clang  8.0.0
Expr.cpp
Go to the documentation of this file.
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Lexer.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34 #include <cstring>
35 using namespace clang;
36 
38  const Expr *E = this;
39  while (true) {
40  E = E->ignoreParenBaseCasts();
41 
42  // Follow the RHS of a comma operator.
43  if (auto *BO = dyn_cast<BinaryOperator>(E)) {
44  if (BO->getOpcode() == BO_Comma) {
45  E = BO->getRHS();
46  continue;
47  }
48  }
49 
50  // Step into initializer for materialized temporaries.
51  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
52  E = MTE->GetTemporaryExpr();
53  continue;
54  }
55 
56  break;
57  }
58 
59  return E;
60 }
61 
63  const Expr *E = getBestDynamicClassTypeExpr();
64  QualType DerivedType = E->getType();
65  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
66  DerivedType = PTy->getPointeeType();
67 
68  if (DerivedType->isDependentType())
69  return nullptr;
70 
71  const RecordType *Ty = DerivedType->castAs<RecordType>();
72  Decl *D = Ty->getDecl();
73  return cast<CXXRecordDecl>(D);
74 }
75 
78  SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
79  const Expr *E = this;
80  while (true) {
81  E = E->IgnoreParens();
82 
83  if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
84  if ((CE->getCastKind() == CK_DerivedToBase ||
85  CE->getCastKind() == CK_UncheckedDerivedToBase) &&
86  E->getType()->isRecordType()) {
87  E = CE->getSubExpr();
88  CXXRecordDecl *Derived
89  = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
90  Adjustments.push_back(SubobjectAdjustment(CE, Derived));
91  continue;
92  }
93 
94  if (CE->getCastKind() == CK_NoOp) {
95  E = CE->getSubExpr();
96  continue;
97  }
98  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
99  if (!ME->isArrow()) {
100  assert(ME->getBase()->getType()->isRecordType());
101  if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
102  if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
103  E = ME->getBase();
104  Adjustments.push_back(SubobjectAdjustment(Field));
105  continue;
106  }
107  }
108  }
109  } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
110  if (BO->getOpcode() == BO_PtrMemD) {
111  assert(BO->getRHS()->isRValue());
112  E = BO->getLHS();
113  const MemberPointerType *MPT =
114  BO->getRHS()->getType()->getAs<MemberPointerType>();
115  Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
116  continue;
117  } else if (BO->getOpcode() == BO_Comma) {
118  CommaLHSs.push_back(BO->getLHS());
119  E = BO->getRHS();
120  continue;
121  }
122  }
123 
124  // Nothing changed.
125  break;
126  }
127  return E;
128 }
129 
130 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
131 /// that is known to return 0 or 1. This happens for _Bool/bool expressions
132 /// but also int expressions which are produced by things like comparisons in
133 /// C.
135  const Expr *E = IgnoreParens();
136 
137  // If this value has _Bool type, it is obvious 0/1.
138  if (E->getType()->isBooleanType()) return true;
139  // If this is a non-scalar-integer type, we don't care enough to try.
140  if (!E->getType()->isIntegralOrEnumerationType()) return false;
141 
142  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
143  switch (UO->getOpcode()) {
144  case UO_Plus:
145  return UO->getSubExpr()->isKnownToHaveBooleanValue();
146  case UO_LNot:
147  return true;
148  default:
149  return false;
150  }
151  }
152 
153  // Only look through implicit casts. If the user writes
154  // '(int) (a && b)' treat it as an arbitrary int.
155  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
156  return CE->getSubExpr()->isKnownToHaveBooleanValue();
157 
158  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
159  switch (BO->getOpcode()) {
160  default: return false;
161  case BO_LT: // Relational operators.
162  case BO_GT:
163  case BO_LE:
164  case BO_GE:
165  case BO_EQ: // Equality operators.
166  case BO_NE:
167  case BO_LAnd: // AND operator.
168  case BO_LOr: // Logical OR operator.
169  return true;
170 
171  case BO_And: // Bitwise AND operator.
172  case BO_Xor: // Bitwise XOR operator.
173  case BO_Or: // Bitwise OR operator.
174  // Handle things like (x==2)|(y==12).
175  return BO->getLHS()->isKnownToHaveBooleanValue() &&
176  BO->getRHS()->isKnownToHaveBooleanValue();
177 
178  case BO_Comma:
179  case BO_Assign:
180  return BO->getRHS()->isKnownToHaveBooleanValue();
181  }
182  }
183 
184  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
185  return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
186  CO->getFalseExpr()->isKnownToHaveBooleanValue();
187 
188  return false;
189 }
190 
191 // Amusing macro metaprogramming hack: check whether a class provides
192 // a more specific implementation of getExprLoc().
193 //
194 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
195 namespace {
196  /// This implementation is used when a class provides a custom
197  /// implementation of getExprLoc.
198  template <class E, class T>
199  SourceLocation getExprLocImpl(const Expr *expr,
200  SourceLocation (T::*v)() const) {
201  return static_cast<const E*>(expr)->getExprLoc();
202  }
203 
204  /// This implementation is used when a class doesn't provide
205  /// a custom implementation of getExprLoc. Overload resolution
206  /// should pick it over the implementation above because it's
207  /// more specialized according to function template partial ordering.
208  template <class E>
209  SourceLocation getExprLocImpl(const Expr *expr,
210  SourceLocation (Expr::*v)() const) {
211  return static_cast<const E *>(expr)->getBeginLoc();
212  }
213 }
214 
216  switch (getStmtClass()) {
217  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
218 #define ABSTRACT_STMT(type)
219 #define STMT(type, base) \
220  case Stmt::type##Class: break;
221 #define EXPR(type, base) \
222  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
223 #include "clang/AST/StmtNodes.inc"
224  }
225  llvm_unreachable("unknown expression kind");
226 }
227 
228 //===----------------------------------------------------------------------===//
229 // Primary Expressions.
230 //===----------------------------------------------------------------------===//
231 
232 /// Compute the type-, value-, and instantiation-dependence of a
233 /// declaration reference
234 /// based on the declaration being referenced.
235 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
236  QualType T, bool &TypeDependent,
237  bool &ValueDependent,
238  bool &InstantiationDependent) {
239  TypeDependent = false;
240  ValueDependent = false;
241  InstantiationDependent = false;
242 
243  // (TD) C++ [temp.dep.expr]p3:
244  // An id-expression is type-dependent if it contains:
245  //
246  // and
247  //
248  // (VD) C++ [temp.dep.constexpr]p2:
249  // An identifier is value-dependent if it is:
250 
251  // (TD) - an identifier that was declared with dependent type
252  // (VD) - a name declared with a dependent type,
253  if (T->isDependentType()) {
254  TypeDependent = true;
255  ValueDependent = true;
256  InstantiationDependent = true;
257  return;
258  } else if (T->isInstantiationDependentType()) {
259  InstantiationDependent = true;
260  }
261 
262  // (TD) - a conversion-function-id that specifies a dependent type
263  if (D->getDeclName().getNameKind()
266  if (T->isDependentType()) {
267  TypeDependent = true;
268  ValueDependent = true;
269  InstantiationDependent = true;
270  return;
271  }
272 
274  InstantiationDependent = true;
275  }
276 
277  // (VD) - the name of a non-type template parameter,
278  if (isa<NonTypeTemplateParmDecl>(D)) {
279  ValueDependent = true;
280  InstantiationDependent = true;
281  return;
282  }
283 
284  // (VD) - a constant with integral or enumeration type and is
285  // initialized with an expression that is value-dependent.
286  // (VD) - a constant with literal type and is initialized with an
287  // expression that is value-dependent [C++11].
288  // (VD) - FIXME: Missing from the standard:
289  // - an entity with reference type and is initialized with an
290  // expression that is value-dependent [C++11]
291  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
292  if ((Ctx.getLangOpts().CPlusPlus11 ?
293  Var->getType()->isLiteralType(Ctx) :
294  Var->getType()->isIntegralOrEnumerationType()) &&
295  (Var->getType().isConstQualified() ||
296  Var->getType()->isReferenceType())) {
297  if (const Expr *Init = Var->getAnyInitializer())
298  if (Init->isValueDependent()) {
299  ValueDependent = true;
300  InstantiationDependent = true;
301  }
302  }
303 
304  // (VD) - FIXME: Missing from the standard:
305  // - a member function or a static data member of the current
306  // instantiation
307  if (Var->isStaticDataMember() &&
308  Var->getDeclContext()->isDependentContext()) {
309  ValueDependent = true;
310  InstantiationDependent = true;
311  TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
312  if (TInfo->getType()->isIncompleteArrayType())
313  TypeDependent = true;
314  }
315 
316  return;
317  }
318 
319  // (VD) - FIXME: Missing from the standard:
320  // - a member function or a static data member of the current
321  // instantiation
322  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
323  ValueDependent = true;
324  InstantiationDependent = true;
325  }
326 }
327 
328 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
329  bool TypeDependent = false;
330  bool ValueDependent = false;
331  bool InstantiationDependent = false;
332  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
333  ValueDependent, InstantiationDependent);
334 
335  ExprBits.TypeDependent |= TypeDependent;
336  ExprBits.ValueDependent |= ValueDependent;
337  ExprBits.InstantiationDependent |= InstantiationDependent;
338 
339  // Is the declaration a parameter pack?
340  if (getDecl()->isParameterPack())
341  ExprBits.ContainsUnexpandedParameterPack = true;
342 }
343 
344 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
345  bool RefersToEnclosingVariableOrCapture, QualType T,
347  const DeclarationNameLoc &LocInfo)
348  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
349  D(D), DNLoc(LocInfo) {
350  DeclRefExprBits.HasQualifier = false;
351  DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
352  DeclRefExprBits.HasFoundDecl = false;
353  DeclRefExprBits.HadMultipleCandidates = false;
354  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
355  RefersToEnclosingVariableOrCapture;
356  DeclRefExprBits.Loc = L;
357  computeDependence(Ctx);
358 }
359 
360 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
361  NestedNameSpecifierLoc QualifierLoc,
362  SourceLocation TemplateKWLoc, ValueDecl *D,
363  bool RefersToEnclosingVariableOrCapture,
364  const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
365  const TemplateArgumentListInfo *TemplateArgs,
366  QualType T, ExprValueKind VK)
367  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
368  D(D), DNLoc(NameInfo.getInfo()) {
369  DeclRefExprBits.Loc = NameInfo.getLoc();
370  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
371  if (QualifierLoc) {
372  new (getTrailingObjects<NestedNameSpecifierLoc>())
373  NestedNameSpecifierLoc(QualifierLoc);
374  auto *NNS = QualifierLoc.getNestedNameSpecifier();
375  if (NNS->isInstantiationDependent())
376  ExprBits.InstantiationDependent = true;
377  if (NNS->containsUnexpandedParameterPack())
378  ExprBits.ContainsUnexpandedParameterPack = true;
379  }
380  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
381  if (FoundD)
382  *getTrailingObjects<NamedDecl *>() = FoundD;
383  DeclRefExprBits.HasTemplateKWAndArgsInfo
384  = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
385  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
386  RefersToEnclosingVariableOrCapture;
387  if (TemplateArgs) {
388  bool Dependent = false;
389  bool InstantiationDependent = false;
390  bool ContainsUnexpandedParameterPack = false;
391  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
392  TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
393  Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
394  assert(!Dependent && "built a DeclRefExpr with dependent template args");
395  ExprBits.InstantiationDependent |= InstantiationDependent;
396  ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
397  } else if (TemplateKWLoc.isValid()) {
398  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
399  TemplateKWLoc);
400  }
401  DeclRefExprBits.HadMultipleCandidates = 0;
402 
403  computeDependence(Ctx);
404 }
405 
407  NestedNameSpecifierLoc QualifierLoc,
408  SourceLocation TemplateKWLoc,
409  ValueDecl *D,
410  bool RefersToEnclosingVariableOrCapture,
411  SourceLocation NameLoc,
412  QualType T,
413  ExprValueKind VK,
414  NamedDecl *FoundD,
415  const TemplateArgumentListInfo *TemplateArgs) {
416  return Create(Context, QualifierLoc, TemplateKWLoc, D,
417  RefersToEnclosingVariableOrCapture,
418  DeclarationNameInfo(D->getDeclName(), NameLoc),
419  T, VK, FoundD, TemplateArgs);
420 }
421 
423  NestedNameSpecifierLoc QualifierLoc,
424  SourceLocation TemplateKWLoc,
425  ValueDecl *D,
426  bool RefersToEnclosingVariableOrCapture,
427  const DeclarationNameInfo &NameInfo,
428  QualType T,
429  ExprValueKind VK,
430  NamedDecl *FoundD,
431  const TemplateArgumentListInfo *TemplateArgs) {
432  // Filter out cases where the found Decl is the same as the value refenenced.
433  if (D == FoundD)
434  FoundD = nullptr;
435 
436  bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
437  std::size_t Size =
438  totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
440  QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
441  HasTemplateKWAndArgsInfo ? 1 : 0,
442  TemplateArgs ? TemplateArgs->size() : 0);
443 
444  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
445  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
446  RefersToEnclosingVariableOrCapture,
447  NameInfo, FoundD, TemplateArgs, T, VK);
448 }
449 
451  bool HasQualifier,
452  bool HasFoundDecl,
453  bool HasTemplateKWAndArgsInfo,
454  unsigned NumTemplateArgs) {
455  assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
456  std::size_t Size =
457  totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
459  HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
460  NumTemplateArgs);
461  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
462  return new (Mem) DeclRefExpr(EmptyShell());
463 }
464 
466  if (hasQualifier())
467  return getQualifierLoc().getBeginLoc();
468  return getNameInfo().getBeginLoc();
469 }
472  return getRAngleLoc();
473  return getNameInfo().getEndLoc();
474 }
475 
476 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
477  StringLiteral *SL)
478  : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
479  FNTy->isDependentType(), FNTy->isDependentType(),
481  /*ContainsUnexpandedParameterPack=*/false) {
482  PredefinedExprBits.Kind = IK;
483  assert((getIdentKind() == IK) &&
484  "IdentKind do not fit in PredefinedExprBitfields!");
485  bool HasFunctionName = SL != nullptr;
486  PredefinedExprBits.HasFunctionName = HasFunctionName;
487  PredefinedExprBits.Loc = L;
488  if (HasFunctionName)
489  setFunctionName(SL);
490 }
491 
492 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
493  : Expr(PredefinedExprClass, Empty) {
494  PredefinedExprBits.HasFunctionName = HasFunctionName;
495 }
496 
498  QualType FNTy, IdentKind IK,
499  StringLiteral *SL) {
500  bool HasFunctionName = SL != nullptr;
501  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
502  alignof(PredefinedExpr));
503  return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
504 }
505 
507  bool HasFunctionName) {
508  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
509  alignof(PredefinedExpr));
510  return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
511 }
512 
514  switch (IK) {
515  case Func:
516  return "__func__";
517  case Function:
518  return "__FUNCTION__";
519  case FuncDName:
520  return "__FUNCDNAME__";
521  case LFunction:
522  return "L__FUNCTION__";
523  case PrettyFunction:
524  return "__PRETTY_FUNCTION__";
525  case FuncSig:
526  return "__FUNCSIG__";
527  case LFuncSig:
528  return "L__FUNCSIG__";
529  case PrettyFunctionNoVirtual:
530  break;
531  }
532  llvm_unreachable("Unknown ident kind for PredefinedExpr");
533 }
534 
535 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
536 // expr" policy instead.
537 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
538  ASTContext &Context = CurrentDecl->getASTContext();
539 
540  if (IK == PredefinedExpr::FuncDName) {
541  if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
542  std::unique_ptr<MangleContext> MC;
543  MC.reset(Context.createMangleContext());
544 
545  if (MC->shouldMangleDeclName(ND)) {
546  SmallString<256> Buffer;
547  llvm::raw_svector_ostream Out(Buffer);
548  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
549  MC->mangleCXXCtor(CD, Ctor_Base, Out);
550  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
551  MC->mangleCXXDtor(DD, Dtor_Base, Out);
552  else
553  MC->mangleName(ND, Out);
554 
555  if (!Buffer.empty() && Buffer.front() == '\01')
556  return Buffer.substr(1);
557  return Buffer.str();
558  } else
559  return ND->getIdentifier()->getName();
560  }
561  return "";
562  }
563  if (isa<BlockDecl>(CurrentDecl)) {
564  // For blocks we only emit something if it is enclosed in a function
565  // For top-level block we'd like to include the name of variable, but we
566  // don't have it at this point.
567  auto DC = CurrentDecl->getDeclContext();
568  if (DC->isFileContext())
569  return "";
570 
571  SmallString<256> Buffer;
572  llvm::raw_svector_ostream Out(Buffer);
573  if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
574  // For nested blocks, propagate up to the parent.
575  Out << ComputeName(IK, DCBlock);
576  else if (auto *DCDecl = dyn_cast<Decl>(DC))
577  Out << ComputeName(IK, DCDecl) << "_block_invoke";
578  return Out.str();
579  }
580  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
581  if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
582  IK != FuncSig && IK != LFuncSig)
583  return FD->getNameAsString();
584 
585  SmallString<256> Name;
586  llvm::raw_svector_ostream Out(Name);
587 
588  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
589  if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
590  Out << "virtual ";
591  if (MD->isStatic())
592  Out << "static ";
593  }
594 
595  PrintingPolicy Policy(Context.getLangOpts());
596  std::string Proto;
597  llvm::raw_string_ostream POut(Proto);
598 
599  const FunctionDecl *Decl = FD;
600  if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
601  Decl = Pattern;
602  const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
603  const FunctionProtoType *FT = nullptr;
604  if (FD->hasWrittenPrototype())
605  FT = dyn_cast<FunctionProtoType>(AFT);
606 
607  if (IK == FuncSig || IK == LFuncSig) {
608  switch (AFT->getCallConv()) {
609  case CC_C: POut << "__cdecl "; break;
610  case CC_X86StdCall: POut << "__stdcall "; break;
611  case CC_X86FastCall: POut << "__fastcall "; break;
612  case CC_X86ThisCall: POut << "__thiscall "; break;
613  case CC_X86VectorCall: POut << "__vectorcall "; break;
614  case CC_X86RegCall: POut << "__regcall "; break;
615  // Only bother printing the conventions that MSVC knows about.
616  default: break;
617  }
618  }
619 
620  FD->printQualifiedName(POut, Policy);
621 
622  POut << "(";
623  if (FT) {
624  for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
625  if (i) POut << ", ";
626  POut << Decl->getParamDecl(i)->getType().stream(Policy);
627  }
628 
629  if (FT->isVariadic()) {
630  if (FD->getNumParams()) POut << ", ";
631  POut << "...";
632  } else if ((IK == FuncSig || IK == LFuncSig ||
633  !Context.getLangOpts().CPlusPlus) &&
634  !Decl->getNumParams()) {
635  POut << "void";
636  }
637  }
638  POut << ")";
639 
640  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
641  assert(FT && "We must have a written prototype in this case.");
642  if (FT->isConst())
643  POut << " const";
644  if (FT->isVolatile())
645  POut << " volatile";
646  RefQualifierKind Ref = MD->getRefQualifier();
647  if (Ref == RQ_LValue)
648  POut << " &";
649  else if (Ref == RQ_RValue)
650  POut << " &&";
651  }
652 
654  SpecsTy Specs;
655  const DeclContext *Ctx = FD->getDeclContext();
656  while (Ctx && isa<NamedDecl>(Ctx)) {
658  = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
659  if (Spec && !Spec->isExplicitSpecialization())
660  Specs.push_back(Spec);
661  Ctx = Ctx->getParent();
662  }
663 
664  std::string TemplateParams;
665  llvm::raw_string_ostream TOut(TemplateParams);
666  for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
667  I != E; ++I) {
668  const TemplateParameterList *Params
669  = (*I)->getSpecializedTemplate()->getTemplateParameters();
670  const TemplateArgumentList &Args = (*I)->getTemplateArgs();
671  assert(Params->size() == Args.size());
672  for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
673  StringRef Param = Params->getParam(i)->getName();
674  if (Param.empty()) continue;
675  TOut << Param << " = ";
676  Args.get(i).print(Policy, TOut);
677  TOut << ", ";
678  }
679  }
680 
682  = FD->getTemplateSpecializationInfo();
683  if (FSI && !FSI->isExplicitSpecialization()) {
684  const TemplateParameterList* Params
686  const TemplateArgumentList* Args = FSI->TemplateArguments;
687  assert(Params->size() == Args->size());
688  for (unsigned i = 0, e = Params->size(); i != e; ++i) {
689  StringRef Param = Params->getParam(i)->getName();
690  if (Param.empty()) continue;
691  TOut << Param << " = ";
692  Args->get(i).print(Policy, TOut);
693  TOut << ", ";
694  }
695  }
696 
697  TOut.flush();
698  if (!TemplateParams.empty()) {
699  // remove the trailing comma and space
700  TemplateParams.resize(TemplateParams.size() - 2);
701  POut << " [" << TemplateParams << "]";
702  }
703 
704  POut.flush();
705 
706  // Print "auto" for all deduced return types. This includes C++1y return
707  // type deduction and lambdas. For trailing return types resolve the
708  // decltype expression. Otherwise print the real type when this is
709  // not a constructor or destructor.
710  if (isa<CXXMethodDecl>(FD) &&
711  cast<CXXMethodDecl>(FD)->getParent()->isLambda())
712  Proto = "auto " + Proto;
713  else if (FT && FT->getReturnType()->getAs<DecltypeType>())
714  FT->getReturnType()
715  ->getAs<DecltypeType>()
717  .getAsStringInternal(Proto, Policy);
718  else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
719  AFT->getReturnType().getAsStringInternal(Proto, Policy);
720 
721  Out << Proto;
722 
723  return Name.str().str();
724  }
725  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
726  for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
727  // Skip to its enclosing function or method, but not its enclosing
728  // CapturedDecl.
729  if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
730  const Decl *D = Decl::castFromDeclContext(DC);
731  return ComputeName(IK, D);
732  }
733  llvm_unreachable("CapturedDecl not inside a function or method");
734  }
735  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
736  SmallString<256> Name;
737  llvm::raw_svector_ostream Out(Name);
738  Out << (MD->isInstanceMethod() ? '-' : '+');
739  Out << '[';
740 
741  // For incorrect code, there might not be an ObjCInterfaceDecl. Do
742  // a null check to avoid a crash.
