h:1146
void addObjCLifetime(ObjCLifetime type)
Definition: Type.h:348
static QualType ConvertDeclSpecToType(TypeProcessingState &state)
Convert the specified declspec to the appropriate type object.
Definition: SemaType.cpp:1232
bool isEnabled(llvm::StringRef Ext) const
Definition: OpenCLOptions.h:39
void setSizeExpr(Expr *Size)
Definition: TypeLoc.h:1558
A conversion function name, e.g., operator int.
SourceRange getRange() const
Definition: DeclSpec.h:68
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location, which defaults to the empty location.
TST getTypeSpecType() const
Definition: DeclSpec.h:477
QualType getPromotedIntegerType(QualType PromotableType) const
Return the type that PromotableType will promote to: C99 6.3.1.1p2, assuming that PromotableType is a...
void setAttrNameLoc(SourceLocation loc)
Definition: TypeLoc.h:900
Scope * getCurScope() const
Retrieve the parser&#39;s current scope.
Definition: Sema.h:10524
CharacteristicKind getFileCharacteristic() const
Return whether this is a system header or not.
bool HasSideEffects(const ASTContext &Ctx, bool IncludePossibleEffects=true) const
HasSideEffects - This routine returns true for all those expressions which have any effect other than...
Definition: Expr.cpp:2942
void setAttrExprOperand(Expr *e)
Definition: TypeLoc.h:911
unsigned hasStatic
True if this dimension included the &#39;static&#39; keyword.
Definition: DeclSpec.h:1182
Type source information for an attributed type.
Definition: TypeLoc.h:859
QualType getVectorType(QualType VectorType, unsigned NumElts, VectorType::VectorKind VecKind) const
Return the unique reference to a vector type of the specified element type and size.
ValueDecl - Represent the declaration of a variable (in which case it is an lvalue) a function (in wh...
Definition: Decl.h:627
Expr - This represents one expression.
Definition: Expr.h:106
QualType getPointeeType() const
Definition: Type.h:2440
SourceLocation End
llvm::StringRef getAsString(SyncScope S)
Definition: SyncScope.h:51
static DeclaratorChunk getFunction(bool HasProto, bool IsAmbiguous, SourceLocation LParenLoc, ParamInfo *Params, unsigned NumParams, SourceLocation EllipsisLoc, SourceLocation RParenLoc, unsigned TypeQuals, bool RefQualifierIsLvalueRef, SourceLocation RefQualifierLoc, SourceLocation ConstQualifierLoc, SourceLocation VolatileQualifierLoc, SourceLocation RestrictQualifierLoc, SourceLocation MutableLoc, ExceptionSpecificationType ESpecType, SourceRange ESpecRange, ParsedType *Exceptions, SourceRange *ExceptionRanges, unsigned NumExceptions, Expr *NoexceptExpr, CachedTokens *ExceptionSpecTokens, ArrayRef< NamedDecl *> DeclsInPrototype, SourceLocation LocalRangeBegin, SourceLocation LocalRangeEnd, Declarator &TheDeclarator, TypeResult TrailingReturnType=TypeResult())
DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function.
Definition: DeclSpec.cpp:152
static Kind getNullabilityAttrKind(NullabilityKind kind)
Retrieve the attribute kind corresponding to the given nullability kind.
Definition: Type.h:4134
const FunctionProtoType * T
Declaration of a template type parameter.
bool isObjCARCImplicitlyUnretainedType() const
Determines if this type, which must satisfy isObjCLifetimeType(), is implicitly __unsafe_unretained r...
Definition: Type.cpp:3785
static void HandleOpenCLAccessAttr(QualType &CurType, const AttributeList &Attr, Sema &S)
Handle OpenCL Access Qualifier Attribute.
Definition: SemaType.cpp:7002
unsigned VolatileQualLoc
The location of the volatile-qualifier, if any.
Definition: DeclSpec.h:1152
UnqualTypeLoc getUnqualifiedLoc() const
Skips past any qualifiers, if this is qualified.
Definition: TypeLoc.h:321
This file defines the classes used to store parsed information about declaration-specifiers and decla...
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6368
ElaboratedTypeKeyword
The elaboration keyword that precedes a qualified type name or introduces an elaborated-type-specifie...
Definition: Type.h:4705
TypeResult ActOnTypeName(Scope *S, Declarator &D)
Definition: SemaType.cpp:5630
bool isObjCRetainableType() const
Definition: Type.cpp:3824
QualType getTypeOfExprType(Expr *e) const
GCC extension.
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:86
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2620
Qualifiers::GC getObjCGCAttr() const
Returns gc attribute of this type.
Definition: Type.h:5839
QualType getParenType(QualType NamedType) const
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition: DeclBase.cpp:132
std::string getAsString() const
getNameAsString - Retrieve the human-readable string for this name.
TypeResult actOnObjCProtocolQualifierType(SourceLocation lAngleLoc, ArrayRef< Decl *> protocols, ArrayRef< SourceLocation > protocolLocs, SourceLocation rAngleLoc)
Build a an Objective-C protocol-qualified &#39;id&#39; type where no base type was specified.
Definition: SemaType.cpp:1062
SourceLocation getVolatileSpecLoc() const
Definition: DeclSpec.h:542
QualType BuildAtomicType(QualType T, SourceLocation Loc)
Definition: SemaType.cpp:7957
void ClearTypeQualifiers()
Clear out all of the type qualifiers.
Definition: DeclSpec.h:548
Defines the clang::Preprocessor interface.
static DelayedDiagnostic makeForbiddenType(SourceLocation loc, unsigned diagnostic, QualType type, unsigned argument)
ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, VerifyICEDiagnoser &Diagnoser, bool AllowFold=true)
VerifyIntegerConstantExpression - Verifies that an expression is an ICE, and reports the appropriate ...
Definition: SemaExpr.cpp:13517
Defines the classes clang::DelayedDiagnostic and clang::AccessedEntity.
static void HandleNeonVectorTypeAttr(QualType &CurType, const AttributeList &Attr, Sema &S, VectorType::VectorKind VecKind)
HandleNeonVectorTypeAttr - The "neon_vector_type" and "neon_polyvector_type" attributes are used to c...
Definition: SemaType.cpp:6954
void completeExprArrayBound(Expr *E)
Definition: SemaType.cpp:7298
ObjCLifetime getObjCLifetime() const
Definition: Type.h:341
bool supportsVariadicCall(CallingConv CC)
Checks whether the given calling convention supports variadic calls.
