clang  8.0.0
CodeGenFunction.h
Go to the documentation of this file.
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/MapVector.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Transforms/Utils/SanitizerStats.h"
42 
43 namespace llvm {
44 class BasicBlock;
45 class LLVMContext;
46 class MDNode;
47 class Module;
48 class SwitchInst;
49 class Twine;
50 class Value;
51 class CallSite;
52 }
53 
54 namespace clang {
55 class ASTContext;
56 class BlockDecl;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class EnumConstantDecl;
63 class FunctionDecl;
64 class FunctionProtoType;
65 class LabelStmt;
66 class ObjCContainerDecl;
67 class ObjCInterfaceDecl;
68 class ObjCIvarDecl;
69 class ObjCMethodDecl;
70 class ObjCImplementationDecl;
71 class ObjCPropertyImplDecl;
72 class TargetInfo;
73 class VarDecl;
74 class ObjCForCollectionStmt;
75 class ObjCAtTryStmt;
76 class ObjCAtThrowStmt;
77 class ObjCAtSynchronizedStmt;
78 class ObjCAutoreleasePoolStmt;
79 
80 namespace analyze_os_log {
81 class OSLogBufferLayout;
82 }
83 
84 namespace CodeGen {
85 class CodeGenTypes;
86 class CGCallee;
87 class CGFunctionInfo;
88 class CGRecordLayout;
89 class CGBlockInfo;
90 class CGCXXABI;
91 class BlockByrefHelpers;
92 class BlockByrefInfo;
93 class BlockFlags;
94 class BlockFieldFlags;
95 class RegionCodeGenTy;
96 class TargetCodeGenInfo;
97 struct OMPTaskDataTy;
98 struct CGCoroData;
99 
100 /// The kind of evaluation to perform on values of a particular
101 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or
102 /// CGExprAgg?
103 ///
104 /// TODO: should vectors maybe be split out into their own thing?
109 };
110 
111 #define LIST_SANITIZER_CHECKS \
112  SANITIZER_CHECK(AddOverflow, add_overflow, 0) \
113  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \
114  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \
115  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \
116  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \
117  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \
118  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \
119  SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \
120  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \
121  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \
122  SANITIZER_CHECK(MissingReturn, missing_return, 0) \
123  SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \
124  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \
125  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \
126  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \
127  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \
128  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \
129  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \
130  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \
131  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \
132  SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \
133  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \
134  SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \
135  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
136 
138 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
140 #undef SANITIZER_CHECK
141 };
142 
143 /// Helper class with most of the code for saving a value for a
144 /// conditional expression cleanup.
146  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
147 
148  /// Answer whether the given value needs extra work to be saved.
149  static bool needsSaving(llvm::Value *value) {
150  // If it's not an instruction, we don't need to save.
151  if (!isa<llvm::Instruction>(value)) return false;
152 
153  // If it's an instruction in the entry block, we don't need to save.
154  llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
155  return (block != &block->getParent()->getEntryBlock());
156  }
157 
158  static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
159  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
160 };
161 
162 /// A partial specialization of DominatingValue for llvm::Values that
163 /// might be llvm::Instructions.
164 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
165  typedef T *type;
166  static type restore(CodeGenFunction &CGF, saved_type value) {
167  return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
168  }
169 };
170 
171 /// A specialization of DominatingValue for Address.
172 template <> struct DominatingValue<Address> {
173  typedef Address type;
174 
175  struct saved_type {
178  };
179 
180  static bool needsSaving(type value) {
181  return DominatingLLVMValue::needsSaving(value.getPointer());
182  }
183  static saved_type save(CodeGenFunction &CGF, type value) {
184  return { DominatingLLVMValue::save(CGF, value.getPointer()),
185  value.getAlignment() };
186  }
187  static type restore(CodeGenFunction &CGF, saved_type value) {
188  return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
189  value.Alignment);
190  }
191 };
192 
193 /// A specialization of DominatingValue for RValue.
194 template <> struct DominatingValue<RValue> {
195  typedef RValue type;
196  class saved_type {
197  enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
198  AggregateAddress, ComplexAddress };
199 
201  unsigned K : 3;
202  unsigned Align : 29;
203  saved_type(llvm::Value *v, Kind k, unsigned a = 0)
204  : Value(v), K(k), Align(a) {}
205 
206  public:
207  static bool needsSaving(RValue value);
208  static saved_type save(CodeGenFunction &CGF, RValue value);
209  RValue restore(CodeGenFunction &CGF);
210 
211  // implementations in CGCleanup.cpp
212  };
213 
214  static bool needsSaving(type value) {
215  return saved_type::needsSaving(value);
216  }
217  static saved_type save(CodeGenFunction &CGF, type value) {
218  return saved_type::save(CGF, value);
219  }
220  static type restore(CodeGenFunction &CGF, saved_type value) {
221  return value.restore(CGF);
222  }
223 };
224 
225 /// CodeGenFunction - This class organizes the per-function state that is used
226 /// while generating LLVM code.
228  CodeGenFunction(const CodeGenFunction &) = delete;
229  void operator=(const CodeGenFunction &) = delete;
230 
231  friend class CGCXXABI;
232 public:
233  /// A jump destination is an abstract label, branching to which may
234  /// require a jump out through normal cleanups.
235  struct JumpDest {
236  JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
237  JumpDest(llvm::BasicBlock *Block,
239  unsigned Index)
240  : Block(Block), ScopeDepth(Depth), Index(Index) {}
241 
242  bool isValid() const { return Block != nullptr; }
243  llvm::BasicBlock *getBlock() const { return Block; }
244  EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
245  unsigned getDestIndex() const { return Index; }
246 
247  // This should be used cautiously.
249  ScopeDepth = depth;
250  }
251 
252  private:
253  llvm::BasicBlock *Block;
255  unsigned Index;
256  };
257 
258  CodeGenModule &CGM; // Per-module state.
260 
261  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
264 
265  // Stores variables for which we can't generate correct lifetime markers
266  // because of jumps.
268 
269  // CodeGen lambda for loops and support for ordered clause
270  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
271  JumpDest)>
273  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
274  const unsigned, const bool)>
276 
277  // Codegen lambda for loop bounds in worksharing loop constructs
278  typedef llvm::function_ref<std::pair<LValue, LValue>(
281 
282  // Codegen lambda for loop bounds in dispatch-based loop implementation
283  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
284  CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
285  Address UB)>
287 
288  /// CGBuilder insert helper. This function is called after an
289  /// instruction is created using Builder.
290  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
291  llvm::BasicBlock *BB,
292  llvm::BasicBlock::iterator InsertPt) const;
293 
294  /// CurFuncDecl - Holds the Decl for the current outermost
295  /// non-closure context.
297  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
301  llvm::Function *CurFn = nullptr;
302 
303  // Holds coroutine data if the current function is a coroutine. We use a
304  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
305  // in this header.
306  struct CGCoroInfo {
307  std::unique_ptr<CGCoroData> Data;
308  CGCoroInfo();
309  ~CGCoroInfo();
310  };
312 
313  bool isCoroutine() const {
314  return CurCoro.Data != nullptr;
315  }
316 
317  /// CurGD - The GlobalDecl for the current function being compiled.
319 
320  /// PrologueCleanupDepth - The cleanup depth enclosing all the
321  /// cleanups associated with the parameters.
323 
324  /// ReturnBlock - Unified return block.
326 
327  /// ReturnValue - The temporary alloca to hold the return
328  /// value. This is invalid iff the function has no return value.
329  Address ReturnValue = Address::invalid();
330 
331  /// Return true if a label was seen in the current scope.
333  if (CurLexicalScope)
334  return CurLexicalScope->hasLabels();
335  return !LabelMap.empty();
336  }
337 
338  /// AllocaInsertPoint - This is an instruction in the entry block before which
339  /// we prefer to insert allocas.
340  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
341 
342  /// API for captured statement code generation.
344  public:
346  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
347  explicit CGCapturedStmtInfo(const CapturedStmt &S,
349  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
350 
354  E = S.capture_end();
355  I != E; ++I, ++Field) {
356  if (I->capturesThis())
357  CXXThisFieldDecl = *Field;
358  else if (I->capturesVariable())
359  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
360  else if (I->capturesVariableByCopy())
361  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
362  }
363  }
364 
365  virtual ~CGCapturedStmtInfo();
366 
367  CapturedRegionKind getKind() const { return Kind; }
368 
369  virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
370  // Retrieve the value of the context parameter.
371  virtual llvm::Value *getContextValue() const { return ThisValue; }
372 
373  /// Lookup the captured field decl for a variable.
374  virtual const FieldDecl *lookup(const VarDecl *VD) const {
375  return CaptureFields.lookup(VD->getCanonicalDecl());
376  }
377 
378  bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
379  virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
380 
381  static bool classof(const CGCapturedStmtInfo *) {
382  return true;
383  }
384 
385  /// Emit the captured statement body.
386  virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
388  CGF.EmitStmt(S);
389  }
390 
391  /// Get the name of the capture helper.
392  virtual StringRef getHelperName() const { return "__captured_stmt"; }
393 
394  private:
395  /// The kind of captured statement being generated.
397 
398  /// Keep the map between VarDecl and FieldDecl.
399  llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
400 
401  /// The base address of the captured record, passed in as the first
402  /// argument of the parallel region function.
403  llvm::Value *ThisValue;
404 
405  /// Captured 'this' type.
406  FieldDecl *CXXThisFieldDecl;
407  };
408  CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
409 
410  /// RAII for correct setting/restoring of CapturedStmtInfo.
412  private:
413  CodeGenFunction &CGF;
414  CGCapturedStmtInfo *PrevCapturedStmtInfo;
415  public:
416  CGCapturedStmtRAII(CodeGenFunction &CGF,
417  CGCapturedStmtInfo *NewCapturedStmtInfo)
418  : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
419  CGF.CapturedStmtInfo = NewCapturedStmtInfo;
420  }
421  ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
422  };
423 
424  /// An abstract representation of regular/ObjC call/message targets.
426  /// The function declaration of the callee.
427  const Decl *CalleeDecl;
428 
429  public:
430  AbstractCallee() : CalleeDecl(nullptr) {}
431  AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
432  AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
433  bool hasFunctionDecl() const {
434  return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
435  }
436  const Decl *getDecl() const { return CalleeDecl; }
437  unsigned getNumParams() const {
438  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
439  return FD->getNumParams();
440  return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
441  }
442  const ParmVarDecl *getParamDecl(unsigned I) const {
443  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
444  return FD->getParamDecl(I);
445  return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
446  }
447  };
448 
449  /// Sanitizers enabled for this function.
451 
452  /// True if CodeGen currently emits code implementing sanitizer checks.
453  bool IsSanitizerScope = false;
454 
455  /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
457  CodeGenFunction *CGF;
458  public:
459  SanitizerScope(CodeGenFunction *CGF);
460  ~SanitizerScope();
461  };
462 
463  /// In C++, whether we are code generating a thunk. This controls whether we
464  /// should emit cleanups.
465  bool CurFuncIsThunk = false;
466 
467  /// In ARC, whether we should autorelease the return value.
468  bool AutoreleaseResult = false;
469 
470  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
471  /// potentially set the return value.
472  bool SawAsmBlock = false;
473 
474  const NamedDecl *CurSEHParent = nullptr;
475 
476  /// True if the current function is an outlined SEH helper. This can be a
477  /// finally block or filter expression.
478  bool IsOutlinedSEHHelper = false;
479 
480  const CodeGen::CGBlockInfo *BlockInfo = nullptr;
481  llvm::Value *BlockPointer = nullptr;
482 
483  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
484  FieldDecl *LambdaThisCaptureField = nullptr;
485 
486  /// A mapping from NRVO variables to the flags used to indicate
487  /// when the NRVO has been applied to this variable.
488  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
489 
493 
494  llvm::Instruction *CurrentFuncletPad = nullptr;
495 
496  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
497  llvm::Value *Addr;
498  llvm::Value *Size;
499 
500  public:
502  : Addr(addr.getPointer()), Size(size) {}
503 
504  void Emit(CodeGenFunction &CGF, Flags flags) override {
505  CGF.EmitLifetimeEnd(Size, Addr);
506  }
507  };
508 
509  /// Header for data within LifetimeExtendedCleanupStack.
511  /// The size of the following cleanup object.
512  unsigned Size;
513  /// The kind of cleanup to push: a value from the CleanupKind enumeration.
514  unsigned Kind : 31;
515  /// Whether this is a conditional cleanup.
516  unsigned IsConditional : 1;
517 
518  size_t getSize() const { return Size; }
519  CleanupKind getKind() const { return (CleanupKind)Kind; }
520  bool isConditional() const { return IsConditional; }
521  };
522 
523  /// i32s containing the indexes of the cleanup destinations.
524  Address NormalCleanupDest = Address::invalid();
525 
526  unsigned NextCleanupDestIndex = 1;
527 
528  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
529  CGBlockInfo *FirstBlockInfo = nullptr;
530 
531  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
532  llvm::BasicBlock *EHResumeBlock = nullptr;
533 
534  /// The exception slot. All landing pads write the current exception pointer
535  /// into this alloca.
536  llvm::Value *ExceptionSlot = nullptr;
537 
538  /// The selector slot. Under the MandatoryCleanup model, all landing pads
539  /// write the current selector value into this alloca.
540  llvm::AllocaInst *EHSelectorSlot = nullptr;
541 
542  /// A stack of exception code slots. Entering an __except block pushes a slot
543  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
544  /// a value from the top of the stack.
546 
547  /// Value returned by __exception_info intrinsic.
548  llvm::Value *SEHInfo = nullptr;
549 
550  /// Emits a landing pad for the current EH stack.
551  llvm::BasicBlock *EmitLandingPad();
552 
553  llvm::BasicBlock *getInvokeDestImpl();
554 
555  template <class T>
557  return DominatingValue<T>::save(*this, value);
558  }
559 
560 public:
561  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
562  /// rethrows.
564 
565  /// A class controlling the emission of a finally block.
566  class FinallyInfo {
567  /// Where the catchall's edge through the cleanup should go.
568  JumpDest RethrowDest;
569 
570  /// A function to call to enter the catch.
571  llvm::Constant *BeginCatchFn;
572 
573  /// An i1 variable indicating whether or not the @finally is
574  /// running for an exception.
575  llvm::AllocaInst *ForEHVar;
576 
577  /// An i8* variable into which the exception pointer to rethrow
578  /// has been saved.
579  llvm::AllocaInst *SavedExnVar;
580 
581  public:
582  void enter(CodeGenFunction &CGF, const Stmt *Finally,
583  llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
584  llvm::Constant *rethrowFn);
585  void exit(CodeGenFunction &CGF);
586  };
587 
588  /// Returns true inside SEH __try blocks.
589  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
590 
591  /// Returns true while emitting a cleanuppad.
592  bool isCleanupPadScope() const {
593  return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
594  }
595 
596  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
597  /// current full-expression. Safe against the possibility that
598  /// we're currently inside a conditionally-evaluated expression.