743  if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
744  Out << *ID;
745 
746  if (const ObjCCategoryImplDecl *CID =
747  dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
748  Out << '(' << *CID << ')';
749 
750  Out << ' ';
751  MD->getSelector().print(Out);
752  Out << ']';
753 
754  return Name.str().str();
755  }
756  if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
757  // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
758  return "top level";
759  }
760  return "";
761 }
762 
764  const llvm::APInt &Val) {
765  if (hasAllocation())
766  C.Deallocate(pVal);
767 
768  BitWidth = Val.getBitWidth();
769  unsigned NumWords = Val.getNumWords();
770  const uint64_t* Words = Val.getRawData();
771  if (NumWords > 1) {
772  pVal = new (C) uint64_t[NumWords];
773  std::copy(Words, Words + NumWords, pVal);
774  } else if (NumWords == 1)
775  VAL = Words[0];
776  else
777  VAL = 0;
778 }
779 
780 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
782  : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
783  false, false),
784  Loc(l) {
785  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
786  assert(V.getBitWidth() == C.getIntWidth(type) &&
787  "Integer type is not the correct size for constant.");
788  setValue(C, V);
789 }
790 
792 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
794  return new (C) IntegerLiteral(C, V, type, l);
795 }
796 
799  return new (C) IntegerLiteral(Empty);
800 }
801 
802 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
804  unsigned Scale)
805  : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
806  false, false),
807  Loc(l), Scale(Scale) {
808  assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
809  assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
810  "Fixed point type is not the correct size for constant.");
811  setValue(C, V);
812 }
813 
815  const llvm::APInt &V,
816  QualType type,
817  SourceLocation l,
818  unsigned Scale) {
819  return new (C) FixedPointLiteral(C, V, type, l, Scale);
820 }
821 
822 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
823  // Currently the longest decimal number that can be printed is the max for an
824  // unsigned long _Accum: 4294967295.99999999976716935634613037109375
825  // which is 43 characters.
826  SmallString<64> S;
828  S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
829  return S.str();
830 }
831 
832 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
833  bool isexact, QualType Type, SourceLocation L)
834  : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
835  false, false), Loc(L) {
836  setSemantics(V.getSemantics());
837  FloatingLiteralBits.IsExact = isexact;
838  setValue(C, V);
839 }
840 
841 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
842  : Expr(FloatingLiteralClass, Empty) {
843  setRawSemantics(IEEEhalf);
844  FloatingLiteralBits.IsExact = false;
845 }
846 
848 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
849  bool isexact, QualType Type, SourceLocation L) {
850  return new (C) FloatingLiteral(C, V, isexact, Type, L);
851 }
852 
855  return new (C) FloatingLiteral(C, Empty);
856 }
857 
858 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
859  switch(FloatingLiteralBits.Semantics) {
860  case IEEEhalf:
861  return llvm::APFloat::IEEEhalf();
862  case IEEEsingle:
863  return llvm::APFloat::IEEEsingle();
864  case IEEEdouble:
865  return llvm::APFloat::IEEEdouble();
866  case x87DoubleExtended:
867  return llvm::APFloat::x87DoubleExtended();
868  case IEEEquad:
869  return llvm::APFloat::IEEEquad();
870  case PPCDoubleDouble:
871  return llvm::APFloat::PPCDoubleDouble();
872  }
873  llvm_unreachable("Unrecognised floating semantics");
874 }
875 
876 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
877  if (&Sem == &llvm::APFloat::IEEEhalf())
878  FloatingLiteralBits.Semantics = IEEEhalf;
879  else if (&Sem == &llvm::APFloat::IEEEsingle())
880  FloatingLiteralBits.Semantics = IEEEsingle;
881  else if (&Sem == &llvm::APFloat::IEEEdouble())
882  FloatingLiteralBits.Semantics = IEEEdouble;
883  else if (&Sem == &llvm::APFloat::x87DoubleExtended())
885  else if (&Sem == &llvm::APFloat::IEEEquad())
886  FloatingLiteralBits.Semantics = IEEEquad;
887  else if (&Sem == &llvm::APFloat::PPCDoubleDouble())
889  else
890  llvm_unreachable("Unknown floating semantics");
891 }
892 
893 /// getValueAsApproximateDouble - This returns the value as an inaccurate
894 /// double. Note that this may cause loss of precision, but is useful for
895 /// debugging dumps, etc.
897  llvm::APFloat V = getValue();
898  bool ignored;
899  V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
900  &ignored);
901  return V.convertToDouble();
902 }
903 
904 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
905  StringKind SK) {
906  unsigned CharByteWidth = 0;
907  switch (SK) {
908  case Ascii:
909  case UTF8:
910  CharByteWidth = Target.getCharWidth();
911  break;
912  case Wide:
913  CharByteWidth = Target.getWCharWidth();
914  break;
915  case UTF16:
916  CharByteWidth = Target.getChar16Width();
917  break;
918  case UTF32:
919  CharByteWidth = Target.getChar32Width();
920  break;
921  }
922  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
923  CharByteWidth /= 8;
924  assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
925  "The only supported character byte widths are 1,2 and 4!");
926  return CharByteWidth;
927 }
928 
929 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
930  StringKind Kind, bool Pascal, QualType Ty,
931  const SourceLocation *Loc,
932  unsigned NumConcatenated)
933  : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
934  false) {
935  assert(Ctx.getAsConstantArrayType(Ty) &&
936  "StringLiteral must be of constant array type!");
937  unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
938  unsigned ByteLength = Str.size();
939  assert((ByteLength % CharByteWidth == 0) &&
940  "The size of the data must be a multiple of CharByteWidth!");
941 
942  // Avoid the expensive division. The compiler should be able to figure it
943  // out by itself. However as of clang 7, even with the appropriate
944  // llvm_unreachable added just here, it is not able to do so.
945  unsigned Length;
946  switch (CharByteWidth) {
947  case 1:
948  Length = ByteLength;
949  break;
950  case 2:
951  Length = ByteLength / 2;
952  break;
953  case 4:
954  Length = ByteLength / 4;
955  break;
956  default:
957  llvm_unreachable("Unsupported character width!");
958  }
959 
960  StringLiteralBits.Kind = Kind;
961  StringLiteralBits.CharByteWidth = CharByteWidth;
962  StringLiteralBits.IsPascal = Pascal;
963  StringLiteralBits.NumConcatenated = NumConcatenated;
964  *getTrailingObjects<unsigned>() = Length;
965 
966  // Initialize the trailing array of SourceLocation.
967  // This is safe since SourceLocation is POD-like.
968  std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
969  NumConcatenated * sizeof(SourceLocation));
970 
971  // Initialize the trailing array of char holding the string data.
972  std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
973 }
974 
975 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
976  unsigned Length, unsigned CharByteWidth)
977  : Expr(StringLiteralClass, Empty) {
978  StringLiteralBits.CharByteWidth = CharByteWidth;
979  StringLiteralBits.NumConcatenated = NumConcatenated;
980  *getTrailingObjects<unsigned>() = Length;
981 }
982 
983 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
984  StringKind Kind, bool Pascal, QualType Ty,
985  const SourceLocation *Loc,
986  unsigned NumConcatenated) {
987  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
988  1, NumConcatenated, Str.size()),
989  alignof(StringLiteral));
990  return new (Mem)
991  StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
992 }
993 
995  unsigned NumConcatenated,
996  unsigned Length,
997  unsigned CharByteWidth) {
998  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
999  1, NumConcatenated, Length * CharByteWidth),
1000  alignof(StringLiteral));
1001  return new (Mem)
1002  StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1003 }
1004 
1005 void StringLiteral::outputString(raw_ostream &OS) const {
1006  switch (getKind()) {
1007  case Ascii: break; // no prefix.
1008  case Wide: OS << 'L'; break;
1009  case UTF8: OS << "u8"; break;
1010  case UTF16: OS << 'u'; break;
1011  case UTF32: OS << 'U'; break;
1012  }
1013  OS << '"';
1014  static const char Hex[] = "0123456789ABCDEF";
1015 
1016  unsigned LastSlashX = getLength();
1017  for (unsigned I = 0, N = getLength(); I != N; ++I) {
1018  switch (uint32_t Char = getCodeUnit(I)) {
1019  default:
1020  // FIXME: Convert UTF-8 back to codepoints before rendering.
1021 
1022  // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1023  // Leave invalid surrogates alone; we'll use \x for those.
1024  if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1025  Char <= 0xdbff) {
1026  uint32_t Trail = getCodeUnit(I + 1);
1027  if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1028  Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1029  ++I;
1030  }
1031  }
1032 
1033  if (Char > 0xff) {
1034  // If this is a wide string, output characters over 0xff using \x
1035  // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1036  // codepoint: use \x escapes for invalid codepoints.
1037  if (getKind() == Wide ||
1038  (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1039  // FIXME: Is this the best way to print wchar_t?
1040  OS << "\\x";
1041  int Shift = 28;
1042  while ((Char >> Shift) == 0)
1043  Shift -= 4;
1044  for (/**/; Shift >= 0; Shift -= 4)
1045  OS << Hex[(Char >> Shift) & 15];
1046  LastSlashX = I;
1047  break;
1048  }
1049 
1050  if (Char > 0xffff)
1051  OS << "\\U00"
1052  << Hex[(Char >> 20) & 15]
1053  << Hex[(Char >> 16) & 15];
1054  else
1055  OS << "\\u";
1056  OS << Hex[(Char >> 12) & 15]
1057  << Hex[(Char >> 8) & 15]
1058  << Hex[(Char >> 4) & 15]
1059  << Hex[(Char >> 0) & 15];
1060  break;
1061  }
1062 
1063  // If we used \x... for the previous character, and this character is a
1064  // hexadecimal digit, prevent it being slurped as part of the \x.
1065  if (LastSlashX + 1 == I) {
1066  switch (Char) {
1067  case '0': case '1': case '2': case '3': case '4':
1068  case '5': case '6': case '7': case '8': case '9':
1069  case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1070  case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1071  OS << "\"\"";
1072  }
1073  }
1074 
1075  assert(Char <= 0xff &&
1076  "Characters above 0xff should already have been handled.");
1077 
1078  if (isPrintable(Char))
1079  OS << (char)Char;
1080  else // Output anything hard as an octal escape.
1081  OS << '\\'
1082  << (char)('0' + ((Char >> 6) & 7))
1083  << (char)('0' + ((Char >> 3) & 7))
1084  << (char)('0' + ((Char >> 0) & 7));
1085  break;
1086  // Handle some common non-printable cases to make dumps prettier.
1087  case '\\': OS << "\\\\"; break;
1088  case '"': OS << "\\\""; break;
1089  case '\a': OS << "\\a"; break;
1090  case '\b': OS << "\\b"; break;
1091  case '\f': OS << "\\f"; break;
1092  case '\n': OS << "\\n"; break;
1093  case '\r': OS << "\\r"; break;
1094  case '\t': OS << "\\t"; break;
1095  case '\v': OS << "\\v"; break;
1096  }
1097  }
1098  OS << '"';
1099 }
1100 
1101 /// getLocationOfByte - Return a source location that points to the specified
1102 /// byte of this string literal.
1103 ///
1104 /// Strings are amazingly complex. They can be formed from multiple tokens and
1105 /// can have escape sequences in them in addition to the usual trigraph and
1106 /// escaped newline business. This routine handles this complexity.
1107 ///
1108 /// The *StartToken sets the first token to be searched in this function and
1109 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1110 /// returning, it updates the *StartToken to the TokNo of the token being found
1111 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1112 /// string.
1113 /// Using these two parameters can reduce the time complexity from O(n^2) to
1114 /// O(n) if one wants to get the location of byte for all the tokens in a
1115 /// string.
1116 ///
1119  const LangOptions &Features,
1120  const TargetInfo &Target, unsigned *StartToken,
1121  unsigned *StartTokenByteOffset) const {
1122  assert((getKind() == StringLiteral::Ascii ||
1123  getKind() == StringLiteral::UTF8) &&
1124  "Only narrow string literals are currently supported");
1125 
1126  // Loop over all of the tokens in this string until we find the one that
1127  // contains the byte we're looking for.
1128  unsigned TokNo = 0;
1129  unsigned StringOffset = 0;
1130  if (StartToken)
1131  TokNo = *StartToken;
1132  if (StartTokenByteOffset) {
1133  StringOffset = *StartTokenByteOffset;
1134  ByteNo -= StringOffset;
1135  }
1136  while (1) {
1137  assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1138  SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1139 
1140  // Get the spelling of the string so that we can get the data that makes up
1141  // the string literal, not the identifier for the macro it is potentially
1142  // expanded through.
1143  SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1144 
1145  // Re-lex the token to get its length and original spelling.
1146  std::pair<FileID, unsigned> LocInfo =
1147  SM.getDecomposedLoc(StrTokSpellingLoc);
1148  bool Invalid = false;
1149  StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1150  if (Invalid) {
1151  if (StartTokenByteOffset != nullptr)
1152  *StartTokenByteOffset = StringOffset;
1153  if (StartToken != nullptr)
1154  *StartToken = TokNo;
1155  return StrTokSpellingLoc;
1156  }
1157 
1158  const char *StrData = Buffer.data()+LocInfo.second;
1159 
1160  // Create a lexer starting at the beginning of this token.
1161  Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1162  Buffer.begin(), StrData, Buffer.end());
1163  Token TheTok;
1164  TheLexer.LexFromRawLexer(TheTok);
1165 
1166  // Use the StringLiteralParser to compute the length of the string in bytes.
1167  StringLiteralParser SLP(TheTok, SM, Features, Target);
1168  unsigned TokNumBytes = SLP.GetStringLength();
1169 
1170  // If the byte is in this token, return the location of the byte.
1171  if (ByteNo < TokNumBytes ||
1172  (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1173  unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1174 
1175  // Now that we know the offset of the token in the spelling, use the
1176  // preprocessor to get the offset in the original source.
1177  if (StartTokenByteOffset != nullptr)
1178  *StartTokenByteOffset = StringOffset;
1179  if (StartToken != nullptr)
1180  *StartToken = TokNo;
1181  return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1182  }
1183 
1184  // Move to the next string token.
1185  StringOffset += TokNumBytes;
1186  ++TokNo;
1187  ByteNo -= TokNumBytes;
1188  }
1189 }
1190 
1191 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1192 /// corresponds to, e.g. "sizeof" or "[pre]++".
1194  switch (Op) {
1195 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1196 #include "clang/AST/OperationKinds.def"
1197  }
1198  llvm_unreachable("Unknown unary operator");
1199 }
1200 
1203  switch (OO) {
1204  default: llvm_unreachable("No unary operator for overloaded function");
1205  case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1206  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1207  case OO_Amp: return UO_AddrOf;
1208  case OO_Star: return UO_Deref;
1209  case OO_Plus: return UO_Plus;
1210  case OO_Minus: return UO_Minus;
1211  case OO_Tilde: return UO_Not;
1212  case OO_Exclaim: return UO_LNot;
1213  case OO_Coawait: return UO_Coawait;
1214  }
1215 }
1216 
1218  switch (Opc) {
1219  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1220  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1221  case UO_AddrOf: return OO_Amp;
1222  case UO_Deref: return OO_Star;
1223  case UO_Plus: return OO_Plus;
1224  case UO_Minus: return OO_Minus;
1225  case UO_Not: return OO_Tilde;
1226  case UO_LNot: return OO_Exclaim;
1227  case UO_Coawait: return OO_Coawait;
1228  default: return OO_None;
1229  }
1230 }
1231 
1232 
1233 //===----------------------------------------------------------------------===//
1234 // Postfix Operators.
1235 //===----------------------------------------------------------------------===//
1236 
1239  SourceLocation RParenLoc, unsigned MinNumArgs,
1240  ADLCallKind UsesADL)
1241  : Expr(SC, Ty, VK, OK_Ordinary, Fn->isTypeDependent(),
1244  RParenLoc(RParenLoc) {
1245  NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1246  unsigned NumPreArgs = PreArgs.size();
1247  CallExprBits.NumPreArgs = NumPreArgs;
1248  assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1249 
1250  unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1251  CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1252  assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1253  "OffsetToTrailingObjects overflow!");
1254 
1255  CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1256 
1257  setCallee(Fn);
1258  for (unsigned I = 0; I != NumPreArgs; ++I) {
1259  updateDependenciesFromArg(PreArgs[I]);
1260  setPreArg(I, PreArgs[I]);
1261  }
1262  for (unsigned I = 0; I != Args.size(); ++I) {
1263  updateDependenciesFromArg(Args[I]);
1264  setArg(I, Args[I]);
1265  }
1266  for (unsigned I = Args.size(); I != NumArgs; ++I) {
1267  setArg(I, nullptr);
1268  }
1269 }
1270 
1271 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1272  EmptyShell Empty)
1273  : Expr(SC, Empty), NumArgs(NumArgs) {
1274  CallExprBits.NumPreArgs = NumPreArgs;
1275  assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1276 
1277  unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1278  CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1279  assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1280  "OffsetToTrailingObjects overflow!");
1281 }
1282 
1285  SourceLocation RParenLoc, unsigned MinNumArgs,
1286  ADLCallKind UsesADL) {
1287  unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1288  unsigned SizeOfTrailingObjects =
1289  CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
1290  void *Mem =
1291  Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1292  return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1293  RParenLoc, MinNumArgs, UsesADL);
1294 }
1295 
1297  ExprValueKind VK, SourceLocation RParenLoc,
1298  ADLCallKind UsesADL) {
1299  assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1300  "Misaligned memory in CallExpr::CreateTemporary!");
1301  return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1302  VK, RParenLoc, /*MinNumArgs=*/0, UsesADL);
1303 }
1304 
1305 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1306  EmptyShell Empty) {
1307  unsigned SizeOfTrailingObjects =
1308  CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
1309  void *Mem =
1310  Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1311  return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty);
1312 }
1313 
1314 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1315  switch (SC) {
1316  case CallExprClass:
1317  return sizeof(CallExpr);
1318  case CXXOperatorCallExprClass:
1319  return sizeof(CXXOperatorCallExpr);
1320  case CXXMemberCallExprClass:
1321  return sizeof(CXXMemberCallExpr);
1322  case UserDefinedLiteralClass:
1323  return sizeof(UserDefinedLiteral);
1324  case CUDAKernelCallExprClass:
1325  return sizeof(CUDAKernelCallExpr);
1326  default:
1327  llvm_unreachable("unexpected class deriving from CallExpr!");
1328  }
1329 }
1330 
1331 void CallExpr::updateDependenciesFromArg(Expr *Arg) {
1332  if (Arg->isTypeDependent())
1333  ExprBits.TypeDependent = true;
1334  if (Arg->isValueDependent())
1335  ExprBits.ValueDependent = true;
1336  if (Arg->isInstantiationDependent())
1337  ExprBits.InstantiationDependent = true;
1339  ExprBits.ContainsUnexpandedParameterPack = true;
1340 }
1341 
1343  Expr *CEE = IgnoreParenImpCasts();
1344 
1345  while (SubstNonTypeTemplateParmExpr *NTTP
1346  = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1347  CEE = NTTP->getReplacement()->IgnoreParenCasts();
1348  }
1349 
1350  // If we're calling a dereference, look at the pointer instead.
1351  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1352  if (BO->isPtrMemOp())
1353  CEE = BO->getRHS()->IgnoreParenCasts();
1354  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1355  if (UO->getOpcode() == UO_Deref)
1356  CEE = UO->getSubExpr()->IgnoreParenCasts();
1357  }
1358  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1359  return DRE->getDecl();
1360  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1361  return ME->getMemberDecl();
1362 
1363  return nullptr;
1364 }
1365 
1366 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
1367 /// not, return 0.
1368 unsigned CallExpr::getBuiltinCallee() const {
1369  // All simple function calls (e.g. func()) are implicitly cast to pointer to
1370  // function. As a result, we try and obtain the DeclRefExpr from the
1371  // ImplicitCastExpr.
1372  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1373  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1374  return 0;
1375 
1376  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1377  if (!DRE)
1378  return 0;
1379 
1380  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1381  if (!FDecl)
1382  return 0;
1383 
1384  if (!FDecl->getIdentifier())
1385  return 0;
1386 
1387  return FDecl->getBuiltinID();
1388 }
1389 
1391  if (unsigned BI = getBuiltinCallee())
1392  return Ctx.BuiltinInfo.isUnevaluated(BI);
1393  return false;
1394 }
1395 
1397  const Expr *Callee = getCallee();
1398  QualType CalleeType = Callee->getType();
1399  if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1400  CalleeType = FnTypePtr->getPointeeType();
1401  } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1402  CalleeType = BPT->getPointeeType();
1403  } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1404  if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1405  return Ctx.VoidTy;
1406 
1407  // This should never be overloaded and so should never return null.
1408  CalleeType = Expr::findBoundMemberType(Callee);
1409  }
1410 
1411  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1412  return FnType->getReturnType();
1413 }
1414 
1416  // If the return type is a struct, union, or enum that is marked nodiscard,
1417  // then return the return type attribute.
1418  if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1419  if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1420  return A;
1421 
1422  // Otherwise, see if the callee is marked nodiscard and return that attribute
1423  // instead.