Definition: Specifiers.h:255
SourceLocation getBeginLoc() const
Definition: DeclSpec.h:72
bool isConstexprSpecified() const
Definition: DeclSpec.h:703
bool hasEllipsis() const
Definition: DeclSpec.h:2423
CanQualType ShortTy
Definition: ASTContext.h:1004
NestedNameSpecifierLoc getPrefix() const
Return the prefix of this nested-name-specifier.
internal::Matcher< T > id(StringRef ID, const internal::BindableMatcher< T > &InnerMatcher)
If the provided matcher matches a node, binds the node to ID.
Definition: ASTMatchers.h:137
virtual void AssignInheritanceModel(CXXRecordDecl *RD)
Callback invoked when an MSInheritanceAttr has been attached to a CXXRecordDecl.
Definition: ASTConsumer.h:108
Represents a C++ template name within the type system.
Definition: TemplateName.h:178
static const TST TST_decimal64
Definition: DeclSpec.h:287
bool RequireCompleteType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser)
Ensure that the type T is a complete type.
Definition: SemaType.cpp:7394
Defines the clang::TypeLoc interface and its subclasses.
static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T)
Produce an appropriate diagnostic for a declarator with top-level parentheses.
Definition: SemaType.cpp:3122
A namespace alias, stored as a NamespaceAliasDecl*.
UnqualifiedIdKind getKind() const
Determine what kind of name we have.
Definition: DeclSpec.h:992
AutoType * getContainedAutoType() const
Get the AutoType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.h:1956
static QualType getDecltypeForExpr(Sema &S, Expr *E)
getDecltypeForExpr - Given an expr, will return the decltype for that expression, according to the ru...
Definition: SemaType.cpp:7840
CanQualType UnsignedInt128Ty
Definition: ASTContext.h:1006
A std::pair-like structure for storing a qualified type split into its local qualifiers and its local...
Definition: Type.h:592
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:1131
TypeDiagSelector
Definition: SemaType.cpp:41
QualType getType() const
Definition: Expr.h:128
bool isFunctionOrMethod() const
Definition: DeclBase.h:1384
static Optional< NullabilityKind > stripOuterNullability(QualType &T)
Strip off the top-level nullability annotation on the given type, if it&#39;s there.
Definition: Type.cpp:3735
bool LValueRef
True if this is an lvalue reference, false if it&#39;s an rvalue reference.
Definition: DeclSpec.h:1171
SourceLocation Loc
Loc - The place where this type was defined.
Definition: DeclSpec.h:1130
QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize, ArrayType::ArraySizeModifier ASM, unsigned IndexTypeQuals) const
Return the unique reference to the type for a constant array of the specified element type...
Qualifiers Quals
The local qualifiers.
Definition: Type.h:597
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1335
ProtocolLAngleLoc, ProtocolRAngleLoc, and the source locations for protocol qualifiers are stored aft...
Definition: TypeLoc.h:747
static const TST TST_int
Definition: DeclSpec.h:278
void setHasBaseTypeAsWritten(bool HasBaseType)
Definition: TypeLoc.h:1076
void setEllipsisLoc(SourceLocation EL)
Definition: DeclSpec.h:2425
static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state, AttributeList &attr, QualType &declSpecType)
A function type attribute was written in the decl spec.
Definition: SemaType.cpp:571
static QualType inferARCLifetimeForPointee(Sema &S, QualType type, SourceLocation loc, bool isReference)
Given that we&#39;re building a pointer or reference to the given.
Definition: SemaType.cpp:1757
TypeSourceInfo * GetTypeSourceInfoForDeclarator(Declarator &D, QualType T, TypeSourceInfo *ReturnTypeInfo)
Create and instantiate a TypeSourceInfo with type source information.
Definition: SemaType.cpp:5557
bool isInvalid() const
Definition: Ownership.h:158
SourceLocation getEnd() const
Compare two source locations.
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
Definition: ASTContext.h:1333
bool RequireLiteralType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser)
Ensure that the type T is a literal type.
Definition: SemaType.cpp:7724
static const TST TST_half
Definition: DeclSpec.h:280
An lvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2466
TypedefDecl * getBuiltinVaListDecl() const
Retrieve the C type declaration corresponding to the predefined __builtin_va_list type...
bool isFriendSpecified() const
Definition: DeclSpec.h:697
Common base class for placeholders for types that get replaced by placeholder type deduction: C++11 a...
Definition: Type.h:4361
Wraps an identifier and optional source location for the identifier.
Definition: AttributeList.h:73
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1347
static QualType Desugar(ASTContext &Context, QualType QT, bool &ShouldAKA)
The result type of a method or function.
This template specialization was implicitly instantiated from a template.
Definition: Specifiers.h:149
SourceLocation getCommaLoc() const
Definition: DeclSpec.h:2420
SourceLocation getLocEnd() const LLVM_READONLY
Definition: TypeLoc.h:155
bool isCXX11Attribute() const
void setQualifierLoc(NestedNameSpecifierLoc QualifierLoc)
Definition: TypeLoc.h:2073
bool RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser)
Ensure that the type of the given expression is complete.
Definition: SemaType.cpp:7354
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:719
QualType getDependentSizedExtVectorType(QualType VectorType, Expr *SizeExpr, SourceLocation AttrLoc) const
unsigned getSemanticSpelling() const
If the parsed attribute has a semantic equivalent, and it would have a semantic Spelling enumeration ...
static const TSW TSW_short
Definition: DeclSpec.h:254
bool isTemplateInstantiation(TemplateSpecializationKind Kind)
Determine whether this template specialization kind refers to an instantiation of an entity (as oppos...
Definition: Specifiers.h:167
AttributeList * create(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, ArgsUnion *args, unsigned numArgs, AttributeList::Syntax syntax, SourceLocation ellipsisLoc=SourceLocation())
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:233
SourceLocation PointerLoc
The first pointer declarator (of any pointer kind) in the file that does not have a corresponding nul...
Definition: Sema.h:230
CanQualType SignedCharTy
Definition: ASTContext.h:1004
bool isFirstDeclarator() const
Definition: DeclSpec.h:2419
AttributedType::Kind getAttrKind() const
Definition: TypeLoc.h:864
TypeSourceInfo * GetTypeForDeclaratorCast(Declarator &D, QualType FromTy)
Definition: SemaType.cpp:5095
unsigned getCVRQualifiers() const
Retrieve the set of CVR (const-volatile-restrict) qualifiers applied to this type.