599  template <class T, class... As>
601  // If we're not in a conditional branch, or if none of the
602  // arguments requires saving, then use the unconditional cleanup.
603  if (!isInConditionalBranch())
604  return EHStack.pushCleanup<T>(kind, A...);
605 
606  // Stash values in a tuple so we can guarantee the order of saves.
607  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
608  SavedTuple Saved{saveValueInCond(A)...};
609 
610  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
611  EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
612  initFullExprCleanup();
613  }
614 
615  /// Queue a cleanup to be pushed after finishing the current
616  /// full-expression.
617  template <class T, class... As>
619  if (!isInConditionalBranch())
620  return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);
621 
622  Address ActiveFlag = createCleanupActiveFlag();
623  assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
624  "cleanup active flag should never need saving");
625 
626  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
627  SavedTuple Saved{saveValueInCond(A)...};
628 
629  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
630  pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
631  }
632 
633  template <class T, class... As>
635  As... A) {
636  LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
637  ActiveFlag.isValid()};
638 
639  size_t OldSize = LifetimeExtendedCleanupStack.size();
640  LifetimeExtendedCleanupStack.resize(
641  LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
642  (Header.IsConditional ? sizeof(ActiveFlag) : 0));
643 
644  static_assert(sizeof(Header) % alignof(T) == 0,
645  "Cleanup will be allocated on misaligned address");
646  char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
647  new (Buffer) LifetimeExtendedCleanupHeader(Header);
648  new (Buffer + sizeof(Header)) T(A...);
649  if (Header.IsConditional)
650  new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
651  }
652 
653  /// Set up the last cleanup that was pushed as a conditional
654  /// full-expression cleanup.
656  initFullExprCleanupWithFlag(createCleanupActiveFlag());
657  }
658 
659  void initFullExprCleanupWithFlag(Address ActiveFlag);
660  Address createCleanupActiveFlag();
661 
662  /// PushDestructorCleanup - Push a cleanup to call the
663  /// complete-object destructor of an object of the given type at the
664  /// given address. Does nothing if T is not a C++ class type with a
665  /// non-trivial destructor.
666  void PushDestructorCleanup(QualType T, Address Addr);
667 
668  /// PushDestructorCleanup - Push a cleanup to call the
669  /// complete-object variant of the given destructor on the object at
670  /// the given address.
671  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
672 
673  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
674  /// process all branch fixups.
675  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
676 
677  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
678  /// The block cannot be reactivated. Pops it if it's the top of the
679  /// stack.
680  ///
681  /// \param DominatingIP - An instruction which is known to
682  /// dominate the current IP (if set) and which lies along
683  /// all paths of execution between the current IP and the
684  /// the point at which the cleanup comes into scope.
685  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
686  llvm::Instruction *DominatingIP);
687 
688  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
689  /// Cannot be used to resurrect a deactivated cleanup.
690  ///
691  /// \param DominatingIP - An instruction which is known to
692  /// dominate the current IP (if set) and which lies along
693  /// all paths of execution between the current IP and the
694  /// the point at which the cleanup comes into scope.
695  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
696  llvm::Instruction *DominatingIP);
697 
698  /// Enters a new scope for capturing cleanups, all of which
699  /// will be executed once the scope is exited.
701  EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
702  size_t LifetimeExtendedCleanupStackSize;
703  bool OldDidCallStackSave;
704  protected:
706  private:
707 
708  RunCleanupsScope(const RunCleanupsScope &) = delete;
709  void operator=(const RunCleanupsScope &) = delete;
710 
711  protected:
712  CodeGenFunction& CGF;
713 
714  public:
715  /// Enter a new cleanup scope.
716  explicit RunCleanupsScope(CodeGenFunction &CGF)
717  : PerformCleanup(true), CGF(CGF)
718  {
719  CleanupStackDepth = CGF.EHStack.stable_begin();
720  LifetimeExtendedCleanupStackSize =
721  CGF.LifetimeExtendedCleanupStack.size();
722  OldDidCallStackSave = CGF.DidCallStackSave;
723  CGF.DidCallStackSave = false;
724  OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
725  CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
726  }
727 
728  /// Exit this cleanup scope, emitting any accumulated cleanups.
730  if (PerformCleanup)
731  ForceCleanup();
732  }
733 
734  /// Determine whether this scope requires any cleanups.
735  bool requiresCleanups() const {
736  return CGF.EHStack.stable_begin() != CleanupStackDepth;
737  }
738 
739  /// Force the emission of cleanups now, instead of waiting
740  /// until this object is destroyed.
741  /// \param ValuesToReload - A list of values that need to be available at
742  /// the insertion point after cleanup emission. If cleanup emission created
743  /// a shared cleanup block, these value pointers will be rewritten.
744  /// Otherwise, they not will be modified.
745  void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
746  assert(PerformCleanup && "Already forced cleanup");
747  CGF.DidCallStackSave = OldDidCallStackSave;
748  CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
749  ValuesToReload);
750  PerformCleanup = false;
751  CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
752  }
753  };
754 
755  // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
756  EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
757  EHScopeStack::stable_end();
758 
760  SourceRange Range;
762  LexicalScope *ParentScope;
763 
764  LexicalScope(const LexicalScope &) = delete;
765  void operator=(const LexicalScope &) = delete;
766 
767  public:
768  /// Enter a new cleanup scope.
769  explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
770  : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
771  CGF.CurLexicalScope = this;
772  if (CGDebugInfo *DI = CGF.getDebugInfo())
773  DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
774  }
775 
776  void addLabel(const LabelDecl *label) {
777  assert(PerformCleanup && "adding label to dead scope?");
778  Labels.push_back(label);
779  }
780 
781  /// Exit this cleanup scope, emitting any accumulated
782  /// cleanups.
784  if (CGDebugInfo *DI = CGF.getDebugInfo())
785  DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
786 
787  // If we should perform a cleanup, force them now. Note that
788  // this ends the cleanup scope before rescoping any labels.
789  if (PerformCleanup) {
790  ApplyDebugLocation DL(CGF, Range.getEnd());
791  ForceCleanup();
792  }
793  }
794 
795  /// Force the emission of cleanups now, instead of waiting
796  /// until this object is destroyed.
797  void ForceCleanup() {
798  CGF.CurLexicalScope = ParentScope;
799  RunCleanupsScope::ForceCleanup();
800 
801  if (!Labels.empty())
802  rescopeLabels();
803  }
804 
805  bool hasLabels() const {
806  return !Labels.empty();
807  }
808 
809  void rescopeLabels();
810  };
811 
812  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
813 
814  /// The class used to assign some variables some temporarily addresses.
815  class OMPMapVars {
816  DeclMapTy SavedLocals;
817  DeclMapTy SavedTempAddresses;
818  OMPMapVars(const OMPMapVars &) = delete;
819  void operator=(const OMPMapVars &) = delete;
820 
821  public:
822  explicit OMPMapVars() = default;
824  assert(SavedLocals.empty() && "Did not restored original addresses.");
825  };
826 
827  /// Sets the address of the variable \p LocalVD to be \p TempAddr in
828  /// function \p CGF.
829  /// \return true if at least one variable was set already, false otherwise.
830  bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
831  Address TempAddr) {
832  LocalVD = LocalVD->getCanonicalDecl();
833  // Only save it once.
834  if (SavedLocals.count(LocalVD)) return false;
835 
836  // Copy the existing local entry to SavedLocals.
837  auto it = CGF.LocalDeclMap.find(LocalVD);
838  if (it != CGF.LocalDeclMap.end())
839  SavedLocals.try_emplace(LocalVD, it->second);
840  else
841  SavedLocals.try_emplace(LocalVD, Address::invalid());
842 
843  // Generate the private entry.
844  QualType VarTy = LocalVD->getType();
845  if (VarTy->isReferenceType()) {
846  Address Temp = CGF.CreateMemTemp(VarTy);
847  CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
848  TempAddr = Temp;
849  }
850  SavedTempAddresses.try_emplace(LocalVD, TempAddr);
851 
852  return true;
853  }
854 
855  /// Applies new addresses to the list of the variables.
856  /// \return true if at least one variable is using new address, false
857  /// otherwise.
858  bool apply(CodeGenFunction &CGF) {
859  copyInto(SavedTempAddresses, CGF.LocalDeclMap);
860  SavedTempAddresses.clear();
861  return !SavedLocals.empty();
862  }
863 
864  /// Restores original addresses of the variables.
865  void restore(CodeGenFunction &CGF) {
866  if (!SavedLocals.empty()) {
867  copyInto(SavedLocals, CGF.LocalDeclMap);
868  SavedLocals.clear();
869  }
870  }
871 
872  private:
873  /// Copy all the entries in the source map over the corresponding
874  /// entries in the destination, which must exist.
875  static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
876  for (auto &Pair : Src) {
877  if (!Pair.second.isValid()) {
878  Dest.erase(Pair.first);
879  continue;
880  }
881 
882  auto I = Dest.find(Pair.first);
883  if (I != Dest.end())
884  I->second = Pair.second;
885  else
886  Dest.insert(Pair);
887  }
888  }
889  };
890 
891  /// The scope used to remap some variables as private in the OpenMP loop body
892  /// (or other captured region emitted without outlining), and to restore old
893  /// vars back on exit.
895  OMPMapVars MappedVars;
896  OMPPrivateScope(const OMPPrivateScope &) = delete;
897  void operator=(const OMPPrivateScope &) = delete;
898 
899  public:
900  /// Enter a new OpenMP private scope.
901  explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
902 
903  /// Registers \p LocalVD variable as a private and apply \p PrivateGen
904  /// function for it to generate corresponding private variable. \p
905  /// PrivateGen returns an address of the generated private variable.
906  /// \return true if the variable is registered as private, false if it has
907  /// been privatized already.
908  bool addPrivate(const VarDecl *LocalVD,
909  const llvm::function_ref<Address()> PrivateGen) {
910  assert(PerformCleanup && "adding private to dead scope");
911  return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
912  }
913 
914  /// Privatizes local variables previously registered as private.
915  /// Registration is separate from the actual privatization to allow
916  /// initializers use values of the original variables, not the private one.
917  /// This is important, for example, if the private variable is a class
918  /// variable initialized by a constructor that references other private
919  /// variables. But at initialization original variables must be used, not
920  /// private copies.
921  /// \return true if at least one variable was privatized, false otherwise.
922  bool Privatize() { return MappedVars.apply(CGF); }
923 
924  void ForceCleanup() {
925  RunCleanupsScope::ForceCleanup();
926  MappedVars.restore(CGF);
927  }
928 
929  /// Exit scope - all the mapped variables are restored.
931  if (PerformCleanup)
932  ForceCleanup();
933  }
934 
935  /// Checks if the global variable is captured in current function.
936  bool isGlobalVarCaptured(const VarDecl *VD) const {
937  VD = VD->getCanonicalDecl();
938  return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
939  }
940  };
941 
942  /// Takes the old cleanup stack size and emits the cleanup blocks
943  /// that have been added.
944  void
945  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
946  std::initializer_list<llvm::Value **> ValuesToReload = {});
947 
948  /// Takes the old cleanup stack size and emits the cleanup blocks
949  /// that have been added, then adds all lifetime-extended cleanups from
950  /// the given position to the stack.
951  void
952  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
953  size_t OldLifetimeExtendedStackSize,
954  std::initializer_list<llvm::Value **> ValuesToReload = {});
955 
956  void ResolveBranchFixups(llvm::BasicBlock *Target);
957 
958  /// The given basic block lies in the current EH scope, but may be a
959  /// target of a potentially scope-crossing jump; get a stable handle
960  /// to which we can perform this jump later.
961  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
962  return JumpDest(Target,
963  EHStack.getInnermostNormalCleanup(),
964  NextCleanupDestIndex++);
965  }
966 
967  /// The given basic block lies in the current EH scope, but may be a
968  /// target of a potentially scope-crossing jump; get a stable handle
969  /// to which we can perform this jump later.
970  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
971  return getJumpDestInCurrentScope(createBasicBlock(Name));
972  }
973 
974  /// EmitBranchThroughCleanup - Emit a branch from the current insert
975  /// block through the normal cleanup handling code (if any) and then
976  /// on to \arg Dest.
977  void EmitBranchThroughCleanup(JumpDest Dest);
978 
979  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
980  /// specified destination obviously has no cleanups to run. 'false' is always
981  /// a conservatively correct answer for this method.
982  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
983 
984  /// popCatchScope - Pops the catch scope at the top of the EHScope
985  /// stack, emitting any required code (other than the catch handlers
986  /// themselves).
987  void popCatchScope();
988 
989  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
990  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
991  llvm::BasicBlock *
992  getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
993 
994  /// An object to manage conditionally-evaluated expressions.
996  llvm::BasicBlock *StartBB;
997 
998  public:
999  ConditionalEvaluation(CodeGenFunction &CGF)
1000  : StartBB(CGF.Builder.GetInsertBlock()) {}
1001 
1002  void begin(CodeGenFunction &CGF) {
1003  assert(CGF.OutermostConditional != this);
1004  if (!CGF.OutermostConditional)
1005  CGF.OutermostConditional = this;
1006  }
1007 
1008  void end(CodeGenFunction &CGF) {
1009  assert(CGF.OutermostConditional != nullptr);
1010  if (CGF.OutermostConditional == this)
1011  CGF.OutermostConditional = nullptr;
1012  }
1013 
1014  /// Returns a block which will be executed prior to each
1015  /// evaluation of the conditional code.
1016  llvm::BasicBlock *getStartingBlock() const {
1017  return StartBB;
1018  }
1019  };
1020 
1021  /// isInConditionalBranch - Return true if we're currently emitting
1022  /// one branch or the other of a conditional expression.
1023  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1024 
1026  assert(isInConditionalBranch());
1027  llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1028  auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1029  store->setAlignment(addr.getAlignment().getQuantity());
1030  }
1031 
1032  /// An RAII object to record that we're evaluating a statement
1033  /// expression.
1035  CodeGenFunction &CGF;
1036 
1037  /// We have to save the outermost conditional: cleanups in a
1038  /// statement expression aren't conditional just because the
1039  /// StmtExpr is.
1040  ConditionalEvaluation *SavedOutermostConditional;
1041 
1042  public:
1043  StmtExprEvaluation(CodeGenFunction &CGF)
1044  : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1045  CGF.OutermostConditional = nullptr;
1046  }
1047 
1049  CGF.OutermostConditional = SavedOutermostConditional;
1050  CGF.EnsureInsertPoint();
1051  }
1052  };
1053 
1054  /// An object which temporarily prevents a value from being
1055  /// destroyed by aggressive peephole optimizations that assume that
1056  /// all uses of a value have been realized in the IR.