1424  const Decl *D = getCalleeDecl();
1425  return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1426 }
1427 
1429  if (isa<CXXOperatorCallExpr>(this))
1430  return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
1431 
1432  SourceLocation begin = getCallee()->getBeginLoc();
1433  if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1434  begin = getArg(0)->getBeginLoc();
1435  return begin;
1436 }
1438  if (isa<CXXOperatorCallExpr>(this))
1439  return cast<CXXOperatorCallExpr>(this)->getEndLoc();
1440 
1441  SourceLocation end = getRParenLoc();
1442  if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1443  end = getArg(getNumArgs() - 1)->getEndLoc();
1444  return end;
1445 }
1446 
1448  SourceLocation OperatorLoc,
1449  TypeSourceInfo *tsi,
1450  ArrayRef<OffsetOfNode> comps,
1451  ArrayRef<Expr*> exprs,
1452  SourceLocation RParenLoc) {
1453  void *Mem = C.Allocate(
1454  totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1455 
1456  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1457  RParenLoc);
1458 }
1459 
1461  unsigned numComps, unsigned numExprs) {
1462  void *Mem =
1463  C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1464  return new (Mem) OffsetOfExpr(numComps, numExprs);
1465 }
1466 
1467 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1468  SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1470  SourceLocation RParenLoc)
1471  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1472  /*TypeDependent=*/false,
1473  /*ValueDependent=*/tsi->getType()->isDependentType(),
1476  OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1477  NumComps(comps.size()), NumExprs(exprs.size())
1478 {
1479  for (unsigned i = 0; i != comps.size(); ++i) {
1480  setComponent(i, comps[i]);
1481  }
1482 
1483  for (unsigned i = 0; i != exprs.size(); ++i) {
1484  if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1485  ExprBits.ValueDependent = true;
1486  if (exprs[i]->containsUnexpandedParameterPack())
1487  ExprBits.ContainsUnexpandedParameterPack = true;
1488 
1489  setIndexExpr(i, exprs[i]);
1490  }
1491 }
1492 
1494  assert(getKind() == Field || getKind() == Identifier);
1495  if (getKind() == Field)
1496  return getField()->getIdentifier();
1497 
1498  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1499 }
1500 
1502  UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1504  : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1505  false, // Never type-dependent (C++ [temp.dep.expr]p3).
1506  // Value-dependent if the argument is type-dependent.
1509  OpLoc(op), RParenLoc(rp) {
1510  UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1511  UnaryExprOrTypeTraitExprBits.IsType = false;
1512  Argument.Ex = E;
1513 
1514  // Check to see if we are in the situation where alignof(decl) should be
1515  // dependent because decl's alignment is dependent.
1516  if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
1518  E = E->IgnoreParens();
1519 
1520  const ValueDecl *D = nullptr;
1521  if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
1522  D = DRE->getDecl();
1523  else if (const auto *ME = dyn_cast<MemberExpr>(E))
1524  D = ME->getMemberDecl();
1525 
1526  if (D) {
1527  for (const auto *I : D->specific_attrs<AlignedAttr>()) {
1528  if (I->isAlignmentDependent()) {
1529  setValueDependent(true);
1531  break;
1532  }
1533  }
1534  }
1535  }
1536  }
1537 }
1538 
1540  const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
1541  NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1542  ValueDecl *memberdecl, DeclAccessPair founddecl,
1543  DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
1544  QualType ty, ExprValueKind vk, ExprObjectKind ok) {
1545 
1546  bool hasQualOrFound = (QualifierLoc ||
1547  founddecl.getDecl() != memberdecl ||
1548  founddecl.getAccess() != memberdecl->getAccess());
1549 
1550  bool HasTemplateKWAndArgsInfo = targs || TemplateKWLoc.isValid();
1551  std::size_t Size =
1553  TemplateArgumentLoc>(hasQualOrFound ? 1 : 0,
1554  HasTemplateKWAndArgsInfo ? 1 : 0,
1555  targs ? targs->size() : 0);
1556 
1557  void *Mem = C.Allocate(Size, alignof(MemberExpr));
1558  MemberExpr *E = new (Mem)
1559  MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);
1560 
1561  if (hasQualOrFound) {
1562  // FIXME: Wrong. We should be looking at the member declaration we found.
1563  if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1564  E->setValueDependent(true);
1565  E->setTypeDependent(true);
1566  E->setInstantiationDependent(true);
1567  }
1568  else if (QualifierLoc &&
1570  E->setInstantiationDependent(true);
1571 
1572  E->MemberExprBits.HasQualifierOrFoundDecl = true;
1573 
1574  MemberExprNameQualifier *NQ =
1575  E->getTrailingObjects<MemberExprNameQualifier>();
1576  NQ->QualifierLoc = QualifierLoc;
1577  NQ->FoundDecl = founddecl;
1578  }
1579 
1580  E->MemberExprBits.HasTemplateKWAndArgsInfo =
1581  (targs || TemplateKWLoc.isValid());
1582 
1583  if (targs) {
1584  bool Dependent = false;
1585  bool InstantiationDependent = false;
1586  bool ContainsUnexpandedParameterPack = false;
1587  E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1588  TemplateKWLoc, *targs, E->getTrailingObjects<TemplateArgumentLoc>(),
1589  Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
1590  if (InstantiationDependent)
1591  E->setInstantiationDependent(true);
1592  } else if (TemplateKWLoc.isValid()) {
1593  E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1594  TemplateKWLoc);
1595  }
1596 
1597  return E;
1598 }
1599 
1601  if (isImplicitAccess()) {
1602  if (hasQualifier())
1603  return getQualifierLoc().getBeginLoc();
1604  return MemberLoc;
1605  }
1606 
1607  // FIXME: We don't want this to happen. Rather, we should be able to
1608  // detect all kinds of implicit accesses more cleanly.
1609  SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1610  if (BaseStartLoc.isValid())
1611  return BaseStartLoc;
1612  return MemberLoc;
1613 }
1615  SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1616  if (hasExplicitTemplateArgs())
1617  EndLoc = getRAngleLoc();
1618  else if (EndLoc.isInvalid())
1619  EndLoc = getBase()->getEndLoc();
1620  return EndLoc;
1621 }
1622 
1623 bool CastExpr::CastConsistency() const {
1624  switch (getCastKind()) {
1625  case CK_DerivedToBase:
1626  case CK_UncheckedDerivedToBase:
1627  case CK_DerivedToBaseMemberPointer:
1628  case CK_BaseToDerived:
1629  case CK_BaseToDerivedMemberPointer:
1630  assert(!path_empty() && "Cast kind should have a base path!");
1631  break;
1632 
1633  case CK_CPointerToObjCPointerCast:
1634  assert(getType()->isObjCObjectPointerType());
1635  assert(getSubExpr()->getType()->isPointerType());
1636  goto CheckNoBasePath;
1637 
1638  case CK_BlockPointerToObjCPointerCast:
1639  assert(getType()->isObjCObjectPointerType());
1640  assert(getSubExpr()->getType()->isBlockPointerType());
1641  goto CheckNoBasePath;
1642 
1643  case CK_ReinterpretMemberPointer:
1644  assert(getType()->isMemberPointerType());
1645  assert(getSubExpr()->getType()->isMemberPointerType());
1646  goto CheckNoBasePath;
1647 
1648  case CK_BitCast:
1649  // Arbitrary casts to C pointer types count as bitcasts.
1650  // Otherwise, we should only have block and ObjC pointer casts
1651  // here if they stay within the type kind.
1652  if (!getType()->isPointerType()) {
1653  assert(getType()->isObjCObjectPointerType() ==
1654  getSubExpr()->getType()->isObjCObjectPointerType());
1655  assert(getType()->isBlockPointerType() ==
1656  getSubExpr()->getType()->isBlockPointerType());
1657  }
1658  goto CheckNoBasePath;
1659 
1660  case CK_AnyPointerToBlockPointerCast:
1661  assert(getType()->isBlockPointerType());
1662  assert(getSubExpr()->getType()->isAnyPointerType() &&
1663  !getSubExpr()->getType()->isBlockPointerType());
1664  goto CheckNoBasePath;
1665 
1666  case CK_CopyAndAutoreleaseBlockObject:
1667  assert(getType()->isBlockPointerType());
1668  assert(getSubExpr()->getType()->isBlockPointerType());
1669  goto CheckNoBasePath;
1670 
1671  case CK_FunctionToPointerDecay:
1672  assert(getType()->isPointerType());
1673  assert(getSubExpr()->getType()->isFunctionType());
1674  goto CheckNoBasePath;
1675 
1676  case CK_AddressSpaceConversion: {
1677  auto Ty = getType();
1678  auto SETy = getSubExpr()->getType();
1679  assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1680  if (isRValue()) {
1681  Ty = Ty->getPointeeType();
1682  SETy = SETy->getPointeeType();
1683  }
1684  assert(!Ty.isNull() && !SETy.isNull() &&
1685  Ty.getAddressSpace() != SETy.getAddressSpace());
1686  goto CheckNoBasePath;
1687  }
1688  // These should not have an inheritance path.
1689  case CK_Dynamic:
1690  case CK_ToUnion:
1691  case CK_ArrayToPointerDecay:
1692  case CK_NullToMemberPointer:
1693  case CK_NullToPointer:
1694  case CK_ConstructorConversion:
1695  case CK_IntegralToPointer:
1696  case CK_PointerToIntegral:
1697  case CK_ToVoid:
1698  case CK_VectorSplat:
1699  case CK_IntegralCast:
1700  case CK_BooleanToSignedIntegral:
1701  case CK_IntegralToFloating:
1702  case CK_FloatingToIntegral:
1703  case CK_FloatingCast:
1704  case CK_ObjCObjectLValueCast:
1705  case CK_FloatingRealToComplex:
1706  case CK_FloatingComplexToReal:
1707  case CK_FloatingComplexCast:
1708  case CK_FloatingComplexToIntegralComplex:
1709  case CK_IntegralRealToComplex:
1710  case CK_IntegralComplexToReal:
1711  case CK_IntegralComplexCast:
1712  case CK_IntegralComplexToFloatingComplex:
1713  case CK_ARCProduceObject:
1714  case CK_ARCConsumeObject:
1715  case CK_ARCReclaimReturnedObject:
1716  case CK_ARCExtendBlockObject:
1717  case CK_ZeroToOCLOpaqueType:
1718  case CK_IntToOCLSampler:
1719  case CK_FixedPointCast:
1720  assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1721  goto CheckNoBasePath;
1722 
1723  case CK_Dependent:
1724  case CK_LValueToRValue:
1725  case CK_NoOp:
1726  case CK_AtomicToNonAtomic:
1727  case CK_NonAtomicToAtomic:
1728  case CK_PointerToBoolean:
1729  case CK_IntegralToBoolean:
1730  case CK_FloatingToBoolean:
1731  case CK_MemberPointerToBoolean:
1732  case CK_FloatingComplexToBoolean:
1733  case CK_IntegralComplexToBoolean:
1734  case CK_LValueBitCast: // -> bool&
1735  case CK_UserDefinedConversion: // operator bool()
1736  case CK_BuiltinFnToFnPtr:
1737  case CK_FixedPointToBoolean:
1738  CheckNoBasePath:
1739  assert(path_empty() && "Cast kind should not have a base path!");
1740  break;
1741  }
1742  return true;
1743 }
1744 
1746  switch (CK) {
1747 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1748 #include "clang/AST/OperationKinds.def"
1749  }
1750  llvm_unreachable("Unhandled cast kind!");
1751 }
1752 
1753 namespace {
1754  const Expr *skipImplicitTemporary(const Expr *E) {
1755  // Skip through reference binding to temporary.
1756  if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1757  E = Materialize->GetTemporaryExpr();
1758 
1759  // Skip any temporary bindings; they're implicit.
1760  if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1761  E = Binder->getSubExpr();
1762 
1763  return E;
1764  }
1765 }
1766 
1768  const Expr *SubExpr = nullptr;
1769  const CastExpr *E = this;
1770  do {
1771  SubExpr = skipImplicitTemporary(E->getSubExpr());
1772 
1773  // Conversions by constructor and conversion functions have a
1774  // subexpression describing the call; strip it off.
1775  if (E->getCastKind() == CK_ConstructorConversion)
1776  SubExpr =
1777  skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0));
1778  else if (E->getCastKind() == CK_UserDefinedConversion) {
1779  assert((isa<CXXMemberCallExpr>(SubExpr) ||
1780  isa<BlockExpr>(SubExpr)) &&
1781  "Unexpected SubExpr for CK_UserDefinedConversion.");
1782  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1783  SubExpr = MCE->getImplicitObjectArgument();
1784  }
1785 
1786  // If the subexpression we're left with is an implicit cast, look
1787  // through that, too.
1788  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1789 
1790  return const_cast<Expr*>(SubExpr);
1791 }
1792 
1794  const Expr *SubExpr = nullptr;
1795 
1796  for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1797  SubExpr = skipImplicitTemporary(E->getSubExpr());
1798 
1799  if (E->getCastKind() == CK_ConstructorConversion)
1800  return cast<CXXConstructExpr>(SubExpr)->getConstructor();
1801 
1802  if (E->getCastKind() == CK_UserDefinedConversion) {
1803  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1804  return MCE->getMethodDecl();
1805  }
1806  }
1807 
1808  return nullptr;
1809 }
1810 
1811 CXXBaseSpecifier **CastExpr::path_buffer() {
1812  switch (getStmtClass()) {
1813 #define ABSTRACT_STMT(x)
1814 #define CASTEXPR(Type, Base) \
1815  case Stmt::Type##Class: \
1816  return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1817 #define STMT(Type, Base)
1818 #include "clang/AST/StmtNodes.inc"
1819  default:
1820  llvm_unreachable("non-cast expressions not possible here");
1821  }
1822 }
1823 
1825  QualType opType) {
1826  auto RD = unionType->castAs<RecordType>()->getDecl();
1827  return getTargetFieldForToUnionCast(RD, opType);
1828 }
1829 
1831  QualType OpType) {
1832  auto &Ctx = RD->getASTContext();
1833  RecordDecl::field_iterator Field, FieldEnd;
1834  for (Field = RD->field_begin(), FieldEnd = RD->field_end();
1835  Field != FieldEnd; ++Field) {
1836  if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
1837  !Field->isUnnamedBitfield()) {
1838  return *Field;
1839  }
1840  }
1841  return nullptr;
1842 }
1843 
1845  CastKind Kind, Expr *Operand,
1846  const CXXCastPath *BasePath,
1847  ExprValueKind VK) {
1848  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1849  void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1850  ImplicitCastExpr *E =
1851  new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1852  if (PathSize)
1853  std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1854  E->getTrailingObjects<CXXBaseSpecifier *>());
1855  return E;
1856 }
1857 
1859  unsigned PathSize) {
1860  void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1861  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1862 }
1863 
1864 
1866  ExprValueKind VK, CastKind K, Expr *Op,
1867  const CXXCastPath *BasePath,
1868  TypeSourceInfo *WrittenTy,
1870  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1871  void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1872  CStyleCastExpr *E =
1873  new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1874  if (PathSize)
1875  std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1876  E->getTrailingObjects<CXXBaseSpecifier *>());
1877  return E;
1878 }
1879 
1881  unsigned PathSize) {
1882  void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1883  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1884 }
1885 
1886 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1887 /// corresponds to, e.g. "<<=".
1889  switch (Op) {
1890 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
1891 #include "clang/AST/OperationKinds.def"
1892  }
1893  llvm_unreachable("Invalid OpCode!");
1894 }
1895 
1898  switch (OO) {
1899  default: llvm_unreachable("Not an overloadable binary operator");
1900  case OO_Plus: return BO_Add;
1901  case OO_Minus: return BO_Sub;
1902  case OO_Star: return BO_Mul;
1903  case OO_Slash: return BO_Div;
1904  case OO_Percent: return BO_Rem;
1905  case OO_Caret: return BO_Xor;
1906  case OO_Amp: return BO_And;
1907  case OO_Pipe: return BO_Or;
1908  case OO_Equal: return BO_Assign;
1909  case OO_Spaceship: return BO_Cmp;
1910  case OO_Less: return BO_LT;
1911  case OO_Greater: return BO_GT;
1912  case OO_PlusEqual: return BO_AddAssign;
1913  case OO_MinusEqual: return BO_SubAssign;
1914  case OO_StarEqual: return BO_MulAssign;
1915  case OO_SlashEqual: return BO_DivAssign;
1916  case OO_PercentEqual: return BO_RemAssign;
1917  case OO_CaretEqual: return BO_XorAssign;
1918  case OO_AmpEqual: return BO_AndAssign;
1919  case OO_PipeEqual: return BO_OrAssign;
1920  case OO_LessLess: return BO_Shl;
1921  case OO_GreaterGreater: return BO_Shr;
1922  case OO_LessLessEqual: return BO_ShlAssign;
1923  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1924  case OO_EqualEqual: return BO_EQ;
1925  case OO_ExclaimEqual: return BO_NE;
1926  case OO_LessEqual: return BO_LE;
1927  case OO_GreaterEqual: return BO_GE;
1928  case OO_AmpAmp: return BO_LAnd;
1929  case OO_PipePipe: return BO_LOr;
1930  case OO_Comma: return BO_Comma;
1931  case OO_ArrowStar: return BO_PtrMemI;
1932  }
1933 }
1934 
1936  static const OverloadedOperatorKind OverOps[] = {
1937  /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1938  OO_Star, OO_Slash, OO_Percent,
1939  OO_Plus, OO_Minus,
1940  OO_LessLess, OO_GreaterGreater,
1941  OO_Spaceship,
1942  OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1943  OO_EqualEqual, OO_ExclaimEqual,
1944  OO_Amp,
1945  OO_Caret,
1946  OO_Pipe,
1947  OO_AmpAmp,
1948  OO_PipePipe,
1949  OO_Equal, OO_StarEqual,
1950  OO_SlashEqual, OO_PercentEqual,
1951  OO_PlusEqual, OO_MinusEqual,
1952  OO_LessLessEqual, OO_GreaterGreaterEqual,
1953  OO_AmpEqual, OO_CaretEqual,
1954  OO_PipeEqual,
1955  OO_Comma
1956  };
1957  return OverOps[Opc];
1958 }
1959 
1961  Opcode Opc,
1962  Expr *LHS, Expr *RHS) {
1963  if (Opc != BO_Add)
1964  return false;
1965 
1966  // Check that we have one pointer and one integer operand.
1967  Expr *PExp;
1968  if (LHS->getType()->isPointerType()) {
1969  if (!RHS->getType()->isIntegerType())
1970  return false;
1971  PExp = LHS;
1972  } else if (RHS->getType()->isPointerType()) {
1973  if (!LHS->getType()->isIntegerType())
1974  return false;
1975  PExp = RHS;
1976  } else {
1977  return false;
1978  }
1979 
1980  // Check that the pointer is a nullptr.
1981  if (!PExp->IgnoreParenCasts()
1983  return false;
1984 
1985  // Check that the pointee type is char-sized.
1986  const PointerType *PTy = PExp->getType()->getAs<PointerType>();
1987  if (!PTy || !PTy->getPointeeType()->isCharType())
1988  return false;
1989 
1990  return true;
1991 }
1993  ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1994  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1995  false, false),
1996  InitExprs(C, initExprs.size()),
1997  LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
1998 {
1999  sawArrayRangeDesignator(false);
2000  for (unsigned I = 0; I != initExprs.size(); ++I) {
2001  if (initExprs[I]->isTypeDependent())
2002  ExprBits.TypeDependent = true;
2003  if (initExprs[I]->isValueDependent())
2004  ExprBits.ValueDependent = true;
2005  if (initExprs[I]->isInstantiationDependent())
2006  ExprBits.InstantiationDependent = true;
2007  if (initExprs[I]->containsUnexpandedParameterPack())
2008  ExprBits.ContainsUnexpandedParameterPack = true;
2009  }
2010 
2011  InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2012 }
2013 
2014 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2015  if (NumInits > InitExprs.size())
2016  InitExprs.reserve(C, NumInits);
2017 }
2018 
2019 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2020  InitExprs.resize(C, NumInits, nullptr);
2021 }
2022 
2023 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2024  if (Init >= InitExprs.size()) {
2025  InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2026  setInit(Init, expr);
2027  return nullptr;
2028  }
2029 
2030  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2031  setInit(Init, expr);
2032  return Result;
2033 }
2034 
2036  assert(!hasArrayFiller() && "Filler already set!");
2037  ArrayFillerOrUnionFieldInit = filler;
2038  // Fill out any "holes" in the array due to designated initializers.
2039  Expr **inits = getInits();
2040  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2041  if (inits[i] == nullptr)
2042  inits[i] = filler;
2043 }
2044 
2046  if (getNumInits() != 1)
2047  return false;
2048  const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2049  if (!AT || !AT->getElementType()->isIntegerType())
2050  return false;
2051  // It is possible for getInit() to return null.
2052  const Expr *Init = getInit(0);
2053  if (!Init)
2054  return false;
2055  Init = Init->IgnoreParens();
2056  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2057 }
2058 
2060  assert(isSemanticForm() && "syntactic form never semantically transparent");
2061 
2062  // A glvalue InitListExpr is always just sugar.
2063  if (isGLValue()) {
2064  assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2065  return true;
2066  }
2067 
2068  // Otherwise, we're sugar if and only if we have exactly one initializer that
2069  // is of the same type.
2070  if (getNumInits() != 1 || !getInit(0))
2071  return false;
2072 
2073  // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2074  // transparent struct copy.
2075  if (!getInit(0)->isRValue() && getType()->isRecordType())
2076  return false;
2077 
2078  return getType().getCanonicalType() ==
2080 }
2081 
2083  assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2084 
2085  if (LangOpts.CPlusPlus || getNumInits() != 1) {
2086  return false;
2087  }
2088 
2089  const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0));
2090  return Lit && Lit->getValue() == 0;
2091 }
2092 
2094  if (InitListExpr *SyntacticForm = getSyntacticForm())
2095  return SyntacticForm->getBeginLoc();
2096  SourceLocation Beg = LBraceLoc;
2097  if (Beg.isInvalid()) {
2098  // Find the first non-null initializer.
2099  for (InitExprsTy::const_iterator I = InitExprs.begin(),
2100  E = InitExprs.end();
2101  I != E; ++I) {
2102  if (Stmt *S = *I) {
2103  Beg = S->getBeginLoc();
2104  break;
2105  }
2106  }
2107  }
2108  return Beg;
2109 }
2110 
2112  if (InitListExpr *SyntacticForm = getSyntacticForm())
2113  return SyntacticForm->getEndLoc();
2114  SourceLocation End = RBraceLoc;
2115  if (End.isInvalid()) {
2116  // Find the first non-null initializer from the end.
2117  for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
2118  E = InitExprs.rend();
2119  I != E; ++I) {
2120  if (Stmt *S = *I) {
2121  End = S->getEndLoc();
2122  break;
2123  }
2124  }
2125  }
2126  return End;
2127 }
2128 
2129 /// getFunctionType - Return the underlying function type for this block.