Definition: Type.h:5751
bool hasAttrExprOperand() const
Definition: TypeLoc.h:868
QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const
Return the uniqued reference to the type for an Objective-C gc-qualified type.
bool checkNSReturnsRetainedReturnType(SourceLocation loc, QualType type)
TypeAndRange * Exceptions
Pointer to a new[]&#39;d array of TypeAndRange objects that contain the types in the function&#39;s dynamic e...
Definition: DeclSpec.h:1316
SourceLocation getRefQualifierLoc() const
Retrieve the location of the ref-qualifier, if any.
Definition: DeclSpec.h:1398
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:5777
QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent) const
C++11 deduced auto type.
SplitQualType split() const
Divides a QualType into its unqualified type and a set of local qualifiers.
Definition: Type.h:5726
RecordDecl * getDecl() const
Definition: Type.h:3986
static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator, QualType Result)
Return true if this is omitted block return type.
Definition: SemaType.cpp:756
void setStarLoc(SourceLocation Loc)
Definition: TypeLoc.h:1309
static const TST TST_char32
Definition: DeclSpec.h:277
NestedNameSpecifier * getScopeRep() const
Retrieve the representation of the nested-name-specifier.
Definition: DeclSpec.h:76
void addAttr(Attr *A)
Definition: DeclBase.h:484
QualType getPackExpansionType(QualType Pattern, Optional< unsigned > NumExpansions)
void setTypeofLoc(SourceLocation Loc)
Definition: TypeLoc.h:1842
Context-sensitive version of a keyword attribute.
bool SawTypeNullability
Whether we saw any type nullability annotations in the given file.
Definition: Sema.h:240
static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy, Declarator &D, unsigned FunctionChunkIndex)
Definition: SemaType.cpp:2651
A parameter attribute which changes the argument-passing ABI rule for the parameter.
Definition: Attr.h:165
Wrapper for source info for arrays.
Definition: TypeLoc.h:1529
CanQualType OverloadTy
Definition: ASTContext.h:1013
There is no lifetime qualification on this type.
Definition: Type.h:169
Information about a FileID, basically just the logical file that it represents and include stack info...
void setAttrOperandParensRange(SourceRange range)
Definition: TypeLoc.h:936
const AttributeList * getAttributes() const
Definition: DeclSpec.h:2374
is AltiVec &#39;vector Pixel&#39;
Definition: Type.h:2924
#define false
Definition: stdbool.h:33
static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type, ArrayRef< TypeSourceInfo *> typeArgs, SourceRange typeArgsRange, bool failOnError=false)
Apply Objective-C type arguments to the given type.
Definition: SemaType.cpp:796
The "struct" keyword.
Definition: Type.h:4688
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:180
Kind
bool isBuiltinType() const
Helper methods to distinguish type categories.
Definition: Type.h:6011
not a target-specific vector type
Definition: Type.h:2918
ActionResult - This structure is used while parsing/acting on expressions, stmts, etc...
Definition: Ownership.h:144
The attribute is in the decl-specifier-seq.
Definition: SemaType.cpp:287
ExtProtoInfo getExtProtoInfo() const
Definition: Type.h:3500
SCS getStorageClassSpec() const
Definition: DeclSpec.h:445
void setKNRPromoted(bool promoted)
Definition: Decl.h:1590
ASTContext & getASTContext() const
Definition: Sema.h:1200
SourceLocation getRParenLoc() const
Definition: DeclSpec.h:1381
static bool distributeFunctionTypeAttrToInnermost(TypeProcessingState &state, AttributeList &attr, AttributeList *&attrList, QualType &declSpecType)
Try to distribute a function type attribute to the innermost function chunk or type.
Definition: SemaType.cpp:550
static bool isPermittedNeonBaseType(QualType &Ty, VectorType::VectorKind VecKind, Sema &S)
Definition: SemaType.cpp:6899
static const TST TST_float16
Definition: DeclSpec.h:283
const ExtParameterInfo * ExtParameterInfos
Definition: Type.h:3394
Encodes a location in the source.
bool isTypeSpecOwned() const
Definition: DeclSpec.h:481
Sugar for parentheses used when specifying types.
Definition: Type.h:2253
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
QualType getReturnType() const
Definition: Type.h:3201
static const TST TST_auto_type
Definition: DeclSpec.h:301
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4002
std::pair< SourceLocation, SourceLocation > getImmediateExpansionRange(SourceLocation Loc) const
Return the start/end of the expansion information for an expansion location.
bool CheckDistantExceptionSpec(QualType T)
CheckDistantExceptionSpec - Check if the given type is a pointer or pointer to member to a function w...
bool isContextSensitiveKeywordAttribute() const
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:5834
ReferenceTypeInfo Ref
Definition: DeclSpec.h:1492
PointerDeclaratorKind
Describes the kind of a pointer a declarator describes.
Definition: SemaType.cpp:3378
CanQualType Int128Ty
Definition: ASTContext.h:1004
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:5384
FunctionDefinitionKind getFunctionDefinitionKind() const
Definition: DeclSpec.h:2435
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition: Type.h:1874
UnqualifiedId & getName()
Retrieve the name specified by this declarator.
Definition: DeclSpec.h:1860
bool isLiteralType(const ASTContext &Ctx) const
Return true if this is a literal type (C++11 [basic.types]p10)
Definition: Type.cpp:2210
TagDecl - Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:2944
TypeSourceInfo * CreateTypeSourceInfo(QualType T, unsigned Size=0) const
Allocate an uninitialized TypeSourceInfo.
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state, Qualifiers::ObjCLifetime ownership, unsigned chunkIndex)
Definition: SemaType.cpp:5004
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:378
FunctionTypeInfo Fun
Definition: DeclSpec.h:1494
static const TST TST_union
Definition: DeclSpec.h:290
CallingConv getCC() const
Definition: Type.h:3138
IdentifierInfo * getScopeName() const
static void moveAttrFromListToList(AttributeList &attr, AttributeList *&fromList, AttributeList *&toList)
Definition: SemaType.cpp:277
QualType getWritePipeType(QualType T) const
Return a write_only pipe type for the specified type.
unsigned getLocalCVRQualifiers() const
Retrieve the set of CVR (const-volatile-restrict) qualifiers local to this particular QualType instan...
Definition: Type.h:781
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
static const TSS TSS_signed
Definition: DeclSpec.h:267
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2321
bool shouldDelayDiagnostics()
Determines whether diagnostics should be delayed.
Definition: Sema.h:665
QualType getExtVectorType(QualType VectorType, unsigned NumElts) const
Return the unique reference to an extended vector type of the specified element type and size...
