clang  8.0.0
SemaStmt.cpp
Go to the documentation of this file.
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for statements.
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/AST/TypeOrdering.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallString.h"
40 #include "llvm/ADT/SmallVector.h"
41 
42 using namespace clang;
43 using namespace sema;
44 
45 StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) {
46  if (FE.isInvalid())
47  return StmtError();
48 
49  FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue);
50  if (FE.isInvalid())
51  return StmtError();
52 
53  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
54  // void expression for its side effects. Conversion to void allows any
55  // operand, even incomplete types.
56 
57  // Same thing in for stmt first clause (when expr) and third clause.
58  return StmtResult(FE.getAs<Stmt>());
59 }
60 
61 
63  DiscardCleanupsInEvaluationContext();
64  return StmtError();
65 }
66 
68  bool HasLeadingEmptyMacro) {
69  return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
70 }
71 
73  SourceLocation EndLoc) {
74  DeclGroupRef DG = dg.get();
75 
76  // If we have an invalid decl, just return an error.
77  if (DG.isNull()) return StmtError();
78 
79  return new (Context) DeclStmt(DG, StartLoc, EndLoc);
80 }
81 
83  DeclGroupRef DG = dg.get();
84 
85  // If we don't have a declaration, or we have an invalid declaration,
86  // just return.
87  if (DG.isNull() || !DG.isSingleDecl())
88  return;
89 
90  Decl *decl = DG.getSingleDecl();
91  if (!decl || decl->isInvalidDecl())
92  return;
93 
94  // Only variable declarations are permitted.
95  VarDecl *var = dyn_cast<VarDecl>(decl);
96  if (!var) {
97  Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
98  decl->setInvalidDecl();
99  return;
100  }
101 
102  // foreach variables are never actually initialized in the way that
103  // the parser came up with.
104  var->setInit(nullptr);
105 
106  // In ARC, we don't need to retain the iteration variable of a fast
107  // enumeration loop. Rather than actually trying to catch that
108  // during declaration processing, we remove the consequences here.
109  if (getLangOpts().ObjCAutoRefCount) {
110  QualType type = var->getType();
111 
112  // Only do this if we inferred the lifetime. Inferred lifetime
113  // will show up as a local qualifier because explicit lifetime
114  // should have shown up as an AttributedType instead.
116  // Add 'const' and mark the variable as pseudo-strong.
117  var->setType(type.withConst());
118  var->setARCPseudoStrong(true);
119  }
120  }
121 }
122 
123 /// Diagnose unused comparisons, both builtin and overloaded operators.
124 /// For '==' and '!=', suggest fixits for '=' or '|='.
125 ///
126 /// Adding a cast to void (or other expression wrappers) will prevent the
127 /// warning from firing.
128 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
129  SourceLocation Loc;
130  bool CanAssign;
131  enum { Equality, Inequality, Relational, ThreeWay } Kind;
132 
133  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
134  if (!Op->isComparisonOp())
135  return false;
136 
137  if (Op->getOpcode() == BO_EQ)
138  Kind = Equality;
139  else if (Op->getOpcode() == BO_NE)
140  Kind = Inequality;
141  else if (Op->getOpcode() == BO_Cmp)
142  Kind = ThreeWay;
143  else {
144  assert(Op->isRelationalOp());
145  Kind = Relational;
146  }
147  Loc = Op->getOperatorLoc();
148  CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
149  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
150  switch (Op->getOperator()) {
151  case OO_EqualEqual:
152  Kind = Equality;
153  break;
154  case OO_ExclaimEqual:
155  Kind = Inequality;
156  break;
157  case OO_Less:
158  case OO_Greater:
159  case OO_GreaterEqual:
160  case OO_LessEqual:
161  Kind = Relational;
162  break;
163  case OO_Spaceship:
164  Kind = ThreeWay;
165  break;
166  default:
167  return false;
168  }
169 
170  Loc = Op->getOperatorLoc();
171  CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
172  } else {
173  // Not a typo-prone comparison.
174  return false;
175  }
176 
177  // Suppress warnings when the operator, suspicious as it may be, comes from
178  // a macro expansion.
179  if (S.SourceMgr.isMacroBodyExpansion(Loc))
180  return false;
181 
182  S.Diag(Loc, diag::warn_unused_comparison)
183  << (unsigned)Kind << E->getSourceRange();
184 
185  // If the LHS is a plausible entity to assign to, provide a fixit hint to
186  // correct common typos.
187  if (CanAssign) {
188  if (Kind == Inequality)
189  S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
190  << FixItHint::CreateReplacement(Loc, "|=");
191  else if (Kind == Equality)
192  S.Diag(Loc, diag::note_equality_comparison_to_assign)
193  << FixItHint::CreateReplacement(Loc, "=");
194  }
195 
196  return true;
197 }
198 
200  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
201  return DiagnoseUnusedExprResult(Label->getSubStmt());
202 
203  const Expr *E = dyn_cast_or_null<Expr>(S);
204  if (!E)
205  return;
206 
207  // If we are in an unevaluated expression context, then there can be no unused
208  // results because the results aren't expected to be used in the first place.
209  if (isUnevaluatedContext())
210  return;
211 
212  SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
213  // In most cases, we don't want to warn if the expression is written in a
214  // macro body, or if the macro comes from a system header. If the offending
215  // expression is a call to a function with the warn_unused_result attribute,
216  // we warn no matter the location. Because of the order in which the various
217  // checks need to happen, we factor out the macro-related test here.
218  bool ShouldSuppress =
219  SourceMgr.isMacroBodyExpansion(ExprLoc) ||
220  SourceMgr.isInSystemMacro(ExprLoc);
221 
222  const Expr *WarnExpr;
223  SourceLocation Loc;
224  SourceRange R1, R2;
225  if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
226  return;
227 
228  // If this is a GNU statement expression expanded from a macro, it is probably
229  // unused because it is a function-like macro that can be used as either an
230  // expression or statement. Don't warn, because it is almost certainly a
231  // false positive.
232  if (isa<StmtExpr>(E) && Loc.isMacroID())
233  return;
234 
235  // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
236  // That macro is frequently used to suppress "unused parameter" warnings,
237  // but its implementation makes clang's -Wunused-value fire. Prevent this.
238  if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
239  SourceLocation SpellLoc = Loc;
240  if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
241  return;
242  }
243 
244  // Okay, we have an unused result. Depending on what the base expression is,
245  // we might want to make a more specific diagnostic. Check for one of these
246  // cases now.
247  unsigned DiagID = diag::warn_unused_expr;
248  if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
249  E = Temps->getSubExpr();
250  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
251  E = TempExpr->getSubExpr();
252 
253  if (DiagnoseUnusedComparison(*this, E))
254  return;
255 
256  E = WarnExpr;
257  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
258  if (E->getType()->isVoidType())
259  return;
260 
261  if (const Attr *A = CE->getUnusedResultAttr(Context)) {
262  Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
263  return;
264  }
265 
266  // If the callee has attribute pure, const, or warn_unused_result, warn with
267  // a more specific message to make it clear what is happening. If the call
268  // is written in a macro body, only warn if it has the warn_unused_result
269  // attribute.
270  if (const Decl *FD = CE->getCalleeDecl()) {
271  if (ShouldSuppress)
272  return;
273  if (FD->hasAttr<PureAttr>()) {
274  Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
275  return;
276  }
277  if (FD->hasAttr<ConstAttr>()) {
278  Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
279  return;
280  }
281  }
282  } else if (ShouldSuppress)
283  return;
284 
285  if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
286  if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
287  Diag(Loc, diag::err_arc_unused_init_message) << R1;
288  return;
289  }
290  const ObjCMethodDecl *MD = ME->getMethodDecl();
291  if (MD) {
292  if (const auto *A = MD->getAttr<WarnUnusedResultAttr>()) {
293  Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
294  return;
295  }
296  }
297  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
298  const Expr *Source = POE->getSyntacticForm();
299  if (isa<ObjCSubscriptRefExpr>(Source))
300  DiagID = diag::warn_unused_container_subscript_expr;
301  else
302  DiagID = diag::warn_unused_property_expr;
303  } else if (const CXXFunctionalCastExpr *FC
304  = dyn_cast<CXXFunctionalCastExpr>(E)) {
305  const Expr *E = FC->getSubExpr();
306  if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
307  E = TE->getSubExpr();
308  if (isa<CXXTemporaryObjectExpr>(E))
309  return;
310  if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
311  if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
312  if (!RD->getAttr<WarnUnusedAttr>())
313  return;
314  }
315  // Diagnose "(void*) blah" as a typo for "(void) blah".
316  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
317  TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
318  QualType T = TI->getType();
319 
320  // We really do want to use the non-canonical type here.
321  if (T == Context.VoidPtrTy) {
323 
324  Diag(Loc, diag::warn_unused_voidptr)
326  return;
327  }
328  }
329 
330  if (E->isGLValue() && E->getType().isVolatileQualified()) {
331  Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
332  return;
333  }
334 
335  DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
336 }
337 
338 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
339  PushCompoundScope(IsStmtExpr);
340 }
341 
343  PopCompoundScope();
344 }
345 
347  return getCurFunction()->CompoundScopes.back();
348 }
349 
351  return getCurCompoundScope().IsStmtExpr;
352 }
353 
355  ArrayRef<Stmt *> Elts, bool isStmtExpr) {
356  const unsigned NumElts = Elts.size();
357 
358  // If we're in C89 mode, check that we don't have any decls after stmts. If
359  // so, emit an extension diagnostic.
360  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
361  // Note that __extension__ can be around a decl.
362  unsigned i = 0;
363  // Skip over all declarations.
364  for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
365  /*empty*/;
366 
367  // We found the end of the list or a statement. Scan for another declstmt.
368  for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
369  /*empty*/;
370 
371  if (i != NumElts) {
372  Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
373  Diag(D->getLocation(), diag::ext_mixed_decls_code);
374  }
375  }
376 
377  // Check for suspicious empty body (null statement) in `for' and `while'
378  // statements. Don't do anything for template instantiations, this just adds
379  // noise.
380  if (NumElts != 0 && !CurrentInstantiationScope &&
381  getCurCompoundScope().HasEmptyLoopBodies) {
382  for (unsigned i = 0; i != NumElts - 1; ++i)
383  DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
384  }
385 
386  return CompoundStmt::Create(Context, Elts, L, R);
387 }
388 
391  if (!Val.get())
392  return Val;
393 
394  if (DiagnoseUnexpandedParameterPack(Val.get()))
395  return ExprError();
396 
397  // If we're not inside a switch, let the 'case' statement handling diagnose
398  // this. Just clean up after the expression as best we can.
399  if (!getCurFunction()->SwitchStack.empty()) {
400  Expr *CondExpr =
401  getCurFunction()->SwitchStack.back().getPointer()->getCond();
402  if (!CondExpr)
403  return ExprError();
404  QualType CondType = CondExpr->getType();
405 
406  auto CheckAndFinish = [&](Expr *E) {
407  if (CondType->isDependentType() || E->isTypeDependent())
408  return ExprResult(E);
409 
410  if (getLangOpts().CPlusPlus11) {
411  // C++11 [stmt.switch]p2: the constant-expression shall be a converted
412  // constant expression of the promoted type of the switch condition.
413  llvm::APSInt TempVal;
414  return CheckConvertedConstantExpression(E, CondType, TempVal,
415  CCEK_CaseValue);
416  }
417 
418  ExprResult ER = E;
419  if (!E->isValueDependent())
420  ER = VerifyIntegerConstantExpression(E);
421  if (!ER.isInvalid())
422  ER = DefaultLvalueConversion(ER.get());
423  if (!ER.isInvalid())
424  ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
425  return ER;
426  };
427 
428  ExprResult Converted = CorrectDelayedTyposInExpr(Val, CheckAndFinish);
429  if (Converted.get() == Val.get())
430  Converted = CheckAndFinish(Val.get());
431  if (Converted.isInvalid())
432  return ExprError();
433  Val = Converted;
434  }
435 
436  return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
437  getLangOpts().CPlusPlus11);
438 }
439 
442  SourceLocation DotDotDotLoc, ExprResult RHSVal,
444  assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
445  assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
446  : RHSVal.isInvalid() || RHSVal.get()) &&
447  "missing RHS value");
448 
449  if (getCurFunction()->SwitchStack.empty()) {
450  Diag(CaseLoc, diag::err_case_not_in_switch);
451  return StmtError();
452  }
453 
454  if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
455  getCurFunction()->SwitchStack.back().setInt(true);
456  return StmtError();
457  }
458 
459  auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
460  CaseLoc, DotDotDotLoc, ColonLoc);
461  getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
462  return CS;
463 }
464 
465 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
466 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
467  cast<CaseStmt>(S)->setSubStmt(SubStmt);
468 }
469 
472  Stmt *SubStmt, Scope *CurScope) {
473  if (getCurFunction()->SwitchStack.empty()) {
474  Diag(DefaultLoc, diag::err_default_not_in_switch);
475  return SubStmt;
476  }
477 
478  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
479  getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
480  return DS;
481 }
482 
485  SourceLocation ColonLoc, Stmt *SubStmt) {
486  // If the label was multiply defined, reject it now.
487  if (TheDecl->getStmt()) {
488  Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
489  Diag(TheDecl->getLocation(), diag::note_previous_definition);
490  return SubStmt;
491  }
492 
493  // Otherwise, things are good. Fill in the declaration and return it.
494  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
495  TheDecl->setStmt(LS);
496  if (!TheDecl->isGnuLocal()) {
497  TheDecl->setLocStart(IdentLoc);
498  if (!TheDecl->isMSAsmLabel()) {
499  // Don't update the location of MS ASM labels. These will result in
500  // a diagnostic, and changing the location here will mess that up.
501  TheDecl->setLocation(IdentLoc);
502  }
503  }
504  return LS;
505 }
506 
508  ArrayRef<const Attr*> Attrs,
509  Stmt *SubStmt) {
510  // Fill in the declaration and return it.
511  AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
512  return LS;
513 }
514 
515 namespace {
516 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
517  typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
518  Sema &SemaRef;
519 public:
520  CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
521  void VisitBinaryOperator(BinaryOperator *E) {
522  if (E->getOpcode() == BO_Comma)
523  SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
525  }
526 };
527 }
528 
530 Sema::ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt,
531  ConditionResult Cond,
532  Stmt *thenStmt, SourceLocation ElseLoc,
533  Stmt *elseStmt) {
534  if (Cond.isInvalid())
535  Cond = ConditionResult(
536  *this, nullptr,
537  MakeFullExpr(new (Context) OpaqueValueExpr(SourceLocation(),
538  Context.BoolTy, VK_RValue),
539  IfLoc),
540  false);
541 
542  Expr *CondExpr = Cond.get().second;
543  // Only call the CommaVisitor when not C89 due to differences in scope flags.
544  if ((getLangOpts().C99 || getLangOpts().CPlusPlus) &&
545  !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
546  CommaVisitor(*this).Visit(CondExpr);
547 
548  if (!elseStmt)
549  DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), thenStmt,
550  diag::warn_empty_if_body);
551 
552  return BuildIfStmt(IfLoc, IsConstexpr, InitStmt, Cond, thenStmt, ElseLoc,
553  elseStmt);
554 }
555 
557  Stmt *InitStmt, ConditionResult Cond,
558  Stmt *thenStmt, SourceLocation ElseLoc,
559  Stmt *elseStmt) {
560  if (Cond.isInvalid())
561  return StmtError();
562 
563  if (IsConstexpr || isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
564  setFunctionHasBranchProtectedScope();
565 
566  return IfStmt::Create(Context, IfLoc, IsConstexpr, InitStmt, Cond.get().first,
567  Cond.get().second, thenStmt, ElseLoc, elseStmt);
568 }
569 
570 namespace {
571  struct CaseCompareFunctor {
572  bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
573  const llvm::APSInt &RHS) {
574  return LHS.first < RHS;
575  }
576  bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
577  const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
578  return LHS.first < RHS.first;
579  }
580  bool operator()(const llvm::APSInt &LHS,
581  const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
582  return LHS < RHS.first;
583  }
584  };
585 }
586 
587 /// CmpCaseVals - Comparison predicate for sorting case values.
588 ///
589 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
590  const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
591  if (lhs.first < rhs.first)
592  return true;
593 
594  if (lhs.first == rhs.first &&
595  lhs.second->getCaseLoc().getRawEncoding()
596  < rhs.second->getCaseLoc().getRawEncoding())
597  return true;
598  return false;
599 }
600 
601 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
602 ///
603 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
604  const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
605 {
606  return lhs.first < rhs.first;
607 }
608 
609 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
610 ///
611 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
612  const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
613 {
614  return lhs.first == rhs.first;
615 }
616 
617 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
618 /// potentially integral-promoted expression @p expr.
620  if (const auto *FE = dyn_cast<FullExpr>(E))
621  E = FE->getSubExpr();
622  while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
623  if (ImpCast->getCastKind() != CK_IntegralCast) break;
624  E = ImpCast->getSubExpr();
625  }
626  return E->getType();
627 }
628 
630  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
631  Expr *Cond;
632 
633  public:
634  SwitchConvertDiagnoser(Expr *Cond)
635  : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
636  Cond(Cond) {}
637 
638  SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
639  QualType T) override {
640  return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
641  }
642 
643  SemaDiagnosticBuilder diagnoseIncomplete(
644  Sema &S, SourceLocation Loc, QualType T) override {
645  return S.Diag(Loc, diag::err_switch_incomplete_class_type)
646  << T << Cond->getSourceRange();
647  }
648 
649  SemaDiagnosticBuilder diagnoseExplicitConv(
650  Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
651  return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
652  }
653 
654  SemaDiagnosticBuilder noteExplicitConv(
655  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
656  return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
657  << ConvTy->isEnumeralType() << ConvTy;
658  }
659 
660  SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
661  QualType T) override {
662  return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
663  }
664 
665  SemaDiagnosticBuilder noteAmbiguous(
666  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
667  return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
668  << ConvTy->isEnumeralType() << ConvTy;
669  }
670 
671  SemaDiagnosticBuilder diagnoseConversion(
672  Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
673  llvm_unreachable("conversion functions are permitted");
674  }
675  } SwitchDiagnoser(Cond);
676 
677  ExprResult CondResult =
678  PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
679  if (CondResult.isInvalid())
680  return ExprError();
681 
682  // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
683  // failed and produced a diagnostic.
684  Cond = CondResult.get();
685  if (!Cond->isTypeDependent() &&
687  return ExprError();
688 
689  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
690  return UsualUnaryConversions(Cond);
691 }
692 
694  Stmt *InitStmt, ConditionResult Cond) {
695  Expr *CondExpr = Cond.get().second;
696  assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
697 
698  if (CondExpr && !CondExpr->isTypeDependent()) {
699  // We have already converted the expression to an integral or enumeration
700  // type, when we parsed the switch condition. If we don't have an
701  // appropriate type now, enter the switch scope but remember that it's
702  // invalid.
703  assert(CondExpr->getType()->isIntegralOrEnumerationType() &&
704  "invalid condition type");
705  if (CondExpr->isKnownToHaveBooleanValue()) {
706  // switch(bool_expr) {...} is often a programmer error, e.g.
707  // switch(n && mask) { ... } // Doh - should be "n & mask".
708  // One can always use an if statement instead of switch(bool_expr).
709  Diag(SwitchLoc, diag::warn_bool_switch_condition)
710  << CondExpr->getSourceRange();
711  }
712  }
713 
714  setFunctionHasBranchIntoScope();
715 
716  auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr);
717  getCurFunction()->SwitchStack.push_back(
718  FunctionScopeInfo::SwitchInfo(SS, false));
719  return SS;
720 }
721 
722 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
723  Val = Val.extOrTrunc(BitWidth);
724  Val.setIsSigned(IsSigned);
725 }
726 
727 /// Check the specified case value is in range for the given unpromoted switch
728 /// type.
729 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
730  unsigned UnpromotedWidth, bool UnpromotedSign) {
731  // In C++11 onwards, this is checked by the language rules.
732  if (S.getLangOpts().CPlusPlus11)
733  return;
734 
735  // If the case value was signed and negative and the switch expression is
736  // unsigned, don't bother to warn: this is implementation-defined behavior.
737  // FIXME: Introduce a second, default-ignored warning for this case?
738  if (UnpromotedWidth < Val.getBitWidth()) {
739  llvm::APSInt ConvVal(Val);
740  AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
741  AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
742  // FIXME: Use different diagnostics for overflow in conversion to promoted
743  // type versus "switch expression cannot have this value". Use proper
744  // IntRange checking rather than just looking at the unpromoted type here.
745  if (ConvVal != Val)
746  S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
747  << ConvVal.toString(10);
748  }
749 }
750 
752 
753 /// Returns true if we should emit a diagnostic about this case expression not
754 /// being a part of the enum used in the switch controlling expression.
756  const EnumDecl *ED,
757  const Expr *CaseExpr,
758  EnumValsTy::iterator &EI,
759  EnumValsTy::iterator &EIEnd,
760  const llvm::APSInt &Val) {
761  if (!ED->isClosed())
762  return false;
763 
764  if (const DeclRefExpr *DRE =
765  dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
766  if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
767  QualType VarType = VD->getType();
769  if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
770  S.Context.hasSameUnqualifiedType(EnumType, VarType))
771  return false;
772  }
773  }
774 
775  if (ED->hasAttr<FlagEnumAttr>())
776  return !S.IsValueInFlagEnum(ED, Val, false);
777 
778  while (EI != EIEnd && EI->first < Val)
779  EI++;
780 
781  if (EI != EIEnd && EI->first == Val)
782  return false;
783 
784  return true;
785 }
786 
787 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
788  const Expr *Case) {
789  QualType CondType = Cond->getType();
790  QualType CaseType = Case->getType();
791 
792  const EnumType *CondEnumType = CondType->getAs<EnumType>();
793  const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
794  if (!CondEnumType || !CaseEnumType)
795  return;
796 
797  // Ignore anonymous enums.
798  if (!CondEnumType->getDecl()->getIdentifier() &&
799  !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
800  return;
801  if (!CaseEnumType->getDecl()->getIdentifier() &&
802  !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
803  return;
804 
805  if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
806  return;
807 
808  S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
809  << CondType << CaseType << Cond->getSourceRange()
810  << Case->getSourceRange();
811 }
812 
815  Stmt *BodyStmt) {
816  SwitchStmt *SS = cast<SwitchStmt>(Switch);
817  bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
818  assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
819  "switch stack missing push/pop!");
820 
821  getCurFunction()->SwitchStack.pop_back();
822 
823  if (!BodyStmt) return StmtError();
824  SS->setBody(BodyStmt, SwitchLoc);
825 
826  Expr *CondExpr = SS->getCond();
827  if (!CondExpr) return StmtError();
828 
829  QualType CondType = CondExpr->getType();
830 
831  // C++ 6.4.2.p2:
832  // Integral promotions are performed (on the switch condition).
833  //
834  // A case value unrepresentable by the original switch condition
835  // type (before the promotion) doesn't make sense, even when it can
836  // be represented by the promoted type. Therefore we need to find
837  // the pre-promotion type of the switch condition.