1058  llvm::Instruction *Inst;
1059  friend class CodeGenFunction;
1060 
1061  public:
1062  PeepholeProtection() : Inst(nullptr) {}
1063  };
1064 
1065  /// A non-RAII class containing all the information about a bound
1066  /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
1067  /// this which makes individual mappings very simple; using this
1068  /// class directly is useful when you have a variable number of
1069  /// opaque values or don't want the RAII functionality for some
1070  /// reason.
1072  const OpaqueValueExpr *OpaqueValue;
1073  bool BoundLValue;
1075 
1077  bool boundLValue)
1078  : OpaqueValue(ov), BoundLValue(boundLValue) {}
1079  public:
1080  OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1081 
1082  static bool shouldBindAsLValue(const Expr *expr) {
1083  // gl-values should be bound as l-values for obvious reasons.
1084  // Records should be bound as l-values because IR generation
1085  // always keeps them in memory. Expressions of function type
1086  // act exactly like l-values but are formally required to be
1087  // r-values in C.
1088  return expr->isGLValue() ||
1089  expr->getType()->isFunctionType() ||
1090  hasAggregateEvaluationKind(expr->getType());
1091  }
1092 
1093  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1094  const OpaqueValueExpr *ov,
1095  const Expr *e) {
1096  if (shouldBindAsLValue(ov))
1097  return bind(CGF, ov, CGF.EmitLValue(e));
1098  return bind(CGF, ov, CGF.EmitAnyExpr(e));
1099  }
1100 
1101  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1102  const OpaqueValueExpr *ov,
1103  const LValue &lv) {
1104  assert(shouldBindAsLValue(ov));
1105  CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1106  return OpaqueValueMappingData(ov, true);
1107  }
1108 
1109  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1110  const OpaqueValueExpr *ov,
1111  const RValue &rv) {
1112  assert(!shouldBindAsLValue(ov));
1113  CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1114 
1115  OpaqueValueMappingData data(ov, false);
1116 
1117  // Work around an extremely aggressive peephole optimization in
1118  // EmitScalarConversion which assumes that all other uses of a
1119  // value are extant.
1120  data.Protection = CGF.protectFromPeepholes(rv);
1121 
1122  return data;
1123  }
1124 
1125  bool isValid() const { return OpaqueValue != nullptr; }
1126  void clear() { OpaqueValue = nullptr; }
1127 
1128  void unbind(CodeGenFunction &CGF) {
1129  assert(OpaqueValue && "no data to unbind!");
1130 
1131  if (BoundLValue) {
1132  CGF.OpaqueLValues.erase(OpaqueValue);
1133  } else {
1134  CGF.OpaqueRValues.erase(OpaqueValue);
1135  CGF.unprotectFromPeepholes(Protection);
1136  }
1137  }
1138  };
1139 
1140  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1142  CodeGenFunction &CGF;
1144 
1145  public:
1146  static bool shouldBindAsLValue(const Expr *expr) {
1147  return OpaqueValueMappingData::shouldBindAsLValue(expr);
1148  }
1149 
1150  /// Build the opaque value mapping for the given conditional
1151  /// operator if it's the GNU ?: extension. This is a common
1152  /// enough pattern that the convenience operator is really
1153  /// helpful.
1154  ///
1155  OpaqueValueMapping(CodeGenFunction &CGF,
1156  const AbstractConditionalOperator *op) : CGF(CGF) {
1157  if (isa<ConditionalOperator>(op))
1158  // Leave Data empty.
1159  return;
1160 
1161  const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1162  Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1163  e->getCommon());
1164  }
1165 
1166  /// Build the opaque value mapping for an OpaqueValueExpr whose source
1167  /// expression is set to the expression the OVE represents.
1168  OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1169  : CGF(CGF) {
1170  if (OV) {
1171  assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1172  "for OVE with no source expression");
1173  Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1174  }
1175  }
1176 
1177  OpaqueValueMapping(CodeGenFunction &CGF,
1178  const OpaqueValueExpr *opaqueValue,
1179  LValue lvalue)
1180  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1181  }
1182 
1183  OpaqueValueMapping(CodeGenFunction &CGF,
1184  const OpaqueValueExpr *opaqueValue,
1185  RValue rvalue)
1186  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1187  }
1188 
1189  void pop() {
1190  Data.unbind(CGF);
1191  Data.clear();
1192  }
1193 
1195  if (Data.isValid()) Data.unbind(CGF);
1196  }
1197  };
1198 
1199 private:
1200  CGDebugInfo *DebugInfo;
1201  /// Used to create unique names for artificial VLA size debug info variables.
1202  unsigned VLAExprCounter = 0;
1203  bool DisableDebugInfo = false;
1204 
1205  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1206  /// calling llvm.stacksave for multiple VLAs in the same scope.
1207  bool DidCallStackSave = false;
1208 
1209  /// IndirectBranch - The first time an indirect goto is seen we create a block
1210  /// with an indirect branch. Every time we see the address of a label taken,
1211  /// we add the label to the indirect goto. Every subsequent indirect goto is
1212  /// codegen'd as a jump to the IndirectBranch's basic block.
1213  llvm::IndirectBrInst *IndirectBranch = nullptr;
1214 
1215  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1216  /// decls.
1217  DeclMapTy LocalDeclMap;
1218 
1219  // Keep track of the cleanups for callee-destructed parameters pushed to the
1220  // cleanup stack so that they can be deactivated later.
1221  llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1222  CalleeDestructedParamCleanups;
1223 
1224  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1225  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1226  /// parameter.
1227  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1228  SizeArguments;
1229 
1230  /// Track escaped local variables with auto storage. Used during SEH
1231  /// outlining to produce a call to llvm.localescape.
1232  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1233 
1234  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1235  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1236 
1237  // BreakContinueStack - This keeps track of where break and continue
1238  // statements should jump to.
1239  struct BreakContinue {
1240  BreakContinue(JumpDest Break, JumpDest Continue)
1241  : BreakBlock(Break), ContinueBlock(Continue) {}
1242 
1243  JumpDest BreakBlock;
1244  JumpDest ContinueBlock;
1245  };
1246  SmallVector<BreakContinue, 8> BreakContinueStack;
1247 
1248  /// Handles cancellation exit points in OpenMP-related constructs.
1249  class OpenMPCancelExitStack {
1250  /// Tracks cancellation exit point and join point for cancel-related exit
1251  /// and normal exit.
1252  struct CancelExit {
1253  CancelExit() = default;
1254  CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1255  JumpDest ContBlock)
1256  : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1258  /// true if the exit block has been emitted already by the special
1259  /// emitExit() call, false if the default codegen is used.
1260  bool HasBeenEmitted = false;
1261  JumpDest ExitBlock;
1262  JumpDest ContBlock;
1263  };
1264 
1266 
1267  public:
1268  OpenMPCancelExitStack() : Stack(1) {}
1269  ~OpenMPCancelExitStack() = default;
1270  /// Fetches the exit block for the current OpenMP construct.
1271  JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1272  /// Emits exit block with special codegen procedure specific for the related
1273  /// OpenMP construct + emits code for normal construct cleanup.
1274  void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1275  const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1276  if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1277  assert(CGF.getOMPCancelDestination(Kind).isValid());
1278  assert(CGF.HaveInsertPoint());
1279  assert(!Stack.back().HasBeenEmitted);
1280  auto IP = CGF.Builder.saveAndClearIP();
1281  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1282  CodeGen(CGF);
1283  CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1284  CGF.Builder.restoreIP(IP);
1285  Stack.back().HasBeenEmitted = true;
1286  }
1287  CodeGen(CGF);
1288  }
1289  /// Enter the cancel supporting \a Kind construct.
1290  /// \param Kind OpenMP directive that supports cancel constructs.
1291  /// \param HasCancel true, if the construct has inner cancel directive,
1292  /// false otherwise.
1293  void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1294  Stack.push_back({Kind,
1295  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1296  : JumpDest(),
1297  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1298  : JumpDest()});
1299  }
1300  /// Emits default exit point for the cancel construct (if the special one
1301  /// has not be used) + join point for cancel/normal exits.
1302  void exit(CodeGenFunction &CGF) {
1303  if (getExitBlock().isValid()) {
1304  assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1305  bool HaveIP = CGF.HaveInsertPoint();
1306  if (!Stack.back().HasBeenEmitted) {
1307  if (HaveIP)
1308  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1309  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1310  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1311  }
1312  CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1313  if (!HaveIP) {
1314  CGF.Builder.CreateUnreachable();
1315  CGF.Builder.ClearInsertionPoint();
1316  }
1317  }
1318  Stack.pop_back();
1319  }
1320  };
1321  OpenMPCancelExitStack OMPCancelStack;
1322 
1323  CodeGenPGO PGO;
1324 
1325  /// Calculate branch weights appropriate for PGO data
1326  llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1327  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1328  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1329  uint64_t LoopCount);
1330 
1331 public:
1332  /// Increment the profiler's counter for the given statement by \p StepV.
1333  /// If \p StepV is null, the default increment is 1.
1334  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1336  PGO.emitCounterIncrement(Builder, S, StepV);
1337  PGO.setCurrentStmt(S);
1338  }
1339 
1340  /// Get the profiler's count for the given statement.
1341  uint64_t getProfileCount(const Stmt *S) {
1342  Optional<uint64_t> Count = PGO.getStmtCount(S);
1343  if (!Count.hasValue())
1344  return 0;
1345  return *Count;
1346  }
1347 
1348  /// Set the profiler's current count.
1349  void setCurrentProfileCount(uint64_t Count) {
1350  PGO.setCurrentRegionCount(Count);
1351  }
1352 
1353  /// Get the profiler's current count. This is generally the count for the most
1354  /// recently incremented counter.
1356  return PGO.getCurrentRegionCount();
1357  }
1358 
1359 private:
1360 
1361  /// SwitchInsn - This is nearest current switch instruction. It is null if
1362  /// current context is not in a switch.
1363  llvm::SwitchInst *SwitchInsn = nullptr;
1364  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1365  SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1366 
1367  /// CaseRangeBlock - This block holds if condition check for last case
1368  /// statement range in current switch instruction.
1369  llvm::BasicBlock *CaseRangeBlock = nullptr;
1370 
1371  /// OpaqueLValues - Keeps track of the current set of opaque value
1372  /// expressions.
1373  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1374  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1375 
1376  // VLASizeMap - This keeps track of the associated size for each VLA type.
1377  // We track this by the size expression rather than the type itself because
1378  // in certain situations, like a const qualifier applied to an VLA typedef,
1379  // multiple VLA types can share the same size expression.
1380  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1381  // enter/leave scopes.
1382  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1383 
1384  /// A block containing a single 'unreachable' instruction. Created
1385  /// lazily by getUnreachableBlock().
1386  llvm::BasicBlock *UnreachableBlock = nullptr;
1387 
1388  /// Counts of the number return expressions in the function.
1389  unsigned NumReturnExprs = 0;
1390 
1391  /// Count the number of simple (constant) return expressions in the function.
1392  unsigned NumSimpleReturnExprs = 0;
1393 
1394  /// The last regular (non-return) debug location (breakpoint) in the function.
1395  SourceLocation LastStopPoint;
1396 
1397 public:
1398  /// A scope within which we are constructing the fields of an object which
1399  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1400  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1402  public:
1403  FieldConstructionScope(CodeGenFunction &CGF, Address This)
1404  : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1405  CGF.CXXDefaultInitExprThis = This;
1406  }
1408  CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1409  }
1410 
1411  private:
1412  CodeGenFunction &CGF;
1413  Address OldCXXDefaultInitExprThis;
1414  };
1415 
1416  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1417  /// is overridden to be the object under construction.
1419  public:
1420  CXXDefaultInitExprScope(CodeGenFunction &CGF)
1421  : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1422  OldCXXThisAlignment(CGF.CXXThisAlignment) {
1423  CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1424  CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1425  }
1427  CGF.CXXThisValue = OldCXXThisValue;
1428  CGF.CXXThisAlignment = OldCXXThisAlignment;
1429  }
1430 
1431  public:
1432  CodeGenFunction &CGF;
1435  };
1436 
1437  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1438  /// current loop index is overridden.
1440  public:
1441  ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1442  : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1443  CGF.ArrayInitIndex = Index;
1444  }
1446  CGF.ArrayInitIndex = OldArrayInitIndex;
1447  }
1448 
1449  private:
1450  CodeGenFunction &CGF;
1451  llvm::Value *OldArrayInitIndex;
1452  };
1453 
1455  public:
1457  : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1458  OldCurCodeDecl(CGF.CurCodeDecl),
1459  OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1460  OldCXXABIThisValue(CGF.CXXABIThisValue),
1461  OldCXXThisValue(CGF.CXXThisValue),
1462  OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1463  OldCXXThisAlignment(CGF.CXXThisAlignment),
1464  OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1465  OldCXXInheritedCtorInitExprArgs(
1466  std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1467  CGF.CurGD = GD;
1468  CGF.CurFuncDecl = CGF.CurCodeDecl =
1469  cast<CXXConstructorDecl>(GD.getDecl());
1470  CGF.CXXABIThisDecl = nullptr;
1471  CGF.CXXABIThisValue = nullptr;
1472  CGF.CXXThisValue = nullptr;
1473  CGF.CXXABIThisAlignment = CharUnits();
1474  CGF.CXXThisAlignment = CharUnits();
1475  CGF.ReturnValue = Address::invalid();
1476  CGF.FnRetTy = QualType();
1477  CGF.CXXInheritedCtorInitExprArgs.clear();
1478  }
1480  CGF.CurGD = OldCurGD;
1481  CGF.CurFuncDecl = OldCurFuncDecl;
1482  CGF.CurCodeDecl = OldCurCodeDecl;
1483  CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1484  CGF.CXXABIThisValue = OldCXXABIThisValue;
1485  CGF.CXXThisValue = OldCXXThisValue;
1486  CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1487  CGF.CXXThisAlignment = OldCXXThisAlignment;
1488  CGF.ReturnValue = OldReturnValue;
1489  CGF.FnRetTy = OldFnRetTy;
1490  CGF.CXXInheritedCtorInitExprArgs =
1491  std::move(OldCXXInheritedCtorInitExprArgs);
1492  }
1493 
1494  private:
1495  CodeGenFunction &CGF;
1496  GlobalDecl OldCurGD;
1497  const Decl *OldCurFuncDecl;
1498  const Decl *OldCurCodeDecl;
1499  ImplicitParamDecl *OldCXXABIThisDecl;
1500  llvm::Value *OldCXXABIThisValue;
1501  llvm::Value *OldCXXThisValue;
1502  CharUnits OldCXXABIThisAlignment;
1503  CharUnits OldCXXThisAlignment;
1504  Address OldReturnValue;
1505  QualType OldFnRetTy;
1506  CallArgList OldCXXInheritedCtorInitExprArgs;
1507  };
1508 
1509 private:
1510  /// CXXThisDecl - When generating code for a C++ member function,
1511  /// this will hold the implicit 'this' declaration.