2130 ///
2132  // The block pointer is never sugared, but the function type might be.
2133  return cast<BlockPointerType>(getType())
2134  ->getPointeeType()->castAs<FunctionProtoType>();
2135 }
2136 
2138  return TheBlock->getCaretLocation();
2139 }
2140 const Stmt *BlockExpr::getBody() const {
2141  return TheBlock->getBody();
2142 }
2144  return TheBlock->getBody();
2145 }
2146 
2147 
2148 //===----------------------------------------------------------------------===//
2149 // Generic Expression Routines
2150 //===----------------------------------------------------------------------===//
2151 
2152 /// isUnusedResultAWarning - Return true if this immediate expression should
2153 /// be warned about if the result is unused. If so, fill in Loc and Ranges
2154 /// with location to warn on and the source range[s] to report with the
2155 /// warning.
2157  SourceRange &R1, SourceRange &R2,
2158  ASTContext &Ctx) const {
2159  // Don't warn if the expr is type dependent. The type could end up
2160  // instantiating to void.
2161  if (isTypeDependent())
2162  return false;
2163 
2164  switch (getStmtClass()) {
2165  default:
2166  if (getType()->isVoidType())
2167  return false;
2168  WarnE = this;
2169  Loc = getExprLoc();
2170  R1 = getSourceRange();
2171  return true;
2172  case ParenExprClass:
2173  return cast<ParenExpr>(this)->getSubExpr()->
2174  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2175  case GenericSelectionExprClass:
2176  return cast<GenericSelectionExpr>(this)->getResultExpr()->
2177  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2178  case CoawaitExprClass:
2179  case CoyieldExprClass:
2180  return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2181  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2182  case ChooseExprClass:
2183  return cast<ChooseExpr>(this)->getChosenSubExpr()->
2184  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2185  case UnaryOperatorClass: {
2186  const UnaryOperator *UO = cast<UnaryOperator>(this);
2187 
2188  switch (UO->getOpcode()) {
2189  case UO_Plus:
2190  case UO_Minus:
2191  case UO_AddrOf:
2192  case UO_Not:
2193  case UO_LNot:
2194  case UO_Deref:
2195  break;
2196  case UO_Coawait:
2197  // This is just the 'operator co_await' call inside the guts of a
2198  // dependent co_await call.
2199  case UO_PostInc:
2200  case UO_PostDec:
2201  case UO_PreInc:
2202  case UO_PreDec: // ++/--
2203  return false; // Not a warning.
2204  case UO_Real:
2205  case UO_Imag:
2206  // accessing a piece of a volatile complex is a side-effect.
2207  if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2208  .isVolatileQualified())
2209  return false;
2210  break;
2211  case UO_Extension:
2212  return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2213  }
2214  WarnE = this;
2215  Loc = UO->getOperatorLoc();
2216  R1 = UO->getSubExpr()->getSourceRange();
2217  return true;
2218  }
2219  case BinaryOperatorClass: {
2220  const BinaryOperator *BO = cast<BinaryOperator>(this);
2221  switch (BO->getOpcode()) {
2222  default:
2223  break;
2224  // Consider the RHS of comma for side effects. LHS was checked by
2225  // Sema::CheckCommaOperands.
2226  case BO_Comma:
2227  // ((foo = <blah>), 0) is an idiom for hiding the result (and
2228  // lvalue-ness) of an assignment written in a macro.
2229  if (IntegerLiteral *IE =
2230  dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2231  if (IE->getValue() == 0)
2232  return false;
2233  return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2234  // Consider '||', '&&' to have side effects if the LHS or RHS does.
2235  case BO_LAnd:
2236  case BO_LOr:
2237  if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2238  !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2239  return false;
2240  break;
2241  }
2242  if (BO->isAssignmentOp())
2243  return false;
2244  WarnE = this;
2245  Loc = BO->getOperatorLoc();
2246  R1 = BO->getLHS()->getSourceRange();
2247  R2 = BO->getRHS()->getSourceRange();
2248  return true;
2249  }
2250  case CompoundAssignOperatorClass:
2251  case VAArgExprClass:
2252  case AtomicExprClass:
2253  return false;
2254 
2255  case ConditionalOperatorClass: {
2256  // If only one of the LHS or RHS is a warning, the operator might
2257  // be being used for control flow. Only warn if both the LHS and
2258  // RHS are warnings.
2259  const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
2260  if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2261  return false;
2262  if (!Exp->getLHS())
2263  return true;
2264  return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2265  }
2266 
2267  case MemberExprClass:
2268  WarnE = this;
2269  Loc = cast<MemberExpr>(this)->getMemberLoc();
2270  R1 = SourceRange(Loc, Loc);
2271  R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2272  return true;
2273 
2274  case ArraySubscriptExprClass:
2275  WarnE = this;
2276  Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2277  R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2278  R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2279  return true;
2280 
2281  case CXXOperatorCallExprClass: {
2282  // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2283  // overloads as there is no reasonable way to define these such that they
2284  // have non-trivial, desirable side-effects. See the -Wunused-comparison
2285  // warning: operators == and != are commonly typo'ed, and so warning on them
2286  // provides additional value as well. If this list is updated,
2287  // DiagnoseUnusedComparison should be as well.
2288  const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2289  switch (Op->getOperator()) {
2290  default:
2291  break;
2292  case OO_EqualEqual:
2293  case OO_ExclaimEqual:
2294  case OO_Less:
2295  case OO_Greater:
2296  case OO_GreaterEqual:
2297  case OO_LessEqual:
2298  if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2299  Op->getCallReturnType(Ctx)->isVoidType())
2300  break;
2301  WarnE = this;
2302  Loc = Op->getOperatorLoc();
2303  R1 = Op->getSourceRange();
2304  return true;
2305  }
2306 
2307  // Fallthrough for generic call handling.
2308  LLVM_FALLTHROUGH;
2309  }
2310  case CallExprClass:
2311  case CXXMemberCallExprClass:
2312  case UserDefinedLiteralClass: {
2313  // If this is a direct call, get the callee.
2314  const CallExpr *CE = cast<CallExpr>(this);
2315  if (const Decl *FD = CE->getCalleeDecl()) {
2316  // If the callee has attribute pure, const, or warn_unused_result, warn
2317  // about it. void foo() { strlen("bar"); } should warn.
2318  //
2319  // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2320  // updated to match for QoI.
2321  if (CE->hasUnusedResultAttr(Ctx) ||
2322  FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2323  WarnE = this;
2324  Loc = CE->getCallee()->getBeginLoc();
2325  R1 = CE->getCallee()->getSourceRange();
2326 
2327  if (unsigned NumArgs = CE->getNumArgs())
2328  R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2329  CE->getArg(NumArgs - 1)->getEndLoc());
2330  return true;
2331  }
2332  }
2333  return false;
2334  }
2335 
2336  // If we don't know precisely what we're looking at, let's not warn.
2337  case UnresolvedLookupExprClass:
2338  case CXXUnresolvedConstructExprClass:
2339  return false;
2340 
2341  case CXXTemporaryObjectExprClass:
2342  case CXXConstructExprClass: {
2343  if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2344  if (Type->hasAttr<WarnUnusedAttr>()) {
2345  WarnE = this;
2346  Loc = getBeginLoc();
2347  R1 = getSourceRange();
2348  return true;
2349  }
2350  }
2351  return false;
2352  }
2353 
2354  case ObjCMessageExprClass: {
2355  const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2356  if (Ctx.getLangOpts().ObjCAutoRefCount &&
2357  ME->isInstanceMessage() &&
2358  !ME->getType()->isVoidType() &&
2359  ME->getMethodFamily() == OMF_init) {
2360  WarnE = this;
2361  Loc = getExprLoc();
2362  R1 = ME->getSourceRange();
2363  return true;
2364  }
2365 
2366  if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2367  if (MD->hasAttr<WarnUnusedResultAttr>()) {
2368  WarnE = this;
2369  Loc = getExprLoc();
2370  return true;
2371  }
2372 
2373  return false;
2374  }
2375 
2376  case ObjCPropertyRefExprClass:
2377  WarnE = this;
2378  Loc = getExprLoc();
2379  R1 = getSourceRange();
2380  return true;
2381 
2382  case PseudoObjectExprClass: {
2383  const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2384 
2385  // Only complain about things that have the form of a getter.
2386  if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2387  isa<BinaryOperator>(PO->getSyntacticForm()))
2388  return false;
2389 
2390  WarnE = this;
2391  Loc = getExprLoc();
2392  R1 = getSourceRange();
2393  return true;
2394  }
2395 
2396  case StmtExprClass: {
2397  // Statement exprs don't logically have side effects themselves, but are
2398  // sometimes used in macros in ways that give them a type that is unused.
2399  // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2400  // however, if the result of the stmt expr is dead, we don't want to emit a
2401  // warning.
2402  const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2403  if (!CS->body_empty()) {
2404  if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2405  return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2406  if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2407  if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2408  return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2409  }
2410 
2411  if (getType()->isVoidType())
2412  return false;
2413  WarnE = this;
2414  Loc = cast<StmtExpr>(this)->getLParenLoc();
2415  R1 = getSourceRange();
2416  return true;
2417  }
2418  case CXXFunctionalCastExprClass:
2419  case CStyleCastExprClass: {
2420  // Ignore an explicit cast to void unless the operand is a non-trivial
2421  // volatile lvalue.
2422  const CastExpr *CE = cast<CastExpr>(this);
2423  if (CE->getCastKind() == CK_ToVoid) {
2424  if (CE->getSubExpr()->isGLValue() &&
2425  CE->getSubExpr()->getType().isVolatileQualified()) {
2426  const DeclRefExpr *DRE =
2427  dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2428  if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2429  cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) &&
2430  !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) {
2431  return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2432  R1, R2, Ctx);
2433  }
2434  }
2435  return false;
2436  }
2437 
2438  // If this is a cast to a constructor conversion, check the operand.
2439  // Otherwise, the result of the cast is unused.
2440  if (CE->getCastKind() == CK_ConstructorConversion)
2441  return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2442 
2443  WarnE = this;
2444  if (const CXXFunctionalCastExpr *CXXCE =
2445  dyn_cast<CXXFunctionalCastExpr>(this)) {
2446  Loc = CXXCE->getBeginLoc();
2447  R1 = CXXCE->getSubExpr()->getSourceRange();
2448  } else {
2449  const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2450  Loc = CStyleCE->getLParenLoc();
2451  R1 = CStyleCE->getSubExpr()->getSourceRange();
2452  }
2453  return true;
2454  }
2455  case ImplicitCastExprClass: {
2456  const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2457 
2458  // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2459  if (ICE->getCastKind() == CK_LValueToRValue &&
2461  return false;
2462 
2463  return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2464  }
2465  case CXXDefaultArgExprClass:
2466  return (cast<CXXDefaultArgExpr>(this)
2467  ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2468  case CXXDefaultInitExprClass:
2469  return (cast<CXXDefaultInitExpr>(this)
2470  ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2471 
2472  case CXXNewExprClass:
2473  // FIXME: In theory, there might be new expressions that don't have side
2474  // effects (e.g. a placement new with an uninitialized POD).
2475  case CXXDeleteExprClass:
2476  return false;
2477  case MaterializeTemporaryExprClass:
2478  return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2479  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2480  case CXXBindTemporaryExprClass:
2481  return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2482  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2483  case ExprWithCleanupsClass:
2484  return cast<ExprWithCleanups>(this)->getSubExpr()
2485  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2486  }
2487 }
2488 
2489 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2490 /// returns true, if it is; false otherwise.
2492  const Expr *E = IgnoreParens();
2493  switch (E->getStmtClass()) {
2494  default:
2495  return false;
2496  case ObjCIvarRefExprClass:
2497  return true;
2498  case Expr::UnaryOperatorClass:
2499  return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2500  case ImplicitCastExprClass:
2501  return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2502  case MaterializeTemporaryExprClass:
2503  return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2504  ->isOBJCGCCandidate(Ctx);
2505  case CStyleCastExprClass:
2506  return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2507  case DeclRefExprClass: {
2508  const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2509 
2510  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2511  if (VD->hasGlobalStorage())
2512  return true;
2513  QualType T = VD->getType();
2514  // dereferencing to a pointer is always a gc'able candidate,
2515  // unless it is __weak.
2516  return T->isPointerType() &&
2517  (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2518  }
2519  return false;
2520  }
2521  case MemberExprClass: {
2522  const MemberExpr *M = cast<MemberExpr>(E);
2523  return M->getBase()->isOBJCGCCandidate(Ctx);
2524  }
2525  case ArraySubscriptExprClass:
2526  return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2527  }
2528 }
2529 
2531  if (isTypeDependent())
2532  return false;
2533  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2534 }
2535 
2537  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2538 
2539  // Bound member expressions are always one of these possibilities:
2540  // x->m x.m x->*y x.*y
2541  // (possibly parenthesized)
2542 
2543  expr = expr->IgnoreParens();
2544  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2545  assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2546  return mem->getMemberDecl()->getType();
2547  }
2548 
2549  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2550  QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2551  ->getPointeeType();
2552  assert(type->isFunctionType());
2553  return type;
2554  }
2555 
2556  assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2557  return QualType();
2558 }
2559 
2561  Expr* E = this;
2562  while (true) {
2563  if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2564  E = P->getSubExpr();
2565  continue;
2566  }
2567  if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2568  if (P->getOpcode() == UO_Extension) {
2569  E = P->getSubExpr();
2570  continue;
2571  }
2572  }
2573  if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2574  if (!P->isResultDependent()) {
2575  E = P->getResultExpr();
2576  continue;
2577  }
2578  }
2579  if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
2580  if (!P->isConditionDependent()) {
2581  E = P->getChosenSubExpr();
2582  continue;
2583  }
2584  }
2585  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E)) {
2586  E = CE->getSubExpr();
2587  continue;
2588  }
2589  return E;
2590  }
2591 }
2592 
2593 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
2594 /// or CastExprs or ImplicitCastExprs, returning their operand.
2596  Expr *E = this;
2597  while (true) {
2598  E = E->IgnoreParens();
2599  if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2600  E = P->getSubExpr();
2601  continue;
2602  }
2603  if (MaterializeTemporaryExpr *Materialize
2604  = dyn_cast<MaterializeTemporaryExpr>(E)) {
2605  E = Materialize->GetTemporaryExpr();
2606  continue;
2607  }
2609  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2610  E = NTTP->getReplacement();
2611  continue;
2612  }
2613  if (FullExpr *FE = dyn_cast<FullExpr>(E)) {
2614  E = FE->getSubExpr();
2615  continue;
2616  }
2617  return E;
2618  }
2619 }
2620 
2622  Expr *E = this;
2623  while (true) {
2624  if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2625  E = P->getSubExpr();
2626  continue;
2627  }
2628  if (MaterializeTemporaryExpr *Materialize
2629  = dyn_cast<MaterializeTemporaryExpr>(E)) {
2630  E = Materialize->GetTemporaryExpr();
2631  continue;
2632  }
2634  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2635  E = NTTP->getReplacement();
2636  continue;
2637  }
2638  if (FullExpr *FE = dyn_cast<FullExpr>(E)) {
2639  E = FE->getSubExpr();
2640  continue;
2641  }
2642  return E;
2643  }
2644 }
2645 
2646 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2647 /// casts. This is intended purely as a temporary workaround for code
2648 /// that hasn't yet been rewritten to do the right thing about those
2649 /// casts, and may disappear along with the last internal use.
2651  Expr *E = this;
2652  while (true) {
2653  E = E->IgnoreParens();
2654  if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2655  if (P->getCastKind() == CK_LValueToRValue) {
2656  E = P->getSubExpr();
2657  continue;
2658  }
2659  } else if (MaterializeTemporaryExpr *Materialize
2660  = dyn_cast<MaterializeTemporaryExpr>(E)) {
2661  E = Materialize->GetTemporaryExpr();
2662  continue;
2663  } else if (SubstNonTypeTemplateParmExpr *NTTP
2664  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2665  E = NTTP->getReplacement();
2666  continue;
2667  } else if (FullExpr *FE = dyn_cast<FullExpr>(E)) {
2668  E = FE->getSubExpr();
2669  continue;
2670  }
2671  break;
2672  }
2673  return E;
2674 }
2675 
2677  Expr *E = this;
2678  while (true) {
2679  E = E->IgnoreParens();
2680  if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2681  if (CE->getCastKind() == CK_DerivedToBase ||
2682  CE->getCastKind() == CK_UncheckedDerivedToBase ||
2683  CE->getCastKind() == CK_NoOp) {
2684  E = CE->getSubExpr();
2685  continue;
2686  }
2687  }
2688 
2689  return E;
2690  }
2691 }
2692 
2694  Expr *E = this;
2695  while (true) {
2696  E = E->IgnoreParens();
2697  if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2698  E = P->getSubExpr();
2699  continue;
2700  }
2701  if (MaterializeTemporaryExpr *Materialize
2702  = dyn_cast<MaterializeTemporaryExpr>(E)) {
2703  E = Materialize->GetTemporaryExpr();
2704  continue;
2705  }
2707  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2708  E = NTTP->getReplacement();
2709  continue;
2710  }
2711  return E;
2712  }
2713 }
2714 
2716  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2717  if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2718  return MCE->getImplicitObjectArgument();
2719  }
2720  return this;
2721 }
2722 
2723 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2724 /// value (including ptr->int casts of the same size). Strip off any
2725 /// ParenExpr or CastExprs, returning their operand.
2727  Expr *E = this;
2728  while (true) {
2729  E = E->IgnoreParens();
2730 
2731  if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2732  // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2733  // ptr<->int casts of the same width. We also ignore all identity casts.
2734  Expr *SE = P->getSubExpr();
2735 
2736  if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2737  E = SE;
2738  continue;
2739  }
2740 
2741  if ((E->getType()->isPointerType() ||
2742  E->getType()->isIntegralType(Ctx)) &&
2743  (SE->getType()->isPointerType() ||
2744  SE->getType()->isIntegralType(Ctx)) &&
2745  Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2746  E = SE;
2747  continue;
2748  }
2749  }
2750 
2752  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2753  E = NTTP->getReplacement();
2754  continue;
2755  }
2756 
2757  return E;
2758  }
2759 }
2760 
2762  const Expr *E = this;
2763  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2764  E = M->GetTemporaryExpr();
2765 
2766  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2767  E = ICE->getSubExprAsWritten();
2768 
2769  return isa<CXXDefaultArgExpr>(E);
2770 }
2771 
2772 /// Skip over any no-op casts and any temporary-binding
2773 /// expressions.
2775  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2776  E = M->GetTemporaryExpr();
2777 
2778  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2779  if (ICE->getCastKind() == CK_NoOp)
2780  E = ICE->getSubExpr();
2781  else
2782  break;
2783  }
2784 
2785  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2786  E = BE->getSubExpr();
2787 
2788  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2789  if (ICE->getCastKind() == CK_NoOp)
2790  E = ICE->getSubExpr();
2791  else
2792  break;
2793  }
2794 
2795  return E->IgnoreParens();
2796 }
2797 
2798 /// isTemporaryObject - Determines if this expression produces a
2799 /// temporary of the given class type.
2800 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2801  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2802  return false;
2803 
2805 
2806  // Temporaries are by definition pr-values of class type.
2807  if (!E->Classify(C).isPRValue()) {
2808  // In this context, property reference is a message call and is pr-value.
2809  if (!isa<ObjCPropertyRefExpr>(E))
2810  return false;
2811  }
2812 
2813  // Black-list a few cases which yield pr-values of class type that don't
2814  // refer to temporaries of that type:
2815 
2816  // - implicit derived-to-base conversions
2817  if (isa<ImplicitCastExpr>(E)) {
2818  switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2819  case CK_DerivedToBase:
2820  case CK_UncheckedDerivedToBase:
2821  return false;
2822  default:
2823  break;
2824  }
2825  }
2826 
2827  // - member expressions (all)
2828  if (isa<MemberExpr>(E))
2829  return false;
2830 
2831  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2832  if (BO->isPtrMemOp())
2833  return false;
2834 
2835  // - opaque values (all)
2836  if (isa<OpaqueValueExpr>(E))
2837  return false;
2838 
2839  return true;
2840 }
2841 
2843  const Expr *E = this;
2844 
2845  // Strip away parentheses and casts we don't care about.
2846  while (true) {
2847  if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2848  E = Paren->getSubExpr();
2849  continue;
2850  }
2851 
2852  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2853  if (ICE->getCastKind() == CK_NoOp ||
2854  ICE->getCastKind() == CK_LValueToRValue ||
2855  ICE->getCastKind() == CK_DerivedToBase ||
2856  ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2857  E = ICE->getSubExpr();
2858  continue;
2859  }
2860  }
2861 
2862  if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2863  if (UnOp->getOpcode() == UO_Extension) {
2864  E = UnOp->getSubExpr();
2865  continue;
2866  }
2867  }
2868 
2869  if (const MaterializeTemporaryExpr *M
2870  = dyn_cast<MaterializeTemporaryExpr>(E)) {
2871  E = M->GetTemporaryExpr();
2872  continue;
2873  }
2874 
2875  break;
2876  }
2877 
2878  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2879  return This->isImplicit();
2880 
2881  return false;
2882 }
2883 
2884 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2885 /// in Exprs is type-dependent.
2887  for (unsigned I = 0; I < Exprs.size(); ++I)
2888  if (Exprs[I]->isTypeDependent())
2889  return true;
2890 
2891  return false;
2892 }
2893 
2894 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
2895  const Expr **Culprit) const {
2896  // This function is attempting whether an expression is an initializer
2897  // which can be evaluated at compile-time. It very closely parallels
2898  // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2899  // will lead to unexpected results. Like ConstExprEmitter, it falls back
2900  // to isEvaluatable most of the time.
2901  //
2902  // If we ever capture reference-binding directly in the AST, we can
2903  // kill the second parameter.