838  const Expr *CondExprBeforePromotion = CondExpr;
839  QualType CondTypeBeforePromotion =
840  GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
841 
842  // Get the bitwidth of the switched-on value after promotions. We must
843  // convert the integer case values to this width before comparison.
844  bool HasDependentValue
845  = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
846  unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
847  bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
848 
849  // Get the width and signedness that the condition might actually have, for
850  // warning purposes.
851  // FIXME: Grab an IntRange for the condition rather than using the unpromoted
852  // type.
853  unsigned CondWidthBeforePromotion
854  = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
855  bool CondIsSignedBeforePromotion
856  = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
857 
858  // Accumulate all of the case values in a vector so that we can sort them
859  // and detect duplicates. This vector contains the APInt for the case after
860  // it has been converted to the condition type.
861  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
862  CaseValsTy CaseVals;
863 
864  // Keep track of any GNU case ranges we see. The APSInt is the low value.
865  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
866  CaseRangesTy CaseRanges;
867 
868  DefaultStmt *TheDefaultStmt = nullptr;
869 
870  bool CaseListIsErroneous = false;
871 
872  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
873  SC = SC->getNextSwitchCase()) {
874 
875  if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
876  if (TheDefaultStmt) {
877  Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
878  Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
879 
880  // FIXME: Remove the default statement from the switch block so that
881  // we'll return a valid AST. This requires recursing down the AST and
882  // finding it, not something we are set up to do right now. For now,
883  // just lop the entire switch stmt out of the AST.
884  CaseListIsErroneous = true;
885  }
886  TheDefaultStmt = DS;
887 
888  } else {
889  CaseStmt *CS = cast<CaseStmt>(SC);
890 
891  Expr *Lo = CS->getLHS();
892 
893  if (Lo->isValueDependent()) {
894  HasDependentValue = true;
895  break;
896  }
897 
898  // We already verified that the expression has a constant value;
899  // get that value (prior to conversions).
900  const Expr *LoBeforePromotion = Lo;
901  GetTypeBeforeIntegralPromotion(LoBeforePromotion);
902  llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
903 
904  // Check the unconverted value is within the range of possible values of
905  // the switch expression.
906  checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
907  CondIsSignedBeforePromotion);
908 
909  // FIXME: This duplicates the check performed for warn_not_in_enum below.
910  checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
911  LoBeforePromotion);
912 
913  // Convert the value to the same width/sign as the condition.
914  AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
915 
916  // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
917  if (CS->getRHS()) {
918  if (CS->getRHS()->isValueDependent()) {
919  HasDependentValue = true;
920  break;
921  }
922  CaseRanges.push_back(std::make_pair(LoVal, CS));
923  } else
924  CaseVals.push_back(std::make_pair(LoVal, CS));
925  }
926  }
927 
928  if (!HasDependentValue) {
929  // If we don't have a default statement, check whether the
930  // condition is constant.
931  llvm::APSInt ConstantCondValue;
932  bool HasConstantCond = false;
933  if (!HasDependentValue && !TheDefaultStmt) {
934  Expr::EvalResult Result;
935  HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
937  if (Result.Val.isInt())
938  ConstantCondValue = Result.Val.getInt();
939  assert(!HasConstantCond ||
940  (ConstantCondValue.getBitWidth() == CondWidth &&
941  ConstantCondValue.isSigned() == CondIsSigned));
942  }
943  bool ShouldCheckConstantCond = HasConstantCond;
944 
945  // Sort all the scalar case values so we can easily detect duplicates.
946  std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
947 
948  if (!CaseVals.empty()) {
949  for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
950  if (ShouldCheckConstantCond &&
951  CaseVals[i].first == ConstantCondValue)
952  ShouldCheckConstantCond = false;
953 
954  if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
955  // If we have a duplicate, report it.
956  // First, determine if either case value has a name
957  StringRef PrevString, CurrString;
958  Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
959  Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
960  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
961  PrevString = DeclRef->getDecl()->getName();
962  }
963  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
964  CurrString = DeclRef->getDecl()->getName();
965  }
966  SmallString<16> CaseValStr;
967  CaseVals[i-1].first.toString(CaseValStr);
968 
969  if (PrevString == CurrString)
970  Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
971  diag::err_duplicate_case)
972  << (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
973  else
974  Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
975  diag::err_duplicate_case_differing_expr)
976  << (PrevString.empty() ? StringRef(CaseValStr) : PrevString)
977  << (CurrString.empty() ? StringRef(CaseValStr) : CurrString)
978  << CaseValStr;
979 
980  Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
981  diag::note_duplicate_case_prev);
982  // FIXME: We really want to remove the bogus case stmt from the
983  // substmt, but we have no way to do this right now.
984  CaseListIsErroneous = true;
985  }
986  }
987  }
988 
989  // Detect duplicate case ranges, which usually don't exist at all in
990  // the first place.
991  if (!CaseRanges.empty()) {
992  // Sort all the case ranges by their low value so we can easily detect
993  // overlaps between ranges.
994  std::stable_sort(CaseRanges.begin(), CaseRanges.end());
995 
996  // Scan the ranges, computing the high values and removing empty ranges.
997  std::vector<llvm::APSInt> HiVals;
998  for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
999  llvm::APSInt &LoVal = CaseRanges[i].first;
1000  CaseStmt *CR = CaseRanges[i].second;
1001  Expr *Hi = CR->getRHS();
1002 
1003  const Expr *HiBeforePromotion = Hi;
1004  GetTypeBeforeIntegralPromotion(HiBeforePromotion);
1005  llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
1006 
1007  // Check the unconverted value is within the range of possible values of
1008  // the switch expression.
1009  checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
1010  CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1011 
1012  // Convert the value to the same width/sign as the condition.
1013  AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1014 
1015  // If the low value is bigger than the high value, the case is empty.
1016  if (LoVal > HiVal) {
1017  Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
1018  << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
1019  CaseRanges.erase(CaseRanges.begin()+i);
1020  --i;
1021  --e;
1022  continue;
1023  }
1024 
1025  if (ShouldCheckConstantCond &&
1026  LoVal <= ConstantCondValue &&
1027  ConstantCondValue <= HiVal)
1028  ShouldCheckConstantCond = false;
1029 
1030  HiVals.push_back(HiVal);
1031  }
1032 
1033  // Rescan the ranges, looking for overlap with singleton values and other
1034  // ranges. Since the range list is sorted, we only need to compare case
1035  // ranges with their neighbors.
1036  for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1037  llvm::APSInt &CRLo = CaseRanges[i].first;
1038  llvm::APSInt &CRHi = HiVals[i];
1039  CaseStmt *CR = CaseRanges[i].second;
1040 
1041  // Check to see whether the case range overlaps with any
1042  // singleton cases.
1043  CaseStmt *OverlapStmt = nullptr;
1044  llvm::APSInt OverlapVal(32);
1045 
1046  // Find the smallest value >= the lower bound. If I is in the
1047  // case range, then we have overlap.
1048  CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
1049  CaseVals.end(), CRLo,
1050  CaseCompareFunctor());
1051  if (I != CaseVals.end() && I->first < CRHi) {
1052  OverlapVal = I->first; // Found overlap with scalar.
1053  OverlapStmt = I->second;
1054  }
1055 
1056  // Find the smallest value bigger than the upper bound.
1057  I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1058  if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1059  OverlapVal = (I-1)->first; // Found overlap with scalar.
1060  OverlapStmt = (I-1)->second;
1061  }
1062 
1063  // Check to see if this case stmt overlaps with the subsequent
1064  // case range.
1065  if (i && CRLo <= HiVals[i-1]) {
1066  OverlapVal = HiVals[i-1]; // Found overlap with range.
1067  OverlapStmt = CaseRanges[i-1].second;
1068  }
1069 
1070  if (OverlapStmt) {
1071  // If we have a duplicate, report it.
1072  Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
1073  << OverlapVal.toString(10);
1074  Diag(OverlapStmt->getLHS()->getBeginLoc(),
1075  diag::note_duplicate_case_prev);
1076  // FIXME: We really want to remove the bogus case stmt from the
1077  // substmt, but we have no way to do this right now.
1078  CaseListIsErroneous = true;
1079  }
1080  }
1081  }
1082 
1083  // Complain if we have a constant condition and we didn't find a match.
1084  if (!CaseListIsErroneous && !CaseListIsIncomplete &&
1085  ShouldCheckConstantCond) {
1086  // TODO: it would be nice if we printed enums as enums, chars as
1087  // chars, etc.
1088  Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1089  << ConstantCondValue.toString(10)
1090  << CondExpr->getSourceRange();
1091  }
1092 
1093  // Check to see if switch is over an Enum and handles all of its
1094  // values. We only issue a warning if there is not 'default:', but
1095  // we still do the analysis to preserve this information in the AST
1096  // (which can be used by flow-based analyes).
1097  //
1098  const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1099 
1100  // If switch has default case, then ignore it.
1101  if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
1102  ET && ET->getDecl()->isCompleteDefinition()) {
1103  const EnumDecl *ED = ET->getDecl();
1104  EnumValsTy EnumVals;
1105 
1106  // Gather all enum values, set their type and sort them,
1107  // allowing easier comparison with CaseVals.
1108  for (auto *EDI : ED->enumerators()) {
1109  llvm::APSInt Val = EDI->getInitVal();
1110  AdjustAPSInt(Val, CondWidth, CondIsSigned);
1111  EnumVals.push_back(std::make_pair(Val, EDI));
1112  }
1113  std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1114  auto EI = EnumVals.begin(), EIEnd =
1115  std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1116 
1117  // See which case values aren't in enum.
1118  for (CaseValsTy::const_iterator CI = CaseVals.begin();
1119  CI != CaseVals.end(); CI++) {
1120  Expr *CaseExpr = CI->second->getLHS();
1121  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1122  CI->first))
1123  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1124  << CondTypeBeforePromotion;
1125  }
1126 
1127  // See which of case ranges aren't in enum
1128  EI = EnumVals.begin();
1129  for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1130  RI != CaseRanges.end(); RI++) {
1131  Expr *CaseExpr = RI->second->getLHS();
1132  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1133  RI->first))
1134  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1135  << CondTypeBeforePromotion;
1136 
1137  llvm::APSInt Hi =
1138  RI->second->getRHS()->EvaluateKnownConstInt(Context);
1139  AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1140 
1141  CaseExpr = RI->second->getRHS();
1142  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1143  Hi))
1144  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1145  << CondTypeBeforePromotion;
1146  }
1147 
1148  // Check which enum vals aren't in switch
1149  auto CI = CaseVals.begin();
1150  auto RI = CaseRanges.begin();
1151  bool hasCasesNotInSwitch = false;
1152 
1153  SmallVector<DeclarationName,8> UnhandledNames;
1154 
1155  for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
1156  // Don't warn about omitted unavailable EnumConstantDecls.
1157  switch (EI->second->getAvailability()) {
1158  case AR_Deprecated:
1159  // Omitting a deprecated constant is ok; it should never materialize.
1160  case AR_Unavailable:
1161  continue;
1162 
1163  case AR_NotYetIntroduced:
1164  // Partially available enum constants should be present. Note that we
1165  // suppress -Wunguarded-availability diagnostics for such uses.
1166  case AR_Available:
1167  break;
1168  }
1169 
1170  // Drop unneeded case values
1171  while (CI != CaseVals.end() && CI->first < EI->first)
1172  CI++;
1173 
1174  if (CI != CaseVals.end() && CI->first == EI->first)
1175  continue;
1176 
1177  // Drop unneeded case ranges
1178  for (; RI != CaseRanges.end(); RI++) {
1179  llvm::APSInt Hi =
1180  RI->second->getRHS()->EvaluateKnownConstInt(Context);
1181  AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1182  if (EI->first <= Hi)
1183  break;
1184  }
1185 
1186  if (RI == CaseRanges.end() || EI->first < RI->first) {
1187  hasCasesNotInSwitch = true;
1188  UnhandledNames.push_back(EI->second->getDeclName());
1189  }
1190  }
1191 
1192  if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1193  Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1194 
1195  // Produce a nice diagnostic if multiple values aren't handled.
1196  if (!UnhandledNames.empty()) {
1197  DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
1198  TheDefaultStmt ? diag::warn_def_missing_case
1199  : diag::warn_missing_case)
1200  << (int)UnhandledNames.size();
1201 
1202  for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1203  I != E; ++I)
1204  DB << UnhandledNames[I];
1205  }
1206 
1207  if (!hasCasesNotInSwitch)
1208  SS->setAllEnumCasesCovered();
1209  }
1210  }
1211 
1212  if (BodyStmt)
1213  DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
1214  diag::warn_empty_switch_body);
1215 
1216  // FIXME: If the case list was broken is some way, we don't have a good system
1217  // to patch it up. Instead, just return the whole substmt as broken.
1218  if (CaseListIsErroneous)
1219  return StmtError();
1220 
1221  return SS;
1222 }
1223 
1224 void
1226  Expr *SrcExpr) {
1227  if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1228  return;
1229 
1230  if (const EnumType *ET = DstType->getAs<EnumType>())
1231  if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1232  SrcType->isIntegerType()) {
1233  if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1234  SrcExpr->isIntegerConstantExpr(Context)) {
1235  // Get the bitwidth of the enum value before promotions.
1236  unsigned DstWidth = Context.getIntWidth(DstType);
1237  bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1238 
1239  llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1240  AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1241  const EnumDecl *ED = ET->getDecl();
1242 
1243  if (!ED->isClosed())
1244  return;
1245 
1246  if (ED->hasAttr<FlagEnumAttr>()) {
1247  if (!IsValueInFlagEnum(ED, RhsVal, true))
1248  Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1249  << DstType.getUnqualifiedType();
1250  } else {
1252  EnumValsTy;
1253  EnumValsTy EnumVals;
1254 
1255  // Gather all enum values, set their type and sort them,
1256  // allowing easier comparison with rhs constant.
1257  for (auto *EDI : ED->enumerators()) {
1258  llvm::APSInt Val = EDI->getInitVal();
1259  AdjustAPSInt(Val, DstWidth, DstIsSigned);
1260  EnumVals.push_back(std::make_pair(Val, EDI));
1261  }
1262  if (EnumVals.empty())
1263  return;
1264  std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1265  EnumValsTy::iterator EIend =
1266  std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1267 
1268  // See which values aren't in the enum.
1269  EnumValsTy::const_iterator EI = EnumVals.begin();
1270  while (EI != EIend && EI->first < RhsVal)
1271  EI++;
1272  if (EI == EIend || EI->first != RhsVal) {
1273  Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1274  << DstType.getUnqualifiedType();
1275  }
1276  }
1277  }
1278  }
1279 }
1280 
1282  Stmt *Body) {
1283  if (Cond.isInvalid())
1284  return StmtError();
1285 
1286  auto CondVal = Cond.get();
1287  CheckBreakContinueBinding(CondVal.second);
1288 
1289  if (CondVal.second &&
1290  !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1291  CommaVisitor(*this).Visit(CondVal.second);
1292 
1293  if (isa<NullStmt>(Body))
1294  getCurCompoundScope().setHasEmptyLoopBodies();
1295 
1296  return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
1297  WhileLoc);
1298 }
1299 
1300 StmtResult
1302  SourceLocation WhileLoc, SourceLocation CondLParen,
1303  Expr *Cond, SourceLocation CondRParen) {
1304  assert(Cond && "ActOnDoStmt(): missing expression");
1305 
1306  CheckBreakContinueBinding(Cond);
1307  ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1308  if (CondResult.isInvalid())
1309  return StmtError();
1310  Cond = CondResult.get();
1311 
1312  CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false);
1313  if (CondResult.isInvalid())
1314  return StmtError();
1315  Cond = CondResult.get();
1316 
1317  // Only call the CommaVisitor for C89 due to differences in scope flags.
1318  if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
1319  !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
1320  CommaVisitor(*this).Visit(Cond);
1321 
1322  return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1323 }
1324 
1325 namespace {
1326  // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1327  using DeclSetVector =
1328  llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>,
1329  llvm::SmallPtrSet<VarDecl *, 8>>;
1330 
1331  // This visitor will traverse a conditional statement and store all
1332  // the evaluated decls into a vector. Simple is set to true if none
1333  // of the excluded constructs are used.
1334  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1335  DeclSetVector &Decls;
1337  bool Simple;
1338  public:
1339  typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1340 
1341  DeclExtractor(Sema &S, DeclSetVector &Decls,
1342  SmallVectorImpl<SourceRange> &Ranges) :
1343  Inherited(S.Context),
1344  Decls(Decls),
1345  Ranges(Ranges),
1346  Simple(true) {}
1347 
1348  bool isSimple() { return Simple; }
1349 
1350  // Replaces the method in EvaluatedExprVisitor.
1351  void VisitMemberExpr(MemberExpr* E) {
1352  Simple = false;
1353  }
1354 
1355  // Any Stmt not whitelisted will cause the condition to be marked complex.
1356  void VisitStmt(Stmt *S) {
1357  Simple = false;
1358  }
1359 
1360  void VisitBinaryOperator(BinaryOperator *E) {
1361  Visit(E->getLHS());
1362  Visit(E->getRHS());
1363  }
1364 
1365  void VisitCastExpr(CastExpr *E) {
1366  Visit(E->getSubExpr());
1367  }
1368 
1369  void VisitUnaryOperator(UnaryOperator *E) {
1370  // Skip checking conditionals with derefernces.
1371  if (E->getOpcode() == UO_Deref)
1372  Simple = false;
1373  else
1374  Visit(E->getSubExpr());
1375  }
1376 
1377  void VisitConditionalOperator(ConditionalOperator *E) {
1378  Visit(E->getCond());
1379  Visit(E->getTrueExpr());
1380  Visit(E->getFalseExpr());
1381  }
1382 
1383  void VisitParenExpr(ParenExpr *E) {
1384  Visit(E->getSubExpr());
1385  }
1386 
1387  void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1388  Visit(E->getOpaqueValue()->getSourceExpr());
1389  Visit(E->getFalseExpr());
1390  }
1391 
1392  void VisitIntegerLiteral(IntegerLiteral *E) { }
1393  void VisitFloatingLiteral(FloatingLiteral *E) { }
1394  void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1395  void VisitCharacterLiteral(CharacterLiteral *E) { }
1396  void VisitGNUNullExpr(GNUNullExpr *E) { }
1397  void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1398 
1399  void VisitDeclRefExpr(DeclRefExpr *E) {
1400  VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1401  if (!VD) {
1402  // Don't allow unhandled Decl types.
1403  Simple = false;
1404  return;
1405  }
1406 
1407  Ranges.push_back(E->getSourceRange());
1408 
1409  Decls.insert(VD);
1410  }
1411 
1412  }; // end class DeclExtractor
1413 
1414  // DeclMatcher checks to see if the decls are used in a non-evaluated
1415  // context.
1416  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1417  DeclSetVector &Decls;
1418  bool FoundDecl;
1419 
1420  public:
1421  typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1422 
1423  DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1424  Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1425  if (!Statement) return;
1426 
1427  Visit(Statement);
1428  }
1429 
1430  void VisitReturnStmt(ReturnStmt *S) {
1431  FoundDecl = true;
1432  }
1433 
1434  void VisitBreakStmt(BreakStmt *S) {
1435  FoundDecl = true;
1436  }
1437 
1438  void VisitGotoStmt(GotoStmt *S) {
1439  FoundDecl = true;
1440  }
1441 
1442  void VisitCastExpr(CastExpr *E) {
1443  if (E->getCastKind() == CK_LValueToRValue)
1444  CheckLValueToRValueCast(E->getSubExpr());
1445  else
1446  Visit(E->getSubExpr());
1447  }
1448 
1449  void CheckLValueToRValueCast(Expr *E) {
1450  E = E->IgnoreParenImpCasts();
1451 
1452  if (isa<DeclRefExpr>(E)) {
1453  return;
1454  }
1455 
1456  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1457  Visit(CO->getCond());
1458  CheckLValueToRValueCast(CO->getTrueExpr());
1459  CheckLValueToRValueCast(CO->getFalseExpr());
1460  return;
1461  }
1462 
1463  if (BinaryConditionalOperator *BCO =
1464  dyn_cast<BinaryConditionalOperator>(E)) {
1465  CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1466  CheckLValueToRValueCast(BCO->getFalseExpr());
1467  return;
1468  }
1469 
1470  Visit(E);
1471  }
1472 
1473  void VisitDeclRefExpr(DeclRefExpr *E) {
1474  if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1475  if (Decls.count(VD))
1476  FoundDecl = true;
1477  }
1478 
1479  void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
1480  // Only need to visit the semantics for POE.
1481  // SyntaticForm doesn't really use the Decal.
1482  for (auto *S : POE->semantics()) {
1483  if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
1484  // Look past the OVE into the expression it binds.
1485  Visit(OVE->getSourceExpr());
1486  else
1487  Visit(S);
1488  }
1489  }
1490 
1491  bool FoundDeclInUse() { return FoundDecl; }
1492 
1493  }; // end class DeclMatcher
1494 
1495  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1496  Expr *Third, Stmt *Body) {
1497  // Condition is empty
1498  if (!Second) return;
1499 
1500  if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1501  Second->getBeginLoc()))
1502  return;
1503 
1504  PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1505  DeclSetVector Decls;
1507  DeclExtractor DE(S, Decls, Ranges);
1508  DE.Visit(Second);
1509 
1510  // Don't analyze complex conditionals.
1511  if (!DE.isSimple()) return;
1512 
1513  // No decls found.
1514  if (Decls.size() == 0) return;
1515 
1516  // Don't warn on volatile, static, or global variables.
1517  for (auto *VD : Decls)
1518  if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
1519  return;
1520 
1521  if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1522  DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1523  DeclMatcher(S, Decls, Body).FoundDeclInUse())
1524  return;
1525 
1526  // Load decl names into diagnostic.
1527  if (Decls.size() > 4) {
1528  PDiag << 0;
1529  } else {
1530  PDiag << (unsigned)Decls.size();
1531  for (auto *VD : Decls)
1532  PDiag << VD->getDeclName();
1533  }
1534 
1535  for (auto Range : Ranges)
1536  PDiag << Range;
1537 
1538  S.Diag(Ranges.begin()->getBegin(), PDiag);
1539  }
1540 
1541  // If Statement is an incemement or decrement, return true and sets the
1542  // variables Increment and DRE.
1543  bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1544  DeclRefExpr *&DRE) {
1545  if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
1546  if (!Cleanups->cleanupsHaveSideEffects())
1547  Statement = Cleanups->getSubExpr();
1548 
1549  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1550  switch (UO->getOpcode()) {
1551  default: return false;
1552  case UO_PostInc:
1553  case UO_PreInc:
1554  Increment = true;
1555  break;
1556  case UO_PostDec:
1557  case UO_PreDec:
1558  Increment = false;
1559  break;
1560  }
1561  DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1562  return DRE;
1563  }
1564 
1565  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1566  FunctionDecl *FD = Call->getDirectCallee();
1567  if (!FD || !FD->isOverloadedOperator()) return false;
1568  switch (FD->getOverloadedOperator()) {
1569  default: return false;
1570  case OO_PlusPlus:
1571  Increment = true;
1572  break;
1573  case OO_MinusMinus:
1574  Increment = false;
1575  break;
1576  }
1577  DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1578  return DRE;
1579  }
1580 
1581  return false;
1582  }
1583 
1584  // A visitor to determine if a continue or break statement is a
1585  // subexpression.