1512  ImplicitParamDecl *CXXABIThisDecl = nullptr;
1513  llvm::Value *CXXABIThisValue = nullptr;
1514  llvm::Value *CXXThisValue = nullptr;
1515  CharUnits CXXABIThisAlignment;
1516  CharUnits CXXThisAlignment;
1517 
1518  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1519  /// this expression.
1520  Address CXXDefaultInitExprThis = Address::invalid();
1521 
1522  /// The current array initialization index when evaluating an
1523  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1524  llvm::Value *ArrayInitIndex = nullptr;
1525 
1526  /// The values of function arguments to use when evaluating
1527  /// CXXInheritedCtorInitExprs within this context.
1528  CallArgList CXXInheritedCtorInitExprArgs;
1529 
1530  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1531  /// destructor, this will hold the implicit argument (e.g. VTT).
1532  ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1533  llvm::Value *CXXStructorImplicitParamValue = nullptr;
1534 
1535  /// OutermostConditional - Points to the outermost active
1536  /// conditional control. This is used so that we know if a
1537  /// temporary should be destroyed conditionally.
1538  ConditionalEvaluation *OutermostConditional = nullptr;
1539 
1540  /// The current lexical scope.
1541  LexicalScope *CurLexicalScope = nullptr;
1542 
1543  /// The current source location that should be used for exception
1544  /// handling code.
1545  SourceLocation CurEHLocation;
1546 
1547  /// BlockByrefInfos - For each __block variable, contains
1548  /// information about the layout of the variable.
1549  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1550 
1551  /// Used by -fsanitize=nullability-return to determine whether the return
1552  /// value can be checked.
1553  llvm::Value *RetValNullabilityPrecondition = nullptr;
1554 
1555  /// Check if -fsanitize=nullability-return instrumentation is required for
1556  /// this function.
1557  bool requiresReturnValueNullabilityCheck() const {
1558  return RetValNullabilityPrecondition;
1559  }
1560 
1561  /// Used to store precise source locations for return statements by the
1562  /// runtime return value checks.
1563  Address ReturnLocation = Address::invalid();
1564 
1565  /// Check if the return value of this function requires sanitization.
1566  bool requiresReturnValueCheck() const {
1567  return requiresReturnValueNullabilityCheck() ||
1568  (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1569  CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1570  }
1571 
1572  llvm::BasicBlock *TerminateLandingPad = nullptr;
1573  llvm::BasicBlock *TerminateHandler = nullptr;
1574  llvm::BasicBlock *TrapBB = nullptr;
1575 
1576  /// Terminate funclets keyed by parent funclet pad.
1577  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1578 
1579  /// Largest vector width used in ths function. Will be used to create a
1580  /// function attribute.
1581  unsigned LargestVectorWidth = 0;
1582 
1583  /// True if we need emit the life-time markers.
1584  const bool ShouldEmitLifetimeMarkers;
1585 
1586  /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1587  /// the function metadata.
1588  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1589  llvm::Function *Fn);
1590 
1591 public:
1592  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1593  ~CodeGenFunction();
1594 
1595  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1596  ASTContext &getContext() const { return CGM.getContext(); }
1598  if (DisableDebugInfo)
1599  return nullptr;
1600  return DebugInfo;
1601  }
1602  void disableDebugInfo() { DisableDebugInfo = true; }
1603  void enableDebugInfo() { DisableDebugInfo = false; }
1604 
1606  return CGM.getCodeGenOpts().OptimizationLevel == 0;
1607  }
1608 
1609  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1610 
1611  /// Returns a pointer to the function's exception object and selector slot,
1612  /// which is assigned in every landing pad.
1613  Address getExceptionSlot();
1614  Address getEHSelectorSlot();
1615 
1616  /// Returns the contents of the function's exception object and selector
1617  /// slots.
1618  llvm::Value *getExceptionFromSlot();
1619  llvm::Value *getSelectorFromSlot();
1620 
1621  Address getNormalCleanupDestSlot();
1622 
1623  llvm::BasicBlock *getUnreachableBlock() {
1624  if (!UnreachableBlock) {
1625  UnreachableBlock = createBasicBlock("unreachable");
1626  new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1627  }
1628  return UnreachableBlock;
1629  }
1630 
1631  llvm::BasicBlock *getInvokeDest() {
1632  if (!EHStack.requiresLandingPad()) return nullptr;
1633  return getInvokeDestImpl();
1634  }
1635 
1636  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1637 
1638  const TargetInfo &getTarget() const { return Target; }
1639  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1641  return CGM.getTargetCodeGenInfo();
1642  }
1643 
1644  //===--------------------------------------------------------------------===//
1645  // Cleanups
1646  //===--------------------------------------------------------------------===//
1647 
1648  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1649 
1650  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1651  Address arrayEndPointer,
1652  QualType elementType,
1653  CharUnits elementAlignment,
1654  Destroyer *destroyer);
1655  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1656  llvm::Value *arrayEnd,
1657  QualType elementType,
1658  CharUnits elementAlignment,
1659  Destroyer *destroyer);
1660 
1661  void pushDestroy(QualType::DestructionKind dtorKind,
1662  Address addr, QualType type);
1663  void pushEHDestroy(QualType::DestructionKind dtorKind,
1664  Address addr, QualType type);
1665  void pushDestroy(CleanupKind kind, Address addr, QualType type,
1666  Destroyer *destroyer, bool useEHCleanupForArray);
1667  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1668  QualType type, Destroyer *destroyer,
1669  bool useEHCleanupForArray);
1670  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1671  llvm::Value *CompletePtr,
1672  QualType ElementType);
1673  void pushStackRestore(CleanupKind kind, Address SPMem);
1674  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1675  bool useEHCleanupForArray);
1676  llvm::Function *generateDestroyHelper(Address addr, QualType type,
1677  Destroyer *destroyer,
1678  bool useEHCleanupForArray,
1679  const VarDecl *VD);
1680  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1681  QualType elementType, CharUnits elementAlign,
1682  Destroyer *destroyer,
1683  bool checkZeroLength, bool useEHCleanup);
1684 
1685  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1686 
1687  /// Determines whether an EH cleanup is required to destroy a type
1688  /// with the given destruction kind.
1690  switch (kind) {
1691  case QualType::DK_none:
1692  return false;
1693  case QualType::DK_cxx_destructor:
1694  case QualType::DK_objc_weak_lifetime:
1695  case QualType::DK_nontrivial_c_struct:
1696  return getLangOpts().Exceptions;
1697  case QualType::DK_objc_strong_lifetime:
1698  return getLangOpts().Exceptions &&
1699  CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1700  }
1701  llvm_unreachable("bad destruction kind");
1702  }
1703 
1705  return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1706  }
1707 
1708  //===--------------------------------------------------------------------===//
1709  // Objective-C
1710  //===--------------------------------------------------------------------===//
1711 
1712  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1713 
1714  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1715 
1716  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1717  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1718  const ObjCPropertyImplDecl *PID);
1719  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1720  const ObjCPropertyImplDecl *propImpl,
1721  const ObjCMethodDecl *GetterMothodDecl,
1722  llvm::Constant *AtomicHelperFn);
1723 
1724  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1725  ObjCMethodDecl *MD, bool ctor);
1726 
1727  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1728  /// for the given property.
1729  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1730  const ObjCPropertyImplDecl *PID);
1731  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1732  const ObjCPropertyImplDecl *propImpl,
1733  llvm::Constant *AtomicHelperFn);
1734 
1735  //===--------------------------------------------------------------------===//
1736  // Block Bits
1737  //===--------------------------------------------------------------------===//
1738 
1739  /// Emit block literal.
1740  /// \return an LLVM value which is a pointer to a struct which contains
1741  /// information about the block, including the block invoke function, the
1742  /// captured variables, etc.
1743  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1744  static void destroyBlockInfos(CGBlockInfo *info);
1745 
1746  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1747  const CGBlockInfo &Info,
1748  const DeclMapTy &ldm,
1749  bool IsLambdaConversionToBlock,
1750  bool BuildGlobalBlock);
1751 
1752  /// Check if \p T is a C++ class that has a destructor that can throw.
1753  static bool cxxDestructorCanThrow(QualType T);
1754 
1755  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1756  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1757  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1758  const ObjCPropertyImplDecl *PID);
1759  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1760  const ObjCPropertyImplDecl *PID);
1761  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1762 
1763  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
1764  bool CanThrow);
1765 
1766  class AutoVarEmission;
1767 
1768  void emitByrefStructureInit(const AutoVarEmission &emission);
1769 
1770  /// Enter a cleanup to destroy a __block variable. Note that this
1771  /// cleanup should be a no-op if the variable hasn't left the stack
1772  /// yet; if a cleanup is required for the variable itself, that needs
1773  /// to be done externally.
1774  ///
1775  /// \param Kind Cleanup kind.
1776  ///
1777  /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
1778  /// structure that will be passed to _Block_object_dispose. When
1779  /// \p LoadBlockVarAddr is true, the address of the field of the block
1780  /// structure that holds the address of the __block structure.
1781  ///
1782  /// \param Flags The flag that will be passed to _Block_object_dispose.
1783  ///
1784  /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
1785  /// \p Addr to get the address of the __block structure.
1786  void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
1787  bool LoadBlockVarAddr, bool CanThrow);
1788 
1789  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1790  llvm::Value *ptr);
1791 
1792  Address LoadBlockStruct();
1793  Address GetAddrOfBlockDecl(const VarDecl *var);
1794 
1795  /// BuildBlockByrefAddress - Computes the location of the
1796  /// data in a variable which is declared as __block.
1797  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1798  bool followForward = true);
1799  Address emitBlockByrefAddress(Address baseAddr,
1800  const BlockByrefInfo &info,
1801  bool followForward,
1802  const llvm::Twine &name);
1803 
1804  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1805 
1806  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1807 
1808  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1809  const CGFunctionInfo &FnInfo);
1810 
1811  /// Annotate the function with an attribute that disables TSan checking at
1812  /// runtime.
1813  void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
1814 
1815  /// Emit code for the start of a function.
1816  /// \param Loc The location to be associated with the function.
1817  /// \param StartLoc The location of the function body.
1818  void StartFunction(GlobalDecl GD,
1819  QualType RetTy,
1820  llvm::Function *Fn,
1821  const CGFunctionInfo &FnInfo,
1822  const FunctionArgList &Args,
1824  SourceLocation StartLoc = SourceLocation());
1825 
1826  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1827 
1828  void EmitConstructorBody(FunctionArgList &Args);
1829  void EmitDestructorBody(FunctionArgList &Args);
1830  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1831  void EmitFunctionBody(const Stmt *Body);
1832  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1833 
1834  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1835  CallArgList &CallArgs);
1836  void EmitLambdaBlockInvokeBody();
1837  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1838  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1839  void EmitAsanPrologueOrEpilogue(bool Prologue);
1840 
1841  /// Emit the unified return block, trying to avoid its emission when
1842  /// possible.
1843  /// \return The debug location of the user written return statement if the
1844  /// return block is is avoided.
1845  llvm::DebugLoc EmitReturnBlock();
1846 
1847  /// FinishFunction - Complete IR generation of the current function. It is
1848  /// legal to call this function even if there is no current insertion point.
1849  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1850 
1851  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1852  const CGFunctionInfo &FnInfo, bool IsUnprototyped);
1853 
1854  void EmitCallAndReturnForThunk(llvm::Constant *Callee, const ThunkInfo *Thunk,
1855  bool IsUnprototyped);
1856 
1857  void FinishThunk();
1858 
1859  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1860  void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
1861  llvm::Value *Callee);
1862 
1863  /// Generate a thunk for the given method.
1864  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1865  GlobalDecl GD, const ThunkInfo &Thunk,
1866  bool IsUnprototyped);
1867 
1868  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1869  const CGFunctionInfo &FnInfo,
1870  GlobalDecl GD, const ThunkInfo &Thunk);
1871 
1872  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1873  FunctionArgList &Args);
1874 
1875  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1876 
1877  /// Struct with all information about dynamic [sub]class needed to set vptr.
1878  struct VPtr {
1883  };
1884 
1885  /// Initialize the vtable pointer of the given subobject.
1886  void InitializeVTablePointer(const VPtr &vptr);
1887 
1889 
1890  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1891  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1892 
1893  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1894  CharUnits OffsetFromNearestVBase,
1895  bool BaseIsNonVirtualPrimaryBase,
1896  const CXXRecordDecl *VTableClass,
1897  VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1898 
1899  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1900 
1901  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1902  /// to by This.
1903  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1904  const CXXRecordDecl *VTableClass);
1905 
1914  };
1915 
1916  /// Derived is the presumed address of an object of type T after a
1917  /// cast. If T is a polymorphic class type, emit a check that the virtual
1918  /// table for Derived belongs to a class derived from T.
1919  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1920  bool MayBeNull, CFITypeCheckKind TCK,
1921  SourceLocation Loc);
1922 
1923  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1924  /// If vptr CFI is enabled, emit a check that VTable is valid.
1925  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1926  CFITypeCheckKind TCK, SourceLocation Loc);
1927 
1928  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1929  /// RD using llvm.type.test.
1930  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1931  CFITypeCheckKind TCK, SourceLocation Loc);
1932 
1933  /// If whole-program virtual table optimization is enabled, emit an assumption
1934  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1935  /// enabled, emit a check that VTable is a member of RD's type identifier.
1936  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1937  llvm::Value *VTable, SourceLocation Loc);
1938 
1939  /// Returns whether we should perform a type checked load when loading a
1940  /// virtual function for virtual calls to members of RD. This is generally
1941  /// true when both vcall CFI and whole-program-vtables are enabled.
1942  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1943 
1944  /// Emit a type checked load from the given vtable.
1945  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1946  uint64_t VTableByteOffset);
1947 
1948  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1949  /// given phase of destruction for a destructor. The end result
1950  /// should call destructors on members and base classes in reverse
1951  /// order of their construction.
1952  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1953 
1954  /// ShouldInstrumentFunction - Return true if the current function should be
1955  /// instrumented with __cyg_profile_func_* calls
1956  bool ShouldInstrumentFunction();
1957 
1958  /// ShouldXRayInstrument - Return true if the current function should be
1959  /// instrumented with XRay nop sleds.
1960  bool ShouldXRayInstrumentFunction() const;
1961 
1962  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
1963  /// XRay custom event handling calls.
1964  bool AlwaysEmitXRayCustomEvents() const;
1965 
1966  /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
1967  /// XRay typed event handling calls.
1968  bool AlwaysEmitXRayTypedEvents() const;
1969 
1970  /// Encode an address into a form suitable for use in a function prologue.
1971  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1972  llvm::Constant *Addr);
1973 
1974  /// Decode an address used in a function prologue, encoded by \c
1975  /// EncodeAddrForUseInPrologue.
1976  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1977  llvm::Value *EncodedAddr);
1978 
1979  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1980  /// arguments for the given function. This is also responsible for naming the
1981  /// LLVM function arguments.