RecordDecl * CFError
The struct behind the CFErrorRef pointer.
Definition: Sema.h:10511
bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested, bool OnlyNeedComplete=false)
Determine if D has a visible definition.
Definition: SemaType.cpp:7430
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
No ref-qualifier was provided.
Definition: Type.h:1304
QualType getElaboratedType(ElaboratedTypeKeyword Keyword, const CXXScopeSpec &SS, QualType T)
Retrieve a version of the type &#39;T&#39; that is elaborated by Keyword and qualified by the nested-name-spe...
Definition: SemaType.cpp:7806
CanQualType FloatTy
Definition: ASTContext.h:1007
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:3708
MemberPointerTypeInfo Mem
Definition: DeclSpec.h:1496
SimplePointerKind
A simple notion of pointer kinds, which matches up with the various pointer declarators.
Definition: SemaType.cpp:3326
QualType getEquivalentType() const
Definition: Type.h:4104
bool hasExternalLexicalStorage() const
Whether this DeclContext has external storage containing additional declarations that are lexically i...
Definition: DeclBase.h:1889
CanQualType VoidTy
Definition: ASTContext.h:996
bool hasRestrict() const
Definition: Type.h:283
bool isValueDependent() const
isValueDependent - Determines whether this expression is value-dependent (C++ [temp.dep.constexpr]).
Definition: Expr.h:149
bool hasTrailingReturnType() const
Determine whether this function declarator had a trailing-return-type.
Definition: DeclSpec.h:1450
CanQualType Float16Ty
Definition: ASTContext.h:1009
QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs, const DeclSpec *DS=nullptr)
Definition: SemaType.cpp:1660
bool isObjCObjectPointerType() const
Definition: Type.h:6039
bool isAnyPointerType() const
Definition: Type.h:5946
Decl * getRepAsDecl() const
Definition: DeclSpec.h:489
static bool isBlockPointer(Expr *Arg)
is AltiVec &#39;vector bool ...&#39;
Definition: Type.h:2927
SplitQualType getSplitUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:5805
bool isFunctionProtoType() const
Definition: Type.h:1743
static const TST TST_typeofType
Definition: DeclSpec.h:295
is AltiVec vector
Definition: Type.h:2921
void setAmpLoc(SourceLocation Loc)
Definition: TypeLoc.h:1369
void setLBracketLoc(SourceLocation Loc)
Definition: TypeLoc.h:1538
AutoTypeKeyword getKeyword() const
Definition: Type.h:4416
TypeClass getTypeClass() const
Definition: Type.h:1613
AttributeList *& getAttrListRef()
Definition: DeclSpec.h:1519
QualType getAttributedType(AttributedType::Kind attrKind, QualType modifiedType, QualType equivalentType)
This template specialization was formed from a template-id but has not yet been declared, defined, or instantiated.
Definition: Specifiers.h:146
QualType BuildReferenceType(QualType T, bool LValueRef, SourceLocation Loc, DeclarationName Entity)
Build a reference type.
Definition: SemaType.cpp:1914
bool HasRestrict
The type qualifier: restrict. [GNU] C++ extension.
Definition: DeclSpec.h:1169
SourceLocation getRAngleLoc() const
Definition: TypeLoc.h:1641
TypeLoc findExplicitQualifierLoc() const
Find a type with the location of an explicit type qualifier.
Definition: TypeLoc.cpp:391
unsigned TypeQuals
The type qualifiers: const/volatile/restrict/__unaligned/_Atomic.
Definition: DeclSpec.h:1467
static bool isVectorSizeTooLarge(unsigned NumElements)
Definition: Type.h:2952
SourceLocation getPragmaAssumeNonNullLoc() const
The location of the currently-active #pragma clang assume_nonnull begin.
SourceLocation getConstQualifierLoc() const
Retrieve the location of the &#39;const&#39; qualifier, if any.
Definition: DeclSpec.h:1403
bool isStaticMember()
Returns true if this declares a static member.
Definition: DeclSpec.cpp:389
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1310
Assigning into this object requires a lifetime extension.
Definition: Type.h:186
unsigned getFullDataSize() const
Returns the size of the type source info data block.
Definition: TypeLoc.h:163
bool isInvalid() const
An error occurred during parsing of the scope specifier.
Definition: DeclSpec.h:194
bool isVLASupported() const
Whether target supports variable-length arrays.
Definition: TargetInfo.h:951
std::string getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const
Get a string to suggest for zero-initialization of a type.
static void recordNullabilitySeen(Sema &S, SourceLocation loc)
Marks that a nullability feature has been used in the file containing loc.
Definition: SemaType.cpp:3711
std::string getAsString() const
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
QualType getObjCInstanceType()
Retrieve the Objective-C "instancetype" type, if already known; otherwise, returns a NULL type;...
Definition: ASTContext.h:1681
Represents a pack expansion of types.
Definition: Type.h:4994
void setLParenLoc(SourceLocation Loc)
Definition: TypeLoc.h:1435
StringRef getName() const
Return the actual identifier string.
void setTypeArgsLAngleLoc(SourceLocation Loc)
Definition: TypeLoc.h:1006
SourceRange getSourceRange() const LLVM_READONLY
Get the source range that spans this declarator.
Definition: DeclSpec.h:1876
CanQualType UnsignedShortTy
Definition: ASTContext.h:1005
static unsigned getMaxSizeBits(const ASTContext &Context)
Determine the maximum number of active bits that an array&#39;s size can require, which limits the maximu...
Definition: Type.cpp:135
CallingConv getDefaultCallingConvention(bool IsVariadic, bool IsCXXMethod) const
Retrieves the default calling convention for the current target.
Base class for declarations which introduce a typedef-name.
Definition: Decl.h:2802
An opaque identifier used by SourceManager which refers to a source file (MemoryBuffer) along with it...
CanQualType CharTy
Definition: ASTContext.h:998
TSW getTypeSpecWidth() const
Definition: DeclSpec.h:474
bool isPipeType() const
Definition: Type.h:6123
static const TST TST_decltype_auto
Definition: DeclSpec.h:298
void setClassTInfo(TypeSourceInfo *TI)
Definition: TypeLoc.h:1321
TagTypeKind
The kind of a tag type.
Definition: Type.h:4686
QualType getTypeOfType(QualType t) const
getTypeOfType - Unlike many "get<Type>" functions, we don&#39;t unique TypeOfType nodes.