1586  class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
1587  SourceLocation BreakLoc;
1588  SourceLocation ContinueLoc;
1589  bool InSwitch = false;
1590 
1591  public:
1592  BreakContinueFinder(Sema &S, const Stmt* Body) :
1593  Inherited(S.Context) {
1594  Visit(Body);
1595  }
1596 
1598 
1599  void VisitContinueStmt(const ContinueStmt* E) {
1600  ContinueLoc = E->getContinueLoc();
1601  }
1602 
1603  void VisitBreakStmt(const BreakStmt* E) {
1604  if (!InSwitch)
1605  BreakLoc = E->getBreakLoc();
1606  }
1607 
1608  void VisitSwitchStmt(const SwitchStmt* S) {
1609  if (const Stmt *Init = S->getInit())
1610  Visit(Init);
1611  if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
1612  Visit(CondVar);
1613  if (const Stmt *Cond = S->getCond())
1614  Visit(Cond);
1615 
1616  // Don't return break statements from the body of a switch.
1617  InSwitch = true;
1618  if (const Stmt *Body = S->getBody())
1619  Visit(Body);
1620  InSwitch = false;
1621  }
1622 
1623  void VisitForStmt(const ForStmt *S) {
1624  // Only visit the init statement of a for loop; the body
1625  // has a different break/continue scope.
1626  if (const Stmt *Init = S->getInit())
1627  Visit(Init);
1628  }
1629 
1630  void VisitWhileStmt(const WhileStmt *) {
1631  // Do nothing; the children of a while loop have a different
1632  // break/continue scope.
1633  }
1634 
1635  void VisitDoStmt(const DoStmt *) {
1636  // Do nothing; the children of a while loop have a different
1637  // break/continue scope.
1638  }
1639 
1640  void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
1641  // Only visit the initialization of a for loop; the body
1642  // has a different break/continue scope.
1643  if (const Stmt *Init = S->getInit())
1644  Visit(Init);
1645  if (const Stmt *Range = S->getRangeStmt())
1646  Visit(Range);
1647  if (const Stmt *Begin = S->getBeginStmt())
1648  Visit(Begin);
1649  if (const Stmt *End = S->getEndStmt())
1650  Visit(End);
1651  }
1652 
1653  void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
1654  // Only visit the initialization of a for loop; the body
1655  // has a different break/continue scope.
1656  if (const Stmt *Element = S->getElement())
1657  Visit(Element);
1658  if (const Stmt *Collection = S->getCollection())
1659  Visit(Collection);
1660  }
1661 
1662  bool ContinueFound() { return ContinueLoc.isValid(); }
1663  bool BreakFound() { return BreakLoc.isValid(); }
1664  SourceLocation GetContinueLoc() { return ContinueLoc; }
1665  SourceLocation GetBreakLoc() { return BreakLoc; }
1666 
1667  }; // end class BreakContinueFinder
1668 
1669  // Emit a warning when a loop increment/decrement appears twice per loop
1670  // iteration. The conditions which trigger this warning are:
1671  // 1) The last statement in the loop body and the third expression in the
1672  // for loop are both increment or both decrement of the same variable
1673  // 2) No continue statements in the loop body.
1674  void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1675  // Return when there is nothing to check.
1676  if (!Body || !Third) return;
1677 
1678  if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
1679  Third->getBeginLoc()))
1680  return;
1681 
1682  // Get the last statement from the loop body.
1683  CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1684  if (!CS || CS->body_empty()) return;
1685  Stmt *LastStmt = CS->body_back();
1686  if (!LastStmt) return;
1687 
1688  bool LoopIncrement, LastIncrement;
1689  DeclRefExpr *LoopDRE, *LastDRE;
1690 
1691  if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1692  if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1693 
1694  // Check that the two statements are both increments or both decrements
1695  // on the same variable.
1696  if (LoopIncrement != LastIncrement ||
1697  LoopDRE->getDecl() != LastDRE->getDecl()) return;
1698 
1699  if (BreakContinueFinder(S, Body).ContinueFound()) return;
1700 
1701  S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1702  << LastDRE->getDecl() << LastIncrement;
1703  S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1704  << LoopIncrement;
1705  }
1706 
1707 } // end namespace
1708 
1709 
1710 void Sema::CheckBreakContinueBinding(Expr *E) {
1711  if (!E || getLangOpts().CPlusPlus)
1712  return;
1713  BreakContinueFinder BCFinder(*this, E);
1714  Scope *BreakParent = CurScope->getBreakParent();
1715  if (BCFinder.BreakFound() && BreakParent) {
1716  if (BreakParent->getFlags() & Scope::SwitchScope) {
1717  Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
1718  } else {
1719  Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
1720  << "break";
1721  }
1722  } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
1723  Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
1724  << "continue";
1725  }
1726 }
1727 
1729  Stmt *First, ConditionResult Second,
1730  FullExprArg third, SourceLocation RParenLoc,
1731  Stmt *Body) {
1732  if (Second.isInvalid())
1733  return StmtError();
1734 
1735  if (!getLangOpts().CPlusPlus) {
1736  if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1737  // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1738  // declare identifiers for objects having storage class 'auto' or
1739  // 'register'.
1740  for (auto *DI : DS->decls()) {
1741  VarDecl *VD = dyn_cast<VarDecl>(DI);
1742  if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1743  VD = nullptr;
1744  if (!VD) {
1745  Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
1746  DI->setInvalidDecl();
1747  }
1748  }
1749  }
1750  }
1751 
1752  CheckBreakContinueBinding(Second.get().second);
1753  CheckBreakContinueBinding(third.get());
1754 
1755  if (!Second.get().first)
1756  CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
1757  Body);
1758  CheckForRedundantIteration(*this, third.get(), Body);
1759 
1760  if (Second.get().second &&
1761  !Diags.isIgnored(diag::warn_comma_operator,
1762  Second.get().second->getExprLoc()))
1763  CommaVisitor(*this).Visit(Second.get().second);
1764 
1765  Expr *Third = third.release().getAs<Expr>();
1766  if (isa<NullStmt>(Body))
1767  getCurCompoundScope().setHasEmptyLoopBodies();
1768 
1769  return new (Context)
1770  ForStmt(Context, First, Second.get().second, Second.get().first, Third,
1771  Body, ForLoc, LParenLoc, RParenLoc);
1772 }
1773 
1774 /// In an Objective C collection iteration statement:
1775 /// for (x in y)
1776 /// x can be an arbitrary l-value expression. Bind it up as a
1777 /// full-expression.
1779  // Reduce placeholder expressions here. Note that this rejects the
1780  // use of pseudo-object l-values in this position.
1781  ExprResult result = CheckPlaceholderExpr(E);
1782  if (result.isInvalid()) return StmtError();
1783  E = result.get();
1784 
1785  ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
1786  if (FullExpr.isInvalid())
1787  return StmtError();
1788  return StmtResult(static_cast<Stmt*>(FullExpr.get()));
1789 }
1790 
1791 ExprResult
1793  if (!collection)
1794  return ExprError();
1795 
1796  ExprResult result = CorrectDelayedTyposInExpr(collection);
1797  if (!result.isUsable())
1798  return ExprError();
1799  collection = result.get();
1800 
1801  // Bail out early if we've got a type-dependent expression.
1802  if (collection->isTypeDependent()) return collection;
1803 
1804  // Perform normal l-value conversion.
1805  result = DefaultFunctionArrayLvalueConversion(collection);
1806  if (result.isInvalid())
1807  return ExprError();
1808  collection = result.get();
1809 
1810  // The operand needs to have object-pointer type.
1811  // TODO: should we do a contextual conversion?
1813  collection->getType()->getAs<ObjCObjectPointerType>();
1814  if (!pointerType)
1815  return Diag(forLoc, diag::err_collection_expr_type)
1816  << collection->getType() << collection->getSourceRange();
1817 
1818  // Check that the operand provides
1819  // - countByEnumeratingWithState:objects:count:
1820  const ObjCObjectType *objectType = pointerType->getObjectType();
1821  ObjCInterfaceDecl *iface = objectType->getInterface();
1822 
1823  // If we have a forward-declared type, we can't do this check.
1824  // Under ARC, it is an error not to have a forward-declared class.
1825  if (iface &&
1826  (getLangOpts().ObjCAutoRefCount
1827  ? RequireCompleteType(forLoc, QualType(objectType, 0),
1828  diag::err_arc_collection_forward, collection)
1829  : !isCompleteType(forLoc, QualType(objectType, 0)))) {
1830  // Otherwise, if we have any useful type information, check that
1831  // the type declares the appropriate method.
1832  } else if (iface || !objectType->qual_empty()) {
1833  IdentifierInfo *selectorIdents[] = {
1834  &Context.Idents.get("countByEnumeratingWithState"),
1835  &Context.Idents.get("objects"),
1836  &Context.Idents.get("count")
1837  };
1838  Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1839 
1840  ObjCMethodDecl *method = nullptr;
1841 
1842  // If there's an interface, look in both the public and private APIs.
1843  if (iface) {
1844  method = iface->lookupInstanceMethod(selector);
1845  if (!method) method = iface->lookupPrivateMethod(selector);
1846  }
1847 
1848  // Also check protocol qualifiers.
1849  if (!method)
1850  method = LookupMethodInQualifiedType(selector, pointerType,
1851  /*instance*/ true);
1852 
1853  // If we didn't find it anywhere, give up.
1854  if (!method) {
1855  Diag(forLoc, diag::warn_collection_expr_type)
1856  << collection->getType() << selector << collection->getSourceRange();
1857  }
1858 
1859  // TODO: check for an incompatible signature?
1860  }
1861 
1862  // Wrap up any cleanups in the expression.
1863  return collection;
1864 }
1865 
1866 StmtResult
1868  Stmt *First, Expr *collection,
1869  SourceLocation RParenLoc) {
1870  setFunctionHasBranchProtectedScope();
1871 
1872  ExprResult CollectionExprResult =
1873  CheckObjCForCollectionOperand(ForLoc, collection);
1874 
1875  if (First) {
1876  QualType FirstType;
1877  if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1878  if (!DS->isSingleDecl())
1879  return StmtError(Diag((*DS->decl_begin())->getLocation(),
1880  diag::err_toomany_element_decls));
1881 
1882  VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1883  if (!D || D->isInvalidDecl())
1884  return StmtError();
1885 
1886  FirstType = D->getType();
1887  // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1888  // declare identifiers for objects having storage class 'auto' or
1889  // 'register'.
1890  if (!D->hasLocalStorage())
1891  return StmtError(Diag(D->getLocation(),
1892  diag::err_non_local_variable_decl_in_for));
1893 
1894  // If the type contained 'auto', deduce the 'auto' to 'id'.
1895  if (FirstType->getContainedAutoType()) {
1896  OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1897  VK_RValue);
1898  Expr *DeducedInit = &OpaqueId;
1899  if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1900  DAR_Failed)
1901  DiagnoseAutoDeductionFailure(D, DeducedInit);
1902  if (FirstType.isNull()) {
1903  D->setInvalidDecl();
1904  return StmtError();
1905  }
1906 
1907  D->setType(FirstType);
1908 
1909  if (!inTemplateInstantiation()) {
1910  SourceLocation Loc =
1912  Diag(Loc, diag::warn_auto_var_is_id)
1913  << D->getDeclName();
1914  }
1915  }
1916 
1917  } else {
1918  Expr *FirstE = cast<Expr>(First);
1919  if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1920  return StmtError(
1921  Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue)
1922  << First->getSourceRange());
1923 
1924  FirstType = static_cast<Expr*>(First)->getType();
1925  if (FirstType.isConstQualified())
1926  Diag(ForLoc, diag::err_selector_element_const_type)
1927  << FirstType << First->getSourceRange();
1928  }
1929  if (!FirstType->isDependentType() &&
1930  !FirstType->isObjCObjectPointerType() &&
1931  !FirstType->isBlockPointerType())
1932  return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1933  << FirstType << First->getSourceRange());
1934  }
1935 
1936  if (CollectionExprResult.isInvalid())
1937  return StmtError();
1938 
1939  CollectionExprResult =
1940  ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false);
1941  if (CollectionExprResult.isInvalid())
1942  return StmtError();
1943 
1944  return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
1945  nullptr, ForLoc, RParenLoc);
1946 }
1947 
1948 /// Finish building a variable declaration for a for-range statement.
1949 /// \return true if an error occurs.
1950 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1951  SourceLocation Loc, int DiagID) {
1952  if (Decl->getType()->isUndeducedType()) {
1953  ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
1954  if (!Res.isUsable()) {
1955  Decl->setInvalidDecl();
1956  return true;
1957  }
1958  Init = Res.get();
1959  }
1960 
1961  // Deduce the type for the iterator variable now rather than leaving it to
1962  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1963  QualType InitType;
1964  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1965  SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
1967  SemaRef.Diag(Loc, DiagID) << Init->getType();
1968  if (InitType.isNull()) {
1969  Decl->setInvalidDecl();
1970  return true;
1971  }
1972  Decl->setType(InitType);
1973 
1974  // In ARC, infer lifetime.
1975  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1976  // we're doing the equivalent of fast iteration.
1977  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1978  SemaRef.inferObjCARCLifetime(Decl))
1979  Decl->setInvalidDecl();
1980 
1981  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
1982  SemaRef.FinalizeDeclaration(Decl);
1983  SemaRef.CurContext->addHiddenDecl(Decl);
1984  return false;
1985 }
1986 
1987 namespace {
1988 // An enum to represent whether something is dealing with a call to begin()
1989 // or a call to end() in a range-based for loop.
1991  BEF_begin,
1992  BEF_end
1993 };
1994 
1995 /// Produce a note indicating which begin/end function was implicitly called
1996 /// by a C++11 for-range statement. This is often not obvious from the code,
1997 /// nor from the diagnostics produced when analysing the implicit expressions
1998 /// required in a for-range statement.
1999 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
2000  BeginEndFunction BEF) {
2001  CallExpr *CE = dyn_cast<CallExpr>(E);
2002  if (!CE)
2003  return;
2004  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
2005  if (!D)
2006  return;
2007  SourceLocation Loc = D->getLocation();
2008 
2009  std::string Description;
2010  bool IsTemplate = false;
2011  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2012  Description = SemaRef.getTemplateArgumentBindingsText(
2013  FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2014  IsTemplate = true;
2015  }
2016 
2017  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2018  << BEF << IsTemplate << Description << E->getType();
2019 }
2020 
2021 /// Build a variable declaration for a for-range statement.
2022 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2023  QualType Type, StringRef Name) {
2024  DeclContext *DC = SemaRef.CurContext;
2025  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2026  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2027  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2028  TInfo, SC_None);
2029  Decl->setImplicit();
2030  return Decl;
2031 }
2032 
2033 }
2034 
2035 static bool ObjCEnumerationCollection(Expr *Collection) {
2036  return !Collection->isTypeDependent()
2037  && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2038 }
2039 
2040 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
2041 ///
2042 /// C++11 [stmt.ranged]:
2043 /// A range-based for statement is equivalent to
2044 ///
2045 /// {
2046 /// auto && __range = range-init;
2047 /// for ( auto __begin = begin-expr,
2048 /// __end = end-expr;
2049 /// __begin != __end;
2050 /// ++__begin ) {
2051 /// for-range-declaration = *__begin;
2052 /// statement
2053 /// }
2054 /// }
2055 ///
2056 /// The body of the loop is not available yet, since it cannot be analysed until
2057 /// we have determined the type of the for-range-declaration.
2059  SourceLocation CoawaitLoc, Stmt *InitStmt,
2060  Stmt *First, SourceLocation ColonLoc,
2061  Expr *Range, SourceLocation RParenLoc,
2063  if (!First)
2064  return StmtError();
2065 
2066  if (Range && ObjCEnumerationCollection(Range)) {
2067  // FIXME: Support init-statements in Objective-C++20 ranged for statement.
2068  if (InitStmt)
2069  return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
2070  << InitStmt->getSourceRange();
2071  return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2072  }
2073 
2074  DeclStmt *DS = dyn_cast<DeclStmt>(First);
2075  assert(DS && "first part of for range not a decl stmt");
2076 
2077  if (!DS->isSingleDecl()) {
2078  Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
2079  return StmtError();
2080  }
2081 
2082  Decl *LoopVar = DS->getSingleDecl();
2083  if (LoopVar->isInvalidDecl() || !Range ||
2084  DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2085  LoopVar->setInvalidDecl();
2086  return StmtError();
2087  }
2088 
2089  // Build the coroutine state immediately and not later during template
2090  // instantiation
2091  if (!CoawaitLoc.isInvalid()) {
2092  if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await"))
2093  return StmtError();
2094  }
2095 
2096  // Build auto && __range = range-init
2097  // Divide by 2, since the variables are in the inner scope (loop body).
2098  const auto DepthStr = std::to_string(S->getDepth() / 2);
2099  SourceLocation RangeLoc = Range->getBeginLoc();
2100  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2101  Context.getAutoRRefDeductType(),
2102  std::string("__range") + DepthStr);
2103  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2104  diag::err_for_range_deduction_failure)) {
2105  LoopVar->setInvalidDecl();
2106  return StmtError();
2107  }
2108 
2109  // Claim the type doesn't contain auto: we've already done the checking.
2110  DeclGroupPtrTy RangeGroup =
2111  BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2112  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2113  if (RangeDecl.isInvalid()) {
2114  LoopVar->setInvalidDecl();
2115  return StmtError();
2116  }
2117 
2118  return BuildCXXForRangeStmt(
2119  ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
2120  /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2121  /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind);
2122 }
2123 
2124 /// Create the initialization, compare, and increment steps for
2125 /// the range-based for loop expression.
2126 /// This function does not handle array-based for loops,
2127 /// which are created in Sema::BuildCXXForRangeStmt.
2128 ///
2129 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2130 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2131 /// CandidateSet and BEF are set and some non-success value is returned on
2132 /// failure.
2133 static Sema::ForRangeStatus
2134 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2135  QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2137  OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2138  ExprResult *EndExpr, BeginEndFunction *BEF) {
2139  DeclarationNameInfo BeginNameInfo(
2140  &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2141  DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2142  ColonLoc);
2143 
2144  LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2146  LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2147 
2148  auto BuildBegin = [&] {
2149  *BEF = BEF_begin;
2150  Sema::ForRangeStatus RangeStatus =
2151  SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2152  BeginMemberLookup, CandidateSet,
2153  BeginRange, BeginExpr);
2154 
2155  if (RangeStatus != Sema::FRS_Success) {
2156  if (RangeStatus == Sema::FRS_DiagnosticIssued)
2157  SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
2158  << ColonLoc << BEF_begin << BeginRange->getType();
2159  return RangeStatus;
2160  }
2161  if (!CoawaitLoc.isInvalid()) {
2162  // FIXME: getCurScope() should not be used during template instantiation.
2163  // We should pick up the set of unqualified lookup results for operator
2164  // co_await during the initial parse.
2165  *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2166  BeginExpr->get());
2167  if (BeginExpr->isInvalid())
2169  }
2170  if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2171  diag::err_for_range_iter_deduction_failure)) {
2172  NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2174  }
2175  return Sema::FRS_Success;
2176  };
2177 
2178  auto BuildEnd = [&] {
2179  *BEF = BEF_end;
2180  Sema::ForRangeStatus RangeStatus =
2181  SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2182  EndMemberLookup, CandidateSet,
2183  EndRange, EndExpr);
2184  if (RangeStatus != Sema::FRS_Success) {
2185  if (RangeStatus == Sema::FRS_DiagnosticIssued)
2186  SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
2187  << ColonLoc << BEF_end << EndRange->getType();
2188  return RangeStatus;
2189  }
2190  if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2191  diag::err_for_range_iter_deduction_failure)) {
2192  NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2194  }
2195  return Sema::FRS_Success;
2196  };
2197 
2198  if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2199  // - if _RangeT is a class type, the unqualified-ids begin and end are
2200  // looked up in the scope of class _RangeT as if by class member access
2201  // lookup (3.4.5), and if either (or both) finds at least one
2202  // declaration, begin-expr and end-expr are __range.begin() and
2203  // __range.end(), respectively;
2204  SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2205  if (BeginMemberLookup.isAmbiguous())
2207 
2208  SemaRef.LookupQualifiedName(EndMemberLookup, D);
2209  if (EndMemberLookup.isAmbiguous())
2211 
2212  if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2213  // Look up the non-member form of the member we didn't find, first.
2214  // This way we prefer a "no viable 'end'" diagnostic over a "i found
2215  // a 'begin' but ignored it because there was no member 'end'"
2216  // diagnostic.
2217  auto BuildNonmember = [&](
2218  BeginEndFunction BEFFound, LookupResult &Found,
2219  llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
2220  llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
2221  LookupResult OldFound = std::move(Found);
2222  Found.clear();
2223 
2224  if (Sema::ForRangeStatus Result = BuildNotFound())
2225  return Result;
2226 
2227  switch (BuildFound()) {
2228  case Sema::FRS_Success:
2229  return Sema::FRS_Success;
2230 
2232  SemaRef.Diag(BeginRange->getBeginLoc(), diag::err_for_range_invalid)
2233  << BeginRange->getType() << BEFFound;
2234  CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, BeginRange);
2235  LLVM_FALLTHROUGH;
2236 
2238  for (NamedDecl *D : OldFound) {
2239  SemaRef.Diag(D->getLocation(),
2240  diag::note_for_range_member_begin_end_ignored)
2241  << BeginRange->getType() << BEFFound;
2242  }
2244  }
2245  llvm_unreachable("unexpected ForRangeStatus");
2246  };
2247  if (BeginMemberLookup.empty())
2248  return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
2249  return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
2250  }
2251  } else {
2252  // - otherwise, begin-expr and end-expr are begin(__range) and
2253  // end(__range), respectively, where begin and end are looked up with
2254  // argument-dependent lookup (3.4.2). For the purposes of this name
2255  // lookup, namespace std is an associated namespace.
2256  }
2257 
2258  if (Sema::ForRangeStatus Result = BuildBegin())
2259  return Result;
2260  return BuildEnd();
2261 }
2262 
2263 /// Speculatively attempt to dereference an invalid range expression.
2264 /// If the attempt fails, this function will return a valid, null StmtResult
2265 /// and emit no diagnostics.
2267  SourceLocation ForLoc,
2268  SourceLocation CoawaitLoc,
2269  Stmt *InitStmt,
2270  Stmt *LoopVarDecl,
2272  Expr *Range,
2273  SourceLocation RangeLoc,
2274  SourceLocation RParenLoc) {
2275  // Determine whether we can rebuild the for-range statement with a
2276  // dereferenced range expression.