1982  void EmitFunctionProlog(const CGFunctionInfo &FI,
1983  llvm::Function *Fn,
1984  const FunctionArgList &Args);
1985 
1986  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1987  /// given temporary.
1988  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1989  SourceLocation EndLoc);
1990 
1991  /// Emit a test that checks if the return value \p RV is nonnull.
1992  void EmitReturnValueCheck(llvm::Value *RV);
1993 
1994  /// EmitStartEHSpec - Emit the start of the exception spec.
1995  void EmitStartEHSpec(const Decl *D);
1996 
1997  /// EmitEndEHSpec - Emit the end of the exception spec.
1998  void EmitEndEHSpec(const Decl *D);
1999 
2000  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2001  llvm::BasicBlock *getTerminateLandingPad();
2002 
2003  /// getTerminateLandingPad - Return a cleanup funclet that just calls
2004  /// terminate.
2005  llvm::BasicBlock *getTerminateFunclet();
2006 
2007  /// getTerminateHandler - Return a handler (not a landing pad, just
2008  /// a catch handler) that just calls terminate. This is used when
2009  /// a terminate scope encloses a try.
2010  llvm::BasicBlock *getTerminateHandler();
2011 
2012  llvm::Type *ConvertTypeForMem(QualType T);
2013  llvm::Type *ConvertType(QualType T);
2014  llvm::Type *ConvertType(const TypeDecl *T) {
2015  return ConvertType(getContext().getTypeDeclType(T));
2016  }
2017 
2018  /// LoadObjCSelf - Load the value of self. This function is only valid while
2019  /// generating code for an Objective-C method.
2020  llvm::Value *LoadObjCSelf();
2021 
2022  /// TypeOfSelfObject - Return type of object that this self represents.
2023  QualType TypeOfSelfObject();
2024 
2025  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2026  static TypeEvaluationKind getEvaluationKind(QualType T);
2027 
2029  return getEvaluationKind(T) == TEK_Scalar;
2030  }
2031 
2033  return getEvaluationKind(T) == TEK_Aggregate;
2034  }
2035 
2036  /// createBasicBlock - Create an LLVM basic block.
2037  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2038  llvm::Function *parent = nullptr,
2039  llvm::BasicBlock *before = nullptr) {
2040  return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2041  }
2042 
2043  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2044  /// label maps to.
2045  JumpDest getJumpDestForLabel(const LabelDecl *S);
2046 
2047  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2048  /// another basic block, simplify it. This assumes that no other code could
2049  /// potentially reference the basic block.
2050  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2051 
2052  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2053  /// adding a fall-through branch from the current insert block if
2054  /// necessary. It is legal to call this function even if there is no current
2055  /// insertion point.
2056  ///
2057  /// IsFinished - If true, indicates that the caller has finished emitting
2058  /// branches to the given block and does not expect to emit code into it. This
2059  /// means the block can be ignored if it is unreachable.
2060  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2061 
2062  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2063  /// near its uses, and leave the insertion point in it.
2064  void EmitBlockAfterUses(llvm::BasicBlock *BB);
2065 
2066  /// EmitBranch - Emit a branch to the specified basic block from the current
2067  /// insert block, taking care to avoid creation of branches from dummy
2068  /// blocks. It is legal to call this function even if there is no current
2069  /// insertion point.
2070  ///
2071  /// This function clears the current insertion point. The caller should follow
2072  /// calls to this function with calls to Emit*Block prior to generation new
2073  /// code.
2074  void EmitBranch(llvm::BasicBlock *Block);
2075 
2076  /// HaveInsertPoint - True if an insertion point is defined. If not, this
2077  /// indicates that the current code being emitted is unreachable.
2078  bool HaveInsertPoint() const {
2079  return Builder.GetInsertBlock() != nullptr;
2080  }
2081 
2082  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2083  /// emitted IR has a place to go. Note that by definition, if this function
2084  /// creates a block then that block is unreachable; callers may do better to
2085  /// detect when no insertion point is defined and simply skip IR generation.
2087  if (!HaveInsertPoint())
2088  EmitBlock(createBasicBlock());
2089  }
2090 
2091  /// ErrorUnsupported - Print out an error that codegen doesn't support the
2092  /// specified stmt yet.
2093  void ErrorUnsupported(const Stmt *S, const char *Type);
2094 
2095  //===--------------------------------------------------------------------===//
2096  // Helpers
2097  //===--------------------------------------------------------------------===//
2098 
2101  return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2102  CGM.getTBAAAccessInfo(T));
2103  }
2104 
2106  TBAAAccessInfo TBAAInfo) {
2107  return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2108  }
2109 
2112  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2113  LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2114  }
2115 
2117  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2118  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2119  BaseInfo, TBAAInfo);
2120  }
2121 
2122  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2123  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2124  CharUnits getNaturalTypeAlignment(QualType T,
2125  LValueBaseInfo *BaseInfo = nullptr,
2126  TBAAAccessInfo *TBAAInfo = nullptr,
2127  bool forPointeeType = false);
2128  CharUnits getNaturalPointeeTypeAlignment(QualType T,
2129  LValueBaseInfo *BaseInfo = nullptr,
2130  TBAAAccessInfo *TBAAInfo = nullptr);
2131 
2132  Address EmitLoadOfReference(LValue RefLVal,
2133  LValueBaseInfo *PointeeBaseInfo = nullptr,
2134  TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2135  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2137  AlignmentSource Source =
2139  LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2140  CGM.getTBAAAccessInfo(RefTy));
2141  return EmitLoadOfReferenceLValue(RefLVal);
2142  }
2143 
2144  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2145  LValueBaseInfo *BaseInfo = nullptr,
2146  TBAAAccessInfo *TBAAInfo = nullptr);
2147  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2148 
2149  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2150  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2151  /// insertion point of the builder. The caller is responsible for setting an
2152  /// appropriate alignment on
2153  /// the alloca.
2154  ///
2155  /// \p ArraySize is the number of array elements to be allocated if it
2156  /// is not nullptr.
2157  ///
2158  /// LangAS::Default is the address space of pointers to local variables and
2159  /// temporaries, as exposed in the source language. In certain
2160  /// configurations, this is not the same as the alloca address space, and a
2161  /// cast is needed to lift the pointer from the alloca AS into
2162  /// LangAS::Default. This can happen when the target uses a restricted
2163  /// address space for the stack but the source language requires
2164  /// LangAS::Default to be a generic address space. The latter condition is
2165  /// common for most programming languages; OpenCL is an exception in that
2166  /// LangAS::Default is the private address space, which naturally maps
2167  /// to the stack.
2168  ///
2169  /// Because the address of a temporary is often exposed to the program in
2170  /// various ways, this function will perform the cast. The original alloca
2171  /// instruction is returned through \p Alloca if it is not nullptr.
2172  ///
2173  /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2174  /// more efficient if the caller knows that the address will not be exposed.
2175  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2176  llvm::Value *ArraySize = nullptr);
2177  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2178  const Twine &Name = "tmp",
2179  llvm::Value *ArraySize = nullptr,
2180  Address *Alloca = nullptr);
2181  Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2182  const Twine &Name = "tmp",
2183  llvm::Value *ArraySize = nullptr);
2184 
2185  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2186  /// default ABI alignment of the given LLVM type.
2187  ///
2188  /// IMPORTANT NOTE: This is *not* generally the right alignment for
2189  /// any given AST type that happens to have been lowered to the
2190  /// given IR type. This should only ever be used for function-local,
2191  /// IR-driven manipulations like saving and restoring a value. Do
2192  /// not hand this address off to arbitrary IRGen routines, and especially
2193  /// do not pass it as an argument to a function that might expect a
2194  /// properly ABI-aligned value.
2195  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2196  const Twine &Name = "tmp");
2197 
2198  /// InitTempAlloca - Provide an initial value for the given alloca which
2199  /// will be observable at all locations in the function.
2200  ///
2201  /// The address should be something that was returned from one of
2202  /// the CreateTempAlloca or CreateMemTemp routines, and the
2203  /// initializer must be valid in the entry block (i.e. it must
2204  /// either be a constant or an argument value).
2205  void InitTempAlloca(Address Alloca, llvm::Value *Value);
2206 
2207  /// CreateIRTemp - Create a temporary IR object of the given type, with
2208  /// appropriate alignment. This routine should only be used when an temporary
2209  /// value needs to be stored into an alloca (for example, to avoid explicit
2210  /// PHI construction), but the type is the IR type, not the type appropriate
2211  /// for storing in memory.
2212  ///
2213  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2214  /// ConvertType instead of ConvertTypeForMem.
2215  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2216 
2217  /// CreateMemTemp - Create a temporary memory object of the given type, with
2218  /// appropriate alignmen and cast it to the default address space. Returns
2219  /// the original alloca instruction by \p Alloca if it is not nullptr.
2220  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2221  Address *Alloca = nullptr);
2222  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2223  Address *Alloca = nullptr);
2224 
2225  /// CreateMemTemp - Create a temporary memory object of the given type, with
2226  /// appropriate alignmen without casting it to the default address space.
2227  Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2228  Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2229  const Twine &Name = "tmp");
2230 
2231  /// CreateAggTemp - Create a temporary memory object for the given
2232  /// aggregate type.
2233  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2234  return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2235  T.getQualifiers(),
2236  AggValueSlot::IsNotDestructed,
2237  AggValueSlot::DoesNotNeedGCBarriers,
2238  AggValueSlot::IsNotAliased,
2239  AggValueSlot::DoesNotOverlap);
2240  }
2241 
2242  /// Emit a cast to void* in the appropriate address space.
2243  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2244 
2245  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2246  /// expression and compare the result against zero, returning an Int1Ty value.
2247  llvm::Value *EvaluateExprAsBool(const Expr *E);
2248 
2249  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2250  void EmitIgnoredExpr(const Expr *E);
2251 
2252  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2253  /// any type. The result is returned as an RValue struct. If this is an
2254  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2255  /// the result should be returned.
2256  ///
2257  /// \param ignoreResult True if the resulting value isn't used.
2258  RValue EmitAnyExpr(const Expr *E,
2259  AggValueSlot aggSlot = AggValueSlot::ignored(),
2260  bool ignoreResult = false);
2261 
2262  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2263  // or the value of the expression, depending on how va_list is defined.
2264  Address EmitVAListRef(const Expr *E);
2265 
2266  /// Emit a "reference" to a __builtin_ms_va_list; this is
2267  /// always the value of the expression, because a __builtin_ms_va_list is a
2268  /// pointer to a char.
2269  Address EmitMSVAListRef(const Expr *E);
2270 
2271  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2272  /// always be accessible even if no aggregate location is provided.
2273  RValue EmitAnyExprToTemp(const Expr *E);
2274 
2275  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2276  /// arbitrary expression into the given memory location.
2277  void EmitAnyExprToMem(const Expr *E, Address Location,
2278  Qualifiers Quals, bool IsInitializer);
2279 
2280  void EmitAnyExprToExn(const Expr *E, Address Addr);
2281 
2282  /// EmitExprAsInit - Emits the code necessary to initialize a
2283  /// location in memory with the given initializer.
2284  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2285  bool capturedByInit);
2286 
2287  /// hasVolatileMember - returns true if aggregate type has a volatile
2288  /// member.
2290  if (const RecordType *RT = T->getAs<RecordType>()) {
2291  const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2292  return RD->hasVolatileMember();
2293  }
2294  return false;
2295  }
2296 
2297  /// Determine whether a return value slot may overlap some other object.
2299  // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2300  // class subobjects. These cases may need to be revisited depending on the
2301  // resolution of the relevant core issue.
2302  return AggValueSlot::DoesNotOverlap;
2303  }
2304 
2305  /// Determine whether a field initialization may overlap some other object.
2307  // FIXME: These cases can result in overlap as a result of P0840R0's
2308  // [[no_unique_address]] attribute. We can still infer NoOverlap in the
2309  // presence of that attribute if the field is within the nvsize of its
2310  // containing class, because non-virtual subobjects are initialized in
2311  // address order.
2312  return AggValueSlot::DoesNotOverlap;
2313  }
2314 
2315  /// Determine whether a base class initialization may overlap some other
2316  /// object.
2317  AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD,
2318  const CXXRecordDecl *BaseRD,
2319  bool IsVirtual);
2320 
2321  /// Emit an aggregate assignment.
2322  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2323  bool IsVolatile = hasVolatileMember(EltTy);
2324  EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2325  }
2326 
2328  AggValueSlot::Overlap_t MayOverlap) {
2329  EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2330  }
2331 
2332  /// EmitAggregateCopy - Emit an aggregate copy.
2333  ///
2334  /// \param isVolatile \c true iff either the source or the destination is
2335  /// volatile.
2336  /// \param MayOverlap Whether the tail padding of the destination might be
2337  /// occupied by some other object. More efficient code can often be
2338  /// generated if not.
2339  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2340  AggValueSlot::Overlap_t MayOverlap,
2341  bool isVolatile = false);
2342 
2343  /// GetAddrOfLocalVar - Return the address of a local variable.
2345  auto it = LocalDeclMap.find(VD);
2346  assert(it != LocalDeclMap.end() &&
2347  "Invalid argument to GetAddrOfLocalVar(), no decl!");
2348  return it->second;
2349  }
2350 
2351  /// Given an opaque value expression, return its LValue mapping if it exists,
2352  /// otherwise create one.
2353  LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2354 
2355  /// Given an opaque value expression, return its RValue mapping if it exists,
2356  /// otherwise create one.
2357  RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2358 
2359  /// Get the index of the current ArrayInitLoopExpr, if any.
2360  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2361 
2362  /// getAccessedFieldNo - Given an encoded value and a result number, return
2363  /// the input field number being accessed.
2364  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2365 
2366  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2367  llvm::BasicBlock *GetIndirectGotoBlock();
2368 
2369  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2370  static bool IsWrappedCXXThis(const Expr *E);
2371 
2372  /// EmitNullInitialization - Generate code to set a value of the given type to
2373  /// null, If the type contains data member pointers, they will be initialized
2374  /// to -1 in accordance with the Itanium C++ ABI.
2375  void EmitNullInitialization(Address DestPtr, QualType Ty);
2376 
2377  /// Emits a call to an LLVM variable-argument intrinsic, either
2378  /// \c llvm.va_start or \c llvm.va_end.
2379  /// \param ArgValue A reference to the \c va_list as emitted by either
2380  /// \c EmitVAListRef or \c EmitMSVAListRef.
2381  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2382  /// calls \c llvm.va_end.
2383  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2384 
2385  /// Generate code to get an argument from the passed in pointer
2386  /// and update it accordingly.
2387  /// \param VE The \c VAArgExpr for which to generate code.
2388  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2389  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2390  /// \returns A pointer to the argument.
2391  // FIXME: We should be able to get rid of this method and use the va_arg
2392  // instruction in LLVM instead once it works well enough.
2393  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2394 
2395  /// emitArrayLength - Compute the length of an array, even if it's a
2396  /// VLA, and drill down to the base element type.