2904 
2905  if (IsForRef) {
2907  if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
2908  return true;
2909  if (Culprit)
2910  *Culprit = this;
2911  return false;
2912  }
2913 
2914  switch (getStmtClass()) {
2915  default: break;
2916  case StringLiteralClass:
2917  case ObjCEncodeExprClass:
2918  return true;
2919  case CXXTemporaryObjectExprClass:
2920  case CXXConstructExprClass: {
2921  const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2922 
2923  if (CE->getConstructor()->isTrivial() &&
2925  // Trivial default constructor
2926  if (!CE->getNumArgs()) return true;
2927 
2928  // Trivial copy constructor
2929  assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2930  return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
2931  }
2932 
2933  break;
2934  }
2935  case ConstantExprClass: {
2936  // FIXME: We should be able to return "true" here, but it can lead to extra
2937  // error messages. E.g. in Sema/array-init.c.
2938  const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
2939  return Exp->isConstantInitializer(Ctx, false, Culprit);
2940  }
2941  case CompoundLiteralExprClass: {
2942  // This handles gcc's extension that allows global initializers like
2943  // "struct x {int x;} x = (struct x) {};".
2944  // FIXME: This accepts other cases it shouldn't!
2945  const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2946  return Exp->isConstantInitializer(Ctx, false, Culprit);
2947  }
2948  case DesignatedInitUpdateExprClass: {
2949  const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
2950  return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
2951  DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
2952  }
2953  case InitListExprClass: {
2954  const InitListExpr *ILE = cast<InitListExpr>(this);
2955  if (ILE->getType()->isArrayType()) {
2956  unsigned numInits = ILE->getNumInits();
2957  for (unsigned i = 0; i < numInits; i++) {
2958  if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
2959  return false;
2960  }
2961  return true;
2962  }
2963 
2964  if (ILE->getType()->isRecordType()) {
2965  unsigned ElementNo = 0;
2966  RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
2967  for (const auto *Field : RD->fields()) {
2968  // If this is a union, skip all the fields that aren't being initialized.
2969  if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
2970  continue;
2971 
2972  // Don't emit anonymous bitfields, they just affect layout.
2973  if (Field->isUnnamedBitfield())
2974  continue;
2975 
2976  if (ElementNo < ILE->getNumInits()) {
2977  const Expr *Elt = ILE->getInit(ElementNo++);
2978  if (Field->isBitField()) {
2979  // Bitfields have to evaluate to an integer.
2981  if (!Elt->EvaluateAsInt(Result, Ctx)) {
2982  if (Culprit)
2983  *Culprit = Elt;
2984  return false;
2985  }
2986  } else {
2987  bool RefType = Field->getType()->isReferenceType();
2988  if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
2989  return false;
2990  }
2991  }
2992  }
2993  return true;
2994  }
2995 
2996  break;
2997  }
2998  case ImplicitValueInitExprClass:
2999  case NoInitExprClass:
3000  return true;
3001  case ParenExprClass:
3002  return cast<ParenExpr>(this)->getSubExpr()
3003  ->isConstantInitializer(Ctx, IsForRef, Culprit);
3004  case GenericSelectionExprClass:
3005  return cast<GenericSelectionExpr>(this)->getResultExpr()
3006  ->isConstantInitializer(Ctx, IsForRef, Culprit);
3007  case ChooseExprClass:
3008  if (cast<ChooseExpr>(this)->isConditionDependent()) {
3009  if (Culprit)
3010  *Culprit = this;
3011  return false;
3012  }
3013  return cast<ChooseExpr>(this)->getChosenSubExpr()
3014  ->isConstantInitializer(Ctx, IsForRef, Culprit);
3015  case UnaryOperatorClass: {
3016  const UnaryOperator* Exp = cast<UnaryOperator>(this);
3017  if (Exp->getOpcode() == UO_Extension)
3018  return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3019  break;
3020  }
3021  case CXXFunctionalCastExprClass:
3022  case CXXStaticCastExprClass:
3023  case ImplicitCastExprClass:
3024  case CStyleCastExprClass:
3025  case ObjCBridgedCastExprClass:
3026  case CXXDynamicCastExprClass:
3027  case CXXReinterpretCastExprClass:
3028  case CXXConstCastExprClass: {
3029  const CastExpr *CE = cast<CastExpr>(this);
3030 
3031  // Handle misc casts we want to ignore.
3032  if (CE->getCastKind() == CK_NoOp ||
3033  CE->getCastKind() == CK_LValueToRValue ||
3034  CE->getCastKind() == CK_ToUnion ||
3035  CE->getCastKind() == CK_ConstructorConversion ||
3036  CE->getCastKind() == CK_NonAtomicToAtomic ||
3037  CE->getCastKind() == CK_AtomicToNonAtomic ||
3038  CE->getCastKind() == CK_IntToOCLSampler)
3039  return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3040 
3041  break;
3042  }
3043  case MaterializeTemporaryExprClass:
3044  return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
3045  ->isConstantInitializer(Ctx, false, Culprit);
3046 
3047  case SubstNonTypeTemplateParmExprClass:
3048  return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3049  ->isConstantInitializer(Ctx, false, Culprit);
3050  case CXXDefaultArgExprClass:
3051  return cast<CXXDefaultArgExpr>(this)->getExpr()
3052  ->isConstantInitializer(Ctx, false, Culprit);
3053  case CXXDefaultInitExprClass:
3054  return cast<CXXDefaultInitExpr>(this)->getExpr()
3055  ->isConstantInitializer(Ctx, false, Culprit);
3056  }
3057  // Allow certain forms of UB in constant initializers: signed integer
3058  // overflow and floating-point division by zero. We'll give a warning on
3059  // these, but they're common enough that we have to accept them.
3061  return true;
3062  if (Culprit)
3063  *Culprit = this;
3064  return false;
3065 }
3066 
3068  const FunctionDecl* FD = getDirectCallee();
3069  if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
3070  FD->getBuiltinID() != Builtin::BI__builtin_assume))
3071  return false;
3072 
3073  const Expr* Arg = getArg(0);
3074  bool ArgVal;
3075  return !Arg->isValueDependent() &&
3076  Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3077 }
3078 
3079 namespace {
3080  /// Look for any side effects within a Stmt.
3081  class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3083  const bool IncludePossibleEffects;
3084  bool HasSideEffects;
3085 
3086  public:
3087  explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3088  : Inherited(Context),
3089  IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3090 
3091  bool hasSideEffects() const { return HasSideEffects; }
3092 
3093  void VisitExpr(const Expr *E) {
3094  if (!HasSideEffects &&
3095  E->HasSideEffects(Context, IncludePossibleEffects))
3096  HasSideEffects = true;
3097  }
3098  };
3099 }
3100 
3102  bool IncludePossibleEffects) const {
3103  // In circumstances where we care about definite side effects instead of
3104  // potential side effects, we want to ignore expressions that are part of a
3105  // macro expansion as a potential side effect.
3106  if (!IncludePossibleEffects && getExprLoc().isMacroID())
3107  return false;
3108 
3110  return IncludePossibleEffects;
3111 
3112  switch (getStmtClass()) {
3113  case NoStmtClass:
3114  #define ABSTRACT_STMT(Type)
3115  #define STMT(Type, Base) case Type##Class:
3116  #define EXPR(Type, Base)
3117  #include "clang/AST/StmtNodes.inc"
3118  llvm_unreachable("unexpected Expr kind");
3119 
3120  case DependentScopeDeclRefExprClass:
3121  case CXXUnresolvedConstructExprClass:
3122  case CXXDependentScopeMemberExprClass:
3123  case UnresolvedLookupExprClass:
3124  case UnresolvedMemberExprClass:
3125  case PackExpansionExprClass:
3126  case SubstNonTypeTemplateParmPackExprClass:
3127  case FunctionParmPackExprClass:
3128  case TypoExprClass:
3129  case CXXFoldExprClass:
3130  llvm_unreachable("shouldn't see dependent / unresolved nodes here");
3131 
3132  case DeclRefExprClass:
3133  case ObjCIvarRefExprClass:
3134  case PredefinedExprClass:
3135  case IntegerLiteralClass:
3136  case FixedPointLiteralClass:
3137  case FloatingLiteralClass:
3138  case ImaginaryLiteralClass:
3139  case StringLiteralClass:
3140  case CharacterLiteralClass:
3141  case OffsetOfExprClass:
3142  case ImplicitValueInitExprClass:
3143  case UnaryExprOrTypeTraitExprClass:
3144  case AddrLabelExprClass:
3145  case GNUNullExprClass:
3146  case ArrayInitIndexExprClass:
3147  case NoInitExprClass:
3148  case CXXBoolLiteralExprClass:
3149  case CXXNullPtrLiteralExprClass:
3150  case CXXThisExprClass:
3151  case CXXScalarValueInitExprClass:
3152  case TypeTraitExprClass:
3153  case ArrayTypeTraitExprClass:
3154  case ExpressionTraitExprClass:
3155  case CXXNoexceptExprClass:
3156  case SizeOfPackExprClass:
3157  case ObjCStringLiteralClass:
3158  case ObjCEncodeExprClass:
3159  case ObjCBoolLiteralExprClass:
3160  case ObjCAvailabilityCheckExprClass:
3161  case CXXUuidofExprClass:
3162  case OpaqueValueExprClass:
3163  // These never have a side-effect.
3164  return false;
3165 
3166  case ConstantExprClass:
3167  // FIXME: Move this into the "return false;" block above.
3168  return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3169  Ctx, IncludePossibleEffects);
3170 
3171  case CallExprClass:
3172  case CXXOperatorCallExprClass:
3173  case CXXMemberCallExprClass:
3174  case CUDAKernelCallExprClass:
3175  case UserDefinedLiteralClass: {
3176  // We don't know a call definitely has side effects, except for calls
3177  // to pure/const functions that definitely don't.
3178  // If the call itself is considered side-effect free, check the operands.
3179  const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3180  bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3181  if (IsPure || !IncludePossibleEffects)
3182  break;
3183  return true;
3184  }
3185 
3186  case BlockExprClass:
3187  case CXXBindTemporaryExprClass:
3188  if (!IncludePossibleEffects)
3189  break;
3190  return true;
3191 
3192  case MSPropertyRefExprClass:
3193  case MSPropertySubscriptExprClass:
3194  case CompoundAssignOperatorClass:
3195  case VAArgExprClass:
3196  case AtomicExprClass:
3197  case CXXThrowExprClass:
3198  case CXXNewExprClass:
3199  case CXXDeleteExprClass:
3200  case CoawaitExprClass:
3201  case DependentCoawaitExprClass:
3202  case CoyieldExprClass:
3203  // These always have a side-effect.
3204  return true;
3205 
3206  case StmtExprClass: {
3207  // StmtExprs have a side-effect if any substatement does.
3208  SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3209  Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3210  return Finder.hasSideEffects();
3211  }
3212 
3213  case ExprWithCleanupsClass:
3214  if (IncludePossibleEffects)
3215  if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3216  return true;
3217  break;
3218 
3219  case ParenExprClass:
3220  case ArraySubscriptExprClass:
3221  case OMPArraySectionExprClass:
3222  case MemberExprClass:
3223  case ConditionalOperatorClass:
3224  case BinaryConditionalOperatorClass:
3225  case CompoundLiteralExprClass:
3226  case ExtVectorElementExprClass:
3227  case DesignatedInitExprClass:
3228  case DesignatedInitUpdateExprClass:
3229  case ArrayInitLoopExprClass:
3230  case ParenListExprClass:
3231  case CXXPseudoDestructorExprClass:
3232  case CXXStdInitializerListExprClass:
3233  case SubstNonTypeTemplateParmExprClass:
3234  case MaterializeTemporaryExprClass:
3235  case ShuffleVectorExprClass:
3236  case ConvertVectorExprClass:
3237  case AsTypeExprClass:
3238  // These have a side-effect if any subexpression does.
3239  break;
3240 
3241  case UnaryOperatorClass:
3242  if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3243  return true;
3244  break;
3245 
3246  case BinaryOperatorClass:
3247  if (cast<BinaryOperator>(this)->isAssignmentOp())
3248  return true;
3249  break;
3250 
3251  case InitListExprClass:
3252  // FIXME: The children for an InitListExpr doesn't include the array filler.
3253  if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3254  if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3255  return true;
3256  break;
3257 
3258  case GenericSelectionExprClass:
3259  return cast<GenericSelectionExpr>(this)->getResultExpr()->
3260  HasSideEffects(Ctx, IncludePossibleEffects);
3261 
3262  case ChooseExprClass:
3263  return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3264  Ctx, IncludePossibleEffects);
3265 
3266  case CXXDefaultArgExprClass:
3267  return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3268  Ctx, IncludePossibleEffects);
3269 
3270  case CXXDefaultInitExprClass: {
3271  const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3272  if (const Expr *E = FD->getInClassInitializer())
3273  return E->HasSideEffects(Ctx, IncludePossibleEffects);
3274  // If we've not yet parsed the initializer, assume it has side-effects.
3275  return true;
3276  }
3277 
3278  case CXXDynamicCastExprClass: {
3279  // A dynamic_cast expression has side-effects if it can throw.
3280  const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3281  if (DCE->getTypeAsWritten()->isReferenceType() &&
3282  DCE->getCastKind() == CK_Dynamic)
3283  return true;
3284  }
3285  LLVM_FALLTHROUGH;
3286  case ImplicitCastExprClass:
3287  case CStyleCastExprClass:
3288  case CXXStaticCastExprClass:
3289  case CXXReinterpretCastExprClass:
3290  case CXXConstCastExprClass:
3291  case CXXFunctionalCastExprClass: {
3292  // While volatile reads are side-effecting in both C and C++, we treat them
3293  // as having possible (not definite) side-effects. This allows idiomatic
3294  // code to behave without warning, such as sizeof(*v) for a volatile-
3295  // qualified pointer.
3296  if (!IncludePossibleEffects)
3297  break;
3298 
3299  const CastExpr *CE = cast<CastExpr>(this);
3300  if (CE->getCastKind() == CK_LValueToRValue &&
3302  return true;
3303  break;
3304  }
3305 
3306  case CXXTypeidExprClass:
3307  // typeid might throw if its subexpression is potentially-evaluated, so has
3308  // side-effects in that case whether or not its subexpression does.
3309  return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3310 
3311  case CXXConstructExprClass:
3312  case CXXTemporaryObjectExprClass: {
3313  const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3314  if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3315  return true;
3316  // A trivial constructor does not add any side-effects of its own. Just look
3317  // at its arguments.
3318  break;
3319  }
3320 
3321  case CXXInheritedCtorInitExprClass: {
3322  const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3323  if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3324  return true;
3325  break;
3326  }
3327 
3328  case LambdaExprClass: {
3329  const LambdaExpr *LE = cast<LambdaExpr>(this);
3330  for (Expr *E : LE->capture_inits())
3331  if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3332  return true;
3333  return false;
3334  }
3335 
3336  case PseudoObjectExprClass: {
3337  // Only look for side-effects in the semantic form, and look past
3338  // OpaqueValueExpr bindings in that form.
3339  const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3341  E = PO->semantics_end();
3342  I != E; ++I) {
3343  const Expr *Subexpr = *I;
3344  if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3345  Subexpr = OVE->getSourceExpr();
3346  if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3347  return true;
3348  }
3349  return false;
3350  }
3351 
3352  case ObjCBoxedExprClass:
3353  case ObjCArrayLiteralClass:
3354  case ObjCDictionaryLiteralClass:
3355  case ObjCSelectorExprClass:
3356  case ObjCProtocolExprClass:
3357  case ObjCIsaExprClass:
3358  case ObjCIndirectCopyRestoreExprClass:
3359  case ObjCSubscriptRefExprClass:
3360  case ObjCBridgedCastExprClass:
3361  case ObjCMessageExprClass:
3362  case ObjCPropertyRefExprClass:
3363  // FIXME: Classify these cases better.
3364  if (IncludePossibleEffects)
3365  return true;
3366  break;
3367  }
3368 
3369  // Recurse to children.
3370  for (const Stmt *SubStmt : children())
3371  if (SubStmt &&
3372  cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3373  return true;
3374 
3375  return false;
3376 }
3377 
3378 namespace {
3379  /// Look for a call to a non-trivial function within an expression.
3380  class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3381  {
3383 
3384  bool NonTrivial;
3385 
3386  public:
3387  explicit NonTrivialCallFinder(const ASTContext &Context)
3388  : Inherited(Context), NonTrivial(false) { }
3389 
3390  bool hasNonTrivialCall() const { return NonTrivial; }
3391 
3392  void VisitCallExpr(const CallExpr *E) {
3393  if (const CXXMethodDecl *Method
3394  = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3395  if (Method->isTrivial()) {
3396  // Recurse to children of the call.
3397  Inherited::VisitStmt(E);
3398  return;
3399  }
3400  }
3401 
3402  NonTrivial = true;
3403  }
3404 
3405  void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3406  if (E->getConstructor()->isTrivial()) {
3407  // Recurse to children of the call.
3408  Inherited::VisitStmt(E);
3409  return;
3410  }
3411 
3412  NonTrivial = true;
3413  }
3414 
3415  void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3416  if (E->getTemporary()->getDestructor()->isTrivial()) {
3417  Inherited::VisitStmt(E);
3418  return;
3419  }
3420 
3421  NonTrivial = true;
3422  }
3423  };
3424 }
3425 
3426 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3427  NonTrivialCallFinder Finder(Ctx);
3428  Finder.Visit(this);
3429  return Finder.hasNonTrivialCall();
3430 }
3431 
3432 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3433 /// pointer constant or not, as well as the specific kind of constant detected.
3434 /// Null pointer constants can be integer constant expressions with the
3435 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3436 /// (a GNU extension).
3440  if (isValueDependent() &&
3441  (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3442  switch (NPC) {
3444  llvm_unreachable("Unexpected value dependent expression!");
3446  if (isTypeDependent() || getType()->isIntegralType(Ctx))
3447  return NPCK_ZeroExpression;
3448  else
3449  return NPCK_NotNull;
3450 
3452  return NPCK_NotNull;
3453  }
3454  }
3455 
3456  // Strip off a cast to void*, if it exists. Except in C++.
3457  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3458  if (!Ctx.getLangOpts().CPlusPlus) {
3459  // Check that it is a cast to void*.
3460  if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3461  QualType Pointee = PT->getPointeeType();
3462  Qualifiers Qs = Pointee.getQualifiers();
3463  // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3464  // has non-default address space it is not treated as nullptr.
3465  // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3466  // since it cannot be assigned to a pointer to constant address space.
3467  if ((Ctx.getLangOpts().OpenCLVersion >= 200 &&
3468  Pointee.getAddressSpace() == LangAS::opencl_generic) ||
3469  (Ctx.getLangOpts().OpenCL &&
3470  Ctx.getLangOpts().OpenCLVersion < 200 &&
3472  Qs.removeAddressSpace();
3473 
3474  if (Pointee->isVoidType() && Qs.empty() && // to void*
3475  CE->getSubExpr()->getType()->isIntegerType()) // from int
3476  return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3477  }
3478  }
3479  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3480  // Ignore the ImplicitCastExpr type entirely.
3481  return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3482  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3483  // Accept ((void*)0) as a null pointer constant, as many other
3484  // implementations do.
3485  return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3486  } else if (const GenericSelectionExpr *GE =
3487  dyn_cast<GenericSelectionExpr>(this)) {
3488  if (GE->isResultDependent())
3489  return NPCK_NotNull;
3490  return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3491  } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3492  if (CE->isConditionDependent())
3493  return NPCK_NotNull;
3494  return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3495  } else if (const CXXDefaultArgExpr *DefaultArg
3496  = dyn_cast<CXXDefaultArgExpr>(this)) {
3497  // See through default argument expressions.
3498  return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3499  } else if (const CXXDefaultInitExpr *DefaultInit
3500  = dyn_cast<CXXDefaultInitExpr>(this)) {
3501  // See through default initializer expressions.
3502  return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3503  } else if (isa<GNUNullExpr>(this)) {
3504  // The GNU __null extension is always a null pointer constant.
3505  return NPCK_GNUNull;
3506  } else if (const MaterializeTemporaryExpr *M
3507  = dyn_cast<MaterializeTemporaryExpr>(this)) {
3508  return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3509  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3510  if (const Expr *Source = OVE->getSourceExpr())
3511  return Source->isNullPointerConstant(Ctx, NPC);
3512  }
3513 
3514  // C++11 nullptr_t is always a null pointer constant.
3515  if (getType()->isNullPtrType())
3516  return NPCK_CXX11_nullptr;
3517 
3518  if (const RecordType *UT = getType()->getAsUnionType())
3519  if (!Ctx.getLangOpts().CPlusPlus11 &&
3520  UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3521  if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3522  const Expr *InitExpr = CLE->getInitializer();
3523  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3524  return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3525  }
3526  // This expression must be an integer type.
3527  if (!getType()->isIntegerType() ||
3528  (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3529  return NPCK_NotNull;
3530 
3531  if (Ctx.getLangOpts().CPlusPlus11) {
3532  // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3533  // value zero or a prvalue of type std::nullptr_t.
3534  // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3535  const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3536  if (Lit && !Lit->getValue())
3537  return NPCK_ZeroLiteral;
3538  else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3539  return NPCK_NotNull;
3540  } else {
3541  // If we have an integer constant expression, we need to *evaluate* it and
3542  // test for the value 0.
3543  if (!isIntegerConstantExpr(Ctx))
3544  return NPCK_NotNull;
3545  }
3546 
3547  if (EvaluateKnownConstInt(Ctx) != 0)
3548  return NPCK_NotNull;
3549 
3550  if (isa<IntegerLiteral>(this))
3551  return NPCK_ZeroLiteral;
3552  return NPCK_ZeroExpression;
3553 }
3554 
3555 /// If this expression is an l-value for an Objective C
3556 /// property, find the underlying property reference expression.