2277  ExprResult AdjustedRange;
2278  {
2279  Sema::SFINAETrap Trap(SemaRef);
2280 
2281  AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2282  if (AdjustedRange.isInvalid())
2283  return StmtResult();
2284 
2285  StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2286  S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2287  AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
2288  if (SR.isInvalid())
2289  return StmtResult();
2290  }
2291 
2292  // The attempt to dereference worked well enough that it could produce a valid
2293  // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2294  // case there are any other (non-fatal) problems with it.
2295  SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2296  << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2297  return SemaRef.ActOnCXXForRangeStmt(
2298  S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2299  AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
2300 }
2301 
2302 namespace {
2303 /// RAII object to automatically invalidate a declaration if an error occurs.
2304 struct InvalidateOnErrorScope {
2305  InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
2306  : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
2307  ~InvalidateOnErrorScope() {
2308  if (Enabled && Trap.hasErrorOccurred())
2309  D->setInvalidDecl();
2310  }
2311 
2312  DiagnosticErrorTrap Trap;
2313  Decl *D;
2314  bool Enabled;
2315 };
2316 }
2317 
2318 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2320  SourceLocation CoawaitLoc, Stmt *InitStmt,
2321  SourceLocation ColonLoc, Stmt *RangeDecl,
2322  Stmt *Begin, Stmt *End, Expr *Cond,
2323  Expr *Inc, Stmt *LoopVarDecl,
2324  SourceLocation RParenLoc,
2326  // FIXME: This should not be used during template instantiation. We should
2327  // pick up the set of unqualified lookup results for the != and + operators
2328  // in the initial parse.
2329  //
2330  // Testcase (accepts-invalid):
2331  // template<typename T> void f() { for (auto x : T()) {} }
2332  // namespace N { struct X { X begin(); X end(); int operator*(); }; }
2333  // bool operator!=(N::X, N::X); void operator++(N::X);
2334  // void g() { f<N::X>(); }
2335  Scope *S = getCurScope();
2336 
2337  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2338  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2339  QualType RangeVarType = RangeVar->getType();
2340 
2341  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2342  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2343 
2344  // If we hit any errors, mark the loop variable as invalid if its type
2345  // contains 'auto'.
2346  InvalidateOnErrorScope Invalidate(*this, LoopVar,
2347  LoopVar->getType()->isUndeducedType());
2348 
2349  StmtResult BeginDeclStmt = Begin;
2350  StmtResult EndDeclStmt = End;
2351  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2352 
2353  if (RangeVarType->isDependentType()) {
2354  // The range is implicitly used as a placeholder when it is dependent.
2355  RangeVar->markUsed(Context);
2356 
2357  // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2358  // them in properly when we instantiate the loop.
2359  if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2360  if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2361  for (auto *Binding : DD->bindings())
2362  Binding->setType(Context.DependentTy);
2363  LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2364  }
2365  } else if (!BeginDeclStmt.get()) {
2366  SourceLocation RangeLoc = RangeVar->getLocation();
2367 
2368  const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2369 
2370  ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2371  VK_LValue, ColonLoc);
2372  if (BeginRangeRef.isInvalid())
2373  return StmtError();
2374 
2375  ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2376  VK_LValue, ColonLoc);
2377  if (EndRangeRef.isInvalid())
2378  return StmtError();
2379 
2380  QualType AutoType = Context.getAutoDeductType();
2381  Expr *Range = RangeVar->getInit();
2382  if (!Range)
2383  return StmtError();
2384  QualType RangeType = Range->getType();
2385 
2386  if (RequireCompleteType(RangeLoc, RangeType,
2387  diag::err_for_range_incomplete_type))
2388  return StmtError();
2389 
2390  // Build auto __begin = begin-expr, __end = end-expr.
2391  // Divide by 2, since the variables are in the inner scope (loop body).
2392  const auto DepthStr = std::to_string(S->getDepth() / 2);
2393  VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2394  std::string("__begin") + DepthStr);
2395  VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2396  std::string("__end") + DepthStr);
2397 
2398  // Build begin-expr and end-expr and attach to __begin and __end variables.
2399  ExprResult BeginExpr, EndExpr;
2400  if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2401  // - if _RangeT is an array type, begin-expr and end-expr are __range and
2402  // __range + __bound, respectively, where __bound is the array bound. If
2403  // _RangeT is an array of unknown size or an array of incomplete type,
2404  // the program is ill-formed;
2405 
2406  // begin-expr is __range.
2407  BeginExpr = BeginRangeRef;
2408  if (!CoawaitLoc.isInvalid()) {
2409  BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2410  if (BeginExpr.isInvalid())
2411  return StmtError();
2412  }
2413  if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2414  diag::err_for_range_iter_deduction_failure)) {
2415  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2416  return StmtError();
2417  }
2418 
2419  // Find the array bound.
2420  ExprResult BoundExpr;
2421  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2422  BoundExpr = IntegerLiteral::Create(
2423  Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2424  else if (const VariableArrayType *VAT =
2425  dyn_cast<VariableArrayType>(UnqAT)) {
2426  // For a variably modified type we can't just use the expression within
2427  // the array bounds, since we don't want that to be re-evaluated here.
2428  // Rather, we need to determine what it was when the array was first
2429  // created - so we resort to using sizeof(vla)/sizeof(element).
2430  // For e.g.
2431  // void f(int b) {
2432  // int vla[b];
2433  // b = -1; <-- This should not affect the num of iterations below
2434  // for (int &c : vla) { .. }
2435  // }
2436 
2437  // FIXME: This results in codegen generating IR that recalculates the
2438  // run-time number of elements (as opposed to just using the IR Value
2439  // that corresponds to the run-time value of each bound that was
2440  // generated when the array was created.) If this proves too embarrassing
2441  // even for unoptimized IR, consider passing a magic-value/cookie to
2442  // codegen that then knows to simply use that initial llvm::Value (that
2443  // corresponds to the bound at time of array creation) within
2444  // getelementptr. But be prepared to pay the price of increasing a
2445  // customized form of coupling between the two components - which could
2446  // be hard to maintain as the codebase evolves.
2447 
2448  ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2449  EndVar->getLocation(), UETT_SizeOf,
2450  /*isType=*/true,
2451  CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2452  VAT->desugar(), RangeLoc))
2453  .getAsOpaquePtr(),
2454  EndVar->getSourceRange());
2455  if (SizeOfVLAExprR.isInvalid())
2456  return StmtError();
2457 
2458  ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2459  EndVar->getLocation(), UETT_SizeOf,
2460  /*isType=*/true,
2461  CreateParsedType(VAT->desugar(),
2462  Context.getTrivialTypeSourceInfo(
2463  VAT->getElementType(), RangeLoc))
2464  .getAsOpaquePtr(),
2465  EndVar->getSourceRange());
2466  if (SizeOfEachElementExprR.isInvalid())
2467  return StmtError();
2468 
2469  BoundExpr =
2470  ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2471  SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2472  if (BoundExpr.isInvalid())
2473  return StmtError();
2474 
2475  } else {
2476  // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2477  // UnqAT is not incomplete and Range is not type-dependent.
2478  llvm_unreachable("Unexpected array type in for-range");
2479  }
2480 
2481  // end-expr is __range + __bound.
2482  EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2483  BoundExpr.get());
2484  if (EndExpr.isInvalid())
2485  return StmtError();
2486  if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2487  diag::err_for_range_iter_deduction_failure)) {
2488  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2489  return StmtError();
2490  }
2491  } else {
2492  OverloadCandidateSet CandidateSet(RangeLoc,
2494  BeginEndFunction BEFFailure;
2495  ForRangeStatus RangeStatus = BuildNonArrayForRange(
2496  *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2497  EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2498  &BEFFailure);
2499 
2500  if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2501  BEFFailure == BEF_begin) {
2502  // If the range is being built from an array parameter, emit a
2503  // a diagnostic that it is being treated as a pointer.
2504  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2505  if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2506  QualType ArrayTy = PVD->getOriginalType();
2507  QualType PointerTy = PVD->getType();
2508  if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2509  Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
2510  << RangeLoc << PVD << ArrayTy << PointerTy;
2511  Diag(PVD->getLocation(), diag::note_declared_at);
2512  return StmtError();
2513  }
2514  }
2515  }
2516 
2517  // If building the range failed, try dereferencing the range expression
2518  // unless a diagnostic was issued or the end function is problematic.
2519  StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2520  CoawaitLoc, InitStmt,
2521  LoopVarDecl, ColonLoc,
2522  Range, RangeLoc,
2523  RParenLoc);
2524  if (SR.isInvalid() || SR.isUsable())
2525  return SR;
2526  }
2527 
2528  // Otherwise, emit diagnostics if we haven't already.
2529  if (RangeStatus == FRS_NoViableFunction) {
2530  Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2531  Diag(Range->getBeginLoc(), diag::err_for_range_invalid)
2532  << RangeLoc << Range->getType() << BEFFailure;
2533  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
2534  }
2535  // Return an error if no fix was discovered.
2536  if (RangeStatus != FRS_Success)
2537  return StmtError();
2538  }
2539 
2540  assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2541  "invalid range expression in for loop");
2542 
2543  // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2544  // C++1z removes this restriction.
2545  QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2546  if (!Context.hasSameType(BeginType, EndType)) {
2547  Diag(RangeLoc, getLangOpts().CPlusPlus17
2548  ? diag::warn_for_range_begin_end_types_differ
2549  : diag::ext_for_range_begin_end_types_differ)
2550  << BeginType << EndType;
2551  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2552  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2553  }
2554 
2555  BeginDeclStmt =
2556  ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2557  EndDeclStmt =
2558  ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2559 
2560  const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2561  ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2562  VK_LValue, ColonLoc);
2563  if (BeginRef.isInvalid())
2564  return StmtError();
2565 
2566  ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2567  VK_LValue, ColonLoc);
2568  if (EndRef.isInvalid())
2569  return StmtError();
2570 
2571  // Build and check __begin != __end expression.
2572  NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2573  BeginRef.get(), EndRef.get());
2574  if (!NotEqExpr.isInvalid())
2575  NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
2576  if (!NotEqExpr.isInvalid())
2577  NotEqExpr =
2578  ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false);
2579  if (NotEqExpr.isInvalid()) {
2580  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2581  << RangeLoc << 0 << BeginRangeRef.get()->getType();
2582  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2583  if (!Context.hasSameType(BeginType, EndType))
2584  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2585  return StmtError();
2586  }
2587 
2588  // Build and check ++__begin expression.
2589  BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2590  VK_LValue, ColonLoc);
2591  if (BeginRef.isInvalid())
2592  return StmtError();
2593 
2594  IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2595  if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
2596  // FIXME: getCurScope() should not be used during template instantiation.
2597  // We should pick up the set of unqualified lookup results for operator
2598  // co_await during the initial parse.
2599  IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
2600  if (!IncrExpr.isInvalid())
2601  IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false);
2602  if (IncrExpr.isInvalid()) {
2603  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2604  << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2605  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2606  return StmtError();
2607  }
2608 
2609  // Build and check *__begin expression.
2610  BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2611  VK_LValue, ColonLoc);
2612  if (BeginRef.isInvalid())
2613  return StmtError();
2614 
2615  ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2616  if (DerefExpr.isInvalid()) {
2617  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2618  << RangeLoc << 1 << BeginRangeRef.get()->getType();
2619  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2620  return StmtError();
2621  }
2622 
2623  // Attach *__begin as initializer for VD. Don't touch it if we're just
2624  // trying to determine whether this would be a valid range.
2625  if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2626  AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
2627  if (LoopVar->isInvalidDecl())
2628  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2629  }
2630  }
2631 
2632  // Don't bother to actually allocate the result if we're just trying to
2633  // determine whether it would be valid.
2634  if (Kind == BFRK_Check)
2635  return StmtResult();
2636 
2637  return new (Context) CXXForRangeStmt(
2638  InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
2639  cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
2640  IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
2641  ColonLoc, RParenLoc);
2642 }
2643 
2644 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2645 /// statement.
2647  if (!S || !B)
2648  return StmtError();
2649  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2650 
2651  ForStmt->setBody(B);
2652  return S;
2653 }
2654 
2655 // Warn when the loop variable is a const reference that creates a copy.
2656 // Suggest using the non-reference type for copies. If a copy can be prevented
2657 // suggest the const reference type that would do so.
2658 // For instance, given "for (const &Foo : Range)", suggest
2659 // "for (const Foo : Range)" to denote a copy is made for the loop. If
2660 // possible, also suggest "for (const &Bar : Range)" if this type prevents
2661 // the copy altogether.
2663  const VarDecl *VD,
2664  QualType RangeInitType) {
2665  const Expr *InitExpr = VD->getInit();
2666  if (!InitExpr)
2667  return;
2668 
2669  QualType VariableType = VD->getType();
2670 
2671  if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
2672  if (!Cleanups->cleanupsHaveSideEffects())
2673  InitExpr = Cleanups->getSubExpr();
2674 
2675  const MaterializeTemporaryExpr *MTE =
2676  dyn_cast<MaterializeTemporaryExpr>(InitExpr);
2677 
2678  // No copy made.
2679  if (!MTE)
2680  return;
2681 
2682  const Expr *E = MTE->GetTemporaryExpr()->IgnoreImpCasts();
2683 
2684  // Searching for either UnaryOperator for dereference of a pointer or
2685  // CXXOperatorCallExpr for handling iterators.
2686  while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
2687  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
2688  E = CCE->getArg(0);
2689  } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
2690  const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
2691  E = ME->getBase();
2692  } else {
2693  const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
2694  E = MTE->GetTemporaryExpr();
2695  }
2696  E = E->IgnoreImpCasts();
2697  }
2698 
2699  bool ReturnsReference = false;
2700  if (isa<UnaryOperator>(E)) {
2701  ReturnsReference = true;
2702  } else {
2703  const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
2704  const FunctionDecl *FD = Call->getDirectCallee();
2705  QualType ReturnType = FD->getReturnType();
2706  ReturnsReference = ReturnType->isReferenceType();
2707  }
2708 
2709  if (ReturnsReference) {
2710  // Loop variable creates a temporary. Suggest either to go with
2711  // non-reference loop variable to indicate a copy is made, or
2712  // the correct time to bind a const reference.
2713  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy)
2714  << VD << VariableType << E->getType();
2715  QualType NonReferenceType = VariableType.getNonReferenceType();
2716  NonReferenceType.removeLocalConst();
2717  QualType NewReferenceType =
2719  SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
2720  << NonReferenceType << NewReferenceType << VD->getSourceRange();
2721  } else {
2722  // The range always returns a copy, so a temporary is always created.
2723  // Suggest removing the reference from the loop variable.
2724  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy)
2725  << VD << RangeInitType;
2726  QualType NonReferenceType = VariableType.getNonReferenceType();
2727  NonReferenceType.removeLocalConst();
2728  SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
2729  << NonReferenceType << VD->getSourceRange();
2730  }
2731 }
2732 
2733 // Warns when the loop variable can be changed to a reference type to
2734 // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest
2735 // "for (const Foo &x : Range)" if this form does not make a copy.
2737  const VarDecl *VD) {
2738  const Expr *InitExpr = VD->getInit();
2739  if (!InitExpr)
2740  return;
2741 
2742  QualType VariableType = VD->getType();
2743 
2744  if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
2745  if (!CE->getConstructor()->isCopyConstructor())
2746  return;
2747  } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
2748  if (CE->getCastKind() != CK_LValueToRValue)
2749  return;
2750  } else {
2751  return;
2752  }
2753 
2754  // TODO: Determine a maximum size that a POD type can be before a diagnostic
2755  // should be emitted. Also, only ignore POD types with trivial copy
2756  // constructors.
2757  if (VariableType.isPODType(SemaRef.Context))
2758  return;
2759 
2760  // Suggest changing from a const variable to a const reference variable
2761  // if doing so will prevent a copy.
2762  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
2763  << VD << VariableType << InitExpr->getType();
2764  SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
2765  << SemaRef.Context.getLValueReferenceType(VariableType)
2766  << VD->getSourceRange();
2767 }
2768 
2769 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
2770 /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest
2771 /// using "const foo x" to show that a copy is made
2772 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
2773 /// Suggest either "const bar x" to keep the copying or "const foo& x" to
2774 /// prevent the copy.
2775 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
2776 /// Suggest "const foo &x" to prevent the copy.
2778  const CXXForRangeStmt *ForStmt) {
2779  if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy,
2780  ForStmt->getBeginLoc()) &&
2781  SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy,
2782  ForStmt->getBeginLoc()) &&
2783  SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
2784  ForStmt->getBeginLoc())) {
2785  return;
2786  }
2787 
2788  const VarDecl *VD = ForStmt->getLoopVariable();
2789  if (!VD)
2790  return;
2791 
2792  QualType VariableType = VD->getType();
2793 
2794  if (VariableType->isIncompleteType())
2795  return;
2796 
2797  const Expr *InitExpr = VD->getInit();
2798  if (!InitExpr)
2799  return;
2800 
2801  if (VariableType->isReferenceType()) {
2803  ForStmt->getRangeInit()->getType());
2804  } else if (VariableType.isConstQualified()) {
2806  }
2807 }
2808 
2809 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2810 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2811 /// body cannot be performed until after the type of the range variable is
2812 /// determined.
2814  if (!S || !B)
2815  return StmtError();
2816 
2817  if (isa<ObjCForCollectionStmt>(S))
2818  return FinishObjCForCollectionStmt(S, B);
2819 
2820  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2821  ForStmt->setBody(B);
2822 
2823  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2824  diag::warn_empty_range_based_for_body);
2825 
2826  DiagnoseForRangeVariableCopies(*this, ForStmt);
2827 
2828  return S;
2829 }
2830 
2832  SourceLocation LabelLoc,
2833  LabelDecl *TheDecl) {
2834  setFunctionHasBranchIntoScope();
2835  TheDecl->markUsed(Context);
2836  return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
2837 }
2838 
2839 StmtResult
2841  Expr *E) {
2842  // Convert operand to void*
2843  if (!E->isTypeDependent()) {
2844  QualType ETy = E->getType();
2845  QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2846  ExprResult ExprRes = E;
2847  AssignConvertType ConvTy =
2848  CheckSingleAssignmentConstraints(DestTy, ExprRes);
2849  if (ExprRes.isInvalid())
2850  return StmtError();
2851  E = ExprRes.get();
2852  if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2853  return StmtError();
2854  }
2855 
2856  ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
2857  if (ExprRes.isInvalid())
2858  return StmtError();
2859  E = ExprRes.get();
2860 
2861  setFunctionHasIndirectGoto();
2862 
2863  return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
2864 }
2865 
2867  const Scope &DestScope) {
2868  if (!S.CurrentSEHFinally.empty() &&
2869  DestScope.Contains(*S.CurrentSEHFinally.back())) {
2870  S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
2871  }
2872 }
2873 
2874 StmtResult
2876  Scope *S = CurScope->getContinueParent();
2877  if (!S) {
2878  // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2879  return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2880  }
2881  CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
2882 
2883  return new (Context) ContinueStmt(ContinueLoc);
2884 }
2885 
2886 StmtResult
2888  Scope *S = CurScope->getBreakParent();
2889  if (!S) {
2890  // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2891  return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2892  }
2893  if (S->isOpenMPLoopScope())
2894  return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
2895  << "break");
2896  CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
2897 
2898  return new (Context) BreakStmt(BreakLoc);
2899 }
2900 
2901 /// Determine whether the given expression is a candidate for
2902 /// copy elision in either a return statement or a throw expression.
2903 ///
2904 /// \param ReturnType If we're determining the copy elision candidate for
2905 /// a return statement, this is the return type of the function. If we're
2906 /// determining the copy elision candidate for a throw expression, this will
2907 /// be a NULL type.
2908 ///
2909 /// \param E The expression being returned from the function or block, or
2910 /// being thrown.
2911 ///
2912 /// \param CESK Whether we allow function parameters or
2913 /// id-expressions that could be moved out of the function to be considered NRVO
2914 /// candidates. C++ prohibits these for NRVO itself, but we re-use this logic to
2915 /// determine whether we should try to move as part of a return or throw (which
2916 /// does allow function parameters).
2917 ///
2918 /// \returns The NRVO candidate variable, if the return statement may use the
2919 /// NRVO, or NULL if there is no such candidate.
2921  CopyElisionSemanticsKind CESK) {
2922  // - in a return statement in a function [where] ...
2923  // ... the expression is the name of a non-volatile automatic object ...
2924  DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2925  if (!DR || DR->refersToEnclosingVariableOrCapture())
2926  return nullptr;
2927  VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2928  if (!VD)
2929  return nullptr;
2930 
2931  if (isCopyElisionCandidate(ReturnType, VD, CESK))
2932  return VD;
2933  return nullptr;
2934 }
2935 
2936 bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
2937  CopyElisionSemanticsKind CESK) {
2938  QualType VDType = VD->getType();
2939  // - in a return statement in a function with ...
2940  // ... a class return type ...
2941  if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
2942  if (!ReturnType->isRecordType())
2943  return false;
2944  // ... the same cv-unqualified type as the function return type ...
2945  // When considering moving this expression out, allow dissimilar types.
2946  if (!(CESK & CES_AllowDifferentTypes) && !VDType->isDependentType() &&
2947  !Context.hasSameUnqualifiedType(ReturnType, VDType))
2948  return false;
2949  }
2950 
2951  // ...object (other than a function or catch-clause parameter)...
2952  if (VD->getKind() != Decl::Var &&
2953  !((CESK & CES_AllowParameters) && VD->getKind() == Decl::ParmVar))
2954  return false;
2955  if (!(CESK & CES_AllowExceptionVariables) && VD->isExceptionVariable())
2956  return false;
2957 
2958  // ...automatic...
2959  if (!VD->hasLocalStorage()) return false;
2960 
2961  // Return false if VD is a __block variable. We don't want to implicitly move
2962  // out of a __block variable during a return because we cannot assume the
2963  // variable will no longer be used.
2964  if (VD->hasAttr<BlocksAttr>()) return false;
2965 
2966  if (CESK & CES_AllowDifferentTypes)
2967  return true;
2968 
2969  // ...non-volatile...
2970  if (VD->getType().isVolatileQualified()) return false;
2971 
2972  // Variables with higher required alignment than their type's ABI
2973  // alignment cannot use NRVO.
2974  if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
2975  Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2976  return false;
2977 
2978  return true;
2979 }
2980 
2981 /// Try to perform the initialization of a potentially-movable value,
2982 /// which is the operand to a return or throw statement.
2983 ///
2984 /// This routine implements C++14 [class.copy]p32, which attempts to treat
2985 /// returned lvalues as rvalues in certain cases (to prefer move construction),
2986 /// then falls back to treating them as lvalues if that failed.
2987 ///
2988 /// \param ConvertingConstructorsOnly If true, follow [class.copy]p32 and reject
2989 /// resolutions that find non-constructors, such as derived-to-base conversions
2990 /// or `operator T()&&` member functions. If false, do consider such
2991 /// conversion sequences.