2397  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2398  QualType &baseType,
2399  Address &addr);
2400 
2401  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2402  /// the given variably-modified type and store them in the VLASizeMap.
2403  ///
2404  /// This function can be called with a null (unreachable) insert point.
2405  void EmitVariablyModifiedType(QualType Ty);
2406 
2407  struct VlaSizePair {
2410 
2411  VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2412  };
2413 
2414  /// Return the number of elements for a single dimension
2415  /// for the given array type.
2416  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2417  VlaSizePair getVLAElements1D(QualType vla);
2418 
2419  /// Returns an LLVM value that corresponds to the size,
2420  /// in non-variably-sized elements, of a variable length array type,
2421  /// plus that largest non-variably-sized element type. Assumes that
2422  /// the type has already been emitted with EmitVariablyModifiedType.
2423  VlaSizePair getVLASize(const VariableArrayType *vla);
2424  VlaSizePair getVLASize(QualType vla);
2425 
2426  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2427  /// generating code for an C++ member function.
2429  assert(CXXThisValue && "no 'this' value for this function");
2430  return CXXThisValue;
2431  }
2432  Address LoadCXXThisAddress();
2433 
2434  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2435  /// virtual bases.
2436  // FIXME: Every place that calls LoadCXXVTT is something
2437  // that needs to be abstracted properly.
2439  assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2440  return CXXStructorImplicitParamValue;
2441  }
2442 
2443  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2444  /// complete class to the given direct base.
2445  Address
2446  GetAddressOfDirectBaseInCompleteClass(Address Value,
2447  const CXXRecordDecl *Derived,
2448  const CXXRecordDecl *Base,
2449  bool BaseIsVirtual);
2450 
2451  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2452 
2453  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2454  /// load of 'this' and returns address of the base class.
2455  Address GetAddressOfBaseClass(Address Value,
2456  const CXXRecordDecl *Derived,
2459  bool NullCheckValue, SourceLocation Loc);
2460 
2461  Address GetAddressOfDerivedClass(Address Value,
2462  const CXXRecordDecl *Derived,
2465  bool NullCheckValue);
2466 
2467  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2468  /// base constructor/destructor with virtual bases.
2469  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2470  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2471  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2472  bool Delegating);
2473 
2474  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2475  CXXCtorType CtorType,
2476  const FunctionArgList &Args,
2477  SourceLocation Loc);
2478  // It's important not to confuse this and the previous function. Delegating
2479  // constructors are the C++0x feature. The constructor delegate optimization
2480  // is used to reduce duplication in the base and complete consturctors where
2481  // they are substantially the same.
2482  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2483  const FunctionArgList &Args);
2484 
2485  /// Emit a call to an inheriting constructor (that is, one that invokes a
2486  /// constructor inherited from a base class) by inlining its definition. This
2487  /// is necessary if the ABI does not support forwarding the arguments to the
2488  /// base class constructor (because they're variadic or similar).
2489  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2490  CXXCtorType CtorType,
2491  bool ForVirtualBase,
2492  bool Delegating,
2493  CallArgList &Args);
2494 
2495  /// Emit a call to a constructor inherited from a base class, passing the
2496  /// current constructor's arguments along unmodified (without even making
2497  /// a copy).
2498  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2499  bool ForVirtualBase, Address This,
2500  bool InheritedFromVBase,
2501  const CXXInheritedCtorInitExpr *E);
2502 
2503  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2504  bool ForVirtualBase, bool Delegating,
2505  Address This, const CXXConstructExpr *E,
2506  AggValueSlot::Overlap_t Overlap,
2507  bool NewPointerIsChecked);
2508 
2509  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2510  bool ForVirtualBase, bool Delegating,
2511  Address This, CallArgList &Args,
2512  AggValueSlot::Overlap_t Overlap,
2513  SourceLocation Loc,
2514  bool NewPointerIsChecked);
2515 
2516  /// Emit assumption load for all bases. Requires to be be called only on
2517  /// most-derived class and not under construction of the object.
2518  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2519 
2520  /// Emit assumption that vptr load == global vtable.
2521  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2522 
2523  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2524  Address This, Address Src,
2525  const CXXConstructExpr *E);
2526 
2527  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2528  const ArrayType *ArrayTy,
2529  Address ArrayPtr,
2530  const CXXConstructExpr *E,
2531  bool NewPointerIsChecked,
2532  bool ZeroInitialization = false);
2533 
2534  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2535  llvm::Value *NumElements,
2536  Address ArrayPtr,
2537  const CXXConstructExpr *E,
2538  bool NewPointerIsChecked,
2539  bool ZeroInitialization = false);
2540 
2541  static Destroyer destroyCXXObject;
2542 
2543  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2544  bool ForVirtualBase, bool Delegating,
2545  Address This);
2546 
2547  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2548  llvm::Type *ElementTy, Address NewPtr,
2549  llvm::Value *NumElements,
2550  llvm::Value *AllocSizeWithoutCookie);
2551 
2552  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2553  Address Ptr);
2554 
2555  llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2556  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2557 
2558  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2559  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2560 
2561  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2562  QualType DeleteTy, llvm::Value *NumElements = nullptr,
2563  CharUnits CookieSize = CharUnits());
2564 
2565  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2566  const CallExpr *TheCallExpr, bool IsDelete);
2567 
2568  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2569  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2570  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2571 
2572  /// Situations in which we might emit a check for the suitability of a
2573  /// pointer or glvalue.
2575  /// Checking the operand of a load. Must be suitably sized and aligned.
2577  /// Checking the destination of a store. Must be suitably sized and aligned.
2579  /// Checking the bound value in a reference binding. Must be suitably sized
2580  /// and aligned, but is not required to refer to an object (until the
2581  /// reference is used), per core issue 453.
2583  /// Checking the object expression in a non-static data member access. Must
2584  /// be an object within its lifetime.
2586  /// Checking the 'this' pointer for a call to a non-static member function.
2587  /// Must be an object within its lifetime.
2589  /// Checking the 'this' pointer for a constructor call.
2591  /// Checking the operand of a static_cast to a derived pointer type. Must be
2592  /// null or an object within its lifetime.
2594  /// Checking the operand of a static_cast to a derived reference type. Must
2595  /// be an object within its lifetime.
2597  /// Checking the operand of a cast to a base object. Must be suitably sized
2598  /// and aligned.
2600  /// Checking the operand of a cast to a virtual base object. Must be an
2601  /// object within its lifetime.
2603  /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2605  /// Checking the operand of a dynamic_cast or a typeid expression. Must be
2606  /// null or an object within its lifetime.
2607  TCK_DynamicOperation
2608  };
2609 
2610  /// Determine whether the pointer type check \p TCK permits null pointers.
2611  static bool isNullPointerAllowed(TypeCheckKind TCK);
2612 
2613  /// Determine whether the pointer type check \p TCK requires a vptr check.
2614  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2615 
2616  /// Whether any type-checking sanitizers are enabled. If \c false,
2617  /// calls to EmitTypeCheck can be skipped.
2618  bool sanitizePerformTypeCheck() const;
2619 
2620  /// Emit a check that \p V is the address of storage of the
2621  /// appropriate size and alignment for an object of type \p Type.
2622  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2623  QualType Type, CharUnits Alignment = CharUnits::Zero(),
2624  SanitizerSet SkippedChecks = SanitizerSet());
2625 
2626  /// Emit a check that \p Base points into an array object, which
2627  /// we can access at index \p Index. \p Accessed should be \c false if we
2628  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2629  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2630  QualType IndexType, bool Accessed);
2631 
2632  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2633  bool isInc, bool isPre);
2634  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2635  bool isInc, bool isPre);
2636 
2637  /// Converts Location to a DebugLoc, if debug information is enabled.
2638  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2639 
2640 
2641  //===--------------------------------------------------------------------===//
2642  // Declaration Emission
2643  //===--------------------------------------------------------------------===//
2644 
2645  /// EmitDecl - Emit a declaration.
2646  ///
2647  /// This function can be called with a null (unreachable) insert point.
2648  void EmitDecl(const Decl &D);
2649 
2650  /// EmitVarDecl - Emit a local variable declaration.
2651  ///
2652  /// This function can be called with a null (unreachable) insert point.
2653  void EmitVarDecl(const VarDecl &D);
2654 
2655  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2656  bool capturedByInit);
2657 
2658  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2659  llvm::Value *Address);
2660 
2661  /// Determine whether the given initializer is trivial in the sense
2662  /// that it requires no code to be generated.
2663  bool isTrivialInitializer(const Expr *Init);
2664 
2665  /// EmitAutoVarDecl - Emit an auto variable declaration.
2666  ///
2667  /// This function can be called with a null (unreachable) insert point.
2668  void EmitAutoVarDecl(const VarDecl &D);
2669 
2671  friend class CodeGenFunction;
2672 
2673  const VarDecl *Variable;
2674 
2675  /// The address of the alloca for languages with explicit address space
2676  /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2677  /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2678  /// as a global constant.
2679  Address Addr;
2680 
2681  llvm::Value *NRVOFlag;
2682 
2683  /// True if the variable is a __block variable that is captured by an
2684  /// escaping block.
2685  bool IsEscapingByRef;
2686 
2687  /// True if the variable is of aggregate type and has a constant
2688  /// initializer.
2689  bool IsConstantAggregate;
2690 
2691  /// Non-null if we should use lifetime annotations.
2692  llvm::Value *SizeForLifetimeMarkers;
2693 
2694  /// Address with original alloca instruction. Invalid if the variable was
2695  /// emitted as a global constant.
2696  Address AllocaAddr;
2697 
2698  struct Invalid {};
2699  AutoVarEmission(Invalid)
2700  : Variable(nullptr), Addr(Address::invalid()),
2701  AllocaAddr(Address::invalid()) {}
2702 
2703  AutoVarEmission(const VarDecl &variable)
2704  : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2705  IsEscapingByRef(false), IsConstantAggregate(false),
2706  SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2707 
2708  bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2709 
2710  public:
2711  static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2712 
2713  bool useLifetimeMarkers() const {
2714  return SizeForLifetimeMarkers != nullptr;
2715  }
2717  assert(useLifetimeMarkers());
2718  return SizeForLifetimeMarkers;
2719  }
2720 
2721  /// Returns the raw, allocated address, which is not necessarily
2722  /// the address of the object itself. It is casted to default
2723  /// address space for address space agnostic languages.
2725  return Addr;
2726  }
2727 
2728  /// Returns the address for the original alloca instruction.
2729  Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2730 
2731  /// Returns the address of the object within this declaration.
2732  /// Note that this does not chase the forwarding pointer for
2733  /// __block decls.
2734  Address getObjectAddress(CodeGenFunction &CGF) const {
2735  if (!IsEscapingByRef) return Addr;
2736 
2737  return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2738  }
2739  };
2740  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2741  void EmitAutoVarInit(const AutoVarEmission &emission);
2742  void EmitAutoVarCleanups(const AutoVarEmission &emission);
2743  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2744  QualType::DestructionKind dtorKind);
2745 
2746  /// Emits the alloca and debug information for the size expressions for each
2747  /// dimension of an array. It registers the association of its (1-dimensional)
2748  /// QualTypes and size expression's debug node, so that CGDebugInfo can
2749  /// reference this node when creating the DISubrange object to describe the
2750  /// array types.
2751  void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2752  const VarDecl &D,
2753  bool EmitDebugInfo);
2754 
2755  void EmitStaticVarDecl(const VarDecl &D,
2756  llvm::GlobalValue::LinkageTypes Linkage);
2757 
2758  class ParamValue {
2759  llvm::Value *Value;
2760  unsigned Alignment;
2761  ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2762  public:
2764  return ParamValue(value, 0);
2765  }
2767  assert(!addr.getAlignment().isZero());
2768  return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2769  }
2770 
2771  bool isIndirect() const { return Alignment != 0; }
2772  llvm::Value *getAnyValue() const { return Value; }
2773 
2775  assert(!isIndirect());
2776  return Value;
2777  }
2778 
2780  assert(isIndirect());
2781  return Address(Value, CharUnits::fromQuantity(Alignment));
2782  }
2783  };
2784 
2785  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2786  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2787 
2788  /// protectFromPeepholes - Protect a value that we're intending to
2789  /// store to the side, but which will probably be used later, from
2790  /// aggressive peepholing optimizations that might delete it.
2791  ///
2792  /// Pass the result to unprotectFromPeepholes to declare that
2793  /// protection is no longer required.
2794  ///
2795  /// There's no particular reason why this shouldn't apply to
2796  /// l-values, it's just that no existing peepholes work on pointers.
2797  PeepholeProtection protectFromPeepholes(RValue rvalue);
2798  void unprotectFromPeepholes(PeepholeProtection protection);
2799 
2800  void EmitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
2801  SourceLocation Loc,
2802  SourceLocation AssumptionLoc,
2803  llvm::Value *Alignment,
2804  llvm::Value *OffsetValue,
2805  llvm::Value *TheCheck,
2806  llvm::Instruction *Assumption);
2807 
2808  void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
2809  SourceLocation Loc, SourceLocation AssumptionLoc,
2810  llvm::Value *Alignment,
2811  llvm::Value *OffsetValue = nullptr);
2812 
2813  void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
2814  SourceLocation Loc, SourceLocation AssumptionLoc,
2815  unsigned Alignment,
2816  llvm::Value *OffsetValue = nullptr);
2817 
2818  void EmitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
2819  SourceLocation AssumptionLoc, unsigned Alignment,
2820  llvm::Value *OffsetValue = nullptr);
2821 
2822  //===--------------------------------------------------------------------===//
2823  // Statement Emission
2824  //===--------------------------------------------------------------------===//
2825 
2826  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2827  void EmitStopPoint(const Stmt *S);
2828 
2829  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2830  /// this function even if there is no current insertion point.
2831  ///
2832  /// This function may clear the current insertion point; callers should use
2833  /// EnsureInsertPoint if they wish to subsequently generate code without first
2834  /// calling EmitBlock, EmitBranch, or EmitStmt.
2835  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2836 
2837  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2838  /// necessarily require an insertion point or debug information; typically
2839  /// because the statement amounts to a jump or a container of other
2840  /// statements.
2841  ///
2842  /// \return True if the statement was handled.
2843  bool EmitSimpleStmt(const Stmt *S);
2844 
2845  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2846  AggValueSlot AVS = AggValueSlot::ignored());
2847  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2848  bool GetLast = false,
2849  AggValueSlot AVS =
2850  AggValueSlot::ignored());
2851 
2852  /// EmitLabel - Emit the block for the given label. It is legal to call this
2853  /// function even if there is no current insertion point.