3558  const Expr *E = this;
3559  while (true) {
3560  assert((E->getValueKind() == VK_LValue &&
3561  E->getObjectKind() == OK_ObjCProperty) &&
3562  "expression is not a property reference");
3563  E = E->IgnoreParenCasts();
3564  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3565  if (BO->getOpcode() == BO_Comma) {
3566  E = BO->getRHS();
3567  continue;
3568  }
3569  }
3570 
3571  break;
3572  }
3573 
3574  return cast<ObjCPropertyRefExpr>(E);
3575 }
3576 
3577 bool Expr::isObjCSelfExpr() const {
3578  const Expr *E = IgnoreParenImpCasts();
3579 
3580  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3581  if (!DRE)
3582  return false;
3583 
3584  const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3585  if (!Param)
3586  return false;
3587 
3588  const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3589  if (!M)
3590  return false;
3591 
3592  return M->getSelfDecl() == Param;
3593 }
3594 
3596  Expr *E = this->IgnoreParens();
3597 
3598  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3599  if (ICE->getCastKind() == CK_LValueToRValue ||
3600  (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3601  E = ICE->getSubExpr()->IgnoreParens();
3602  else
3603  break;
3604  }
3605 
3606  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3607  if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3608  if (Field->isBitField())
3609  return Field;
3610 
3611  if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
3612  FieldDecl *Ivar = IvarRef->getDecl();
3613  if (Ivar->isBitField())
3614  return Ivar;
3615  }
3616 
3617  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
3618  if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3619  if (Field->isBitField())
3620  return Field;
3621 
3622  if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
3623  if (Expr *E = BD->getBinding())
3624  return E->getSourceBitField();
3625  }
3626 
3627  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3628  if (BinOp->isAssignmentOp() && BinOp->getLHS())
3629  return BinOp->getLHS()->getSourceBitField();
3630 
3631  if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3632  return BinOp->getRHS()->getSourceBitField();
3633  }
3634 
3635  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3636  if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3637  return UnOp->getSubExpr()->getSourceBitField();
3638 
3639  return nullptr;
3640 }
3641 
3643  // FIXME: Why do we not just look at the ObjectKind here?
3644  const Expr *E = this->IgnoreParens();
3645 
3646  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3647  if (ICE->getValueKind() != VK_RValue &&
3648  ICE->getCastKind() == CK_NoOp)
3649  E = ICE->getSubExpr()->IgnoreParens();
3650  else
3651  break;
3652  }
3653 
3654  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3655  return ASE->getBase()->getType()->isVectorType();
3656 
3657  if (isa<ExtVectorElementExpr>(E))
3658  return true;
3659 
3660  if (auto *DRE = dyn_cast<DeclRefExpr>(E))
3661  if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
3662  if (auto *E = BD->getBinding())
3663  return E->refersToVectorElement();
3664 
3665  return false;
3666 }
3667 
3669  const Expr *E = this->IgnoreParenImpCasts();
3670 
3671  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3672  if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
3673  if (VD->getStorageClass() == SC_Register &&
3674  VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
3675  return true;
3676 
3677  return false;
3678 }
3679 
3680 /// isArrow - Return true if the base expression is a pointer to vector,
3681 /// return false if the base expression is a vector.
3683  return getBase()->getType()->isPointerType();
3684 }
3685 
3687  if (const VectorType *VT = getType()->getAs<VectorType>())
3688  return VT->getNumElements();
3689  return 1;
3690 }
3691 
3692 /// containsDuplicateElements - Return true if any element access is repeated.
3694  // FIXME: Refactor this code to an accessor on the AST node which returns the
3695  // "type" of component access, and share with code below and in Sema.
3696  StringRef Comp = Accessor->getName();
3697 
3698  // Halving swizzles do not contain duplicate elements.
3699  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3700  return false;
3701 
3702  // Advance past s-char prefix on hex swizzles.
3703  if (Comp[0] == 's' || Comp[0] == 'S')
3704  Comp = Comp.substr(1);
3705 
3706  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3707  if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3708  return true;
3709 
3710  return false;
3711 }
3712 
3713 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3715  SmallVectorImpl<uint32_t> &Elts) const {
3716  StringRef Comp = Accessor->getName();
3717  bool isNumericAccessor = false;
3718  if (Comp[0] == 's' || Comp[0] == 'S') {
3719  Comp = Comp.substr(1);
3720  isNumericAccessor = true;
3721  }
3722 
3723  bool isHi = Comp == "hi";
3724  bool isLo = Comp == "lo";
3725  bool isEven = Comp == "even";
3726  bool isOdd = Comp == "odd";
3727 
3728  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3729  uint64_t Index;
3730 
3731  if (isHi)
3732  Index = e + i;
3733  else if (isLo)
3734  Index = i;
3735  else if (isEven)
3736  Index = 2 * i;
3737  else if (isOdd)
3738  Index = 2 * i + 1;
3739  else
3740  Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
3741 
3742  Elts.push_back(Index);
3743  }
3744 }
3745 
3747  QualType Type, SourceLocation BLoc,
3748  SourceLocation RP)
3749  : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3750  Type->isDependentType(), Type->isDependentType(),
3751  Type->isInstantiationDependentType(),
3753  BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3754 {
3755  SubExprs = new (C) Stmt*[args.size()];
3756  for (unsigned i = 0; i != args.size(); i++) {
3757  if (args[i]->isTypeDependent())
3758  ExprBits.TypeDependent = true;
3759  if (args[i]->isValueDependent())
3760  ExprBits.ValueDependent = true;
3761  if (args[i]->isInstantiationDependent())
3762  ExprBits.InstantiationDependent = true;
3763  if (args[i]->containsUnexpandedParameterPack())
3764  ExprBits.ContainsUnexpandedParameterPack = true;
3765 
3766  SubExprs[i] = args[i];
3767  }
3768 }
3769 
3771  if (SubExprs) C.Deallocate(SubExprs);
3772 
3773  this->NumExprs = Exprs.size();
3774  SubExprs = new (C) Stmt*[NumExprs];
3775  memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3776 }
3777 
3779  SourceLocation GenericLoc, Expr *ControllingExpr,
3780  ArrayRef<TypeSourceInfo*> AssocTypes,
3781  ArrayRef<Expr*> AssocExprs,
3782  SourceLocation DefaultLoc,
3783  SourceLocation RParenLoc,
3784  bool ContainsUnexpandedParameterPack,
3785  unsigned ResultIndex)
3786  : Expr(GenericSelectionExprClass,
3787  AssocExprs[ResultIndex]->getType(),
3788  AssocExprs[ResultIndex]->getValueKind(),
3789  AssocExprs[ResultIndex]->getObjectKind(),
3790  AssocExprs[ResultIndex]->isTypeDependent(),
3791  AssocExprs[ResultIndex]->isValueDependent(),
3792  AssocExprs[ResultIndex]->isInstantiationDependent(),
3793  ContainsUnexpandedParameterPack),
3794  AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3795  SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3796  NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3797  GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3798  SubExprs[CONTROLLING] = ControllingExpr;
3799  assert(AssocTypes.size() == AssocExprs.size());
3800  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3801  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3802 }
3803 
3805  SourceLocation GenericLoc, Expr *ControllingExpr,
3806  ArrayRef<TypeSourceInfo*> AssocTypes,
3807  ArrayRef<Expr*> AssocExprs,
3808  SourceLocation DefaultLoc,
3809  SourceLocation RParenLoc,
3810  bool ContainsUnexpandedParameterPack)
3811  : Expr(GenericSelectionExprClass,
3812  Context.DependentTy,
3813  VK_RValue,
3814  OK_Ordinary,
3815  /*isTypeDependent=*/true,
3816  /*isValueDependent=*/true,
3817  /*isInstantiationDependent=*/true,
3818  ContainsUnexpandedParameterPack),
3819  AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3820  SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3821  NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3822  DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3823  SubExprs[CONTROLLING] = ControllingExpr;
3824  assert(AssocTypes.size() == AssocExprs.size());
3825  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3826  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3827 }
3828 
3829 //===----------------------------------------------------------------------===//
3830 // DesignatedInitExpr
3831 //===----------------------------------------------------------------------===//
3832 
3834  assert(Kind == FieldDesignator && "Only valid on a field designator");
3835  if (Field.NameOrField & 0x01)
3836  return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3837  else
3838  return getField()->getIdentifier();
3839 }
3840 
3841 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
3842  llvm::ArrayRef<Designator> Designators,
3843  SourceLocation EqualOrColonLoc,
3844  bool GNUSyntax,
3845  ArrayRef<Expr*> IndexExprs,
3846  Expr *Init)
3847  : Expr(DesignatedInitExprClass, Ty,
3848  Init->getValueKind(), Init->getObjectKind(),
3849  Init->isTypeDependent(), Init->isValueDependent(),
3850  Init->isInstantiationDependent(),
3852  EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3853  NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
3854  this->Designators = new (C) Designator[NumDesignators];
3855 
3856  // Record the initializer itself.
3857  child_iterator Child = child_begin();
3858  *Child++ = Init;
3859 
3860  // Copy the designators and their subexpressions, computing
3861  // value-dependence along the way.
3862  unsigned IndexIdx = 0;
3863  for (unsigned I = 0; I != NumDesignators; ++I) {
3864  this->Designators[I] = Designators[I];
3865 
3866  if (this->Designators[I].isArrayDesignator()) {
3867  // Compute type- and value-dependence.
3868  Expr *Index = IndexExprs[IndexIdx];
3869  if (Index->isTypeDependent() || Index->isValueDependent())
3870  ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3871  if (Index->isInstantiationDependent())
3872  ExprBits.InstantiationDependent = true;
3873  // Propagate unexpanded parameter packs.
3875  ExprBits.ContainsUnexpandedParameterPack = true;
3876 
3877  // Copy the index expressions into permanent storage.
3878  *Child++ = IndexExprs[IndexIdx++];
3879  } else if (this->Designators[I].isArrayRangeDesignator()) {
3880  // Compute type- and value-dependence.
3881  Expr *Start = IndexExprs[IndexIdx];
3882  Expr *End = IndexExprs[IndexIdx + 1];
3883  if (Start->isTypeDependent() || Start->isValueDependent() ||
3884  End->isTypeDependent() || End->isValueDependent()) {
3885  ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3886  ExprBits.InstantiationDependent = true;
3887  } else if (Start->isInstantiationDependent() ||
3888  End->isInstantiationDependent()) {
3889  ExprBits.InstantiationDependent = true;
3890  }
3891 
3892  // Propagate unexpanded parameter packs.
3893  if (Start->containsUnexpandedParameterPack() ||
3895  ExprBits.ContainsUnexpandedParameterPack = true;
3896 
3897  // Copy the start/end expressions into permanent storage.
3898  *Child++ = IndexExprs[IndexIdx++];
3899  *Child++ = IndexExprs[IndexIdx++];
3900  }
3901  }
3902 
3903  assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3904 }
3905 
3908  llvm::ArrayRef<Designator> Designators,
3909  ArrayRef<Expr*> IndexExprs,
3910  SourceLocation ColonOrEqualLoc,
3911  bool UsesColonSyntax, Expr *Init) {
3912  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
3913  alignof(DesignatedInitExpr));
3914  return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
3915  ColonOrEqualLoc, UsesColonSyntax,
3916  IndexExprs, Init);
3917 }
3918 
3920  unsigned NumIndexExprs) {
3921  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
3922  alignof(DesignatedInitExpr));
3923  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3924 }
3925 
3927  const Designator *Desigs,
3928  unsigned NumDesigs) {
3929  Designators = new (C) Designator[NumDesigs];
3930  NumDesignators = NumDesigs;
3931  for (unsigned I = 0; I != NumDesigs; ++I)
3932  Designators[I] = Desigs[I];
3933 }
3934 
3936  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3937  if (size() == 1)
3938  return DIE->getDesignator(0)->getSourceRange();
3939  return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
3940  DIE->getDesignator(size() - 1)->getEndLoc());
3941 }
3942 
3944  SourceLocation StartLoc;
3945  auto *DIE = const_cast<DesignatedInitExpr *>(this);
3946  Designator &First = *DIE->getDesignator(0);
3947  if (First.isFieldDesignator()) {
3948  if (GNUSyntax)
3950  else
3952  } else
3953  StartLoc =
3955  return StartLoc;
3956 }
3957 
3959  return getInit()->getEndLoc();
3960 }
3961 
3963  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3964  return getSubExpr(D.ArrayOrRange.Index + 1);
3965 }
3966 
3968  assert(D.Kind == Designator::ArrayRangeDesignator &&
3969  "Requires array range designator");
3970  return getSubExpr(D.ArrayOrRange.Index + 1);
3971 }
3972 
3974  assert(D.Kind == Designator::ArrayRangeDesignator &&
3975  "Requires array range designator");
3976  return getSubExpr(D.ArrayOrRange.Index + 2);
3977 }
3978 
3979 /// Replaces the designator at index @p Idx with the series
3980 /// of designators in [First, Last).
3982  const Designator *First,
3983  const Designator *Last) {
3984  unsigned NumNewDesignators = Last - First;
3985  if (NumNewDesignators == 0) {
3986  std::copy_backward(Designators + Idx + 1,
3987  Designators + NumDesignators,
3988  Designators + Idx);
3989  --NumNewDesignators;
3990  return;
3991  } else if (NumNewDesignators == 1) {
3992  Designators[Idx] = *First;
3993  return;
3994  }
3995 
3996  Designator *NewDesignators
3997  = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3998  std::copy(Designators, Designators + Idx, NewDesignators);
3999  std::copy(First, Last, NewDesignators + Idx);
4000  std::copy(Designators + Idx + 1, Designators + NumDesignators,
4001  NewDesignators + Idx + NumNewDesignators);
4002  Designators = NewDesignators;
4003  NumDesignators = NumDesignators - 1 + NumNewDesignators;
4004 }
4005 
4007  SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
4008  : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
4010  BaseAndUpdaterExprs[0] = baseExpr;
4011 
4012  InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
4013  ILE->setType(baseExpr->getType());
4014  BaseAndUpdaterExprs[1] = ILE;
4015 }
4016 
4018  return getBase()->getBeginLoc();
4019 }
4020 
4022  return getBase()->getEndLoc();
4023 }
4024 
4025 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4026  SourceLocation RParenLoc)
4027  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
4028  false, false),
4029  LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4030  ParenListExprBits.NumExprs = Exprs.size();
4031 
4032  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
4033  if (Exprs[I]->isTypeDependent())
4034  ExprBits.TypeDependent = true;
4035  if (Exprs[I]->isValueDependent())
4036  ExprBits.ValueDependent = true;
4037  if (Exprs[I]->isInstantiationDependent())
4038  ExprBits.InstantiationDependent = true;
4039  if (Exprs[I]->containsUnexpandedParameterPack())
4040  ExprBits.ContainsUnexpandedParameterPack = true;
4041 
4042  getTrailingObjects<Stmt *>()[I] = Exprs[I];
4043  }
4044 }
4045 
4046 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4047  : Expr(ParenListExprClass, Empty) {
4048  ParenListExprBits.NumExprs = NumExprs;
4049 }
4050 
4052  SourceLocation LParenLoc,
4053  ArrayRef<Expr *> Exprs,
4054  SourceLocation RParenLoc) {
4055  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4056  alignof(ParenListExpr));
4057  return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4058 }
4059 
4061  unsigned NumExprs) {
4062  void *Mem =
4063  Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4064  return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4065 }
4066 
4068  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4069  e = ewc->getSubExpr();
4070  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4071  e = m->GetTemporaryExpr();
4072  e = cast<CXXConstructExpr>(e)->getArg(0);
4073  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4074  e = ice->getSubExpr();
4075  return cast<OpaqueValueExpr>(e);
4076 }
4077 
4079  EmptyShell sh,
4080  unsigned numSemanticExprs) {
4081  void *buffer =
4082  Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4083  alignof(PseudoObjectExpr));
4084  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4085 }
4086 
4087 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4088  : Expr(PseudoObjectExprClass, shell) {
4089  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4090 }
4091 
4093  ArrayRef<Expr*> semantics,
4094  unsigned resultIndex) {
4095  assert(syntax && "no syntactic expression!");
4096  assert(semantics.size() && "no semantic expressions!");
4097 
4098  QualType type;
4099  ExprValueKind VK;
4100  if (resultIndex == NoResult) {
4101  type = C.VoidTy;
4102  VK = VK_RValue;
4103  } else {
4104  assert(resultIndex < semantics.size());
4105  type = semantics[resultIndex]->getType();
4106  VK = semantics[resultIndex]->getValueKind();
4107  assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4108  }
4109 
4110  void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4111  alignof(PseudoObjectExpr));
4112  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4113  resultIndex);
4114 }
4115 
4116 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4117  Expr *syntax, ArrayRef<Expr*> semantics,
4118  unsigned resultIndex)
4119  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
4120  /*filled in at end of ctor*/ false, false, false, false) {
4121  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4122  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4123 
4124  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4125  Expr *E = (i == 0 ? syntax : semantics[i-1]);
4126  getSubExprsBuffer()[i] = E;
4127 
4128  if (E->isTypeDependent())
4129  ExprBits.TypeDependent = true;
4130  if (E->isValueDependent())
4131  ExprBits.ValueDependent = true;
4133  ExprBits.InstantiationDependent = true;
4135  ExprBits.ContainsUnexpandedParameterPack = true;
4136 
4137  if (isa<OpaqueValueExpr>(E))
4138  assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4139  "opaque-value semantic expressions for pseudo-object "
4140  "operations must have sources");
4141  }
4142 }
4143 
4144 //===----------------------------------------------------------------------===//
4145 // Child Iterators for iterating over subexpressions/substatements
4146 //===----------------------------------------------------------------------===//
4147 
4148 // UnaryExprOrTypeTraitExpr
4150  const_child_range CCR =
4151  const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4152  return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4153 }
4154 
4156  // If this is of a type and the type is a VLA type (and not a typedef), the
4157  // size expression of the VLA needs to be treated as an executable expression.
4158  // Why isn't this weirdness documented better in StmtIterator?
4159  if (isArgumentType()) {
4160  if (const VariableArrayType *T =
4161  dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4164  }
4165  return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4166 }
4167 
4169  QualType t, AtomicOp op, SourceLocation RP)
4170  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4171  false, false, false, false),
4172  NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4173 {
4174  assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4175  for (unsigned i = 0; i != args.size(); i++) {
4176  if (args[i]->isTypeDependent())
4177  ExprBits.TypeDependent = true;
4178  if (args[i]->isValueDependent())
4179  ExprBits.ValueDependent = true;
4180  if (args[i]->isInstantiationDependent())
4181  ExprBits.InstantiationDependent = true;
4182  if (args[i]->containsUnexpandedParameterPack())
4183  ExprBits.ContainsUnexpandedParameterPack = true;
4184 
4185  SubExprs[i] = args[i];
4186  }
4187 }
4188 
4190  switch (Op) {
4191  case AO__c11_atomic_init:
4192  case AO__opencl_atomic_init:
4193  case AO__c11_atomic_load:
4194  case AO__atomic_load_n:
4195  return 2;
4196 
4197  case AO__opencl_atomic_load:
4198  case AO__c11_atomic_store:
4199  case AO__c11_atomic_exchange:
4200  case AO__atomic_load:
4201  case AO__atomic_store:
4202  case AO__atomic_store_n:
4203  case AO__atomic_exchange_n:
4204  case AO__c11_atomic_fetch_add:
4205  case AO__c11_atomic_fetch_sub:
4206  case AO__c11_atomic_fetch_and:
4207  case AO__c11_atomic_fetch_or:
4208  case AO__c11_atomic_fetch_xor:
4209  case AO__atomic_fetch_add:
4210  case AO__atomic_fetch_sub:
4211  case AO__atomic_fetch_and:
4212  case AO__atomic_fetch_or:
4213  case AO__atomic_fetch_xor:
4214  case AO__atomic_fetch_nand:
4215  case AO__atomic_add_fetch:
4216  case AO__atomic_sub_fetch:
4217  case AO__atomic_and_fetch:
4218  case AO__atomic_or_fetch:
4219  case AO__atomic_xor_fetch:
4220  case AO__atomic_nand_fetch:
4221  case AO__atomic_fetch_min:
4222  case AO__atomic_fetch_max:
4223  return 3;
4224 
4225  case AO__opencl_atomic_store:
4226  case AO__opencl_atomic_exchange:
4227  case AO__opencl_atomic_fetch_add:
4228  case AO__opencl_atomic_fetch_sub:
4229  case AO__opencl_atomic_fetch_and:
4230  case AO__opencl_atomic_fetch_or:
4231  case AO__opencl_atomic_fetch_xor:
4232  case AO__opencl_atomic_fetch_min:
4233  case AO__opencl_atomic_fetch_max:
4234  case AO__atomic_exchange:
4235  return 4;
4236 
4237  case AO__c11_atomic_compare_exchange_strong:
4238  case AO__c11_atomic_compare_exchange_weak:
4239  return 5;
4240 
4241  case AO__opencl_atomic_compare_exchange_strong:
4242  case AO__opencl_atomic_compare_exchange_weak:
4243  case AO__atomic_compare_exchange:
4244  case AO__atomic_compare_exchange_n:
4245  return 6;
4246  }
4247  llvm_unreachable("unknown atomic op");
4248 }
4249 
4251  auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4252  if (auto AT = T->getAs<AtomicType>())
4253  return AT->getValueType();
4254  return T;
4255 }
4256 
4258  unsigned ArraySectionCount = 0;
4259  while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4260  Base = OASE->getBase();
4261  ++ArraySectionCount;
4262  }
4263  while (auto *ASE =
4264  dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4265  Base = ASE->getBase();
4266  ++ArraySectionCount;
4267  }
4268  Base = Base->IgnoreParenImpCasts();
4269  auto OriginalTy = Base->getType();
4270  if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4271  if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4272  OriginalTy = PVD->getOriginalType().getNonReferenceType();
4273 
4274  for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4275  if (OriginalTy->isAnyPointerType())
4276  OriginalTy = OriginalTy->getPointeeType();
4277  else {
4278  assert (OriginalTy->isArrayType());
4279  OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4280  }
4281  }
4282  return OriginalTy;
4283 }
child_iterator child_begin()
Definition: Stmt.h:1108
CallExpr(StmtClass SC, Expr *Fn, ArrayRef< Expr *> PreArgs, ArrayRef< Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, unsigned MinNumArgs, ADLCallKind UsesADL)
Build a call expression, assuming that appropriate storage has been allocated for the trailing object...
Definition: Expr.cpp:1237
ObjCPropertyRefExpr - A dot-syntax expression to access an ObjC property.
Definition: ExprObjC.h:577
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
bool hasArrayFiller() const
Return true if this is an array initializer and its array "filler" has been set.
Definition: Expr.h:4289
SourceLocation getLocForStartOfFile(FileID FID) const
Return the source location corresponding to the first byte of the specified file. ...
Represents a single C99 designator.