2992 ///
2993 /// \param Res We will fill this in if move-initialization was possible.
2994 /// If move-initialization is not possible, such that we must fall back to
2995 /// treating the operand as an lvalue, we will leave Res in its original
2996 /// invalid state.
2998  const InitializedEntity &Entity,
2999  const VarDecl *NRVOCandidate,
3000  QualType ResultType,
3001  Expr *&Value,
3002  bool ConvertingConstructorsOnly,
3003  ExprResult &Res) {
3005  CK_NoOp, Value, VK_XValue);
3006 
3007  Expr *InitExpr = &AsRvalue;
3008 
3010  Value->getBeginLoc(), Value->getBeginLoc());
3011 
3012  InitializationSequence Seq(S, Entity, Kind, InitExpr);
3013 
3014  if (!Seq)
3015  return;
3016 
3017  for (const InitializationSequence::Step &Step : Seq.steps()) {
3020  continue;
3021 
3022  FunctionDecl *FD = Step.Function.Function;
3023  if (ConvertingConstructorsOnly) {
3024  if (isa<CXXConstructorDecl>(FD)) {
3025  // C++14 [class.copy]p32:
3026  // [...] If the first overload resolution fails or was not performed,
3027  // or if the type of the first parameter of the selected constructor
3028  // is not an rvalue reference to the object's type (possibly
3029  // cv-qualified), overload resolution is performed again, considering
3030  // the object as an lvalue.
3031  const RValueReferenceType *RRefType =
3033  if (!RRefType)
3034  break;
3035  if (!S.Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
3036  NRVOCandidate->getType()))
3037  break;
3038  } else {
3039  continue;
3040  }
3041  } else {
3042  if (isa<CXXConstructorDecl>(FD)) {
3043  // Check that overload resolution selected a constructor taking an
3044  // rvalue reference. If it selected an lvalue reference, then we
3045  // didn't need to cast this thing to an rvalue in the first place.
3046  if (!isa<RValueReferenceType>(FD->getParamDecl(0)->getType()))
3047  break;
3048  } else if (isa<CXXMethodDecl>(FD)) {
3049  // Check that overload resolution selected a conversion operator
3050  // taking an rvalue reference.
3051  if (cast<CXXMethodDecl>(FD)->getRefQualifier() != RQ_RValue)
3052  break;
3053  } else {
3054  continue;
3055  }
3056  }
3057 
3058  // Promote "AsRvalue" to the heap, since we now need this
3059  // expression node to persist.
3060  Value = ImplicitCastExpr::Create(S.Context, Value->getType(), CK_NoOp,
3061  Value, nullptr, VK_XValue);
3062 
3063  // Complete type-checking the initialization of the return type
3064  // using the constructor we found.
3065  Res = Seq.Perform(S, Entity, Kind, Value);
3066  }
3067 }
3068 
3069 /// Perform the initialization of a potentially-movable value, which
3070 /// is the result of return value.
3071 ///
3072 /// This routine implements C++14 [class.copy]p32, which attempts to treat
3073 /// returned lvalues as rvalues in certain cases (to prefer move construction),
3074 /// then falls back to treating them as lvalues if that failed.
3075 ExprResult
3077  const VarDecl *NRVOCandidate,
3078  QualType ResultType,
3079  Expr *Value,
3080  bool AllowNRVO) {
3081  // C++14 [class.copy]p32:
3082  // When the criteria for elision of a copy/move operation are met, but not for
3083  // an exception-declaration, and the object to be copied is designated by an
3084  // lvalue, or when the expression in a return statement is a (possibly
3085  // parenthesized) id-expression that names an object with automatic storage
3086  // duration declared in the body or parameter-declaration-clause of the
3087  // innermost enclosing function or lambda-expression, overload resolution to
3088  // select the constructor for the copy is first performed as if the object
3089  // were designated by an rvalue.
3090  ExprResult Res = ExprError();
3091 
3092  if (AllowNRVO) {
3093  bool AffectedByCWG1579 = false;
3094 
3095  if (!NRVOCandidate) {
3096  NRVOCandidate = getCopyElisionCandidate(ResultType, Value, CES_Default);
3097  if (NRVOCandidate &&
3098  !getDiagnostics().isIgnored(diag::warn_return_std_move_in_cxx11,
3099  Value->getExprLoc())) {
3100  const VarDecl *NRVOCandidateInCXX11 =
3101  getCopyElisionCandidate(ResultType, Value, CES_FormerDefault);
3102  AffectedByCWG1579 = (!NRVOCandidateInCXX11);
3103  }
3104  }
3105 
3106  if (NRVOCandidate) {
3107  TryMoveInitialization(*this, Entity, NRVOCandidate, ResultType, Value,
3108  true, Res);
3109  }
3110 
3111  if (!Res.isInvalid() && AffectedByCWG1579) {
3112  QualType QT = NRVOCandidate->getType();
3113  if (QT.getNonReferenceType()
3115  .isTriviallyCopyableType(Context)) {
3116  // Adding 'std::move' around a trivially copyable variable is probably
3117  // pointless. Don't suggest it.
3118  } else {
3119  // Common cases for this are returning unique_ptr<Derived> from a
3120  // function of return type unique_ptr<Base>, or returning T from a
3121  // function of return type Expected<T>. This is totally fine in a
3122  // post-CWG1579 world, but was not fine before.
3123  assert(!ResultType.isNull());
3124  SmallString<32> Str;
3125  Str += "std::move(";
3126  Str += NRVOCandidate->getDeclName().getAsString();
3127  Str += ")";
3128  Diag(Value->getExprLoc(), diag::warn_return_std_move_in_cxx11)
3129  << Value->getSourceRange()
3130  << NRVOCandidate->getDeclName() << ResultType << QT;
3131  Diag(Value->getExprLoc(), diag::note_add_std_move_in_cxx11)
3132  << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
3133  }
3134  } else if (Res.isInvalid() &&
3135  !getDiagnostics().isIgnored(diag::warn_return_std_move,
3136  Value->getExprLoc())) {
3137  const VarDecl *FakeNRVOCandidate =
3138  getCopyElisionCandidate(QualType(), Value, CES_AsIfByStdMove);
3139  if (FakeNRVOCandidate) {
3140  QualType QT = FakeNRVOCandidate->getType();
3141  if (QT->isLValueReferenceType()) {
3142  // Adding 'std::move' around an lvalue reference variable's name is
3143  // dangerous. Don't suggest it.
3144  } else if (QT.getNonReferenceType()
3146  .isTriviallyCopyableType(Context)) {
3147  // Adding 'std::move' around a trivially copyable variable is probably
3148  // pointless. Don't suggest it.
3149  } else {
3150  ExprResult FakeRes = ExprError();
3151  Expr *FakeValue = Value;
3152  TryMoveInitialization(*this, Entity, FakeNRVOCandidate, ResultType,
3153  FakeValue, false, FakeRes);
3154  if (!FakeRes.isInvalid()) {
3155  bool IsThrow =
3157  SmallString<32> Str;
3158  Str += "std::move(";
3159  Str += FakeNRVOCandidate->getDeclName().getAsString();
3160  Str += ")";
3161  Diag(Value->getExprLoc(), diag::warn_return_std_move)
3162  << Value->getSourceRange()
3163  << FakeNRVOCandidate->getDeclName() << IsThrow;
3164  Diag(Value->getExprLoc(), diag::note_add_std_move)
3165  << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
3166  }
3167  }
3168  }
3169  }
3170  }
3171 
3172  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
3173  // above, or overload resolution failed. Either way, we need to try
3174  // (again) now with the return value expression as written.
3175  if (Res.isInvalid())
3176  Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
3177 
3178  return Res;
3179 }
3180 
3181 /// Determine whether the declared return type of the specified function
3182 /// contains 'auto'.
3184  const FunctionProtoType *FPT =
3186  return FPT->getReturnType()->isUndeducedType();
3187 }
3188 
3189 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
3190 /// for capturing scopes.
3191 ///
3192 StmtResult
3194  // If this is the first return we've seen, infer the return type.
3195  // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3196  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3197  QualType FnRetType = CurCap->ReturnType;
3198  LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3199  bool HasDeducedReturnType =
3200  CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3201 
3202  if (ExprEvalContexts.back().Context ==
3203  ExpressionEvaluationContext::DiscardedStatement &&
3204  (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3205  if (RetValExp) {
3206  ExprResult ER =
3207  ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3208  if (ER.isInvalid())
3209  return StmtError();
3210  RetValExp = ER.get();
3211  }
3212  return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3213  /* NRVOCandidate=*/nullptr);
3214  }
3215 
3216  if (HasDeducedReturnType) {
3217  // In C++1y, the return type may involve 'auto'.
3218  // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3219  FunctionDecl *FD = CurLambda->CallOperator;
3220  if (CurCap->ReturnType.isNull())
3221  CurCap->ReturnType = FD->getReturnType();
3222 
3223  AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3224  assert(AT && "lost auto type from lambda return type");
3225  if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3226  FD->setInvalidDecl();
3227  return StmtError();
3228  }
3229  CurCap->ReturnType = FnRetType = FD->getReturnType();
3230  } else if (CurCap->HasImplicitReturnType) {
3231  // For blocks/lambdas with implicit return types, we check each return
3232  // statement individually, and deduce the common return type when the block
3233  // or lambda is completed.
3234  // FIXME: Fold this into the 'auto' codepath above.
3235  if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3236  ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3237  if (Result.isInvalid())
3238  return StmtError();
3239  RetValExp = Result.get();
3240 
3241  // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3242  // when deducing a return type for a lambda-expression (or by extension
3243  // for a block). These rules differ from the stated C++11 rules only in
3244  // that they remove top-level cv-qualifiers.
3245  if (!CurContext->isDependentContext())
3246  FnRetType = RetValExp->getType().getUnqualifiedType();
3247  else
3248  FnRetType = CurCap->ReturnType = Context.DependentTy;
3249  } else {
3250  if (RetValExp) {
3251  // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3252  // initializer list, because it is not an expression (even
3253  // though we represent it as one). We still deduce 'void'.
3254  Diag(ReturnLoc, diag::err_lambda_return_init_list)
3255  << RetValExp->getSourceRange();
3256  }
3257 
3258  FnRetType = Context.VoidTy;
3259  }
3260 
3261  // Although we'll properly infer the type of the block once it's completed,
3262  // make sure we provide a return type now for better error recovery.
3263  if (CurCap->ReturnType.isNull())
3264  CurCap->ReturnType = FnRetType;
3265  }
3266  assert(!FnRetType.isNull());
3267 
3268  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3269  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
3270  Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3271  return StmtError();
3272  }
3273  } else if (CapturedRegionScopeInfo *CurRegion =
3274  dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3275  Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3276  return StmtError();
3277  } else {
3278  assert(CurLambda && "unknown kind of captured scope");
3279  if (CurLambda->CallOperator->getType()->getAs<FunctionType>()
3280  ->getNoReturnAttr()) {
3281  Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3282  return StmtError();
3283  }
3284  }
3285 
3286  // Otherwise, verify that this result type matches the previous one. We are
3287  // pickier with blocks than for normal functions because we don't have GCC
3288  // compatibility to worry about here.
3289  const VarDecl *NRVOCandidate = nullptr;
3290  if (FnRetType->isDependentType()) {
3291  // Delay processing for now. TODO: there are lots of dependent
3292  // types we can conclusively prove aren't void.
3293  } else if (FnRetType->isVoidType()) {
3294  if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3295  !(getLangOpts().CPlusPlus &&
3296  (RetValExp->isTypeDependent() ||
3297  RetValExp->getType()->isVoidType()))) {
3298  if (!getLangOpts().CPlusPlus &&
3299  RetValExp->getType()->isVoidType())
3300  Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3301  else {
3302  Diag(ReturnLoc, diag::err_return_block_has_expr);
3303  RetValExp = nullptr;
3304  }
3305  }
3306  } else if (!RetValExp) {
3307  return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3308  } else if (!RetValExp->isTypeDependent()) {
3309  // we have a non-void block with an expression, continue checking
3310 
3311  // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3312  // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3313  // function return.
3314 
3315  // In C++ the return statement is handled via a copy initialization.
3316  // the C version of which boils down to CheckSingleAssignmentConstraints.
3317  NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3319  FnRetType,
3320  NRVOCandidate != nullptr);
3321  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3322  FnRetType, RetValExp);
3323  if (Res.isInvalid()) {
3324  // FIXME: Cleanup temporaries here, anyway?
3325  return StmtError();
3326  }
3327  RetValExp = Res.get();
3328  CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3329  } else {
3330  NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3331  }
3332 
3333  if (RetValExp) {
3334  ExprResult ER =
3335  ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3336  if (ER.isInvalid())
3337  return StmtError();
3338  RetValExp = ER.get();
3339  }
3340  auto *Result =
3341  ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3342 
3343  // If we need to check for the named return value optimization,
3344  // or if we need to infer the return type,
3345  // save the return statement in our scope for later processing.
3346  if (CurCap->HasImplicitReturnType || NRVOCandidate)
3347  FunctionScopes.back()->Returns.push_back(Result);
3348 
3349  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3350  FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3351 
3352  return Result;
3353 }
3354 
3355 namespace {
3356 /// Marks all typedefs in all local classes in a type referenced.
3357 ///
3358 /// In a function like
3359 /// auto f() {
3360 /// struct S { typedef int a; };
3361 /// return S();
3362 /// }
3363 ///
3364 /// the local type escapes and could be referenced in some TUs but not in
3365 /// others. Pretend that all local typedefs are always referenced, to not warn
3366 /// on this. This isn't necessary if f has internal linkage, or the typedef
3367 /// is private.
3368 class LocalTypedefNameReferencer
3369  : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
3370 public:
3371  LocalTypedefNameReferencer(Sema &S) : S(S) {}
3372  bool VisitRecordType(const RecordType *RT);
3373 private:
3374  Sema &S;
3375 };
3376 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
3377  auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3378  if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3379  R->isDependentType())
3380  return true;
3381  for (auto *TmpD : R->decls())
3382  if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3383  if (T->getAccess() != AS_private || R->hasFriends())
3384  S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3385  return true;
3386 }
3387 }
3388 
3391  while (auto ATL = TL.getAs<AttributedTypeLoc>())
3392  TL = ATL.getModifiedLoc().IgnoreParens();
3393  return TL.castAs<FunctionProtoTypeLoc>().getReturnLoc();
3394 }
3395 
3396 /// Deduce the return type for a function from a returned expression, per
3397 /// C++1y [dcl.spec.auto]p6.
3399  SourceLocation ReturnLoc,
3400  Expr *&RetExpr,
3401  AutoType *AT) {
3402  // If this is the conversion function for a lambda, we choose to deduce it
3403  // type from the corresponding call operator, not from the synthesized return
3404  // statement within it. See Sema::DeduceReturnType.
3406  return false;
3407 
3408  TypeLoc OrigResultType = getReturnTypeLoc(FD);
3409  QualType Deduced;
3410 
3411  if (RetExpr && isa<InitListExpr>(RetExpr)) {
3412  // If the deduction is for a return statement and the initializer is
3413  // a braced-init-list, the program is ill-formed.
3414  Diag(RetExpr->getExprLoc(),
3415  getCurLambda() ? diag::err_lambda_return_init_list
3416  : diag::err_auto_fn_return_init_list)
3417  << RetExpr->getSourceRange();
3418  return true;
3419  }
3420 
3421  if (FD->isDependentContext()) {
3422  // C++1y [dcl.spec.auto]p12:
3423  // Return type deduction [...] occurs when the definition is
3424  // instantiated even if the function body contains a return
3425  // statement with a non-type-dependent operand.
3426  assert(AT->isDeduced() && "should have deduced to dependent type");
3427  return false;
3428  }
3429 
3430  if (RetExpr) {
3431  // Otherwise, [...] deduce a value for U using the rules of template
3432  // argument deduction.
3433  DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
3434 
3435  if (DAR == DAR_Failed && !FD->isInvalidDecl())
3436  Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3437  << OrigResultType.getType() << RetExpr->getType();
3438 
3439  if (DAR != DAR_Succeeded)
3440  return true;
3441 
3442  // If a local type is part of the returned type, mark its fields as
3443  // referenced.
3444  LocalTypedefNameReferencer Referencer(*this);
3445  Referencer.TraverseType(RetExpr->getType());
3446  } else {
3447  // In the case of a return with no operand, the initializer is considered
3448  // to be void().
3449  //
3450  // Deduction here can only succeed if the return type is exactly 'cv auto'
3451  // or 'decltype(auto)', so just check for that case directly.
3452  if (!OrigResultType.getType()->getAs<AutoType>()) {
3453  Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3454  << OrigResultType.getType();
3455  return true;
3456  }
3457  // We always deduce U = void in this case.
3458  Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
3459  if (Deduced.isNull())
3460  return true;
3461  }
3462 
3463  // If a function with a declared return type that contains a placeholder type
3464  // has multiple return statements, the return type is deduced for each return
3465  // statement. [...] if the type deduced is not the same in each deduction,
3466  // the program is ill-formed.
3467  QualType DeducedT = AT->getDeducedType();
3468  if (!DeducedT.isNull() && !FD->isInvalidDecl()) {
3469  AutoType *NewAT = Deduced->getContainedAutoType();
3470  // It is possible that NewAT->getDeducedType() is null. When that happens,
3471  // we should not crash, instead we ignore this deduction.
3472  if (NewAT->getDeducedType().isNull())
3473  return false;
3474 
3475  CanQualType OldDeducedType = Context.getCanonicalFunctionResultType(
3476  DeducedT);
3477  CanQualType NewDeducedType = Context.getCanonicalFunctionResultType(
3478  NewAT->getDeducedType());
3479  if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) {
3480  const LambdaScopeInfo *LambdaSI = getCurLambda();
3481  if (LambdaSI && LambdaSI->HasImplicitReturnType) {
3482  Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3483  << NewAT->getDeducedType() << DeducedT
3484  << true /*IsLambda*/;
3485  } else {
3486  Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3487  << (AT->isDecltypeAuto() ? 1 : 0)
3488  << NewAT->getDeducedType() << DeducedT;
3489  }
3490  return true;
3491  }
3492  } else if (!FD->isInvalidDecl()) {
3493  // Update all declarations of the function to have the deduced return type.
3494  Context.adjustDeducedFunctionResultType(FD, Deduced);
3495  }
3496 
3497  return false;
3498 }
3499 
3500 StmtResult
3502  Scope *CurScope) {
3503  StmtResult R = BuildReturnStmt(ReturnLoc, RetValExp);
3504  if (R.isInvalid() || ExprEvalContexts.back().Context ==
3505  ExpressionEvaluationContext::DiscardedStatement)
3506  return R;
3507 
3508  if (VarDecl *VD =
3509  const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
3510  CurScope->addNRVOCandidate(VD);
3511  } else {
3512  CurScope->setNoNRVO();
3513  }
3514 
3515  CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3516 
3517  return R;
3518 }
3519 
3521  // Check for unexpanded parameter packs.
3522  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3523  return StmtError();
3524 
3525  if (isa<CapturingScopeInfo>(getCurFunction()))
3526  return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
3527 
3528  QualType FnRetType;
3529  QualType RelatedRetType;
3530  const AttrVec *Attrs = nullptr;
3531  bool isObjCMethod = false;
3532 
3533  if (const FunctionDecl *FD = getCurFunctionDecl()) {
3534  FnRetType = FD->getReturnType();
3535  if (FD->hasAttrs())
3536  Attrs = &FD->getAttrs();
3537  if (FD->isNoReturn())
3538  Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
3539  << FD->getDeclName();
3540  if (FD->isMain() && RetValExp)
3541  if (isa<CXXBoolLiteralExpr>(RetValExp))
3542  Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3543  << RetValExp->getSourceRange();
3544  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3545  FnRetType = MD->getReturnType();
3546  isObjCMethod = true;
3547  if (MD->hasAttrs())
3548  Attrs = &MD->getAttrs();
3549  if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3550  // In the implementation of a method with a related return type, the
3551  // type used to type-check the validity of return statements within the
3552  // method body is a pointer to the type of the class being implemented.
3553  RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3554  RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3555  }
3556  } else // If we don't have a function/method context, bail.
3557  return StmtError();
3558 
3559  // C++1z: discarded return statements are not considered when deducing a
3560  // return type.
3561  if (ExprEvalContexts.back().Context ==
3562  ExpressionEvaluationContext::DiscardedStatement &&
3563  FnRetType->getContainedAutoType()) {
3564  if (RetValExp) {
3565  ExprResult ER =
3566  ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3567  if (ER.isInvalid())
3568  return StmtError();
3569  RetValExp = ER.get();
3570  }
3571  return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3572  /* NRVOCandidate=*/nullptr);
3573  }
3574 
3575  // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3576  // deduction.
3577  if (getLangOpts().CPlusPlus14) {
3578  if (AutoType *AT = FnRetType->getContainedAutoType()) {
3579  FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3580  if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3581  FD->setInvalidDecl();
3582  return StmtError();
3583  } else {
3584  FnRetType = FD->getReturnType();
3585  }
3586  }
3587  }
3588 
3589  bool HasDependentReturnType = FnRetType->isDependentType();
3590 
3591  ReturnStmt *Result = nullptr;
3592  if (FnRetType->isVoidType()) {
3593  if (RetValExp) {
3594  if (isa<InitListExpr>(RetValExp)) {
3595  // We simply never allow init lists as the return value of void
3596  // functions. This is compatible because this was never allowed before,
3597  // so there's no legacy code to deal with.
3598  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3599  int FunctionKind = 0;
3600  if (isa<ObjCMethodDecl>(CurDecl))
3601  FunctionKind = 1;
3602  else if (isa<CXXConstructorDecl>(CurDecl))
3603  FunctionKind = 2;
3604  else if (isa<CXXDestructorDecl>(CurDecl))
3605  FunctionKind = 3;
3606 
3607  Diag(ReturnLoc, diag::err_return_init_list)
3608  << CurDecl->getDeclName() << FunctionKind
3609  << RetValExp->getSourceRange();
3610 
3611  // Drop the expression.
3612  RetValExp = nullptr;
3613  } else if (!RetValExp->isTypeDependent()) {
3614  // C99 6.8.6.4p1 (ext_ since GCC warns)
3615  unsigned D = diag::ext_return_has_expr;
3616  if (RetValExp->getType()->isVoidType()) {
3617  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3618  if (isa<CXXConstructorDecl>(CurDecl) ||
3619  isa<CXXDestructorDecl>(CurDecl))
3620  D = diag::err_ctor_dtor_returns_void;
3621  else
3622  D = diag::ext_return_has_void_expr;
3623  }
3624  else {
3625  ExprResult Result = RetValExp;
3626  Result = IgnoredValueConversions(Result.get());
3627  if (Result.isInvalid())
3628  return StmtError();
3629  RetValExp = Result.get();
3630  RetValExp = ImpCastExprToType(RetValExp,
3631  Context.VoidTy, CK_ToVoid).get();
3632  }
3633  // return of void in constructor/destructor is illegal in C++.