CanQualType ObjCBuiltinIdTy
Definition: ASTContext.h:1016
Dataflow Directional Tag Classes.
unsigned TypeQuals
The type qualifiers for the array: const/volatile/restrict/__unaligned/_Atomic.
Definition: DeclSpec.h:1179
NestedNameSpecifier * getNestedNameSpecifier() const
Retrieve the nested-name-specifier to which this instance refers.
bool isValid() const
Return true if this is a valid SourceLocation object.
SourceLocation ImplicitMSInheritanceAttrLoc
Source location for newly created implicit MSInheritanceAttrs.
Definition: Sema.h:348
DeducedType * getContainedDeducedType() const
Get the DeducedType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.cpp:1686
static const TSS TSS_unspecified
Definition: DeclSpec.h:266
SourceLocation getTypeSpecWidthLoc() const
Definition: DeclSpec.h:504
ExtInfo getExtInfo() const
Definition: Type.h:3212
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1256
void setAmpAmpLoc(SourceLocation Loc)
Definition: TypeLoc.h:1383
bool CheckFunctionReturnType(QualType T, SourceLocation Loc)
Definition: SemaType.cpp:2284
const AttributeList * getAttrs() const
If there are attributes applied to this declaratorchunk, return them.
Definition: DeclSpec.h:1515
void diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals, SourceLocation FallbackLoc, SourceLocation ConstQualLoc=SourceLocation(), SourceLocation VolatileQualLoc=SourceLocation(), SourceLocation RestrictQualLoc=SourceLocation(), SourceLocation AtomicQualLoc=SourceLocation(), SourceLocation UnalignedQualLoc=SourceLocation())
Definition: SemaType.cpp:2600
static const TST TST_decltype
Definition: DeclSpec.h:297
static const TST TST_auto
Definition: DeclSpec.h:300
static const TST TST_void
Definition: DeclSpec.h:273
SourceLocation getLocStart() const LLVM_READONLY
Definition: TypeLoc.h:154
unsigned isVariadic
isVariadic - If this function has a prototype, and if that proto ends with &#39;,...)&#39;, this is true.
Definition: DeclSpec.h:1236
const DeclaratorChunk * getInnermostNonParenChunk() const
Return the innermost (closest to the declarator) chunk of this declarator that is not a parens chunk...
Definition: DeclSpec.h:2174
bool isRecord() const
Definition: DeclBase.h:1409
static const TST TST_int128
Definition: DeclSpec.h:279
SourceLocation PointerEndLoc
The end location for the first pointer declarator in the file.
Definition: Sema.h:234
QualType getUnderlyingType() const
Definition: Decl.h:2853
bool DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc, const ObjCInterfaceDecl *UnknownObjCClass=nullptr, bool ObjCPropertyAccess=false, bool AvoidPartialAvailabilityChecks=false)
Determine whether the use of this declaration is valid, and emit any corresponding diagnostics...
Definition: SemaExpr.cpp:204
CanQualType UnsignedLongLongTy
Definition: ASTContext.h:1006
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:116
QualType BuildPointerType(QualType T, SourceLocation Loc, DeclarationName Entity)
Build a pointer type.
Definition: SemaType.cpp:1874
Expr * getArgAsExpr(unsigned Arg) const
const Type * getArrayElementTypeNoTypeQual() const
If this is an array type, return the element type of the array, potentially with type qualifiers miss...
Definition: Type.cpp:229
DeclarationName - The name of a declaration.
Represents the declaration of an Objective-C type parameter.
Definition: DeclObjC.h:576
bool isBooleanType() const
Definition: Type.h:6232
QualType getFunctionNoProtoType(QualType ResultTy, const FunctionType::ExtInfo &Info) const
Return a K&R style C function type like &#39;int()&#39;.
CXXRecordDecl * getInstantiatedFromMemberClass() const
If this record is an instantiation of a member class, retrieves the member class from which it was in...
Definition: DeclCXX.cpp:1357
LLVM_READONLY bool isIdentifierBody(unsigned char c, bool AllowDollar=false)
Returns true if this is a body character of a C identifier, which is [a-zA-Z0-9_].
Definition: CharInfo.h:59
SourceLocation getTypeSpecSignLoc() const
Definition: DeclSpec.h:507
SourceLocation getLocEnd() const LLVM_READONLY
Definition: DeclSpec.h:502
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5481
QualType BuildReadPipeType(QualType T, SourceLocation Loc)
Build a Read-only Pipe type.
Definition: SemaType.cpp:1971
EnumDecl - Represents an enum.
Definition: Decl.h:3239
#define FUNCTION_TYPE_ATTRS_CASELIST
Definition: SemaType.cpp:122
static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal)
Check whether the specified array size makes the array type a VLA.
Definition: SemaType.cpp:1989
The maximum supported address space number.
Definition: Type.h:192
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2502
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
const FunctionType * adjustFunctionType(const FunctionType *Fn, FunctionType::ExtInfo EInfo)
Change the ExtInfo on a function type.
bool hasObjCLifetime() const
Definition: Type.h:340
SplitQualType getSingleStepDesugaredType() const
Definition: Type.h:5711
TypeLoc getModifiedLoc() const
The modified type, which is generally canonically different from the attribute type.
Definition: TypeLoc.h:890
bool isUserProvided() const
True if this method is user-declared and was not deleted or defaulted on its first declaration...
Definition: DeclCXX.h:2063
ExternalASTSource * getExternalSource() const
Retrieve a pointer to the external AST source associated with this AST context, if any...
Definition: ASTContext.h:1048
A type that was preceded by the &#39;template&#39; keyword, stored as a Type*.
static const TST TST_unspecified
Definition: DeclSpec.h:272
IdentifierInfo * getName() const
virtual bool hasFeature(StringRef Feature) const
Determine whether the given target has the given feature.
Definition: TargetInfo.h:919
QualType getUnsignedWCharType() const
Return the type of "unsigned wchar_t".
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 &#39;auto&#39; typ...
Definition: Type.h:6238
bool isValid() const
A scope specifier is present, and it refers to a real scope.
Definition: DeclSpec.h:196
TemplateNameKindForDiagnostics getTemplateNameKindForDiagnostics(TemplateName Name)
Definition: SemaDecl.cpp:1156
bool isMacroID() const
unsigned getNumParams() const
Definition: TypeLoc.h:1471
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:2084
bool hasAttrEnumOperand() const
Definition: TypeLoc.h:873
Represents a pointer to an Objective C object.
Definition: Type.h:5440
SourceRange getSourceRange() const LLVM_READONLY
Get the full source range.
Definition: TypeLoc.h:150
Pointer to a block type.