2854  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2855 
2856  void EmitLabelStmt(const LabelStmt &S);
2857  void EmitAttributedStmt(const AttributedStmt &S);
2858  void EmitGotoStmt(const GotoStmt &S);
2859  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2860  void EmitIfStmt(const IfStmt &S);
2861 
2862  void EmitWhileStmt(const WhileStmt &S,
2863  ArrayRef<const Attr *> Attrs = None);
2864  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2865  void EmitForStmt(const ForStmt &S,
2866  ArrayRef<const Attr *> Attrs = None);
2867  void EmitReturnStmt(const ReturnStmt &S);
2868  void EmitDeclStmt(const DeclStmt &S);
2869  void EmitBreakStmt(const BreakStmt &S);
2870  void EmitContinueStmt(const ContinueStmt &S);
2871  void EmitSwitchStmt(const SwitchStmt &S);
2872  void EmitDefaultStmt(const DefaultStmt &S);
2873  void EmitCaseStmt(const CaseStmt &S);
2874  void EmitCaseStmtRange(const CaseStmt &S);
2875  void EmitAsmStmt(const AsmStmt &S);
2876 
2877  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2878  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2879  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2880  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2881  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2882 
2883  void EmitCoroutineBody(const CoroutineBodyStmt &S);
2884  void EmitCoreturnStmt(const CoreturnStmt &S);
2885  RValue EmitCoawaitExpr(const CoawaitExpr &E,
2886  AggValueSlot aggSlot = AggValueSlot::ignored(),
2887  bool ignoreResult = false);
2888  LValue EmitCoawaitLValue(const CoawaitExpr *E);
2889  RValue EmitCoyieldExpr(const CoyieldExpr &E,
2890  AggValueSlot aggSlot = AggValueSlot::ignored(),
2891  bool ignoreResult = false);
2892  LValue EmitCoyieldLValue(const CoyieldExpr *E);
2893  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2894 
2895  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2896  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2897 
2898  void EmitCXXTryStmt(const CXXTryStmt &S);
2899  void EmitSEHTryStmt(const SEHTryStmt &S);
2900  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2901  void EnterSEHTryStmt(const SEHTryStmt &S);
2902  void ExitSEHTryStmt(const SEHTryStmt &S);
2903 
2904  void pushSEHCleanup(CleanupKind kind,
2905  llvm::Function *FinallyFunc);
2906  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2907  const Stmt *OutlinedStmt);
2908 
2909  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2910  const SEHExceptStmt &Except);
2911 
2912  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2913  const SEHFinallyStmt &Finally);
2914 
2915  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2916  llvm::Value *ParentFP,
2917  llvm::Value *EntryEBP);
2918  llvm::Value *EmitSEHExceptionCode();
2919  llvm::Value *EmitSEHExceptionInfo();
2920  llvm::Value *EmitSEHAbnormalTermination();
2921 
2922  /// Emit simple code for OpenMP directives in Simd-only mode.
2923  void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
2924 
2925  /// Scan the outlined statement for captures from the parent function. For
2926  /// each capture, mark the capture as escaped and emit a call to
2927  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2928  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2929  bool IsFilter);
2930 
2931  /// Recovers the address of a local in a parent function. ParentVar is the
2932  /// address of the variable used in the immediate parent function. It can
2933  /// either be an alloca or a call to llvm.localrecover if there are nested
2934  /// outlined functions. ParentFP is the frame pointer of the outermost parent
2935  /// frame.
2936  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2937  Address ParentVar,
2938  llvm::Value *ParentFP);
2939 
2940  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2941  ArrayRef<const Attr *> Attrs = None);
2942 
2943  /// Controls insertion of cancellation exit blocks in worksharing constructs.
2945  CodeGenFunction &CGF;
2946 
2947  public:
2948  OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
2949  bool HasCancel)
2950  : CGF(CGF) {
2951  CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2952  }
2953  ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2954  };
2955 
2956  /// Returns calculated size of the specified type.
2957  llvm::Value *getTypeSize(QualType Ty);
2958  LValue InitCapturedStruct(const CapturedStmt &S);
2959  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2960  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2961  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2962  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2963  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2964  SmallVectorImpl<llvm::Value *> &CapturedVars);
2965  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2966  SourceLocation Loc);
2967  /// Perform element by element copying of arrays with type \a
2968  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2969  /// generated by \a CopyGen.
2970  ///
2971  /// \param DestAddr Address of the destination array.
2972  /// \param SrcAddr Address of the source array.
2973  /// \param OriginalType Type of destination and source arrays.
2974  /// \param CopyGen Copying procedure that copies value of single array element
2975  /// to another single array element.
2976  void EmitOMPAggregateAssign(
2977  Address DestAddr, Address SrcAddr, QualType OriginalType,
2978  const llvm::function_ref<void(Address, Address)> CopyGen);
2979  /// Emit proper copying of data from one variable to another.
2980  ///
2981  /// \param OriginalType Original type of the copied variables.
2982  /// \param DestAddr Destination address.
2983  /// \param SrcAddr Source address.
2984  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2985  /// type of the base array element).
2986  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2987  /// the base array element).
2988  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2989  /// DestVD.
2990  void EmitOMPCopy(QualType OriginalType,
2991  Address DestAddr, Address SrcAddr,
2992  const VarDecl *DestVD, const VarDecl *SrcVD,
2993  const Expr *Copy);
2994  /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2995  /// \a X = \a E \a BO \a E.
2996  ///
2997  /// \param X Value to be updated.
2998  /// \param E Update value.
2999  /// \param BO Binary operation for update operation.
3000  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3001  /// expression, false otherwise.
3002  /// \param AO Atomic ordering of the generated atomic instructions.
3003  /// \param CommonGen Code generator for complex expressions that cannot be
3004  /// expressed through atomicrmw instruction.
3005  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3006  /// generated, <false, RValue::get(nullptr)> otherwise.
3007  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3008  LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3009  llvm::AtomicOrdering AO, SourceLocation Loc,
3010  const llvm::function_ref<RValue(RValue)> CommonGen);
3011  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3012  OMPPrivateScope &PrivateScope);
3013  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3014  OMPPrivateScope &PrivateScope);
3015  void EmitOMPUseDevicePtrClause(
3016  const OMPClause &C, OMPPrivateScope &PrivateScope,
3017  const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3018  /// Emit code for copyin clause in \a D directive. The next code is
3019  /// generated at the start of outlined functions for directives:
3020  /// \code
3021  /// threadprivate_var1 = master_threadprivate_var1;
3022  /// operator=(threadprivate_var2, master_threadprivate_var2);
3023  /// ...
3024  /// __kmpc_barrier(&loc, global_tid);
3025  /// \endcode
3026  ///
3027  /// \param D OpenMP directive possibly with 'copyin' clause(s).
3028  /// \returns true if at least one copyin variable is found, false otherwise.
3029  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3030  /// Emit initial code for lastprivate variables. If some variable is
3031  /// not also firstprivate, then the default initialization is used. Otherwise
3032  /// initialization of this variable is performed by EmitOMPFirstprivateClause
3033  /// method.
3034  ///
3035  /// \param D Directive that may have 'lastprivate' directives.
3036  /// \param PrivateScope Private scope for capturing lastprivate variables for
3037  /// proper codegen in internal captured statement.
3038  ///
3039  /// \returns true if there is at least one lastprivate variable, false
3040  /// otherwise.
3041  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3042  OMPPrivateScope &PrivateScope);
3043  /// Emit final copying of lastprivate values to original variables at
3044  /// the end of the worksharing or simd directive.
3045  ///
3046  /// \param D Directive that has at least one 'lastprivate' directives.
3047  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3048  /// it is the last iteration of the loop code in associated directive, or to
3049  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3050  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3051  bool NoFinals,
3052  llvm::Value *IsLastIterCond = nullptr);
3053  /// Emit initial code for linear clauses.
3054  void EmitOMPLinearClause(const OMPLoopDirective &D,
3055  CodeGenFunction::OMPPrivateScope &PrivateScope);
3056  /// Emit final code for linear clauses.
3057  /// \param CondGen Optional conditional code for final part of codegen for
3058  /// linear clause.
3059  void EmitOMPLinearClauseFinal(
3060  const OMPLoopDirective &D,
3061  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3062  /// Emit initial code for reduction variables. Creates reduction copies
3063  /// and initializes them with the values according to OpenMP standard.
3064  ///
3065  /// \param D Directive (possibly) with the 'reduction' clause.
3066  /// \param PrivateScope Private scope for capturing reduction variables for
3067  /// proper codegen in internal captured statement.
3068  ///
3069  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3070  OMPPrivateScope &PrivateScope);
3071  /// Emit final update of reduction values to original variables at
3072  /// the end of the directive.
3073  ///
3074  /// \param D Directive that has at least one 'reduction' directives.
3075  /// \param ReductionKind The kind of reduction to perform.
3076  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3077  const OpenMPDirectiveKind ReductionKind);
3078  /// Emit initial code for linear variables. Creates private copies
3079  /// and initializes them with the values according to OpenMP standard.
3080  ///
3081  /// \param D Directive (possibly) with the 'linear' clause.
3082  /// \return true if at least one linear variable is found that should be
3083  /// initialized with the value of the original variable, false otherwise.
3084  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3085 
3086  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3087  llvm::Value * /*OutlinedFn*/,
3088  const OMPTaskDataTy & /*Data*/)>
3090  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3091  const OpenMPDirectiveKind CapturedRegion,
3092  const RegionCodeGenTy &BodyGen,
3093  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3095  Address BasePointersArray = Address::invalid();
3096  Address PointersArray = Address::invalid();
3097  Address SizesArray = Address::invalid();
3098  unsigned NumberOfTargetItems = 0;
3099  explicit OMPTargetDataInfo() = default;
3100  OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3101  Address SizesArray, unsigned NumberOfTargetItems)
3102  : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3103  SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
3104  };
3105  void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3106  const RegionCodeGenTy &BodyGen,
3107  OMPTargetDataInfo &InputInfo);
3108 
3109  void EmitOMPParallelDirective(const OMPParallelDirective &S);
3110  void EmitOMPSimdDirective(const OMPSimdDirective &S);
3111  void EmitOMPForDirective(const OMPForDirective &S);
3112  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3113  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3114  void EmitOMPSectionDirective(const OMPSectionDirective &S);
3115  void EmitOMPSingleDirective(const OMPSingleDirective &S);
3116  void EmitOMPMasterDirective(const OMPMasterDirective &S);
3117  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3118  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3119  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3120  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3121  void EmitOMPTaskDirective(const OMPTaskDirective &S);
3122  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3123  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3124  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3125  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3126  void EmitOMPFlushDirective(const OMPFlushDirective &S);
3127  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3128  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3129  void EmitOMPTargetDirective(const OMPTargetDirective &S);
3130  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3131  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3132  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3133  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3134  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3135  void
3136  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3137  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3138  void
3139  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3140  void EmitOMPCancelDirective(const OMPCancelDirective &S);
3141  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3142  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3143  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3144  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3145  void EmitOMPDistributeParallelForDirective(
3147  void EmitOMPDistributeParallelForSimdDirective(
3149  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3150  void EmitOMPTargetParallelForSimdDirective(
3152  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3153  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3154  void
3155  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3156  void EmitOMPTeamsDistributeParallelForSimdDirective(
3158  void EmitOMPTeamsDistributeParallelForDirective(
3160  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3161  void EmitOMPTargetTeamsDistributeDirective(
3163  void EmitOMPTargetTeamsDistributeParallelForDirective(
3165  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3167  void EmitOMPTargetTeamsDistributeSimdDirective(
3169 
3170  /// Emit device code for the target directive.
3171  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3172  StringRef ParentName,
3173  const OMPTargetDirective &S);
3174  static void
3175  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3176  const OMPTargetParallelDirective &S);
3177  /// Emit device code for the target parallel for directive.
3178  static void EmitOMPTargetParallelForDeviceFunction(
3179  CodeGenModule &CGM, StringRef ParentName,
3181  /// Emit device code for the target parallel for simd directive.
3182  static void EmitOMPTargetParallelForSimdDeviceFunction(
3183  CodeGenModule &CGM, StringRef ParentName,
3185  /// Emit device code for the target teams directive.
3186  static void
3187  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3188  const OMPTargetTeamsDirective &S);
3189  /// Emit device code for the target teams distribute directive.
3190  static void EmitOMPTargetTeamsDistributeDeviceFunction(
3191  CodeGenModule &CGM, StringRef ParentName,
3193  /// Emit device code for the target teams distribute simd directive.
3194  static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3195  CodeGenModule &CGM, StringRef ParentName,
3197  /// Emit device code for the target simd directive.
3198  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3199  StringRef ParentName,
3200  const OMPTargetSimdDirective &S);
3201  /// Emit device code for the target teams distribute parallel for simd
3202  /// directive.
3203  static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3204  CodeGenModule &CGM, StringRef ParentName,
3206 
3207  static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3208  CodeGenModule &CGM, StringRef ParentName,
3210  /// Emit inner loop of the worksharing/simd construct.
3211  ///
3212  /// \param S Directive, for which the inner loop must be emitted.
3213  /// \param RequiresCleanup true, if directive has some associated private
3214  /// variables.
3215  /// \param LoopCond Bollean condition for loop continuation.
3216  /// \param IncExpr Increment expression for loop control variable.
3217  /// \param BodyGen Generator for the inner body of the inner loop.
3218  /// \param PostIncGen Genrator for post-increment code (required for ordered
3219  /// loop directvies).
3220  void EmitOMPInnerLoop(
3221  const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
3222  const Expr *IncExpr,
3223  const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3224  const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3225 
3226  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3227  /// Emit initial code for loop counters of loop-based directives.
3228  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3229  OMPPrivateScope &LoopScope);
3230 
3231  /// Helper for the OpenMP loop directives.
3232  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3233 
3234  /// Emit code for the worksharing loop-based directive.
3235  /// \return true, if this construct has any lastprivate clause, false -
3236  /// otherwise.
3237  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3238  const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3239  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3240 
3241  /// Emit code for the distribute loop-based directive.
3242  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3243  const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3244 
3245  /// Helpers for the OpenMP loop directives.
3246  void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3247  void EmitOMPSimdFinal(
3248  const OMPLoopDirective &D,
3249  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3250 
3251  /// Emits the lvalue for the expression with possibly captured variable.
3252  LValue EmitOMPSharedLValue(const Expr *E);
3253 
3254 private:
3255  /// Helpers for blocks.