3634  if (D == diag::err_ctor_dtor_returns_void) {
3635  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3636  Diag(ReturnLoc, D)
3637  << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
3638  << RetValExp->getSourceRange();
3639  }
3640  // return (some void expression); is legal in C++.
3641  else if (D != diag::ext_return_has_void_expr ||
3642  !getLangOpts().CPlusPlus) {
3643  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3644 
3645  int FunctionKind = 0;
3646  if (isa<ObjCMethodDecl>(CurDecl))
3647  FunctionKind = 1;
3648  else if (isa<CXXConstructorDecl>(CurDecl))
3649  FunctionKind = 2;
3650  else if (isa<CXXDestructorDecl>(CurDecl))
3651  FunctionKind = 3;
3652 
3653  Diag(ReturnLoc, D)
3654  << CurDecl->getDeclName() << FunctionKind
3655  << RetValExp->getSourceRange();
3656  }
3657  }
3658 
3659  if (RetValExp) {
3660  ExprResult ER =
3661  ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3662  if (ER.isInvalid())
3663  return StmtError();
3664  RetValExp = ER.get();
3665  }
3666  }
3667 
3668  Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3669  /* NRVOCandidate=*/nullptr);
3670  } else if (!RetValExp && !HasDependentReturnType) {
3671  FunctionDecl *FD = getCurFunctionDecl();
3672 
3673  unsigned DiagID;
3674  if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
3675  // C++11 [stmt.return]p2
3676  DiagID = diag::err_constexpr_return_missing_expr;
3677  FD->setInvalidDecl();
3678  } else if (getLangOpts().C99) {
3679  // C99 6.8.6.4p1 (ext_ since GCC warns)
3680  DiagID = diag::ext_return_missing_expr;
3681  } else {
3682  // C90 6.6.6.4p4
3683  DiagID = diag::warn_return_missing_expr;
3684  }
3685 
3686  if (FD)
3687  Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
3688  else
3689  Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
3690 
3691  Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
3692  /* NRVOCandidate=*/nullptr);
3693  } else {
3694  assert(RetValExp || HasDependentReturnType);
3695  const VarDecl *NRVOCandidate = nullptr;
3696 
3697  QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
3698 
3699  // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3700  // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3701  // function return.
3702 
3703  // In C++ the return statement is handled via a copy initialization,
3704  // the C version of which boils down to CheckSingleAssignmentConstraints.
3705  if (RetValExp)
3706  NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3707  if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
3708  // we have a non-void function with an expression, continue checking
3710  RetType,
3711  NRVOCandidate != nullptr);
3712  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3713  RetType, RetValExp);
3714  if (Res.isInvalid()) {
3715  // FIXME: Clean up temporaries here anyway?
3716  return StmtError();
3717  }
3718  RetValExp = Res.getAs<Expr>();
3719 
3720  // If we have a related result type, we need to implicitly
3721  // convert back to the formal result type. We can't pretend to
3722  // initialize the result again --- we might end double-retaining
3723  // --- so instead we initialize a notional temporary.
3724  if (!RelatedRetType.isNull()) {
3725  Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
3726  FnRetType);
3727  Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
3728  if (Res.isInvalid()) {
3729  // FIXME: Clean up temporaries here anyway?
3730  return StmtError();
3731  }
3732  RetValExp = Res.getAs<Expr>();
3733  }
3734 
3735  CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
3736  getCurFunctionDecl());
3737  }
3738 
3739  if (RetValExp) {
3740  ExprResult ER =
3741  ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3742  if (ER.isInvalid())
3743  return StmtError();
3744  RetValExp = ER.get();
3745  }
3746  Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3747  }
3748 
3749  // If we need to check for the named return value optimization, save the
3750  // return statement in our scope for later processing.
3751  if (Result->getNRVOCandidate())
3752  FunctionScopes.back()->Returns.push_back(Result);
3753 
3754  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3755  FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3756 
3757  return Result;
3758 }
3759 
3760 StmtResult
3762  SourceLocation RParen, Decl *Parm,
3763  Stmt *Body) {
3764  VarDecl *Var = cast_or_null<VarDecl>(Parm);
3765  if (Var && Var->isInvalidDecl())
3766  return StmtError();
3767 
3768  return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
3769 }
3770 
3771 StmtResult
3773  return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
3774 }
3775 
3776 StmtResult
3778  MultiStmtArg CatchStmts, Stmt *Finally) {
3779  if (!getLangOpts().ObjCExceptions)
3780  Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
3781 
3782  setFunctionHasBranchProtectedScope();
3783  unsigned NumCatchStmts = CatchStmts.size();
3784  return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
3785  NumCatchStmts, Finally);
3786 }
3787 
3789  if (Throw) {
3790  ExprResult Result = DefaultLvalueConversion(Throw);
3791  if (Result.isInvalid())
3792  return StmtError();
3793 
3794  Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false);
3795  if (Result.isInvalid())
3796  return StmtError();
3797  Throw = Result.get();
3798 
3799  QualType ThrowType = Throw->getType();
3800  // Make sure the expression type is an ObjC pointer or "void *".
3801  if (!ThrowType->isDependentType() &&
3802  !ThrowType->isObjCObjectPointerType()) {
3803  const PointerType *PT = ThrowType->getAs<PointerType>();
3804  if (!PT || !PT->getPointeeType()->isVoidType())
3805  return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
3806  << Throw->getType() << Throw->getSourceRange());
3807  }
3808  }
3809 
3810  return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
3811 }
3812 
3813 StmtResult
3815  Scope *CurScope) {
3816  if (!getLangOpts().ObjCExceptions)
3817  Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
3818 
3819  if (!Throw) {
3820  // @throw without an expression designates a rethrow (which must occur
3821  // in the context of an @catch clause).
3822  Scope *AtCatchParent = CurScope;
3823  while (AtCatchParent && !AtCatchParent->isAtCatchScope())
3824  AtCatchParent = AtCatchParent->getParent();
3825  if (!AtCatchParent)
3826  return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
3827  }
3828  return BuildObjCAtThrowStmt(AtLoc, Throw);
3829 }
3830 
3831 ExprResult
3833  ExprResult result = DefaultLvalueConversion(operand);
3834  if (result.isInvalid())
3835  return ExprError();
3836  operand = result.get();
3837 
3838  // Make sure the expression type is an ObjC pointer or "void *".
3839  QualType type = operand->getType();
3840  if (!type->isDependentType() &&
3841  !type->isObjCObjectPointerType()) {
3842  const PointerType *pointerType = type->getAs<PointerType>();
3843  if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
3844  if (getLangOpts().CPlusPlus) {
3845  if (RequireCompleteType(atLoc, type,
3846  diag::err_incomplete_receiver_type))
3847  return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3848  << type << operand->getSourceRange();
3849 
3850  ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
3851  if (result.isInvalid())
3852  return ExprError();
3853  if (!result.isUsable())
3854  return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3855  << type << operand->getSourceRange();
3856 
3857  operand = result.get();
3858  } else {
3859  return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3860  << type << operand->getSourceRange();
3861  }
3862  }
3863  }
3864 
3865  // The operand to @synchronized is a full-expression.
3866  return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false);
3867 }
3868 
3869 StmtResult
3871  Stmt *SyncBody) {
3872  // We can't jump into or indirect-jump out of a @synchronized block.
3873  setFunctionHasBranchProtectedScope();
3874  return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
3875 }
3876 
3877 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
3878 /// and creates a proper catch handler from them.
3879 StmtResult
3881  Stmt *HandlerBlock) {
3882  // There's nothing to test that ActOnExceptionDecl didn't already test.
3883  return new (Context)
3884  CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
3885 }
3886 
3887 StmtResult
3889  setFunctionHasBranchProtectedScope();
3890  return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
3891 }
3892 
3893 namespace {
3894 class CatchHandlerType {
3895  QualType QT;
3896  unsigned IsPointer : 1;
3897 
3898  // This is a special constructor to be used only with DenseMapInfo's
3899  // getEmptyKey() and getTombstoneKey() functions.
3900  friend struct llvm::DenseMapInfo<CatchHandlerType>;
3901  enum Unique { ForDenseMap };
3902  CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
3903 
3904 public:
3905  /// Used when creating a CatchHandlerType from a handler type; will determine
3906  /// whether the type is a pointer or reference and will strip off the top
3907  /// level pointer and cv-qualifiers.
3908  CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
3909  if (QT->isPointerType())
3910  IsPointer = true;
3911 
3912  if (IsPointer || QT->isReferenceType())
3913  QT = QT->getPointeeType();
3914  QT = QT.getUnqualifiedType();
3915  }
3916 
3917  /// Used when creating a CatchHandlerType from a base class type; pretends the
3918  /// type passed in had the pointer qualifier, does not need to get an
3919  /// unqualified type.
3920  CatchHandlerType(QualType QT, bool IsPointer)
3921  : QT(QT), IsPointer(IsPointer) {}
3922 
3923  QualType underlying() const { return QT; }
3924  bool isPointer() const { return IsPointer; }
3925 
3926  friend bool operator==(const CatchHandlerType &LHS,
3927  const CatchHandlerType &RHS) {
3928  // If the pointer qualification does not match, we can return early.
3929  if (LHS.IsPointer != RHS.IsPointer)
3930  return false;
3931  // Otherwise, check the underlying type without cv-qualifiers.
3932  return LHS.QT == RHS.QT;
3933  }
3934 };
3935 } // namespace
3936 
3937 namespace llvm {
3938 template <> struct DenseMapInfo<CatchHandlerType> {
3939  static CatchHandlerType getEmptyKey() {
3940  return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
3941  CatchHandlerType::ForDenseMap);
3942  }
3943 
3944  static CatchHandlerType getTombstoneKey() {
3945  return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
3946  CatchHandlerType::ForDenseMap);
3947  }
3948 
3949  static unsigned getHashValue(const CatchHandlerType &Base) {
3950  return DenseMapInfo<QualType>::getHashValue(Base.underlying());
3951  }
3952 
3953  static bool isEqual(const CatchHandlerType &LHS,
3954  const CatchHandlerType &RHS) {
3955  return LHS == RHS;
3956  }
3957 };
3958 }
3959 
3960 namespace {
3961 class CatchTypePublicBases {
3962  ASTContext &Ctx;
3963  const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
3964  const bool CheckAgainstPointer;
3965 
3966  CXXCatchStmt *FoundHandler;
3967  CanQualType FoundHandlerType;
3968 
3969 public:
3970  CatchTypePublicBases(
3971  ASTContext &Ctx,
3972  const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
3973  : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
3974  FoundHandler(nullptr) {}
3975 
3976  CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
3977  CanQualType getFoundHandlerType() const { return FoundHandlerType; }
3978 
3979  bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
3981  CatchHandlerType Check(S->getType(), CheckAgainstPointer);
3982  const auto &M = TypesToCheck;
3983  auto I = M.find(Check);
3984  if (I != M.end()) {
3985  FoundHandler = I->second;
3986  FoundHandlerType = Ctx.getCanonicalType(S->getType());
3987  return true;
3988  }
3989  }
3990  return false;
3991  }
3992 };
3993 }
3994 
3995 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
3996 /// handlers and creates a try statement from them.
3998  ArrayRef<Stmt *> Handlers) {
3999  // Don't report an error if 'try' is used in system headers.
4000  if (!getLangOpts().CXXExceptions &&
4001  !getSourceManager().isInSystemHeader(TryLoc) &&
4002  (!getLangOpts().OpenMPIsDevice ||
4003  !getLangOpts().OpenMPHostCXXExceptions ||
4004  isInOpenMPTargetExecutionDirective() ||
4005  isInOpenMPDeclareTargetContext()))
4006  Diag(TryLoc, diag::err_exceptions_disabled) << "try";
4007 
4008  // Exceptions aren't allowed in CUDA device code.
4009  if (getLangOpts().CUDA)
4010  CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
4011  << "try" << CurrentCUDATarget();
4012 
4013  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
4014  Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
4015 
4016  sema::FunctionScopeInfo *FSI = getCurFunction();
4017 
4018  // C++ try is incompatible with SEH __try.
4019  if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
4020  Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
4021  Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4022  }
4023 
4024  const unsigned NumHandlers = Handlers.size();
4025  assert(!Handlers.empty() &&
4026  "The parser shouldn't call this if there are no handlers.");
4027 
4028  llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
4029  for (unsigned i = 0; i < NumHandlers; ++i) {
4030  CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
4031 
4032  // Diagnose when the handler is a catch-all handler, but it isn't the last
4033  // handler for the try block. [except.handle]p5. Also, skip exception
4034  // declarations that are invalid, since we can't usefully report on them.
4035  if (!H->getExceptionDecl()) {
4036  if (i < NumHandlers - 1)
4037  return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
4038  continue;
4039  } else if (H->getExceptionDecl()->isInvalidDecl())
4040  continue;
4041 
4042  // Walk the type hierarchy to diagnose when this type has already been
4043  // handled (duplication), or cannot be handled (derivation inversion). We
4044  // ignore top-level cv-qualifiers, per [except.handle]p3
4045  CatchHandlerType HandlerCHT =
4046  (QualType)Context.getCanonicalType(H->getCaughtType());
4047 
4048  // We can ignore whether the type is a reference or a pointer; we need the
4049  // underlying declaration type in order to get at the underlying record
4050  // decl, if there is one.
4051  QualType Underlying = HandlerCHT.underlying();
4052  if (auto *RD = Underlying->getAsCXXRecordDecl()) {
4053  if (!RD->hasDefinition())
4054  continue;
4055  // Check that none of the public, unambiguous base classes are in the
4056  // map ([except.handle]p1). Give the base classes the same pointer
4057  // qualification as the original type we are basing off of. This allows
4058  // comparison against the handler type using the same top-level pointer
4059  // as the original type.
4060  CXXBasePaths Paths;
4061  Paths.setOrigin(RD);
4062  CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
4063  if (RD->lookupInBases(CTPB, Paths)) {
4064  const CXXCatchStmt *Problem = CTPB.getFoundHandler();
4065  if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
4067  diag::warn_exception_caught_by_earlier_handler)
4068  << H->getCaughtType();
4070  diag::note_previous_exception_handler)
4071  << Problem->getCaughtType();
4072  }
4073  }
4074  }
4075 
4076  // Add the type the list of ones we have handled; diagnose if we've already
4077  // handled it.
4078  auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
4079  if (!R.second) {
4080  const CXXCatchStmt *Problem = R.first->second;
4082  diag::warn_exception_caught_by_earlier_handler)
4083  << H->getCaughtType();
4085  diag::note_previous_exception_handler)
4086  << Problem->getCaughtType();
4087  }
4088  }
4089 
4090  FSI->setHasCXXTry(TryLoc);
4091 
4092  return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
4093 }
4094 
4096  Stmt *TryBlock, Stmt *Handler) {
4097  assert(TryBlock && Handler);
4098 
4099  sema::FunctionScopeInfo *FSI = getCurFunction();
4100 
4101  // SEH __try is incompatible with C++ try. Borland appears to support this,
4102  // however.
4103  if (!getLangOpts().Borland) {
4104  if (FSI->FirstCXXTryLoc.isValid()) {
4105  Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
4106  Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
4107  }
4108  }
4109 
4110  FSI->setHasSEHTry(TryLoc);
4111 
4112  // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
4113  // track if they use SEH.
4114  DeclContext *DC = CurContext;
4115  while (DC && !DC->isFunctionOrMethod())
4116  DC = DC->getParent();
4117  FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
4118  if (FD)
4119  FD->setUsesSEHTry(true);
4120  else
4121  Diag(TryLoc, diag::err_seh_try_outside_functions);
4122 
4123  // Reject __try on unsupported targets.
4124  if (!Context.getTargetInfo().isSEHTrySupported())
4125  Diag(TryLoc, diag::err_seh_try_unsupported);
4126 
4127  return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
4128 }
4129 
4130 StmtResult
4132  Expr *FilterExpr,
4133  Stmt *Block) {
4134  assert(FilterExpr && Block);
4135 
4136  if(!FilterExpr->getType()->isIntegerType()) {
4137  return StmtError(Diag(FilterExpr->getExprLoc(),
4138  diag::err_filter_expression_integral)
4139  << FilterExpr->getType());
4140  }
4141 
4142  return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block);
4143 }
4144 
4146  CurrentSEHFinally.push_back(CurScope);
4147 }
4148 
4150  CurrentSEHFinally.pop_back();
4151 }
4152 
4154  assert(Block);
4155  CurrentSEHFinally.pop_back();
4156  return SEHFinallyStmt::Create(Context, Loc, Block);
4157 }
4158 
4159 StmtResult
4161  Scope *SEHTryParent = CurScope;
4162  while (SEHTryParent && !SEHTryParent->isSEHTryScope())
4163  SEHTryParent = SEHTryParent->getParent();
4164  if (!SEHTryParent)
4165  return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
4166  CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
4167 
4168  return new (Context) SEHLeaveStmt(Loc);
4169 }
4170 
4172  bool IsIfExists,
4173  NestedNameSpecifierLoc QualifierLoc,
4174  DeclarationNameInfo NameInfo,
4175  Stmt *Nested)
4176 {
4177  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
4178  QualifierLoc, NameInfo,
4179  cast<CompoundStmt>(Nested));
4180 }
4181 
4182 
4184  bool IsIfExists,
4185  CXXScopeSpec &SS,
4186  UnqualifiedId &Name,
4187  Stmt *Nested) {
4188  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
4189  SS.getWithLocInContext(Context),
4190  GetNameFromUnqualifiedId(Name),
4191  Nested);
4192 }
4193 
4194 RecordDecl*
4196  unsigned NumParams) {
4197  DeclContext *DC = CurContext;
4198  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
4199  DC = DC->getParent();
4200 
4201  RecordDecl *RD = nullptr;
4202  if (getLangOpts().CPlusPlus)
4203  RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
4204  /*Id=*/nullptr);
4205  else
4206  RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
4207 
4208  RD->setCapturedRecord();
4209  DC->addDecl(RD);
4210  RD->setImplicit();
4211  RD->startDefinition();
4212 
4213  assert(NumParams > 0 && "CapturedStmt requires context parameter");
4214  CD = CapturedDecl::Create(Context, CurContext, NumParams);
4215  DC->addDecl(CD);
4216  return RD;
4217 }
4218 
4219 static void
4221  SmallVectorImpl<Expr *> &CaptureInits,
4222  ArrayRef<sema::Capture> Candidates) {
4223  for (const sema::Capture &Cap : Candidates) {
4224  if (Cap.isThisCapture()) {
4225  Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4227  CaptureInits.push_back(Cap.getInitExpr());
4228  continue;
4229  } else if (Cap.isVLATypeCapture()) {
4230  Captures.push_back(
4231  CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
4232  CaptureInits.push_back(nullptr);
4233  continue;
4234  }
4235 
4236  Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4237  Cap.isReferenceCapture()
4240  Cap.getVariable()));
4241  CaptureInits.push_back(Cap.getInitExpr());
4242  }
4243 }
4244 
4247  unsigned NumParams) {
4248  CapturedDecl *CD = nullptr;
4249  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4250 
4251  // Build the context parameter
4253  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4254  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4255  auto *Param =
4256  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4258  DC->addDecl(Param);
4259 
4260  CD->setContextParam(0, Param);
4261 
4262  // Enter the capturing scope for this captured region.
4263  PushCapturedRegionScope(CurScope, CD, RD, Kind);
4264 
4265  if (CurScope)
4266  PushDeclContext(CurScope, CD);
4267  else
4268  CurContext = CD;
4269 
4270  PushExpressionEvaluationContext(
4271  ExpressionEvaluationContext::PotentiallyEvaluated);
4272 }
4273 
4277  CapturedDecl *CD = nullptr;
4278  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4279 
4280  // Build the context parameter
4282  bool ContextIsFound = false;
4283  unsigned ParamNum = 0;
4284  for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4285  E = Params.end();
4286  I != E; ++I, ++ParamNum) {
4287  if (I->second.isNull()) {
4288  assert(!ContextIsFound &&
4289  "null type has been found already for '__context' parameter");
4290  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4291  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
4292  .withConst()
4293  .withRestrict();
4294  auto *Param =
4295  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4297  DC->addDecl(Param);
4298  CD->setContextParam(ParamNum, Param);
4299  ContextIsFound = true;
4300  } else {
4301  IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4302  auto *Param =
4303  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4305  DC->addDecl(Param);
4306  CD->setParam(ParamNum, Param);
4307  }
4308  }
4309  assert(ContextIsFound && "no null type for '__context' parameter");
4310  if (!ContextIsFound) {
4311  // Add __context implicitly if it is not specified.
4312  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4313  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4314  auto *Param =
4315  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4317  DC->addDecl(Param);
4318  CD->setContextParam(ParamNum, Param);
4319  }
4320  // Enter the capturing scope for this captured region.
4321  PushCapturedRegionScope(CurScope, CD, RD, Kind);
4322 
4323  if (CurScope)
4324  PushDeclContext(CurScope, CD);
4325  else
4326  CurContext = CD;
4327 
4328  PushExpressionEvaluationContext(
4329  ExpressionEvaluationContext::PotentiallyEvaluated);
4330 }
4331 
4333  DiscardCleanupsInEvaluationContext();
4334  PopExpressionEvaluationContext();
4335 
4336  CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
4337  RecordDecl *Record = RSI->TheRecordDecl;
4338  Record->setInvalidDecl();
4339 
4340  SmallVector<Decl*, 4> Fields(Record->fields());
4341  ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4343 
4344  PopDeclContext();
4345  PopFunctionScopeInfo();
4346 }
4347 
4349  CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
4350 
4352  SmallVector<Expr *, 4> CaptureInits;
4353  buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
4354 
4355  CapturedDecl *CD = RSI->TheCapturedDecl;
4356  RecordDecl *RD = RSI->TheRecordDecl;
4357 
4359  getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4360  Captures, CaptureInits, CD, RD);
4361 
4362  CD->setBody(Res->getCapturedStmt());
4363  RD->completeDefinition();
4364 
4365  DiscardCleanupsInEvaluationContext();
4366  PopExpressionEvaluationContext();
4367 
4368  PopDeclContext();
4369  PopFunctionScopeInfo();
4370 
4371  return Res;
4372 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
Defines the clang::ASTContext interface.
QualType getDeducedType() const
Get the type deduced for this placeholder type, or null if it&#39;s either not been deduced or was deduce...
Definition: Type.h:4735
QualType withConst() const
Retrieves a version of this type with const applied.
void setImplicit(bool I=true)
Definition: DeclBase.h:548
Represents a function declaration or definition.
Definition: Decl.h:1738
Stmt * body_back()
Definition: Stmt.h:1279
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
bool isCurCompoundStmtAStmtExpr() const
Definition: SemaStmt.cpp:350
void setOrigin(CXXRecordDecl *Rec)
bool isClosedNonFlag() const
Returns true if this enum is annotated with neither flag_enum nor enum_extensibility(open).
Definition: Decl.cpp:4024
Smart pointer class that efficiently represents Objective-C method names.