Definition: Type.h:2385
IdentifierInfo * getNSErrorIdent()
Retrieve the identifier "NSError".
Definition: SemaType.cpp:3355
Syntax
The style used to specify an attribute.
Definition: AttributeList.h:98
FileID getFileID(SourceLocation SpellingLoc) const
Return the FileID for a SourceLocation.
QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts, ArrayType::ArraySizeModifier ASM, unsigned IndexTypeQuals, SourceRange Brackets) const
Return a non-unique reference to the type for a dependently-sized array of the specified element type...
bool isIncompleteArrayType() const
Definition: Type.h:5999
void setAttrEnumOperandLoc(SourceLocation loc)
Definition: TypeLoc.h:923
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:3976
static const TST TST_decimal128
Definition: DeclSpec.h:288
CanQualType UnknownAnyTy
Definition: ASTContext.h:1013
bool empty() const
Definition: Type.h:429
bool isConstantSizeType() const
Return true if this is not a variable sized type, according to the rules of C99 6.7.5p3.
Definition: Type.cpp:1976
unsigned getTypeQualifiers() const
getTypeQualifiers - Return a set of TQs.
Definition: DeclSpec.h:539
void add(const sema::DelayedDiagnostic &diag)
Adds a delayed diagnostic.
unsigned hasPrototype
hasPrototype - This is true if the function had at least one typed parameter.
Definition: DeclSpec.h:1231
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6191
This template specialization was declared or defined by an explicit specialization (C++ [temp...
Definition: Specifiers.h:153
#define OBJC_POINTER_TYPE_ATTRS_CASELIST
Definition: SemaType.cpp:100
CanQualType UnsignedLongTy
Definition: ASTContext.h:1005
static bool isFunctionOrMethod(const Decl *D)
isFunctionOrMethod - Return true if the given decl has function type (function or function-typed vari...
T * getAttr() const
Definition: DeclBase.h:531
type_object_range type_objects() const
Returns the range of type objects, from the identifier outwards.
Definition: DeclSpec.h:2161
bool isArgExpr(unsigned Arg) const
CanQualType DependentTy
Definition: ASTContext.h:1013
bool isImageType() const
Definition: Type.h:6116
Kind getAttrKind() const
Definition: Type.h:4099
void setNext(AttributeList *N)
bool isAtomicType() const
Definition: Type.h:6052
CanQualType WCharTy
Definition: ASTContext.h:999
bool isFunctionType() const
Definition: Type.h:5938
void setInvalid(bool b=true) const
static const TST TST_typename
Definition: DeclSpec.h:294
QualType BuildDecltypeType(Expr *E, SourceLocation Loc, bool AsUnevaluated=true)
If AsUnevaluated is false, E is treated as though it were an evaluated context, such as when building...
Definition: SemaType.cpp:7906
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2419
llvm::StringRef getParameterABISpelling(ParameterABI kind)
QualType getAutoDeductType() const
C++11 deduction pattern for &#39;auto&#39; type.
void copy(TemplateSpecializationTypeLoc Loc)
Copy the location information from the given info.
Definition: TypeLoc.h:1674
Wraps an ObjCPointerType with source location information.
Definition: TypeLoc.h:1339
unsigned AtomicQualLoc
The location of the _Atomic-qualifier, if any.
Definition: DeclSpec.h:1158
virtual bool hasFloat128Type() const
Determine whether the __float128 type is supported on this target.
Definition: TargetInfo.h:365
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:90
bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, const ObjCObjectPointerType *RHSOPT)
canAssignObjCInterfaces - Return true if the two interface types are compatible for assignment from R...
Implements a partial diagnostic that can be emitted anwyhere in a DiagnosticBuilder stream...
ExceptionSpecificationType getExceptionSpecType() const
Get the type of exception specification this function has.
Definition: DeclSpec.h:1431
Optional< NullabilityKind > getNullability(const ASTContext &context) const
Determine the nullability of the given type.
Definition: Type.cpp:3597
The "class" keyword.
Definition: Type.h:4697
bool isBeingDefined() const
Determines whether this type is in the process of being defined.
Definition: Type.cpp:3041
SourceLocation getTypeSpecTypeNameLoc() const
Definition: DeclSpec.h:511
virtual bool hasInt128Type() const
Determine whether the __int128 type is supported on this target.
Definition: TargetInfo.h:360
CXXScopeSpec & getTypeSpecScope()
Definition: DeclSpec.h:497
BlockPointerTypeInfo Cls
Definition: DeclSpec.h:1495
static QualType GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo=nullptr)
Definition: SemaType.cpp:2479
SourceRange getExceptionSpecRange() const
Definition: DeclSpec.h:1393
char __ovld __cnfn max(char x, char y)
Returns y if x < y, otherwise it returns x.
bool isObjectType() const
Determine whether this type is an object type.
Definition: Type.h:1668
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2007
const SrcMgr::SLocEntry & getSLocEntry(FileID FID, bool *Invalid=nullptr) const
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:513
static void warnAboutAmbiguousFunction(Sema &S, Declarator &D, DeclaratorChunk &DeclType, QualType RT)
Produce an appropriate diagnostic for an ambiguity between a function declarator and a C++ direct-ini...
Definition: SemaType.cpp:3024
bool isObjCObjectType() const
Definition: Type.h:6043
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types...
Definition: Type.cpp:1986
static bool hasNullabilityAttr(const AttributeList *attrs)
Check whether there is a nullability attribute of any kind in the given attribute list...
Definition: SemaType.cpp:3364
ExprResult ActOnIdExpression(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand, std::unique_ptr< CorrectionCandidateCallback > CCC=nullptr, bool IsInlineAsmIdentifier=false, Token *KeywordReplacement=nullptr)
Definition: SemaExpr.cpp:2017
Describes whether we&#39;ve seen any nullability information for the given file.
Definition: Sema.h:227
UnqualTypeLoc getUnqualifiedLoc() const
Definition: TypeLoc.h:276
SourceLocation getIdentifierLoc() const
Definition: DeclSpec.h:2112
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2174
bool CheckRegparmAttr(const AttributeList &attr, unsigned &value)
Checks a regparm attribute, returning true if it is ill-formed and otherwise setting numParams to the...
bool isSet() const
Deprecated.
Definition: DeclSpec.h:209
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:239
PointerWrappingDeclaratorKind
Describes a declarator chunk wrapping a pointer that marks inference as unexpected.
Definition: SemaType.cpp:3396
void setInvalidType(bool Val=true)
Definition: DeclSpec.h:2411
Reading or writing from this object requires a barrier call.