Definition: Expr.h:4494
SourceLocation getLoc() const
getLoc - Returns the main location of the declaration name.
void setValueDependent(bool VD)
Set whether this expression is value-dependent or not.
Definition: Expr.h:152
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Defines the clang::ASTContext interface.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:465
const CXXDestructorDecl * getDestructor() const
Definition: ExprCXX.h:1196
Represents a function declaration or definition.
Definition: Decl.h:1738
Expr * getArrayIndex(const Designator &D) const
Definition: Expr.cpp:3962
Stmt * body_back()
Definition: Stmt.h:1279
FunctionTemplateDecl * getTemplate() const
Retrieve the template from which this function was specialized.
Definition: DeclTemplate.h:550
bool hasAttr(attr::Kind AK) const
Determine whether this type had the specified attribute applied to it (looking through top-level type...
Definition: Type.cpp:1630
static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D, QualType T, bool &TypeDependent, bool &ValueDependent, bool &InstantiationDependent)
Compute the type-, value-, and instantiation-dependence of a declaration reference based on the decla...
Definition: Expr.cpp:235
bool isFixedPointType() const
Return true if this is a fixed point type according to ISO/IEC JTC1 SC22 WG14 N1169.
Definition: Type.h:6591
Expr * getLHS() const
Definition: Expr.h:3627
StringRef Identifier
Definition: Format.cpp:1636
Expr * getSyntacticForm()
Return the syntactic form of this expression, i.e.
Definition: Expr.h:5343
Lexer - This provides a simple interface that turns a text buffer into a stream of tokens...
Definition: Lexer.h:77
SourceLocation getRParenLoc() const
Definition: Expr.h:2635
void setArrayFiller(Expr *filler)
Definition: Expr.cpp:2035
const FunctionProtoType * getFunctionType() const
getFunctionType - Return the underlying function type for this block.
Definition: Expr.cpp:2131
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2537
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:3943
QualType getPointeeType() const
Definition: Type.h:2550
A (possibly-)qualified type.
Definition: Type.h:638
unsigned getOffsetOfStringByte(const Token &TheTok, unsigned ByteNo) const
getOffsetOfStringByte - This function returns the offset of the specified byte of the string data rep...
bool isArrayType() const
Definition: Type.h:6345
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2553
const DeclarationNameLoc & getInfo() const
Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK, bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
Definition: Expr.h:110
__SIZE_TYPE__ size_t
The unsigned integer type of the result of the sizeof operator.
Definition: opencl-c.h:68
static Decl * castFromDeclContext(const DeclContext *)
Definition: DeclBase.cpp:868
unsigned FieldLoc
The location of the field name in the designated initializer.
Definition: Expr.h:4471
const Expr * getInit(unsigned Init) const
Definition: Expr.h:4233
bool EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
Stmt - This represents one statement.
Definition: Stmt.h:66
DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc, Expr *baseExprs, SourceLocation rBraceLoc)
Definition: Expr.cpp:4006
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2540
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3355
SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, const TargetInfo &Target, unsigned *StartToken=nullptr, unsigned *StartTokenByteOffset=nullptr) const
getLocationOfByte - Return a source location that points to the specified byte of this string literal...
Definition: Expr.cpp:1118
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
static CallExpr * CreateTemporary(void *Mem, Expr *Fn, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, ADLCallKind UsesADL=NotADL)
Create a temporary call expression with no arguments in the memory pointed to by Mem.
Definition: Expr.cpp:1296
bool hasPlaceholderType() const
Returns whether this expression has a placeholder type.
Definition: Expr.h:472
Defines the SourceManager interface.
bool hasNonTrivialCall(const ASTContext &Ctx) const
Determine whether this expression involves a call to any function that is not trivial.
Definition: Expr.cpp:3426
bool isRecordType() const
Definition: Type.h:6369
reverse_iterator rbegin()
Definition: ASTVector.h:104
Expr * getBase() const
Definition: Expr.h:2767
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:270
bool isSpecificPlaceholderType(unsigned K) const
Test for a specific placeholder type.
Definition: Type.h:6531
void setSemantics(const llvm::fltSemantics &Sem)
Set the APFloat semantics this literal uses.
Definition: Expr.cpp:876
static unsigned sizeOfTrailingObjects(unsigned NumPreArgs, unsigned NumArgs)
Return the size in bytes needed for the trailing objects.
Definition: Expr.h:2460
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:87
FloatingLiteralBitfields FloatingLiteralBits
Definition: Stmt.h:907
void getEncodedElementAccess(SmallVectorImpl< uint32_t > &Elts) const
getEncodedElementAccess - Encode the elements accessed into an llvm aggregate Constant of ConstantInt...
Definition: Expr.cpp:3714
void setType(QualType t)
Definition: Expr.h:129
bool isTransparent() const
Is this a transparent initializer list (that is, an InitListExpr that is purely syntactic, and whose semantics are that of the sole contained initializer)?
Definition: Expr.cpp:2059
Defines the C++ template declaration subclasses.
Opcode getOpcode() const
Definition: Expr.h:3322
StringRef P
Classification Classify(ASTContext &Ctx) const
Classify - Classify this expression according to the C++11 expression taxonomy.
Definition: Expr.h:377
iterator insert(const ASTContext &C, iterator I, const T &Elt)
Definition: ASTVector.h:220
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1844
NamedDecl * getDecl() const
The base class of the type hierarchy.
Definition: Type.h:1407
SourceLocation getBeginLoc() const
getBeginLoc - Retrieve the location of the first token.
bool isSemanticForm() const
Definition: Expr.h:4335
bool hasExplicitTemplateArgs() const
Determines whether this declaration reference was followed by an explicit template argument list...
Definition: Expr.h:1195
llvm::iterator_range< child_iterator > child_range
Definition: Stmt.h:1098
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2812
DeclRefExprBitfields DeclRefExprBits
Definition: Stmt.h:906
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1262
SourceLocation getEndLoc() const LLVM_READONLY
static ExprValueKind getValueKindForType(QualType T)
getValueKindForType - Given a formal return or parameter type, give its value kind.
Definition: Expr.h:395
NamedDecl * getParam(unsigned Idx)
Definition: DeclTemplate.h:133
SourceLocation getLParenLoc() const
Definition: Expr.h:3250
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:690
A container of type source information.
Definition: Decl.h:87
bool containsDuplicateElements() const
containsDuplicateElements - Return true if any element access is repeated.
Definition: Expr.cpp:3693
unsigned getCharWidth() const
Definition: TargetInfo.h:370
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2484
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4156
const Attr * getUnusedResultAttr(const ASTContext &Ctx) const
Returns the WarnUnusedResultAttr that is either declared on the called function, or its return type d...
Definition: Expr.cpp:1415
Expr * ignoreParenBaseCasts() LLVM_READONLY
Ignore parentheses and derived-to-base casts.
Definition: Expr.cpp:2676
QualType getElementType() const
Definition: Type.h:2847
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:470
StringRef getBufferData(FileID FID, bool *Invalid=nullptr) const
Return a StringRef to the source buffer data for the specified FileID.
static OffsetOfExpr * CreateEmpty(const ASTContext &C, unsigned NumComps, unsigned NumExprs)
Definition: Expr.cpp:1460
static const OpaqueValueExpr * findInCopyConstruct(const Expr *expr)
Given an expression which invokes a copy constructor — i.e.
Definition: Expr.cpp:4067
Represents a variable declaration or definition.
Definition: Decl.h:813
const ObjCPropertyRefExpr * getObjCProperty() const
If this expression is an l-value for an Objective C property, find the underlying property reference ...
Definition: Expr.cpp:3557
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2925
bool isEnumeralType() const
Definition: Type.h:6373
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6748
MangleContext * createMangleContext()
const ArrayType * castAsArrayTypeUnsafe() const
A variant of castAs<> for array type which silently discards qualifiers from the outermost type...
Definition: Type.h:6820
void resizeInits(const ASTContext &Context, unsigned NumInits)
Specify the number of initializers.
Definition: Expr.cpp:2019
void setInit(unsigned Init, Expr *expr)
Definition: Expr.h:4243
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
static PredefinedExpr * CreateEmpty(const ASTContext &Ctx, bool HasFunctionName)
Create an empty PredefinedExpr.
Definition: Expr.cpp:506
size_type size() const
Definition: ASTVector.h:110
bool isIdiomaticZeroInitializer(const LangOptions &LangOpts) const
Is this the zero initializer {0} in a language which considers it idiomatic?
Definition: Expr.cpp:2082
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:68
static DeclRefExpr * CreateEmpty(const ASTContext &Context, bool HasQualifier, bool HasFoundDecl, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs)
Construct an empty declaration reference expression.
Definition: Expr.cpp:450
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:38
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3089
static bool isAssignmentOp(Opcode Opc)
Definition: Expr.h:3410
Defines the clang::Expr interface and subclasses for C++ expressions.
The collection of all-type qualifiers we support.
Definition: Type.h:141
FieldDecl * getSourceBitField()
If this expression refers to a bit-field, retrieve the declaration of that bit-field.
Definition: Expr.cpp:3595
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:270
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:1593
Represents a struct/union/class.
Definition: Decl.h:3593
Represents a C99 designated initializer expression.
Definition: Expr.h:4419
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:298
One of these records is kept for each identifier that is lexed.
Represents a class template specialization, which refers to a class template with a given set of temp...
unsigned GetStringLength() const
const Expr * getBestDynamicClassTypeExpr() const
Get the inner expression that determines the best dynamic class.
Definition: Expr.cpp:37
const TemplateArgument & get(unsigned Idx) const
Retrieve the template argument at a given index.
Definition: DeclTemplate.h:255
StmtIterator cast_away_const(const ConstStmtIterator &RHS)
Definition: StmtIterator.h:152
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:155
A C++ nested-name-specifier augmented with source location information.
LValueClassification ClassifyLValue(ASTContext &Ctx) const
Reasons why an expression might not be an l-value.
static constexpr ADLCallKind UsesADL
Definition: Expr.h:2445
Used for GCC&#39;s __alignof.
Definition: TypeTraits.h:107
unsigned getChar32Width() const
getChar32Width/Align - Return the size of &#39;char32_t&#39; for this target, in bits.
Definition: TargetInfo.h:553
FullExpr - Represents a "full-expression" node.
Definition: Expr.h:877
bool isCharType() const
Definition: Type.cpp:1787
field_range fields() const
Definition: Decl.h:3784
static SourceLocation getFromRawEncoding(unsigned Encoding)
Turn a raw encoding of a SourceLocation object into a real SourceLocation.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:288
NameKind getNameKind() const
Determine what kind of name this is.
Represents a member of a struct/union/class.
Definition: Decl.h:2579
static DesignatedInitExpr * Create(const ASTContext &C, llvm::ArrayRef< Designator > Designators, ArrayRef< Expr *> IndexExprs, SourceLocation EqualOrColonLoc, bool GNUSyntax, Expr *Init)
Definition: Expr.cpp:3907
UnaryExprOrTypeTrait
Names for the "expression or type" traits.
Definition: TypeTraits.h:97
bool isReferenceType() const
Definition: Type.h:6308
void setArg(unsigned Arg, Expr *ArgExpr)
setArg - Set the specified argument.
Definition: Expr.h:2563
Token - This structure provides full information about a lexed token.
Definition: Token.h:35
static DeclRefExpr * Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc, QualType T, ExprValueKind VK, NamedDecl *FoundD=nullptr, const TemplateArgumentListInfo *TemplateArgs=nullptr)
Definition: Expr.cpp:406
Expr * getSubExpr()
Definition: Expr.h:3050
bool isArrow() const
isArrow - Return true if the base expression is a pointer to vector, return false if the base express...
Definition: Expr.cpp:3682
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:6644
NestedNameSpecifierLoc QualifierLoc
The nested-name-specifier that qualifies the name, including source-location information.
Definition: Expr.h:2673
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:110
struct FieldDesignator Field
A field designator, e.g., ".x".
Definition: Expr.h:4504
const Expr *const * const_semantics_iterator
Definition: Expr.h:5366
ShuffleVectorExpr(const ASTContext &C, ArrayRef< Expr *> args, QualType Type, SourceLocation BLoc, SourceLocation RP)
Definition: Expr.cpp:3746
Provides information about a function template specialization, which is a FunctionDecl that has been ...
Definition: DeclTemplate.h:508
StringRef getOpcodeStr() const
Definition: Expr.h:3343
bool isGLValue() const
Definition: Expr.h:252
static ParenListExpr * Create(const ASTContext &Ctx, SourceLocation LParenLoc, ArrayRef< Expr *> Exprs, SourceLocation RParenLoc)
Create a paren list.
Definition: Expr.cpp:4051
Describes an C or C++ initializer list.
Definition: Expr.h:4185
const TemplateArgumentList * TemplateArguments
The template arguments used to produce the function template specialization from the function templat...
Definition: DeclTemplate.h:540
bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const
EvaluateAsBooleanCondition - Return true if this is a constant which we can fold and convert to a boo...
void setValue(const ASTContext &C, const llvm::APInt &Val)
Definition: Expr.h:1293
BinaryOperatorKind
static FixedPointLiteral * CreateFromRawInt(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l, unsigned Scale)
Definition: Expr.cpp:814
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:2657
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:3958
An lvalue ref-qualifier was provided (&).
Definition: Type.h:1363
Base object ctor.
Definition: ABI.h:27
A convenient class for passing around template argument information.
Definition: TemplateBase.h:555
Qualifiers::GC getObjCGCAttrKind(QualType Ty) const
Return one of the GCNone, Weak or Strong Objective-C garbage collection attributes.
Expr * getPtr() const
Definition: Expr.h:5465
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6797
ExprValueKind getValueKind() const
getValueKind - The value kind that this expression produces.
Definition: Expr.h:405
NullPointerConstantValueDependence
Enumeration used to describe how isNullPointerConstant() should cope with value-dependent expressions...
Definition: Expr.h:709
unsigned getNumPreArgs() const
Definition: Expr.h:2477
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition: Type.h:1831
static bool isRecordType(QualType T)
semantics_iterator semantics_end()
Definition: Expr.h:5373
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3287
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6142
child_range children()
Definition: Expr.h:4368
bool isBoundMemberFunction(ASTContext &Ctx) const
Returns true if this expression is a bound member function.
Definition: Expr.cpp:2530
Expr * IgnoreParenCasts() LLVM_READONLY
IgnoreParenCasts - Ignore parentheses and casts.
Definition: Expr.cpp:2595
StringKind
StringLiteral is followed by several trailing objects.
Definition: Expr.h:1588
field_iterator field_begin() const
Definition: Decl.cpp:4145
SourceLocation getCaretLocation() const
Definition: Expr.cpp:2137
static SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart, unsigned Characters, const SourceManager &SM, const LangOptions &LangOpts)
AdvanceToTokenCharacter - If the current SourceLocation specifies a location at the start of a token...
Definition: Lexer.h:349
static bool isBooleanType(QualType Ty)
An adjustment to be made to the temporary created when emitting a reference binding, which accesses a particular subobject of that temporary.
Definition: Expr.h:61
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2998
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1217
SourceLocation getSpellingLoc(SourceLocation Loc) const
Given a SourceLocation object, return the spelling location referenced by the ID. ...
CXXTemporary * getTemporary()
Definition: ExprCXX.h:1236
bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const
isCXX98IntegralConstantExpr - Return true if this expression is an integral constant expression in C+...
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1649
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1478
static IntegerLiteral * Create(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l)
Returns a new integer literal with value &#39;V&#39; and type &#39;type&#39;.
Definition: Expr.cpp:792
NestedNameSpecifierLoc getQualifierLoc() const
If the name was qualified, retrieves the nested-name-specifier that precedes the name, with source-location information.
Definition: Expr.h:1133
bool isTypeDependent() const
isTypeDependent - Determines whether this expression is type-dependent (C++ [temp.dep.expr]), which means that its type could change from one template instantiation to the next.
Definition: Expr.h:167
An ordinary object is located at an address in memory.
Definition: Specifiers.h:126
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4044
Represents an ObjC class declaration.
Definition: DeclObjC.h:1172
SourceLocation getOperatorLoc() const
getOperatorLoc - Return the location of the operator.
Definition: Expr.h:1930
Expression is a GNU-style __null constant.
Definition: Expr.h:704
StmtClass
Definition: Stmt.h:68
const Stmt * getBody() const
Definition: Expr.cpp:2140
A binding in a decomposition declaration.
Definition: DeclCXX.h:3795
bool isUnevaluated(unsigned ID) const
Returns true if this builtin does not perform the side-effects of its arguments.
Definition: Builtins.h:128
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:1073
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix)
Retrieve the unary opcode that corresponds to the given overloaded operator.
Definition: Expr.cpp:1202
void setIntValue(const ASTContext &C, const llvm::APInt &Val)
Definition: Expr.cpp:763
bool isObjCSelfExpr() const
Check if this expression is the ObjC &#39;self&#39; implicit parameter.
Definition: Expr.cpp:3577
Represents the this expression in C++.
Definition: ExprCXX.h:976
static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc, Expr *LHS, Expr *RHS)
Definition: Expr.cpp:1960
Represents an explicit template argument list in C++, e.g., the "<int>" in "sort<int>".
Definition: TemplateBase.h:651
PredefinedExprBitfields PredefinedExprBits
Definition: Stmt.h:905
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition: Expr.h:3213
bool isInstantiationDependent() const
Whether this nested name specifier involves a template parameter.
void print(const PrintingPolicy &Policy, raw_ostream &Out) const
Print this template argument to the given output stream.
bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const
Returns true if this is a call to a builtin which does not evaluate side-effects within its arguments...
Definition: Expr.cpp:1390
bool hasAttr() const
Definition: DeclBase.h:531
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3582
llvm::iterator_range< const_child_iterator > const_child_range
Definition: Stmt.h:1099
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1241
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1613
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3687
bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const
EvaluateAsLValue - Evaluate an expression to see if we can fold it to an lvalue with link time known ...
Expr * IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY
IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the value (including ptr->int ...
Definition: Expr.cpp:2726
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1334
CastKind
CastKind - The kind of operation required for a conversion.
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat)
Definition: Expr.cpp:1844
Specifies that the expression should never be value-dependent.
Definition: Expr.h:711
UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) expression operand...
Definition: Expr.h:2222
iterator end()
Definition: ASTVector.h:100
InitListExpr * getUpdater() const
Definition: Expr.h:4771
ConstantExpr - An expression that occurs in a constant context.
Definition: Expr.h:904
void outputString(raw_ostream &OS) const
Definition: Expr.cpp:1005
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
ConstStmtIterator const_child_iterator
Definition: Stmt.h:1096
unsigned Offset
Definition: Format.cpp:1631
bool HasSideEffects(const ASTContext &Ctx, bool IncludePossibleEffects=true) const
HasSideEffects - This routine returns true for all those expressions which have any effect other than...
Definition: Expr.cpp:3101
Exposes information about the current target.
Definition: TargetInfo.h:54
An Objective-C property is a logical field of an Objective-C object which is read and written via Obj...
Definition: Specifiers.h:136
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:432
static StringLiteral * Create(const ASTContext &Ctx, StringRef Str, StringKind Kind, bool Pascal, QualType Ty, const SourceLocation *Loc, unsigned NumConcatenated)
This is the "fully general" constructor that allows representation of strings formed from multiple co...
Definition: Expr.cpp:983
static CallExpr * Create(const ASTContext &Ctx, Expr *Fn, ArrayRef< Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, unsigned MinNumArgs=0, ADLCallKind UsesADL=NotADL)
Create a call expression.
Definition: Expr.cpp:1283
QualType getCXXNameType() const
If this name is one of the C++ names (of a constructor, destructor, or conversion function)...
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:637
This represents one expression.
Definition: Expr.h:106
void setDesignators(const ASTContext &C, const Designator *Desigs, unsigned NumDesigs)
Definition: Expr.cpp:3926
SourceLocation End
ExprValueKind
The categorization of expression values, currently following the C++11 scheme.
Definition: Specifiers.h:107
void setCallee(Expr *F)
Definition: Expr.h:2516
std::string Label
IdentifierInfo * getFieldName() const
For a field or identifier offsetof node, returns the name of the field.
Definition: Expr.cpp:1493
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:1614
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6811
SourceLocation getBeginLoc() const
Retrieve the location of the beginning of this nested-name-specifier.
void setTypeDependent(bool TD)
Set whether this expression is type-dependent or not.
Definition: Expr.h:170
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2706
Expr * getCallee()
Definition: Expr.h:2514
unsigned getNumInits() const
Definition: Expr.h:4215
const Expr * skipRValueSubobjectAdjustments() const
Definition: Expr.h:860
field_iterator field_end() const
Definition: Decl.h:3787
DeclContext * getDeclContext()
Definition: DeclBase.h:427
ExprBitfields ExprBits
Definition: Stmt.h:904
bool hasQualifier() const
Determine whether this declaration reference was preceded by a C++ nested-name-specifier, e.g., N::foo.
Definition: Expr.h:1129
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)
Retrieve the overloaded operator kind that corresponds to the given unary opcode. ...
Definition: Expr.cpp:1217
static FloatingLiteral * Create(const ASTContext &C, const llvm::APFloat &V, bool isexact, QualType Type, SourceLocation L)
Definition: Expr.cpp:848
Represents the type decltype(expr) (C++11).
Definition: Type.h:4246
void getAsStringInternal(std::string &Str, const PrintingPolicy &Policy) const
ArrayRef< Expr * > inits()
Definition: Expr.h:4225
Specifies that a value-dependent expression of integral or dependent type should be considered a null...
Definition: Expr.h:715
Extra data stored in some MemberExpr objects.
Definition: Expr.h:2670
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const
Determine whether the result of this expression is a temporary object of the given class type...
Definition: Expr.cpp:2800
Base object dtor.
Definition: ABI.h:37
QualType getType() const
Definition: Expr.h:128
StringLiteralBitfields StringLiteralBits
Definition: Stmt.h:908
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1752
static PredefinedExpr * Create(const ASTContext &Ctx, SourceLocation L, QualType FNTy, IdentKind IK, StringLiteral *SL)
Create a PredefinedExpr.