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:1849
PtrTy get() const
Definition: Ownership.h:81
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2537
EvaluatedExprVisitor - This class visits &#39;Expr *&#39;s.
QualType getPointeeType() const
Definition: Type.h:2550
CanQualType VoidPtrTy
Definition: ASTContext.h:1044
A (possibly-)qualified type.
Definition: Type.h:638
bool isBlockPointerType() const
Definition: Type.h:6304
static void TryMoveInitialization(Sema &S, const InitializedEntity &Entity, const VarDecl *NRVOCandidate, QualType ResultType, Expr *&Value, bool ConvertingConstructorsOnly, ExprResult &Res)
Try to perform the initialization of a potentially-movable value, which is the operand to a return or...
Definition: SemaStmt.cpp:2997
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2101
bool isArrayType() const
Definition: Type.h:6345
bool isLambdaConversionOperator(CXXConversionDecl *C)
Definition: ASTLambda.h:48
bool isOverloadedOperator() const
Whether this function declaration represents an C++ overloaded operator, e.g., "operator+".
Definition: Decl.h:2376
Instantiation or recovery rebuild of a for-range statement.
Definition: Sema.h:3801
SourceLocation getExprLoc() const
Definition: Expr.h:3318
static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned)
Definition: SemaStmt.cpp:722
void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, CapturedRegionKind Kind, unsigned NumParams)
Definition: SemaStmt.cpp:4245
StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, Stmt *HandlerBlock)
ActOnCXXCatchBlock - Takes an exception declaration and a handler block and creates a proper catch ha...
Definition: SemaStmt.cpp:3880
bool operator==(CanQual< T > x, CanQual< U > y)
__SIZE_TYPE__ size_t
The unsigned integer type of the result of the sizeof operator.
Definition: opencl-c.h:68
static unsigned getHashValue(const CatchHandlerType &Base)
Definition: SemaStmt.cpp:3949
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:30
QualType getPointerDiffType() const
Return the unique type for "ptrdiff_t" (C99 7.17) defined in <stddef.h>.
bool EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
Stmt - This represents one statement.
Definition: Stmt.h:66
static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, Stmt *LoopVarDecl, SourceLocation ColonLoc, Expr *Range, SourceLocation RangeLoc, SourceLocation RParenLoc)
Speculatively attempt to dereference an invalid range expression.
Definition: SemaStmt.cpp:2266
VarDecl * getCopyElisionCandidate(QualType ReturnType, Expr *E, CopyElisionSemanticsKind CESK)
Determine whether the given expression is a candidate for copy elision in either a return statement o...
Definition: SemaStmt.cpp:2920
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3355
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R, ArrayRef< Stmt *> Elts, bool isStmtExpr)
Definition: SemaStmt.cpp:354
QualType ReturnType
ReturnType - The target type of return statements in this context, or null if unknown.
Definition: ScopeInfo.h:650
void setParam(unsigned i, ImplicitParamDecl *P)
Definition: Decl.h:4095
StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc, Stmt *First, Expr *collection, SourceLocation RParenLoc)
Definition: SemaStmt.cpp:1867
bool isConstexpr() const
Whether this is a (C++11) constexpr function or constexpr constructor.
Definition: Decl.h:2094
bool isRecordType() const
Definition: Type.h:6369
StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Stmt *InitStmt, ConditionResult Cond)
Definition: SemaStmt.cpp:693
Expr * getBase() const
Definition: Expr.h:2767
SmallVector< Scope *, 2 > CurrentSEHFinally
Stack of active SEH __finally scopes. Can be empty.
Definition: Sema.h:353
std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgumentList &Args)
Produces a formatted string that describes the binding of template parameters to template arguments...
bool isDecltypeAuto() const
Definition: Type.h:4760
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue=true) const
Return the uniqued reference to the type for an lvalue reference to the specified type...
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
Definition: Sema.h:1308
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:87
void setType(QualType t)
Definition: Expr.h:129
AssignConvertType
AssignConvertType - All of the &#39;assignment&#39; semantic checks return this enum to indicate whether the ...
Definition: Sema.h:9522
CanQualType getCanonicalFunctionResultType(QualType ResultType) const
Adjust the given function result type.
Opcode getOpcode() const
Definition: Expr.h:3322
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:4749
Represents an attribute applied to a statement.
Definition: Stmt.h:1633
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1844
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:6245
The base class of the type hierarchy.
Definition: Type.h:1407
Represents Objective-C&#39;s @throw statement.
Definition: StmtObjC.h:313
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2812
ForRangeStatus
Definition: Sema.h:2954
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1262
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.h:1169
StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, Decl *Parm, Stmt *Body)
Definition: SemaStmt.cpp:3761
virtual void completeDefinition()
Note that the definition of this type is now complete.
Definition: Decl.cpp:4154
QualType withConst() const
Definition: Type.h:810
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:690
bool getNoReturnAttr() const
Determine whether this function type includes the GNU noreturn attribute.
Definition: Type.h:3621
A container of type source information.
Definition: Decl.h:87
Wrapper for void* pointer.
Definition: Ownership.h:51
static AttributedStmt * Create(const ASTContext &C, SourceLocation Loc, ArrayRef< const Attr *> Attrs, Stmt *SubStmt)
Definition: Stmt.cpp:352
StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope)
Definition: SemaStmt.cpp:2875
Scope * getContinueParent()
getContinueParent - Return the closest scope that a continue statement would be affected by...
Definition: Scope.h:240
unsigned getDepth() const
Returns the depth of this scope. The translation-unit has scope depth 0.
Definition: Scope.h:264
Represents a path from a specific derived class (which is not represented as part of the path) to a p...
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4156
Determining whether a for-range statement could be built.
Definition: Sema.h:3804
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3169
ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val)
Definition: SemaStmt.cpp:390
Retains information about a function, method, or block that is currently being parsed.
Definition: ScopeInfo.h:97
StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, SourceLocation WhileLoc, SourceLocation CondLParen, Expr *Cond, SourceLocation CondRParen)
Definition: SemaStmt.cpp:1301
This file provides some common utility functions for processing Lambda related AST Constructs...
enumerator_range enumerators() const
Definition: Decl.h:3453
Represents a variable declaration or definition.
Definition: Decl.h:813
ActionResult< Stmt * > StmtResult
Definition: Ownership.h:268
PartialDiagnostic PDiag(unsigned DiagID=0)
Build a partial diagnostic.
Definition: SemaInternal.h:25
const VarDecl * getNRVOCandidate() const
Retrieve the variable that might be used for the named return value optimization. ...
Definition: Stmt.h:2485
StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, MultiStmtArg Catch, Stmt *Finally)
Definition: SemaStmt.cpp:3777
QualType getReturnType() const
Definition: Decl.h:2302
DiagnosticsEngine & Diags
Definition: Sema.h:326
bool isEnumeralType() const
Definition: Type.h:6373
const AstTypeMatcher< PointerType > pointerType
Matches pointer types, but does not match Objective-C object pointer types.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6748
void ActOnForEachDeclStmt(DeclGroupPtrTy Decl)
Definition: SemaStmt.cpp:82
static bool ObjCEnumerationCollection(Expr *Collection)
Definition: SemaStmt.cpp:2035
SourceLocation getStarLoc() const
Definition: TypeLoc.h:1205
RAII class that determines when any errors have occurred between the time the instance was created an...
Definition: Diagnostic.h:999
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
bool isAmbiguous() const
Definition: Lookup.h:290
bool isInvalidDecl() const
Definition: DeclBase.h:542
static InitializedEntity InitializeResult(SourceLocation ReturnLoc, QualType Type, bool NRVO)
Create the initialization entity for the result of a function.
Defines the Objective-C statement AST node classes.
EntityKind getKind() const
Determine the kind of initialization.
StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body)
FinishObjCForCollectionStmt - Attach the body to a objective-C foreach statement. ...
Definition: SemaStmt.cpp:2646
ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *Input)
Definition: SemaExpr.cpp:13121
llvm::PointerIntPair< SwitchStmt *, 1, bool > SwitchInfo
A SwitchStmt, along with a flag indicating if its list of case statements is incomplete (because we d...
Definition: ScopeInfo.h:181
Represents a parameter to a function.
Definition: Decl.h:1550
Defines the clang::Expr interface and subclasses for C++ expressions.
bool isUnset() const
Definition: Ownership.h:172
CapturedDecl * TheCapturedDecl
The CapturedDecl for this statement.
Definition: ScopeInfo.h:740
static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val, unsigned UnpromotedWidth, bool UnpromotedSign)
Check the specified case value is in range for the given unpromoted switch type.
Definition: SemaStmt.cpp:729
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:270
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:57
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:1593
Expr * IgnoreImpCasts() LLVM_READONLY
IgnoreImpCasts - Skip past any implicit casts which might surround this expression.
Definition: Expr.h:3162
Represents a struct/union/class.
Definition: Decl.h:3593
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:298
StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS, SourceLocation DotDotDotLoc, ExprResult RHS, SourceLocation ColonLoc)
Definition: SemaStmt.cpp:441
One of these records is kept for each identifier that is lexed.
bool isAtCatchScope() const
isAtCatchScope - Return true if this scope is @catch.
Definition: Scope.h:387
Expr * GetTemporaryExpr() const
Retrieve the temporary-generating subexpression whose value will be materialized into a glvalue...
Definition: ExprCXX.h:4197
Expr * getFalseExpr() const
Definition: Expr.h:3625
Step
Definition: OpenMPClause.h:152
void DiagnoseUnusedExprResult(const Stmt *S)
DiagnoseUnusedExprResult - If the statement passed in is an expression whose result is unused...
Definition: SemaStmt.cpp:199
StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue=true)
Definition: SemaStmt.cpp:45
Represents a class type in Objective C.
Definition: Type.h:5538
static RecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl=nullptr)
Definition: Decl.cpp:4107
DeclStmt * getConditionVariableDeclStmt()
If this SwitchStmt has a condition variable, return the faux DeclStmt associated with the creation of...
Definition: Stmt.h:2003
ObjCMethodDecl * lookupInstanceMethod(Selector Sel) const
Lookup an instance method for a given selector.
Definition: DeclObjC.h:1847
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:155
A C++ nested-name-specifier augmented with source location information.
QualType getCaughtType() const
Definition: StmtCXX.cpp:20
FullExpr - Represents a "full-expression" node.
Definition: Expr.h:877
field_range fields() const
Definition: Decl.h:3784
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:288
StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, Stmt *LoopVar, SourceLocation ColonLoc, Expr *Collection, SourceLocation RParenLoc, BuildForRangeKind Kind)
ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
Definition: SemaStmt.cpp:2058
void setLocStart(SourceLocation L)
Definition: Decl.h:497
ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection)
Definition: SemaStmt.cpp:1792
void startDefinition()
Starts the definition of this tag declaration.
Definition: Decl.cpp:3877
GNUNullExpr - Implements the GNU __null extension, which is a name for a null pointer constant that h...
Definition: Expr.h:4057
bool isReferenceType() const
Definition: Type.h:6308
StmtResult BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt, ConditionResult Cond, Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal)
Definition: SemaStmt.cpp:556
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:1003
bool isInvalid() const
Definition: Sema.h:9908
void setNoNRVO()
Definition: Scope.h:481
std::pair< VarDecl *, Expr * > get() const
Definition: Sema.h:9909
Expr * getSubExpr()
Definition: Expr.h:3050
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:739
bool isGnuLocal() const
Definition: Decl.h:496
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:6644
Scope * getBreakParent()
getBreakParent - Return the closest scope that a break statement would be affected by...
Definition: Scope.h:250
IdentifierTable & Idents
Definition: ASTContext.h:566
SourceLocation FirstSEHTryLoc
First SEH &#39;__try&#39; statement in the current function.
Definition: ScopeInfo.h:174
void ActOnAbortSEHFinallyBlock()
Definition: SemaStmt.cpp:4149
Qualifiers getLocalQualifiers() const
Retrieve the set of qualifiers local to this particular QualType instance, not including any qualifie...
Definition: Type.h:6091
void setARCPseudoStrong(bool PS)
Definition: Decl.h:1361
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:110
StmtResult ActOnAttributedStmt(SourceLocation AttrLoc, ArrayRef< const Attr *> Attrs, Stmt *SubStmt)
Definition: SemaStmt.cpp:507
Represents Objective-C&#39;s @catch statement.
Definition: StmtObjC.h:74
StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, NestedNameSpecifierLoc QualifierLoc, DeclarationNameInfo NameInfo, Stmt *Nested)
Definition: SemaStmt.cpp:4171
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:2339
static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange, QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar, SourceLocation ColonLoc, SourceLocation CoawaitLoc, OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr, ExprResult *EndExpr, BeginEndFunction *BEF)
Create the initialization, compare, and increment steps for the range-based for loop expression...
Definition: SemaStmt.cpp:2134
static CapturedStmt * Create(const ASTContext &Context, Stmt *S, CapturedRegionKind Kind, ArrayRef< Capture > Captures, ArrayRef< Expr *> CaptureInits, CapturedDecl *CD, RecordDecl *RD)
Definition: Stmt.cpp:1219
Represents a C++ unqualified-id that has been parsed.
Definition: DeclSpec.h:934
An rvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2738
static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, QualType T, APValue &Value, Sema::CCEKind CCE, bool RequireInt)
CheckConvertedConstantExpression - Check that the expression From is a converted constant expression ...
ForStmt - This represents a &#39;for (init;cond;inc)&#39; stmt.
Definition: Stmt.h:2237
Represents the results of name lookup.
Definition: Lookup.h:47
PtrTy get() const
Definition: Ownership.h:174
static IfStmt * Create(const ASTContext &Ctx, SourceLocation IL, bool IsConstexpr, Stmt *Init, VarDecl *Var, Expr *Cond, Stmt *Then, SourceLocation EL=SourceLocation(), Stmt *Else=nullptr)
Create an IfStmt.
Definition: Stmt.cpp:841
Decl * getSingleDecl()
Definition: DeclGroup.h:84
This is a scope that corresponds to a switch statement.
Definition: Scope.h:99
APValue Val
Val - This is the value the expression can be folded to.
Definition: Expr.h:573
void ActOnStartSEHFinallyBlock()
Definition: SemaStmt.cpp:4145
AccessSpecifier getAccessSpecifier() const
Returns the access specifier for this base specifier.
Definition: DeclCXX.h:272
bool isTriviallyCopyableType(const ASTContext &Context) const
Return true if this is a trivially copyable type (C++0x [basic.types]p9)
Definition: Type.cpp:2205
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6797
Parameter for captured context.
Definition: Decl.h:1507
SourceLocation getRParenLoc() const
Definition: StmtCXX.h:197
An x-value expression is a reference to an object with independent storage but which can be "moved"...
Definition: Specifiers.h:119
static CaseStmt * Create(const ASTContext &Ctx, Expr *lhs, Expr *rhs, SourceLocation caseLoc, SourceLocation ellipsisLoc, SourceLocation colonLoc)
Build a case statement.
Definition: Stmt.cpp:1080
ExprResult CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl=nullptr, llvm::function_ref< ExprResult(Expr *)> Filter=[](Expr *E) -> ExprResult { return E;})
Process any TypoExprs in the given Expr and its children, generating diagnostics as appropriate and r...
RecordDecl * CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, unsigned NumParams)
Definition: SemaStmt.cpp:4195
StmtResult StmtError()
Definition: Ownership.h:284
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3287
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6142
Stmt * getInit()
Definition: Stmt.h:2250
static CompoundStmt * Create(const ASTContext &C, ArrayRef< Stmt *> Stmts, SourceLocation LB, SourceLocation RB)
Definition: Stmt.cpp:332
StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope)
Definition: SemaStmt.cpp:2887
CXXForRangeStmt - This represents C++0x [stmt.ranged]&#39;s ranged for statement, represented as &#39;for (ra...
Definition: StmtCXX.h:127
SmallVector< std::pair< llvm::APSInt, EnumConstantDecl * >, 64 > EnumValsTy
Definition: SemaStmt.cpp:751
StmtResult ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, LabelDecl *TheDecl)
Definition: SemaStmt.cpp:2831
CharUnits getDeclAlign(const Decl *D, bool ForAlignof=false) const
Return a conservative estimate of the alignment of the specified decl D.
Expr * IgnoreParenCasts() LLVM_READONLY
IgnoreParenCasts - Ignore parentheses and casts.
Definition: Expr.cpp:2595
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:41
static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond, const Expr *Case)
Definition: SemaStmt.cpp:787
bool isNull() const
Definition: DeclGroup.h:80
CaseStmt - Represent a case statement.
Definition: Stmt.h:1394
SourceLocation getContinueLoc() const
Definition: Stmt.h:2393
bool isInt() const
Definition: APValue.h:234
bool isMacroBodyExpansion(SourceLocation Loc) const
Tests whether the given source location represents the expansion of a macro body. ...
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2998
bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, bool AllowMask) const
IsValueInFlagEnum - Determine if a value is allowed as part of a flag enum.
Definition: SemaDecl.cpp:16633
ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond)
Definition: SemaStmt.cpp:629
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1217
Preprocessor & PP
Definition: Sema.h:323
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:1918
const LangOptions & getLangOpts() const
Definition: Sema.h:1231
static IntegerLiteral * Create(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l)
Returns a new integer literal with value &#39;V&#39; and type &#39;type&#39;.
Definition: Expr.cpp:792
bool isTypeDependent() const
isTypeDependent - Determines whether this expression is type-dependent (C++ [temp.dep.expr]), which means that its type could change from one template instantiation to the next.
Definition: Expr.h:167
static CatchHandlerType getTombstoneKey()
Definition: SemaStmt.cpp:3944
StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block)
Definition: SemaStmt.cpp:4153
StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope)
Definition: SemaStmt.cpp:4160
Perform initialization via a constructor.
Perform a user-defined conversion, either via a conversion function or via a constructor.
A class that does preorder or postorder depth-first traversal on the entire Clang AST and visits each...
ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc, SourceLocation RangeLoc, const DeclarationNameInfo &NameInfo, LookupResult &MemberLookup, OverloadCandidateSet *CandidateSet, Expr *Range, ExprResult *CallExpr)
Build a call to &#39;begin&#39; or &#39;end&#39; for a C++11 for-range statement.
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4044
Represents an ObjC class declaration.
Definition: DeclObjC.h:1172
Member name lookup, which finds the names of class/struct/union members.
Definition: Sema.h:3063
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface...
Definition: Type.h:5773
SourceLocation getTypeSpecStartLoc() const
Definition: Decl.cpp:1765
NestedNameSpecifierLoc getWithLocInContext(ASTContext &Context) const
Retrieve a nested-name-specifier with location information, copied into the given AST context...
Definition: DeclSpec.cpp:143
Stmt * getBody()
Definition: Stmt.h:1958
StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, Scope *CurScope)
Definition: SemaStmt.cpp:3814
void setStmt(LabelStmt *T)
Definition: Decl.h:494
static SEHTryStmt * Create(const ASTContext &C, bool isCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler)
Definition: Stmt.cpp:1107
bool isSEHTrySupported() const
Whether the target supports SEH __try.
Definition: TargetInfo.h:1153
Contains information about the compound statement currently being parsed.
Definition: ScopeInfo.h:67
SourceLocation FirstCXXTryLoc
First C++ &#39;try&#39; statement in the current function.
Definition: ScopeInfo.h:171
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3455
RAII class used to determine whether SFINAE has trapped any errors that occur during template argumen...
Definition: Sema.h:7558
static ImplicitParamDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, ImplicitParamKind ParamKind)
Create implicit parameter.
Definition: Decl.cpp:4404
unsigned getFlags() const
getFlags - Return the flags for this scope.
Definition: Scope.h:218
void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType)
Change the result type of a function type once it is deduced.
bool hasAttr() const
Definition: DeclBase.h:531
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3582
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:278
A little helper class used to produce diagnostics.
Definition: Diagnostic.h:1043
StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl, SourceLocation StartLoc, SourceLocation EndLoc)
Definition: SemaStmt.cpp:72
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1241
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1613
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3687
void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse)
Perform marking for a reference to an arbitrary declaration.
Definition: SemaExpr.cpp:15784
Describes the capture of either a variable, or &#39;this&#39;, or variable-length array type.
Definition: Stmt.h:3118
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any...
Definition: Decl.cpp:3300
Retains information about a captured region.
Definition: ScopeInfo.h:737
bool inferObjCARCLifetime(ValueDecl *decl)
Definition: SemaDecl.cpp:5872
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat)
Definition: Expr.cpp:1844
StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp)
Definition: SemaStmt.cpp:3520
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: StmtCXX.h:44
SourceLocation getLocation() const
Definition: Expr.h:1122
void ActOnFinishOfCompoundStmt()
Definition: SemaStmt.cpp:342
bool isClosed() const
Returns true if this enum is either annotated with enum_extensibility(closed) or isn&#39;t annotated with...
Definition: Decl.cpp:4014
QualType getAutoRRefDeductType() const
C++11 deduction pattern for &#39;auto &&&#39; type.
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location, which defaults to the empty location.
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body)
Definition: SemaStmt.cpp:3772
Scope * getCurScope() const
Retrieve the parser&#39;s current scope.
Definition: Sema.h:10729
SourceLocation getBeginLoc() const
Get the begin source location.
Definition: TypeLoc.cpp:190
Allows QualTypes to be sorted and hence used in maps and sets.
Retains information about a block that is currently being parsed.
Definition: ScopeInfo.h:711
CXXMethodDecl * CallOperator
The lambda&#39;s compiler-generated operator().
Definition: ScopeInfo.h:791
Expr * getCond() const
Definition: Expr.h:3616
Type source information for an attributed type.
Definition: TypeLoc.h:849
This represents one expression.
Definition: Expr.h:106
QualType getPointeeType() const
Definition: Type.h:2694
DeclStmt * getEndStmt()
Definition: StmtCXX.h:158
SourceLocation End
Allow any unmodeled side effect.
Definition: Expr.h:599
std::string Label
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1036
SourceLocation getDefaultLoc() const
Definition: Stmt.h:1559
TypeLoc getReturnTypeLoc(FunctionDecl *FD) const
Definition: SemaStmt.cpp:3389
StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, Stmt *SubStmt, Scope *CurScope)
Definition: SemaStmt.cpp:471
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6811
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:87
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
void setInit(Expr *I)
Definition: Decl.cpp:2205
VarDecl * getExceptionDecl() const
Definition: StmtCXX.h:50
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition: DeclBase.cpp:132
std::string getAsString() const
Retrieve the human-readable string for this name.
static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef, const VarDecl *VD)
Definition: SemaStmt.cpp:2736
bool isExceptionVariable() const
Determine whether this variable is the exception variable in a C++ catch statememt or an Objective-C ...
Definition: Decl.h:1307
void setContextParam(unsigned i, ImplicitParamDecl *P)
Definition: Decl.h:4113
bool isSEHTryScope() const
Determine whether this scope is a SEH &#39;__try&#39; block.