Definition: Type.h:183
unsigned AutoTemplateParameterDepth
If this is a generic lambda, use this as the depth of each &#39;auto&#39; parameter, during initial AST const...
Definition: ScopeInfo.h:772
An attributed type is a type to which a type attribute has been applied.
Definition: Type.h:4031
void setKWLoc(SourceLocation Loc)
Definition: TypeLoc.h:2282
unsigned TypeQuals
For now, sema will catch these as invalid.
Definition: DeclSpec.h:1459
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:989
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2387
CallingConv getCallConv() const
Definition: Type.h:3211
Captures information about "declaration specifiers".
Definition: DeclSpec.h:228
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:5798
SourceLocation getRestrictSpecLoc() const
Definition: DeclSpec.h:541
Represents a C++ struct/union/class.
Definition: DeclCXX.h:299
SourceLocation getEllipsisLoc() const
Definition: DeclSpec.h:2424
QualType getRValueReferenceType(QualType T) const
Return the uniqued reference to the type for an rvalue reference to the specified type...
bool isVoidType() const
Definition: Type.h:6169
Expr * NumElts
This is the size of the array, or null if [] or [*] was specified.
Definition: DeclSpec.h:1190
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:5745
bool checkNullabilityTypeSpecifier(QualType &type, NullabilityKind nullability, SourceLocation nullabilityLoc, bool isContextSensitive, bool allowArrayTypes)
Check whether a nullability type specifier can be added to the given type.
Definition: SemaType.cpp:6289
void setParam(unsigned i, ParmVarDecl *VD)
Definition: TypeLoc.h:1478
Provides information a specialization of a member of a class template, which may be a member function...
Definition: DeclTemplate.h:607
CanQualType Char16Ty
Definition: ASTContext.h:1002
LangOptions::PragmaMSPointersToMembersKind MSPointerToMemberRepresentationMethod
Controls member pointer representation format under the MS ABI.
Definition: Sema.h:342
static const TST TST_float128
Definition: DeclSpec.h:284
void setLParenLoc(SourceLocation Loc)
Definition: TypeLoc.h:1170
const DeclSpec & getDeclSpec() const
getDeclSpec - Return the declaration-specifier that this declarator was declared with.
Definition: DeclSpec.h:1841
static const TST TST_bool
Definition: DeclSpec.h:285
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:328
bool isSamplerT() const
Definition: Type.h:6096
The "enum" keyword.
Definition: Type.h:4700
bool isRValue() const
Definition: Expr.h:250
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
Stores a list of Objective-C type parameters for a parameterized class or a category/extension thereo...
Definition: DeclObjC.h:654
static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD)
Locks in the inheritance model for the given class and all of its bases.
Definition: SemaType.cpp:7490
unsigned kind
All of the diagnostics that can be emitted by the frontend.
Definition: DiagnosticIDs.h:61
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string...
Definition: Diagnostic.h:127
This class is used for builtin types like &#39;int&#39;.
Definition: Type.h:2143
IdentifierInfo * getNullabilityKeyword(NullabilityKind nullability)
Retrieve the keyword associated.
Definition: SemaType.cpp:3334
TypeLoc getTypeLoc() const
For a nested-name-specifier that refers to a type, retrieve the type with source-location information...
bool hasAttrOperand() const
Definition: TypeLoc.h:878
SourceManager & getSourceManager() const
Definition: Sema.h:1198
A template-id, e.g., f<int>.
static void HandleAddressSpaceTypeAttribute(QualType &Type, const AttributeList &Attr, Sema &S)
HandleAddressSpaceTypeAttribute - Process an address_space attribute on the specified type...
Definition: SemaType.cpp:5734
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:265
ParsedType getRepAsType() const
Definition: DeclSpec.h:485
Defines the clang::TargetInfo interface.
bool isMicrosoft() const
Is this ABI an MSVC-compatible ABI?
Definition: TargetCXXABI.h:154
A SourceLocation and its associated SourceManager.
QualType getIntegerType() const
getIntegerType - Return the integer type this enum decl corresponds to.
Definition: Decl.h:3364
SourceLocation getAtomicSpecLoc() const
Definition: DeclSpec.h:543
QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement)
Completely replace the auto in TypeWithAuto by Replacement.
static Qualifiers fromCVRMask(unsigned CVR)
Definition: Type.h:245
Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const
Recurses in pointer/array types until it finds an Objective-C retainable type and returns its ownersh...
static const TSW TSW_longlong
Definition: DeclSpec.h:256
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:930
CanQualType IntTy
Definition: ASTContext.h:1004
QualType getSignedWCharType() const
Return the type of "signed wchar_t".
static OpaquePtr make(QualType P)
Definition: Ownership.h:54
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:1858
static void emitNullabilityConsistencyWarning(Sema &S, SimplePointerKind PointerKind, SourceLocation PointerLoc, SourceLocation PointerEndLoc)
Definition: SemaType.cpp:3636
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:956
bool hasRefQualifier() const
Determine whether this function declaration contains a ref-qualifier.
Definition: DeclSpec.h:1424
Represents an extended address space qualifier where the input address space value is dependent...
Definition: Type.h:2832
bool isIgnored(unsigned DiagID, SourceLocation Loc) const
Determine whether the diagnostic is known to be ignored.
Definition: Diagnostic.h:734
void copy(TypeLoc other)
Copies the other type loc into this one.
Definition: TypeLoc.cpp:166
static const TST TST_atomic
Definition: DeclSpec.h:303
bool isPointerType() const
Definition: Type.h:5942
SourceManager & SourceMgr
Definition: Sema.h:319
bool isEmpty() const
isEmpty - Return true if this declaration specifier is completely empty: no tokens were parsed in the...
Definition: DeclSpec.h:602
static const TST TST_struct
Definition: DeclSpec.h:291
Annotates a diagnostic with some code that should be inserted, removed, or replaced to fix the proble...
Definition: Diagnostic.h:64
class clang::Sema::DelayedDiagnostics DelayedDiagnostics
void initializeFullCopy(TypeLoc Other)
Initializes this by copying its information from another TypeLoc of the same type.
Definition: TypeLoc.h:197
DeclaratorContext getContext() const
Definition: DeclSpec.h:1866
static StringRef getNameForCallConv(CallingConv CC)
Definition: Type.cpp:2692
QualType getType() const
Definition: Decl.h:638
Wrapper for source info for builtin types.