Definition: Expr.cpp:497
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:904
InitListExpr(const ASTContext &C, SourceLocation lbraceloc, ArrayRef< Expr *> initExprs, SourceLocation rbraceloc)
Definition: Expr.cpp:1992
Expr * getSubExprAsWritten()
Retrieve the cast subexpression as it was written in the source code, looking through any implicit ca...
Definition: Expr.cpp:1767
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1896
unsigned Index
Location of the first index expression within the designated initializer expression&#39;s list of subexpr...
Definition: Expr.h:4478
Represents a GCC generic vector type.
Definition: Type.h:3168
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:4595
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:3958
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:1078
Allow UB that we can give a value, but not arbitrary unmodeled side effects.
Definition: Expr.h:597
ValueDecl * getDecl()
Definition: Expr.h:1114
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1396
The result type of a method or function.
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2026
CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style cast in C++ (C++ [expr.cast]), which uses the syntax (Type)expr.
Definition: Expr.h:3224
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:703
ImplicitParamDecl * getSelfDecl() const
Definition: DeclObjC.h:414
reverse_iterator rend()
Definition: ASTVector.h:106
do v
Definition: arm_acle.h:78
const SourceManager & SM
Definition: Format.cpp:1490
__UINTPTR_TYPE__ uintptr_t
An unsigned integer type with the property that any valid pointer to void can be converted to this ty...
Definition: opencl-c.h:90
SourceRange getSourceRange() const
Definition: ExprCXX.h:141
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:301
ExprObjectKind getObjectKind() const
getObjectKind - The object kind that this expression produces.
Definition: Expr.h:412
unsigned getBuiltinCallee() const
getBuiltinCallee - If this is a call to a builtin, return the builtin ID of the callee.
Definition: Expr.cpp:1368
unsigned getWCharWidth() const
getWCharWidth/Align - Return the size of &#39;wchar_t&#39; for this target, in bits.
Definition: TargetInfo.h:543
RecordDecl * getDecl() const
Definition: Type.h:4380
SourceLocation getOperatorLoc() const
Returns the location of the operator symbol in the expression.
Definition: ExprCXX.h:129
Expr * IgnoreCasts() LLVM_READONLY
Ignore casts. Strip off any CastExprs, returning their operand.
Definition: Expr.cpp:2621
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO)
Retrieve the binary opcode that corresponds to the given overloaded operator.
Definition: Expr.cpp:1897
const llvm::fltSemantics & getSemantics() const
Return the APFloat semantics this literal uses.
Definition: Expr.cpp:858
Expr * IgnoreConversionOperator() LLVM_READONLY
IgnoreConversionOperator - Ignore conversion operator.
Definition: Expr.cpp:2715
AtomicExpr(SourceLocation BLoc, ArrayRef< Expr *> args, QualType t, AtomicOp op, SourceLocation RP)
Definition: Expr.cpp:4168
unsigned DotLoc
The location of the &#39;.&#39; in the designated initializer.
Definition: Expr.h:4468
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo, QualType resultType, SourceLocation op, SourceLocation rp)
Definition: Expr.h:2230
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:362
void ExpandDesignator(const ASTContext &C, unsigned Idx, const Designator *First, const Designator *Last)
Replaces the designator at index Idx with the series of designators in [First, Last).
Definition: Expr.cpp:3981
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:945
Expr * getBase() const
Definition: Expr.h:4768
ParenListExprBitfields ParenListExprBits
Definition: Stmt.h:918
static StringRef getIdentKindName(IdentKind IK)
Definition: Expr.cpp:513
#define false
Definition: stdbool.h:33
Kind
QualType getCanonicalType() const
Definition: Type.h:6111
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5299
bool isInstantiationDependent() const
Whether this expression is instantiation-dependent, meaning that it depends in some way on a template...
Definition: Expr.h:191
SourceLocation getRAngleLoc() const
Retrieve the location of the right angle bracket ending the explicit template argument list following...
Definition: Expr.h:1183
NullPointerConstantKind isNullPointerConstant(ASTContext &Ctx, NullPointerConstantValueDependence NPC) const
isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to a Null pointer constant...
Definition: Expr.cpp:3438
Encodes a location in the source.
QualType getReturnType() const
Definition: Type.h:3613
SourceLocation getOperatorLoc() const
Definition: Expr.h:3319
PseudoObjectExprBitfields PseudoObjectExprBits
Definition: Stmt.h:919
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:6188
Expression is not a Null pointer constant.
Definition: Expr.h:688
Expr * getSubExpr() const
Definition: Expr.h:1926
CastKind getCastKind() const
Definition: Expr.h:3044
static const FieldDecl * getTargetFieldForToUnionCast(QualType unionType, QualType opType)
Definition: Expr.cpp:1824
A call to a literal operator (C++11 [over.literal]) written as a user-defined literal (C++11 [lit...
Definition: ExprCXX.h:481
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3064
ObjCMethodFamily getMethodFamily() const
Definition: ExprObjC.h:1322
unsigned getChar16Width() const
getChar16Width/Align - Return the size of &#39;char16_t&#39; for this target, in bits.
Definition: TargetInfo.h:548
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:171
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:376
llvm::iterator_range< capture_init_iterator > capture_inits()
Retrieve the initialization expressions for this lambda&#39;s captures.
Definition: ExprCXX.h:1783
static StringLiteral * CreateEmpty(const ASTContext &Ctx, unsigned NumConcatenated, unsigned Length, unsigned CharByteWidth)
Construct an empty string literal.
Definition: Expr.cpp:994
static QualType getUnderlyingType(const SubRegion *R)
Expr * getInClassInitializer() const
Get the C++11 default member initializer for this member, or null if one has not been set...
Definition: Decl.h:2721
void FixedPointValueToString(SmallVectorImpl< char > &Str, llvm::APSInt Val, unsigned Scale)
Definition: Type.cpp:4017
ExprObjectKind
A further classification of the kind of object referenced by an l-value or x-value.
Definition: Specifiers.h:124
static OffsetOfExpr * Create(const ASTContext &C, QualType type, SourceLocation OperatorLoc, TypeSourceInfo *tsi, ArrayRef< OffsetOfNode > comps, ArrayRef< Expr *> exprs, SourceLocation RParenLoc)
Definition: Expr.cpp:1447
bool isIntegralType(const ASTContext &Ctx) const
Determine whether this type is an integral type.
Definition: Type.cpp:1759
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2041
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2413
std::string getValueAsString(unsigned Radix) const
Definition: Expr.cpp:822
static std::string ComputeName(IdentKind IK, const Decl *CurrentDecl)
Definition: Expr.cpp:537
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2285
Specifies that a value-dependent expression should be considered to never be a null pointer constant...
Definition: Expr.h:719
CanQualType VoidTy
Definition: ASTContext.h:1016
Expr * updateInit(const ASTContext &C, unsigned Init, Expr *expr)
Updates the initializer at index Init with the new expression expr, and returns the old expression at...
Definition: Expr.cpp:2023
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:1437
bool isValueDependent() const
isValueDependent - Determines whether this expression is value-dependent (C++ [temp.dep.constexpr]).
Definition: Expr.h:149
AccessSpecifier getAccess() const
bool isKnownToHaveBooleanValue() const
isKnownToHaveBooleanValue - Return true if this is an integer expression that is known to return 0 or...
Definition: Expr.cpp:134
RefQualifierKind
The kind of C++11 ref-qualifier associated with a function type.
Definition: Type.h:1358
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3115
static QualType findBoundMemberType(const Expr *expr)
Given an expression of bound-member type, find the type of the member.
Definition: Expr.cpp:2536
Expr ** getInits()
Retrieve the set of initializers.
Definition: Expr.h:4218
bool refersToVectorElement() const
Returns whether this expression refers to a vector element.
Definition: Expr.cpp:3642
static DesignatedInitExpr * CreateEmpty(const ASTContext &C, unsigned NumIndexExprs)
Definition: Expr.cpp:3919
Used for C&#39;s _Alignof and C++&#39;s alignof.
Definition: TypeTraits.h:101
const CXXRecordDecl * getBestDynamicClassType() const
For an expression of class type or pointer to class type, return the most derived class decl the expr...
Definition: Expr.cpp:62
Expr * getArrayRangeStart(const Designator &D) const
Definition: Expr.cpp:3967
const ObjCMethodDecl * getMethodDecl() const
Definition: ExprObjC.h:1303
bool isVectorType() const
Definition: Type.h:6381
__DEVICE__ void * memcpy(void *__a, const void *__b, size_t __c)
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1366
unsigned LBracketLoc
The location of the &#39;[&#39; starting the array range designator.
Definition: Expr.h:4480
MemberExprBitfields MemberExprBits
Definition: Stmt.h:914
Expr * getArrayFiller()
If this initializer list initializes an array with more elements than there are initializers in the l...
Definition: Expr.h:4279
LLVM_READONLY bool isPrintable(unsigned char c)
Return true if this character is an ASCII printable character; that is, a character that should take ...
Definition: CharInfo.h:140
void sawArrayRangeDesignator(bool ARD=true)
Definition: Expr.h:4356
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2293
bool isInstantiationDependentType() const
Determine whether this type is an instantiation-dependent type, meaning that the type involves a temp...
Definition: Type.h:2085
static MemberExpr * Create(const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *memberdecl, DeclAccessPair founddecl, DeclarationNameInfo MemberNameInfo, const TemplateArgumentListInfo *targs, QualType ty, ExprValueKind VK, ExprObjectKind OK)
Definition: Expr.cpp:1539
A placeholder type used to construct an empty shell of a type, that will be filled in later (e...
Definition: Stmt.h:976
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:215
Expr * getLHS() const
Definition: Expr.h:3327
A POD class for pairing a NamedDecl* with an access specifier.
DeclarationNameLoc - Additional source/type location info for a declaration name. ...
void * Allocate(size_t Size, unsigned Align=8) const
Definition: ASTContext.h:669
Represents a C11 generic selection.
Definition: Expr.h:5010
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:2111
SourceRange getDesignatorsSourceRange() const
Definition: Expr.cpp:3935
StreamedQualTypeHelper stream(const PrintingPolicy &Policy, const Twine &PlaceHolder=Twine(), unsigned Indentation=0) const
Definition: Type.h:1027
Dataflow Directional Tag Classes.
NestedNameSpecifier * getNestedNameSpecifier() const
Retrieve the nested-name-specifier to which this instance refers.
bool isValid() const
Return true if this is a valid SourceLocation object.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:2093
[C99 6.4.2.2] - A predefined identifier such as func.
Definition: Expr.h:1758
UnaryOperatorKind
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1262
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:571
bool hasSideEffects(Expr *E, ASTContext &Ctx)
Definition: Transforms.cpp:168
OverloadedOperatorKind getOperator() const
Returns the kind of overloaded operator that this expression refers to.
Definition: ExprCXX.h:107
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:22
Decl * getReferencedDeclOfCallee()
Definition: Expr.cpp:1342
A field designator, e.g., ".x".
Definition: Expr.h:4458
void setExprs(const ASTContext &C, ArrayRef< Expr *> Exprs)
Definition: Expr.cpp:3770
bool isDependent() const
Whether this nested name specifier refers to a dependent type or not.
AccessSpecifier getAccess() const
Definition: DeclBase.h:462
FunctionDecl * getTemplateInstantiationPattern() const
Retrieve the function declaration from which this function could be instantiated, if it is an instant...
Definition: Decl.cpp:3414
StmtClass getStmtClass() const
Definition: Stmt.h:1029
const char * getCastKindName() const
Definition: Expr.h:3048
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2166
bool isBooleanType() const
Definition: Type.h:6657
Expression is a Null pointer constant built from a zero integer expression that is not a simple...
Definition: Expr.h:695
void resize(const ASTContext &C, unsigned N, const T &NV)
Definition: ASTVector.h:342
static PseudoObjectExpr * Create(const ASTContext &Context, Expr *syntactic, ArrayRef< Expr *> semantic, unsigned resultIndex)
Definition: Expr.cpp:4092
void setInstantiationDependent(bool ID)
Set whether this expression is instantiation-dependent or not.
Definition: Expr.h:196
const T * const_iterator
Definition: ASTVector.h:87
Expression is a C++11 nullptr.
Definition: Expr.h:701
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2756
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
unsigned getNumElements() const
getNumElements - Get the number of components being selected.
Definition: Expr.cpp:3686
semantics_iterator semantics_begin()
Definition: Expr.h:5367
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition: Expr.cpp:1396
ConstEvaluatedExprVisitor - This class visits &#39;const Expr *&#39;s.
ExplicitCastExpr - An explicit cast written in the source code.
Definition: Expr.h:3190
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:2017
Expr * IgnoreParenImpCasts() LLVM_READONLY
IgnoreParenImpCasts - Ignore parentheses and implicit casts.
Definition: Expr.cpp:2693
Expr * getArrayRangeEnd(const Designator &D) const
Definition: Expr.cpp:3973
llvm::APInt getValue() const
Definition: Expr.h:1292
unsigned getNumSubExprs() const
Definition: Expr.h:5498
Pointer to a block type.
Definition: Type.h:2639
GenericSelectionExpr(const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, ArrayRef< TypeSourceInfo *> AssocTypes, ArrayRef< Expr *> AssocExprs, SourceLocation DefaultLoc, SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
Definition: Expr.cpp:3778
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:4017
bool isStringLiteralInit() const
Definition: Expr.cpp:2045
struct ArrayOrRangeDesignator ArrayOrRange
An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
Definition: Expr.h:4506
unsigned getIntWidth(QualType T) const
Not an overloaded operator.
Definition: OperatorKinds.h:23
bool isIncompleteArrayType() const
Definition: Type.h:6353
DeclarationNameInfo getNameInfo() const
Definition: Expr.h:1118
bool HasSideEffects
Whether the evaluated expression has side effects.
Definition: Expr.h:544
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4370
Location wrapper for a TemplateArgument.
Definition: TemplateBase.h:450
bool empty() const
Definition: Type.h:414
bool body_empty() const
Definition: Stmt.h:1268
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2312
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6578
bool isConstantInitializer(ASTContext &Ctx, bool ForRef, const Expr **Culprit=nullptr) const
isConstantInitializer - Returns true if this expression can be emitted to IR as a constant...
Definition: Expr.cpp:2894
T * getAttr() const
Definition: DeclBase.h:527
static CStyleCastExpr * Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind K, Expr *Op, const CXXCastPath *BasePath, TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation R)
Definition: Expr.cpp:1865
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:4021
Represents a call to a CUDA kernel function.
Definition: ExprCXX.h:219
bool isFunctionType() const
Definition: Type.h:6292
static ImplicitCastExpr * CreateEmpty(const ASTContext &Context, unsigned PathSize)
Definition: Expr.cpp:1858
Expr * IgnoreParenLValueCasts() LLVM_READONLY
Ignore parentheses and lvalue casts.
Definition: Expr.cpp:2650
Opcode getOpcode() const
Definition: Expr.h:1921
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition: ExprCXX.h:1413
NamedDecl * getConversionFunction() const
If this cast applies a user-defined conversion, retrieve the conversion function that it invokes...
Definition: Expr.cpp:1793
UnaryExprOrTypeTraitExprBitfields UnaryExprOrTypeTraitExprBits
Definition: Stmt.h:911
Represents a base class of a C++ class.
Definition: DeclCXX.h:192
iterator begin()
Definition: ASTVector.h:98
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2070
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:513
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2253
llvm::iterator_range< specific_attr_iterator< T > > specific_attrs() const
Definition: DeclBase.h:513
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1137
A template argument list.
Definition: DeclTemplate.h:210
static CStyleCastExpr * CreateEmpty(const ASTContext &Context, unsigned PathSize)
Definition: Expr.cpp:1880
static const Expr * skipTemporaryBindingsNoOpCastsAndParens(const Expr *E)
Skip over any no-op casts and any temporary-binding expressions.
Definition: Expr.cpp:2774
bool refersToGlobalRegisterVar() const
Returns whether this expression refers to a global register variable.
Definition: Expr.cpp:3668
bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc, SourceRange &R1, SourceRange &R2, ASTContext &Ctx) const
isUnusedResultAWarning - Return true if this immediate expression should be warned about if the resul...
Definition: Expr.cpp:2156
void reserve(const ASTContext &C, unsigned N)
Definition: ASTVector.h:174
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
Expression is a Null pointer constant built from a literal zero.
Definition: Expr.h:698
void Deallocate(void *Ptr) const
Definition: ASTContext.h:675
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2682
CallingConv getCallConv() const
Definition: Type.h:3623
Represents a C++ struct/union/class.
Definition: DeclCXX.h:300
bool isVoidType() const
Definition: Type.h:6544
bool isSyntacticForm() const
Definition: Expr.h:4339
TypeInfo getTypeInfo(const Type *T) const
Get the size and alignment of the specified complete type in bits.
unsigned getBuiltinID() const
Returns a value indicating whether this function corresponds to a builtin function.
Definition: Decl.cpp:2994
static QualType getBaseOriginalType(const Expr *Base)
Return original type of the base expression for array section.
Definition: Expr.cpp:4257
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:3977
static bool hasAnyTypeDependentArguments(ArrayRef< Expr *> Exprs)
hasAnyTypeDependentArguments - Determines if any of the expressions in Exprs is type-dependent.
Definition: Expr.cpp:2886
Represents an explicit C++ type conversion that uses "functional" notation (C++ [expr.type.conv]).
Definition: ExprCXX.h:1519
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:6099
Expr * getRHS() const
Definition: Expr.h:3628
bool hasUnusedResultAttr(const ASTContext &Ctx) const
Returns true if this call expression should warn on unused results.
Definition: Expr.h:2631
bool isPRValue() const
Definition: Expr.h:355
Builtin::Context & BuiltinInfo
Definition: ASTContext.h:568
bool containsUnexpandedParameterPack() const
Whether this expression contains an unexpanded parameter pack (for C++11 variadic templates)...
Definition: Expr.h:214
bool isRValue() const
Definition: Expr.h:250
static ParenListExpr * CreateEmpty(const ASTContext &Ctx, unsigned NumExprs)
Create an empty paren list.
Definition: Expr.cpp:4060
StringLiteralParser - This decodes string escape characters and performs wide string analysis and Tra...
void setPreArg(unsigned I, Stmt *PreArg)
Definition: Expr.h:2472
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:276
bool isImplicitCXXThis() const
Whether this expression is an implicit reference to &#39;this&#39; in C++.
Definition: Expr.cpp:2842
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1566
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2396
bool isBuiltinAssumeFalse(const ASTContext &Ctx) const
Return true if this is a call to __assume() or __builtin_assume() with a non-value-dependent constant...
Definition: Expr.cpp:3067
Designator * getDesignator(unsigned Idx)
Definition: Expr.h:4630
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:276
void reserveInits(const ASTContext &C, unsigned NumInits)
Reserve space for some number of initializers.
Definition: Expr.cpp:2014
uint64_t Width
Definition: ASTContext.h:144
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:954
DeclAccessPair FoundDecl
The DeclAccessPair through which the MemberDecl was found due to name qualifiers. ...
Definition: Expr.h:2677
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2079
bool isEvaluatable(const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
isEvaluatable - Call EvaluateAsRValue to see if this expression can be constant folded without side-e...
std::reverse_iterator< const_iterator > const_reverse_iterator
Definition: ASTVector.h:89
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1600
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1041
bool isUnion() const
Definition: Decl.h:3252
Expr * getRHS() const
Definition: Expr.h:3329
bool isPointerType() const
Definition: Type.h:6296
CallExprBitfields CallExprBits
Definition: Stmt.h:913
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)
Retrieve the overloaded operator kind that corresponds to the given binary opcode.
Definition: Expr.cpp:1935
FieldDecl * getInitializedFieldInUnion()
If this initializes a union, specifies which field in the union to initialize.
Definition: Expr.h:4297
bool isDefaultArgument() const
Determine whether this expression is a default function argument.
Definition: Expr.cpp:2761
bool isOBJCGCCandidate(ASTContext &Ctx) const
isOBJCGCCandidate - Return true if this expression may be used in a read/ write barrier.
Definition: Expr.cpp:2491
QualType getType() const
Definition: Decl.h:648
#define true
Definition: stdbool.h:32
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:114
unsigned getNumArgs() const
Return the number of arguments to the constructor call.
Definition: ExprCXX.h:1410
A trivial tuple used to represent a source range.
static StringRef getOpcodeStr(Opcode Op)
getOpcodeStr - Turn an Opcode enum value into the punctuation char it corresponds to...
Definition: Expr.cpp:1193
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1428
This represents a decl that may have a name.
Definition: Decl.h:249
OffsetOfExpr - [C99 7.17] - This represents an expression of the form offsetof(record-type, member-designator).
Definition: Expr.h:2117
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2971
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:4601
static int getAccessorIdx(char c, bool isNumericAccessor)
Definition: Type.h:3332
QualType getValueType() const
Definition: Expr.cpp:4250
static CallExpr * CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, EmptyShell Empty)
Create an empty call expression, for deserialization.
Definition: Expr.cpp:1305
double getValueAsApproximateDouble() const
getValueAsApproximateDouble - This returns the value as an inaccurate double.
Definition: Expr.cpp:896
bool isInstanceMessage() const
Determine whether this is an instance message to either a computed object or to super.
Definition: ExprObjC.h:1195
Decl * getCalleeDecl()
Definition: Expr.h:2526
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition: Decl.cpp:3055
void removeAddressSpace()
Definition: Type.h:377
const LangOptions & getLangOpts() const
Definition: ASTContext.h:707
ObjCCategoryImplDecl - An object of this class encapsulates a category @implementation declaration...
Definition: DeclObjC.h:2499
IdentifierInfo * getFieldName() const
Definition: Expr.cpp:3833
This class handles loading and caching of source files into memory.
InitListExpr * getSyntacticForm() const
Definition: Expr.h:4342
Defines enum values for all the target-independent builtin functions.
NullPointerConstantKind
Enumeration used to describe the kind of Null pointer constant returned from isNullPointerConstant()...
Definition: Expr.h:686
Attr - This represents one attribute.
Definition: Attr.h:44
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:98
std::pair< FileID, unsigned > getDecomposedLoc(SourceLocation Loc) const
Decompose the specified location into a raw FileID + Offset pair.
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2560
SourceRange getSourceRange() const LLVM_READONLY
Definition: Expr.h:4604