Definition: Scope.h:438
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition: Decl.cpp:3475
QualType getTagDeclType(const TagDecl *Decl) const
Return the unique reference to the type for the specified TagDecl (struct/union/class/enum) decl...
Defines the clang::Preprocessor interface.
ObjCLifetime getObjCLifetime() const
Definition: Type.h:326
bool isFileContext() const
Definition: DeclBase.h:1818
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
Expr * getRHS()
Definition: Stmt.h:1495
void setBody(Stmt *Body)
Definition: Stmt.h:1963
The entity being initialized is an exception object that is being thrown.
Represents Objective-C&#39;s @synchronized statement.
Definition: StmtObjC.h:262
SourceLocation Begin
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return null.
Definition: Expr.h:2532
bool refersToEnclosingVariableOrCapture() const
Does this DeclRefExpr refer to an enclosing local or a captured variable?
Definition: Expr.h:1239
void removeLocalConst()
Definition: Type.h:6166
Defines the clang::TypeLoc interface and its subclasses.
static DeclContext * castToDeclContext(const CapturedDecl *D)
Definition: Decl.h:4131
AutoType * getContainedAutoType() const
Get the AutoType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.h:2180
QualType getType() const
Definition: Expr.h:128
bool isFunctionOrMethod() const
Definition: DeclBase.h:1800
static CapturedDecl * Create(ASTContext &C, DeclContext *DC, unsigned NumParams)
Definition: Decl.cpp:4454
static bool isEqual(const CatchHandlerType &LHS, const CatchHandlerType &RHS)
Definition: SemaStmt.cpp:3953
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1752
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:2443
StmtResult ActOnNullStmt(SourceLocation SemiLoc, bool HasLeadingEmptyMacro=false)
Definition: SemaStmt.cpp:67
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:904
SwitchCase * getSwitchCaseList()
Definition: Stmt.h:2015
bool isInvalid() const
Definition: Ownership.h:170
QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl, ObjCInterfaceDecl *PrevDecl=nullptr) const
getObjCInterfaceType - Return the unique reference to the type for the specified ObjC interface decl...
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1896
void setLocation(SourceLocation L)
Definition: DeclBase.h:419
static WhileStmt * Create(const ASTContext &Ctx, VarDecl *Var, Expr *Cond, Stmt *Body, SourceLocation WL)
Create a while statement.
Definition: Stmt.cpp:1005
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:1078
void setHasCXXTry(SourceLocation TryLoc)
Definition: ScopeInfo.h:420
ValueDecl * getDecl()
Definition: Expr.h:1114
bool isUsable() const
Definition: Ownership.h:171
Represents a C++ conversion function within a class.
Definition: DeclCXX.h:2768
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1396
const Expr * getSubExpr() const
Definition: Expr.h:1860
unsigned short CapRegionKind
The kind of captured region.
Definition: ScopeInfo.h:752
CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style cast in C++ (C++ [expr.cast]), which uses the syntax (Type)expr.
Definition: Expr.h:3224
llvm::iterator_range< semantics_iterator > semantics()
Definition: Expr.h:5380
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:703
bool Contains(const Scope &rhs) const
Returns if rhs has a higher scope depth than this.
Definition: Scope.h:452
ImaginaryLiteral - We support imaginary integer and floating point literals, like "1...
Definition: Expr.h:1517
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:301
static InitializationKind CreateCopy(SourceLocation InitLoc, SourceLocation EqualLoc, bool AllowExplicitConvs=false)
Create a copy initialization.
static CXXRecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl *PrevDecl=nullptr, bool DelayTypeCreation=false)
Definition: DeclCXX.cpp:124
static SEHFinallyStmt * Create(const ASTContext &C, SourceLocation FinallyLoc, Stmt *Block)
Definition: Stmt.cpp:1135
DoStmt - This represents a &#39;do/while&#39; stmt.
Definition: Stmt.h:2185
void setBody(Stmt *S)
Definition: StmtCXX.h:192
BuildForRangeKind
Definition: Sema.h:3796
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:6131
RecordDecl * getDecl() const
Definition: Type.h:4380
static void buildCapturedStmtCaptureList(SmallVectorImpl< CapturedStmt::Capture > &Captures, SmallVectorImpl< Expr *> &CaptureInits, ArrayRef< sema::Capture > Candidates)
Definition: SemaStmt.cpp:4220
static CatchHandlerType getEmptyKey()
Definition: SemaStmt.cpp:3939
static SwitchStmt * Create(const ASTContext &Ctx, Stmt *Init, VarDecl *Var, Expr *Cond)
Create a switch statement.
Definition: Stmt.cpp:947
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:945
The "struct" keyword.
Definition: Type.h:5033
SelectorTable & Selectors
Definition: ASTContext.h:567
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:169
Kind
This captures a statement into a function.
Definition: Stmt.h:3105
static bool EqEnumVals(const std::pair< llvm::APSInt, EnumConstantDecl *> &lhs, const std::pair< llvm::APSInt, EnumConstantDecl *> &rhs)
EqEnumVals - Comparison preficate for uniqing enumeration values.
Definition: SemaStmt.cpp:611
ActionResult - This structure is used while parsing/acting on expressions, stmts, etc...
Definition: Ownership.h:157
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5299
TypeLoc IgnoreParens() const
Definition: TypeLoc.h:1127
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: StmtCXX.h:199
void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt)
ActOnCaseStmtBody - This installs a statement as the body of a case.
Definition: SemaStmt.cpp:466
void setHasSEHTry(SourceLocation TryLoc)
Definition: ScopeInfo.h:425
bool isOpenMPLoopScope() const
Determine whether this scope is a loop having OpenMP loop directive attached.
Definition: Scope.h:429
DeduceAutoResult
Result type of DeduceAutoType.
Definition: Sema.h:7074
Encodes a location in the source.
QualType getReturnType() const
Definition: Type.h:3613
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4396
Expr * getSubExpr() const
Definition: Expr.h:1926
void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, Expr *SrcExpr)
DiagnoseAssignmentEnum - Warn if assignment to enum is a constant integer not in the range of enum va...
Definition: SemaStmt.cpp:1225
CastKind getCastKind() const
Definition: Expr.h:3044
void FinalizeDeclaration(Decl *D)
FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform any semantic actions neces...
Definition: SemaDecl.cpp:12009
StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, Scope *CurScope)
Definition: SemaStmt.cpp:3501
Expr * getLHS()
Definition: Stmt.h:1483
StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, SourceLocation ColonLoc, Stmt *SubStmt)
Definition: SemaStmt.cpp:484
StmtResult ActOnForEachLValueExpr(Expr *E)
In an Objective C collection iteration statement: for (x in y) x can be an arbitrary l-value expressi...
Definition: SemaStmt.cpp:1778
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:171
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:1143
IdentifierTable & getIdentifierTable()
Definition: Preprocessor.h:823
Represents the declaration of a label.
Definition: Decl.h:469
StmtResult ActOnCapturedRegionEnd(Stmt *S)
Definition: SemaStmt.cpp:4348
Expr * getCond()
Definition: Stmt.h:1946
void setAllEnumCasesCovered()
Set a flag in the SwitchStmt indicating that if the &#39;switch (X)&#39; is a switch over an enum value then ...
Definition: Stmt.h:2036
bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, SourceLocation ReturnLoc, Expr *&RetExpr, AutoType *AT)
Deduce the return type for a function from a returned expression, per C++1y [dcl.spec.auto]p6.
Definition: SemaStmt.cpp:3398
static QualType GetTypeBeforeIntegralPromotion(const Expr *&E)
GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of potentially integral-promoted expr...
Definition: SemaStmt.cpp:619
StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw)
Definition: SemaStmt.cpp:3788
StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, ArrayRef< Stmt *> Handlers)
ActOnCXXTryBlock - Takes a try compound-statement and a number of handlers and creates a try statemen...
Definition: SemaStmt.cpp:3997
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2285
StmtResult ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, Stmt *Block)
Definition: SemaStmt.cpp:4131
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1860
CanQualType VoidTy
Definition: ASTContext.h:1016
Describes the kind of initialization being performed, along with location information for tokens rela...
bool isValueDependent() const
isValueDependent - Determines whether this expression is value-dependent (C++ [temp.dep.constexpr]).
Definition: Expr.h:149
bool isKnownToHaveBooleanValue() const
isKnownToHaveBooleanValue - Return true if this is an integer expression that is known to return 0 or...
Definition: Expr.cpp:134
bool isObjCObjectPointerType() const
Definition: Type.h:6393
SmallVector< Capture, 4 > Captures
Captures - The captures.
Definition: ScopeInfo.h:642
StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, Stmt *Body)
Definition: SemaStmt.cpp:814
bool isMSAsmLabel() const
Definition: Decl.h:503
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3115
Stmt * getCapturedStmt()
Retrieve the statement being captured.
Definition: Stmt.h:3206
bool isLValue() const
isLValue - True if this expression is an "l-value" according to the rules of the current language...
Definition: Expr.h:249
sema::CompoundScopeInfo & getCurCompoundScope() const
Definition: SemaStmt.cpp:346
Requests that all candidates be shown.
Definition: Overload.h:69
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:1958
StmtResult ActOnWhileStmt(SourceLocation WhileLoc, ConditionResult Cond, Stmt *Body)
Definition: SemaStmt.cpp:1281
EnumDecl * getDecl() const
Definition: Type.h:4403
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1366
OverloadCandidateSet - A set of overload candidates, used in C++ overload resolution (C++ 13...
Definition: Overload.h:837
StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SynchExpr, Stmt *SynchBody)
Definition: SemaStmt.cpp:3870
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2293
Representation of a Microsoft __if_exists or __if_not_exists statement with a dependent name...
Definition: StmtCXX.h:241
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:215
static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef, const VarDecl *VD, QualType RangeInitType)
Definition: SemaStmt.cpp:2662
Expr * getLHS() const
Definition: Expr.h:3327
OpaqueValueExpr * getOpaqueValue() const
getOpaqueValue - Return the opaque value placeholder.
Definition: Expr.h:3698
LabelStmt * getStmt() const
Definition: Decl.h:493
void setCapturedRecord()
Mark the record as a record for captured variables in CapturedStmt construct.
Definition: Decl.cpp:4141
bool isDeduced() const
Definition: Type.h:4738
QualType withRestrict() const
Definition: Type.h:826
Expr * getFalseExpr() const
getFalseExpr - Return the subexpression which will be evaluated if the condnition evaluates to false;...
Definition: Expr.h:3714
NullStmt - This is the null statement ";": C99 6.8.3p3.
Definition: Stmt.h:1210
Dataflow Directional Tag Classes.
StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body)
Definition: SemaStmt.cpp:3888
bool isValid() const
Return true if this is a valid SourceLocation object.
ObjCMethodDecl * lookupPrivateMethod(const Selector &Sel, bool Instance=true) const
Lookup a method in the classes implementation hierarchy.
Definition: DeclObjC.cpp:740
A single step in the initialization sequence.
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1262
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:571
const Scope * getParent() const
getParent - Return the scope that this is nested in.
Definition: Scope.h:226
QualType getType() const
Get the type for which this source info wrapper provides information.
Definition: TypeLoc.h:131
StmtResult ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, Stmt *First, ConditionResult Second, FullExprArg Third, SourceLocation RParenLoc, Stmt *Body)
Definition: SemaStmt.cpp:1728
void ActOnCapturedRegionError()
Definition: SemaStmt.cpp:4332
bool isRecord() const
Definition: DeclBase.h:1827
void addNRVOCandidate(VarDecl *VD)
Definition: Scope.h:470
static ReturnStmt * Create(const ASTContext &Ctx, SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate)
Create a return statement.
Definition: Stmt.cpp:1064
StmtResult ActOnExprStmtError()
Definition: SemaStmt.cpp:62
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:118
const Expr * getInit() const
Definition: Decl.h:1220
StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, Expr *DestExp)
Definition: SemaStmt.cpp:2840
Kind getKind() const
Definition: DeclBase.h:421
bool isSingleDecl() const
Definition: DeclGroup.h:81
static void DiagnoseForRangeVariableCopies(Sema &SemaRef, const CXXForRangeStmt *ForStmt)
DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
Definition: SemaStmt.cpp:2777
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5835
Represents an enum.
Definition: Decl.h:3326
const Decl * getSingleDecl() const
Definition: Stmt.h:1158
bool isAmbiguous(CanQualType BaseType)
Determine whether the path from the most-derived type to the given base type is ambiguous (i...
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
Expr * get() const
Definition: Sema.h:3673
ConstEvaluatedExprVisitor - This class visits &#39;const Expr *&#39;s.
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
bool isSingleDecl() const
isSingleDecl - This method returns true if this DeclStmt refers to a single Decl. ...
Definition: Stmt.h:1156
void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit)
AddInitializerToDecl - Adds the initializer Init to the declaration dcl.
Definition: SemaDecl.cpp:10977
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 &#39;auto&#39; typ...
Definition: Type.h:6663
Expr * IgnoreParenImpCasts() LLVM_READONLY
IgnoreParenImpCasts - Ignore parentheses and implicit casts.
Definition: Expr.cpp:2693
Represents a __leave statement.
Definition: Stmt.h:3070
Represents a pointer to an Objective C object.
Definition: Type.h:5794
SwitchStmt - This represents a &#39;switch&#39; stmt.
Definition: Stmt.h:1886
StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, CXXScopeSpec &SS, UnqualifiedId &Name, Stmt *Nested)
Definition: SemaStmt.cpp:4183
unsigned getIntWidth(QualType T) const
RecordDecl * TheRecordDecl
The captured record type.
Definition: ScopeInfo.h:743
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4370
StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *Begin, Stmt *End, Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc, BuildForRangeKind Kind)
BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
Definition: SemaStmt.cpp:2319
bool body_empty() const
Definition: Stmt.h:1268
Represents Objective-C&#39;s collection statement.
Definition: StmtObjC.h:24
ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E)
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6578
T * getAttr() const
Definition: DeclBase.h:527
Selector getSelector(unsigned NumArgs, IdentifierInfo **IIV)
Can create any sort of selector.
CanQualType DependentTy
Definition: ASTContext.h:1045
static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S, const EnumDecl *ED, const Expr *CaseExpr, EnumValsTy::iterator &EI, EnumValsTy::iterator &EIEnd, const llvm::APSInt &Val)
Returns true if we should emit a diagnostic about this case expression not being a part of the enum u...
Definition: SemaStmt.cpp:755
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:716
Stmt * getInit()
Definition: Stmt.h:1967
void setUsesSEHTry(bool UST)
Definition: Decl.h:2115
static bool CmpEnumVals(const std::pair< llvm::APSInt, EnumConstantDecl *> &lhs, const std::pair< llvm::APSInt, EnumConstantDecl *> &rhs)
CmpEnumVals - Comparison predicate for sorting enumeration values.
Definition: SemaStmt.cpp:603
Opcode getOpcode() const
Definition: Expr.h:1921
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:2269
QualType getAutoDeductType() const
C++11 deduction pattern for &#39;auto&#39; type.
DeduceAutoResult DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result, Optional< unsigned > DependentDeductionDepth=None)
Represents Objective-C&#39;s @finally statement.
Definition: StmtObjC.h:120
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:92
void addDecl(Decl *D)
Add the declaration D into this context.
Definition: DeclBase.cpp:1507
Represents a base class of a C++ class.
Definition: DeclCXX.h:192
static bool DiagnoseUnusedComparison(Sema &S, const Expr *E)
Diagnose unused comparisons, both builtin and overloaded operators.
Definition: SemaStmt.cpp:128
void ActOnStartOfCompoundStmt(bool IsStmtExpr)
Definition: SemaStmt.cpp:338
void markUsed(ASTContext &C)
Mark the declaration used, in the sense of odr-use.
Definition: DeclBase.cpp:412
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types...
Definition: Type.cpp:2031
DeclStmt * getRangeStmt()
Definition: StmtCXX.h:154
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, bool InUnqualifiedLookup=false)
Perform qualified name lookup into a given context.
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2253
GotoStmt - This represents a direct goto.
Definition: Stmt.h:2304
bool isLValueReferenceType() const
Definition: Type.h:6312
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:238
static bool CmpCaseVals(const std::pair< llvm::APSInt, CaseStmt *> &lhs, const std::pair< llvm::APSInt, CaseStmt *> &rhs)
CmpCaseVals - Comparison predicate for sorting case values.
Definition: SemaStmt.cpp:589
const SwitchCase * getNextSwitchCase() const
Definition: Stmt.h:1369
ExprResult PerformMoveOrCopyInitialization(const InitializedEntity &Entity, const VarDecl *NRVOCandidate, QualType ResultType, Expr *Value, bool AllowNRVO=true)
Perform the initialization of a potentially-movable value, which is the result of return value...
Definition: SemaStmt.cpp:3076
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2682
static InitializedEntity InitializeRelatedResult(ObjCMethodDecl *MD, QualType Type)
Create the initialization entity for a related result.
Describes the sequence of initializations required to initialize a given object or reference with a s...
ActionResult< Expr * > ExprResult
Definition: Ownership.h:267
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:6152
TypedefNameDecl * getTypedefNameForAnonDecl() const
Definition: Decl.h:3274
StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp)
ActOnCapScopeReturnStmt - Utility routine to type-check return statements for capturing scopes...
Definition: SemaStmt.cpp:3193
Represents a C++ struct/union/class.
Definition: DeclCXX.h:300
ContinueStmt - This represents a continue.
Definition: Stmt.h:2384
Expr * getTrueExpr() const
Definition: Expr.h:3620
bool isVoidType() const
Definition: Type.h:6544
static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init, SourceLocation Loc, int DiagID)
Finish building a variable declaration for a for-range statement.
Definition: SemaStmt.cpp:1950
static CXXTryStmt * Create(const ASTContext &C, SourceLocation tryLoc, Stmt *tryBlock, ArrayRef< Stmt *> handlers)
Definition: StmtCXX.cpp:26
BinaryConditionalOperator - The GNU extension to the conditional operator which allows the middle ope...
Definition: Expr.h:3655
CXXCatchStmt - This represents a C++ catch block.
Definition: StmtCXX.h:29
VarDecl * getLoopVariable()
Definition: StmtCXX.cpp:77
Represents an explicit C++ type conversion that uses "functional" notation (C++ [expr.type.conv]).
Definition: ExprCXX.h:1519
void addHiddenDecl(Decl *D)
Add the declaration D to this context without modifying any lookup tables.
Definition: DeclBase.cpp:1481
WhileStmt - This represents a &#39;while&#39; stmt.
Definition: Stmt.h:2063
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:336
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string...
Definition: Diagnostic.h:129
SourceLocation getBreakLoc() const
Definition: Stmt.h:2419
bool qual_empty() const
Definition: Type.h:5442
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:276
void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc)
Definition: SemaExpr.cpp:11490
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2396
StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body)
FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
Definition: SemaStmt.cpp:2813
ExprResult ExprError()
Definition: Ownership.h:283
ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand)
Definition: SemaStmt.cpp:3832
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2079
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1041
const Scope * getFnParent() const
getFnParent - Return the closest scope that is a function body.
Definition: Scope.h:230
bool isIgnored(unsigned DiagID, SourceLocation Loc) const
Determine whether the diagnostic is known to be ignored.
Definition: Diagnostic.h:819
Expr * getRHS() const
Definition: Expr.h:3329
bool isPointerType() const
Definition: Type.h:6296
BreakStmt - This represents a break.
Definition: Stmt.h:2410
__DEVICE__ int min(int __a, int __b)
SourceManager & SourceMgr
Definition: Sema.h:327
CapturedRegionKind
The different kinds of captured statement.
Definition: CapturedStmt.h:17
BasePaths - Represents the set of paths from a derived class to one of its (direct or indirect) bases...
bool isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD, CopyElisionSemanticsKind CESK)
Definition: SemaStmt.cpp:2936
bool isLocalVarDecl() const
Returns true for local variable declarations other than parameters.
Definition: Decl.h:1105
QualType getType() const
Definition: Decl.h:648
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:114
bool empty() const
Return true if no decls were found.
Definition: Lookup.h:328
static bool hasDeducedReturnType(FunctionDecl *FD)
Determine whether the declared return type of the specified function contains &#39;auto&#39;.
Definition: SemaStmt.cpp:3183
A trivial tuple used to represent a source range.
ASTContext & Context
Definition: Sema.h:324
This represents a decl that may have a name.
Definition: Decl.h:249
QualType getObjCObjectPointerType(QualType OIT) const
Return a ObjCObjectPointerType type for the given ObjCObjectType.
A boolean literal, per ([C++ lex.bool] Boolean literals).
Definition: ExprCXX.h:562
T castAs() const
Convert to the specified TypeLoc type, asserting that this TypeLoc is of the desired type...
Definition: TypeLoc.h:76
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2971
CanQualType BoolTy
Definition: ASTContext.h:1017
APSInt & getInt()
Definition: APValue.h:252
DeclStmt * getBeginStmt()
Definition: StmtCXX.h:155
Describes an entity that is being initialized.
BeginEndFunction
Definition: SemaStmt.cpp:1990
ExprResult release()
Definition: Sema.h:3669
Decl * getCalleeDecl()
Definition: Expr.h:2526
void setType(QualType newType)
Definition: Decl.h:649
Wrapper for source info for pointers.
Definition: TypeLoc.h:1202
StmtResult ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt, ConditionResult Cond, Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal)
Definition: SemaStmt.cpp:530
SourceLocation ColonLoc
Location of &#39;:&#39;.
Definition: OpenMPClause.h:108
Represents Objective-C&#39;s @autoreleasepool Statement.
Definition: StmtObjC.h:345
CopyElisionSemanticsKind
Definition: Sema.h:3846
static SEHExceptStmt * Create(const ASTContext &C, SourceLocation ExceptLoc, Expr *FilterExpr, Stmt *Block)
Definition: Stmt.cpp:1127
void NoteCandidates(Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef< Expr *> Args, StringRef Opc="", SourceLocation Loc=SourceLocation(), llvm::function_ref< bool(OverloadCandidate &)> Filter=[](OverloadCandidate &) { return true;})
When overload resolution fails, prints diagnostic messages containing the candidates in the candidate...
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2872
Declaration of a template function.
Definition: DeclTemplate.h:969
static ObjCAtTryStmt * Create(const ASTContext &Context, SourceLocation atTryLoc, Stmt *atTryStmt, Stmt **CatchStmts, unsigned NumCatchStmts, Stmt *atFinallyStmt)
Definition: StmtObjC.cpp:46
void setBody(Stmt *B)
Definition: Decl.cpp:4467
Attr - This represents one attribute.
Definition: Attr.h:44
SourceLocation getLocation() const
Definition: DeclBase.h:418
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:98
StmtResult ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler)
Definition: SemaStmt.cpp:4095
static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc, const Scope &DestScope)
Definition: SemaStmt.cpp:2866
Helper class that creates diagnostics with optional template instantiation stacks.
Definition: Sema.h:1261
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2560
QualType getType() const
Retrieves the type of the base class.
Definition: DeclCXX.h:291