Definition: TypeLoc.h:545
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:111
void setRParenLoc(SourceLocation Loc)
Definition: TypeLoc.h:1174
static void fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL, const AttributeList *Attrs)
Definition: SemaType.cpp:5536
A trivial tuple used to represent a source range.
ASTContext & Context
Definition: Sema.h:316
NamedDecl - This represents a decl with a name.
Definition: Decl.h:245
QualType getObjCObjectPointerType(QualType OIT) const
Return a ObjCObjectPointerType type for the given ObjCObjectType.
virtual void diagnose(Sema &S, SourceLocation Loc, QualType T)=0
void copy(DependentNameTypeLoc Loc)
Definition: TypeLoc.h:2095
Expr * getRepAsExpr() const
Definition: DeclSpec.h:493
QualifiedFunctionKind
Kinds of declarator that cannot contain a qualified function type.
Definition: SemaType.cpp:1843
T castAs() const
Convert to the specified TypeLoc type, asserting that this TypeLoc is of the desired type...
Definition: TypeLoc.h:75
bool hasExplicitCallingConv(QualType &T)
Definition: SemaType.cpp:6748
CanQualType BoolTy
Definition: ASTContext.h:997
No keyword precedes the qualified type name.
Definition: Type.h:4726
QualType getVariableArrayType(QualType EltTy, Expr *NumElts, ArrayType::ArraySizeModifier ASM, unsigned IndexTypeQuals, SourceRange Brackets) const
Return a non-unique reference to the type for a variable array of the specified element type...
sema::LambdaScopeInfo * getCurLambda(bool IgnoreNonLambdaCapturingScope=false)
Retrieve the current lambda scope info, if any.
Definition: Sema.cpp:1428
TypeAttrLocation
The location of a type attribute.
Definition: SemaType.cpp:285
static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state, AttributeList &attr, QualType &declSpecType)
A function type attribute was written on the declarator.
Definition: SemaType.cpp:599
CanQualType DoubleTy
Definition: ASTContext.h:1007
static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head)
Definition: SemaType.cpp:255
static TypeSourceInfo * GetFullTypeForDeclarator(TypeProcessingState &state, QualType declSpecType, TypeSourceInfo *TInfo)
Definition: SemaType.cpp:3764
bool isAggregate() const
Determine whether this class is an aggregate (C++ [dcl.init.aggr]), which is a class with no user-dec...
Definition: DeclCXX.h:1236
attr::Kind getKind() const
Definition: Attr.h:84
bool isFirstDeclarationOfMember()
Returns true if this declares a real member and not a friend.
Definition: DeclSpec.h:2440
llvm::StringRef getNullabilitySpelling(NullabilityKind kind, bool isContextSensitive=false)
Retrieve the spelling of the given nullability kind.
SourceLocation getLocEnd() const LLVM_READONLY
Definition: DeclSpec.h:1878
The global specifier &#39;::&#39;. There is no stored value.
bool isPrototypeContext() const
Definition: DeclSpec.h:1868
void pushFullCopy(TypeLoc L)
Pushes a copy of the given TypeLoc onto this builder.
SourceLocation getLocStart() const LLVM_READONLY
Definition: Stmt.cpp:277
void setType(QualType newType)
Definition: Decl.h:639
Wrapper for source info for pointers.
Definition: TypeLoc.h:1271
SourceLocation getBegin() const
QualType getReadPipeType(QualType T) const
Return a read_only pipe type for the specified type.
Wrapper for source info for block pointers.
Definition: TypeLoc.h:1284
unsigned size() const
Determine the number of type parameters in this list.
Definition: DeclObjC.h:694
An implicit &#39;self&#39; parameter.
base_class_range vbases()
Definition: DeclCXX.h:790
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2618
ExceptionSpecInfo ExceptionSpec
Definition: Type.h:3393
A deduction-guide name (a template-name)
QualType getAdjustedType(QualType Orig, QualType New) const
Return the uniqued reference to a type adjusted from the original type to a new type.
static AttributeList::Kind getAttrListKind(AttributedType::Kind kind)
Map an AttributedType::Kind to an AttributeList::Kind.
Definition: SemaType.cpp:5111
A class which abstracts out some details necessary for making a call.
Definition: Type.h:3081
AttributeList *& getListRef()
Returns a reference to the attribute list.
ParamInfo * Params
Params - This is a pointer to a new[]&#39;d array of ParamInfo objects that describe the parameters speci...
Definition: DeclSpec.h:1310
void setElaboratedKeywordLoc(SourceLocation Loc)
Definition: TypeLoc.h:2005
Attr - This represents one attribute.
Definition: Attr.h:43
ParsedAttributes & getAttributes()
Definition: DeclSpec.h:738
SourceLocation getLocation() const
Definition: DeclBase.h:416
bool isIncompleteOrObjectType() const
Return true if this is an incomplete or object type, in other words, not a function type...
Definition: Type.h:1663
SourceRange getTypeofParensRange() const
Definition: DeclSpec.h:516
QualType getPointeeType() const
Definition: Type.h:2522
TypeSourceInfo * GetTypeForDeclarator(Declarator &D, Scope *S)
GetTypeForDeclarator - Convert the type for the specified declarator to Type instances.
Definition: SemaType.cpp:4979
static void distributeObjCPointerTypeAttr(TypeProcessingState &state, AttributeList &attr, QualType type)
Given that an objc_gc attribute was written somewhere on a declaration other than on the declarator i...
Definition: SemaType.cpp:397
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:97
This parameter (which must have pointer type) is a Swift indirect result parameter.
QualType BuildTypeofExprType(Expr *E, SourceLocation Loc)
Definition: SemaType.cpp:7821
void setUnderlyingTInfo(TypeSourceInfo *TI) const
Definition: TypeLoc.h:1907
QualType getComplexType(QualType T) const
Return the uniqued reference to the type for a complex number with the specified element type...
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2434
AttributeList - Represents a syntactic attribute.
Definition: AttributeList.h:95
CanQualType UnsignedIntTy
Definition: ASTContext.h:1005
QualType getIncompleteArrayType(QualType EltTy, ArrayType::ArraySizeModifier ASM, unsigned IndexTypeQuals) const
Return a unique reference to the type for an incomplete array of the specified element type...
bool isInvalid() const
static void fillAttributedTypeLoc(AttributedTypeLoc TL, const AttributeList *attrs, const AttributeList *DeclAttrs=nullptr)
Definition: SemaType.cpp:5181
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1070
unsigned isAmbiguous
Can this declaration be a constructor-style initializer?
Definition: DeclSpec.h:1239