3256  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3257 
3258  /// struct with the values to be passed to the OpenMP loop-related functions
3259  struct OMPLoopArguments {
3260  /// loop lower bound
3261  Address LB = Address::invalid();
3262  /// loop upper bound
3263  Address UB = Address::invalid();
3264  /// loop stride
3265  Address ST = Address::invalid();
3266  /// isLastIteration argument for runtime functions
3267  Address IL = Address::invalid();
3268  /// Chunk value generated by sema
3269  llvm::Value *Chunk = nullptr;
3270  /// EnsureUpperBound
3271  Expr *EUB = nullptr;
3272  /// IncrementExpression
3273  Expr *IncExpr = nullptr;
3274  /// Loop initialization
3275  Expr *Init = nullptr;
3276  /// Loop exit condition
3277  Expr *Cond = nullptr;
3278  /// Update of LB after a whole chunk has been executed
3279  Expr *NextLB = nullptr;
3280  /// Update of UB after a whole chunk has been executed
3281  Expr *NextUB = nullptr;
3282  OMPLoopArguments() = default;
3283  OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3284  llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3285  Expr *IncExpr = nullptr, Expr *Init = nullptr,
3286  Expr *Cond = nullptr, Expr *NextLB = nullptr,
3287  Expr *NextUB = nullptr)
3288  : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3289  IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3290  NextUB(NextUB) {}
3291  };
3292  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3293  const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3294  const OMPLoopArguments &LoopArgs,
3295  const CodeGenLoopTy &CodeGenLoop,
3296  const CodeGenOrderedTy &CodeGenOrdered);
3297  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3298  bool IsMonotonic, const OMPLoopDirective &S,
3299  OMPPrivateScope &LoopScope, bool Ordered,
3300  const OMPLoopArguments &LoopArgs,
3301  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3302  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3303  const OMPLoopDirective &S,
3304  OMPPrivateScope &LoopScope,
3305  const OMPLoopArguments &LoopArgs,
3306  const CodeGenLoopTy &CodeGenLoopContent);
3307  /// Emit code for sections directive.
3308  void EmitSections(const OMPExecutableDirective &S);
3309 
3310 public:
3311 
3312  //===--------------------------------------------------------------------===//
3313  // LValue Expression Emission
3314  //===--------------------------------------------------------------------===//
3315 
3316  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3317  RValue GetUndefRValue(QualType Ty);
3318 
3319  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3320  /// and issue an ErrorUnsupported style diagnostic (using the
3321  /// provided Name).
3322  RValue EmitUnsupportedRValue(const Expr *E,
3323  const char *Name);
3324 
3325  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3326  /// an ErrorUnsupported style diagnostic (using the provided Name).
3327  LValue EmitUnsupportedLValue(const Expr *E,
3328  const char *Name);
3329 
3330  /// EmitLValue - Emit code to compute a designator that specifies the location
3331  /// of the expression.
3332  ///
3333  /// This can return one of two things: a simple address or a bitfield
3334  /// reference. In either case, the LLVM Value* in the LValue structure is
3335  /// guaranteed to be an LLVM pointer type.
3336  ///
3337  /// If this returns a bitfield reference, nothing about the pointee type of
3338  /// the LLVM value is known: For example, it may not be a pointer to an
3339  /// integer.
3340  ///
3341  /// If this returns a normal address, and if the lvalue's C type is fixed
3342  /// size, this method guarantees that the returned pointer type will point to
3343  /// an LLVM type of the same size of the lvalue's type. If the lvalue has a
3344  /// variable length type, this is not possible.
3345  ///
3346  LValue EmitLValue(const Expr *E);
3347 
3348  /// Same as EmitLValue but additionally we generate checking code to
3349  /// guard against undefined behavior. This is only suitable when we know
3350  /// that the address will be used to access the object.
3351  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3352 
3353  RValue convertTempToRValue(Address addr, QualType type,
3354  SourceLocation Loc);
3355 
3356  void EmitAtomicInit(Expr *E, LValue lvalue);
3357 
3358  bool LValueIsSuitableForInlineAtomic(LValue Src);
3359 
3360  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3361  AggValueSlot Slot = AggValueSlot::ignored());
3362 
3363  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3364  llvm::AtomicOrdering AO, bool IsVolatile = false,
3365  AggValueSlot slot = AggValueSlot::ignored());
3366 
3367  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3368 
3369  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3370  bool IsVolatile, bool isInit);
3371 
3372  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3373  LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3374  llvm::AtomicOrdering Success =
3375  llvm::AtomicOrdering::SequentiallyConsistent,
3376  llvm::AtomicOrdering Failure =
3377  llvm::AtomicOrdering::SequentiallyConsistent,
3378  bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3379 
3380  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3381  const llvm::function_ref<RValue(RValue)> &UpdateOp,
3382  bool IsVolatile);
3383 
3384  /// EmitToMemory - Change a scalar value from its value
3385  /// representation to its in-memory representation.
3386  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3387 
3388  /// EmitFromMemory - Change a scalar value from its memory
3389  /// representation to its value representation.
3390  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3391 
3392  /// Check if the scalar \p Value is within the valid range for the given
3393  /// type \p Ty.
3394  ///
3395  /// Returns true if a check is needed (even if the range is unknown).
3396  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3397  SourceLocation Loc);
3398 
3399  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3400  /// care to appropriately convert from the memory representation to
3401  /// the LLVM value representation.
3402  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3403  SourceLocation Loc,
3405  bool isNontemporal = false) {
3406  return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3407  CGM.getTBAAAccessInfo(Ty), isNontemporal);
3408  }
3409 
3410  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3411  SourceLocation Loc, LValueBaseInfo BaseInfo,
3412  TBAAAccessInfo TBAAInfo,
3413  bool isNontemporal = false);
3414 
3415  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3416  /// care to appropriately convert from the memory representation to
3417  /// the LLVM value representation. The l-value must be a simple
3418  /// l-value.
3419  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3420 
3421  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3422  /// care to appropriately convert from the memory representation to
3423  /// the LLVM value representation.
3425  bool Volatile, QualType Ty,
3427  bool isInit = false, bool isNontemporal = false) {
3428  EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3429  CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3430  }
3431 
3432  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3433  bool Volatile, QualType Ty,
3434  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3435  bool isInit = false, bool isNontemporal = false);
3436 
3437  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3438  /// care to appropriately convert from the memory representation to
3439  /// the LLVM value representation. The l-value must be a simple
3440  /// l-value. The isInit flag indicates whether this is an initialization.
3441  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3442  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3443 
3444  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3445  /// this method emits the address of the lvalue, then loads the result as an
3446  /// rvalue, returning the rvalue.
3447  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3448  RValue EmitLoadOfExtVectorElementLValue(LValue V);
3449  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3450  RValue EmitLoadOfGlobalRegLValue(LValue LV);
3451 
3452  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3453  /// lvalue, where both are guaranteed to the have the same type, and that type
3454  /// is 'Ty'.
3455  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3456  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3457  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3458 
3459  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3460  /// as EmitStoreThroughLValue.
3461  ///
3462  /// \param Result [out] - If non-null, this will be set to a Value* for the
3463  /// bit-field contents after the store, appropriate for use as the result of
3464  /// an assignment to the bit-field.
3465  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3466  llvm::Value **Result=nullptr);
3467 
3468  /// Emit an l-value for an assignment (simple or compound) of complex type.
3469  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3470  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3471  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3472  llvm::Value *&Result);
3473 
3474  // Note: only available for agg return types
3475  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3476  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3477  // Note: only available for agg return types
3478  LValue EmitCallExprLValue(const CallExpr *E);
3479  // Note: only available for agg return types
3480  LValue EmitVAArgExprLValue(const VAArgExpr *E);
3481  LValue EmitDeclRefLValue(const DeclRefExpr *E);
3482  LValue EmitStringLiteralLValue(const StringLiteral *E);
3483  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3484  LValue EmitPredefinedLValue(const PredefinedExpr *E);
3485  LValue EmitUnaryOpLValue(const UnaryOperator *E);
3486  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3487  bool Accessed = false);
3488  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3489  bool IsLowerBound = true);
3490  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3491  LValue EmitMemberExpr(const MemberExpr *E);
3492  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3493  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3494  LValue EmitInitListLValue(const InitListExpr *E);
3495  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3496  LValue EmitCastLValue(const CastExpr *E);
3497  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3498  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3499 
3500  Address EmitExtVectorElementLValue(LValue V);
3501 
3502  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3503 
3504  Address EmitArrayToPointerDecay(const Expr *Array,
3505  LValueBaseInfo *BaseInfo = nullptr,
3506  TBAAAccessInfo *TBAAInfo = nullptr);
3507 
3509  llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3510  ConstantEmission(llvm::Constant *C, bool isReference)
3511  : ValueAndIsReference(C, isReference) {}
3512  public:
3514  static ConstantEmission forReference(llvm::Constant *C) {
3515  return ConstantEmission(C, true);
3516  }
3517  static ConstantEmission forValue(llvm::Constant *C) {
3518  return ConstantEmission(C, false);
3519  }
3520 
3521  explicit operator bool() const {
3522  return ValueAndIsReference.getOpaqueValue() != nullptr;
3523  }
3524 
3525  bool isReference() const { return ValueAndIsReference.getInt(); }
3526  LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3527  assert(isReference());
3528  return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3529  refExpr->getType());
3530  }
3531 
3532  llvm::Constant *getValue() const {
3533  assert(!isReference());
3534  return ValueAndIsReference.getPointer();
3535  }
3536  };
3537 
3538  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3539  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3540  llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3541 
3542  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3543  AggValueSlot slot = AggValueSlot::ignored());
3544  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3545 
3546  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3547  const ObjCIvarDecl *Ivar);
3548  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3549  LValue EmitLValueForLambdaField(const FieldDecl *Field);
3550 
3551  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3552  /// if the Field is a reference, this will return the address of the reference
3553  /// and not the address of the value stored in the reference.
3554  LValue EmitLValueForFieldInitialization(LValue Base,
3555  const FieldDecl* Field);
3556 
3557  LValue EmitLValueForIvar(QualType ObjectTy,
3558  llvm::Value* Base, const ObjCIvarDecl *Ivar,
3559  unsigned CVRQualifiers);
3560 
3561  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3562  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3563  LValue EmitLambdaLValue(const LambdaExpr *E);
3564  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3565  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3566 
3567  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3568  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3569  LValue EmitStmtExprLValue(const StmtExpr *E);
3570  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3571  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3572  void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3573 
3574  //===--------------------------------------------------------------------===//
3575  // Scalar Expression Emission
3576  //===--------------------------------------------------------------------===//
3577 
3578  /// EmitCall - Generate a call of the given function, expecting the given
3579  /// result type, and using the given argument list which specifies both the
3580  /// LLVM arguments and the types they were derived from.
3581  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3582  ReturnValueSlot ReturnValue, const CallArgList &Args,
3583  llvm::Instruction **callOrInvoke, SourceLocation Loc);
3584  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3585  ReturnValueSlot ReturnValue, const CallArgList &Args,
3586  llvm::Instruction **callOrInvoke = nullptr) {
3587  return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3588  SourceLocation());
3589  }
3590  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3591  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3592  RValue EmitCallExpr(const CallExpr *E,
3593  ReturnValueSlot ReturnValue = ReturnValueSlot());
3594  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3595  CGCallee EmitCallee(const Expr *E);
3596 
3597  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3598 
3599  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3600  const Twine &name = "");
3601  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3603  const Twine &name = "");
3604  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3605  const Twine &name = "");
3606  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3608  const Twine &name = "");
3609 
3611  getBundlesForFunclet(llvm::Value *Callee);
3612 
3613  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3615  const Twine &Name = "");
3616  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3618  const Twine &name = "");
3619  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3620  const Twine &name = "");
3621  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3622  ArrayRef<llvm::Value*> args);
3623 
3625  NestedNameSpecifier *Qual,
3626  llvm::Type *Ty);
3627 
3628  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3629  CXXDtorType Type,
3630  const CXXRecordDecl *RD);
3631 
3632  // Return the copy constructor name with the prefix "__copy_constructor_"
3633  // removed.
3634  static std::string getNonTrivialCopyConstructorStr(QualType QT,
3635  CharUnits Alignment,
3636  bool IsVolatile,
3637  ASTContext &Ctx);
3638 
3639  // Return the destructor name with the prefix "__destructor_" removed.
3640  static std::string getNonTrivialDestructorStr(QualType QT,
3641  CharUnits Alignment,
3642  bool IsVolatile,
3643  ASTContext &Ctx);
3644 
3645  // These functions emit calls to the special functions of non-trivial C
3646  // structs.
3647  void defaultInitNonTrivialCStructVar(LValue Dst);
3648  void callCStructDefaultConstructor(LValue Dst);
3649  void callCStructDestructor(LValue Dst);
3650  void callCStructCopyConstructor(LValue Dst, LValue Src);
3651  void callCStructMoveConstructor(LValue Dst, LValue Src);
3652  void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3653  void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3654 
3655  RValue
3656  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3657  const CGCallee &Callee,
3658  ReturnValueSlot ReturnValue, llvm::Value *This,
3659  llvm::Value *ImplicitParam,
3660  QualType ImplicitParamTy, const CallExpr *E,
3661  CallArgList *RtlArgs);
3662  RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3663  const CGCallee &Callee,
3664  llvm::Value *This, llvm::Value *ImplicitParam,
3665  QualType ImplicitParamTy, const CallExpr *E,
3666  StructorType Type);
3667  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3668  ReturnValueSlot ReturnValue);
3669  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3670  const CXXMethodDecl *MD,
3671  ReturnValueSlot ReturnValue,
3672  bool HasQualifier,
3673  NestedNameSpecifier *Qualifier,
3674  bool IsArrow, const Expr *Base);
3675  // Compute the object pointer.
3676  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3677  llvm::Value *memberPtr,
3678  const MemberPointerType *memberPtrType,
3679  LValueBaseInfo *BaseInfo = nullptr,
3680  TBAAAccessInfo *TBAAInfo = nullptr);
3681  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3682  ReturnValueSlot ReturnValue);
3683 
3684  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3685  const CXXMethodDecl *MD,
3686  ReturnValueSlot ReturnValue);
3687  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3688 
3689  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3690  ReturnValueSlot ReturnValue);
3691 
3692  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3693  ReturnValueSlot ReturnValue);
3694 
3695  RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
3696  const CallExpr *E, ReturnValueSlot ReturnValue);
3697 
3698  RValue emitRotate(const CallExpr *E, bool IsRotateRight);
3699 
3700  /// Emit IR for __builtin_os_log_format.
3701  RValue emitBuiltinOSLogFormat(const CallExpr &E);
3702 
3703  llvm::Function *generateBuiltinOSLogHelperFunction(
3704  const analyze_os_log::OSLogBufferLayout &Layout,
3705  CharUnits BufferAlignment);
3706 
3707  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3708 
3709  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3710  /// is unhandled by the current target.
3711  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3712 
3713  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3714  const llvm::CmpInst::Predicate Fp,
3715  const llvm::CmpInst::Predicate Ip,
3716  const llvm::Twine &Name = "");
3717  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3718  llvm::Triple::ArchType Arch);
3719 
3720  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3721  unsigned LLVMIntrinsic,
3722  unsigned AltLLVMIntrinsic,
3723  const char *NameHint,
3724  unsigned Modifier,
3725  const CallExpr *E,
3727  Address PtrOp0, Address PtrOp1,
3728  llvm::Triple::ArchType Arch);
3729 
3730  llvm::Value *EmitISOVolatileLoad(const CallExpr *E);
3731  llvm::Value *EmitISOVolatileStore(const CallExpr *E);
3732 
3733  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3734  unsigned Modifier, llvm::Type *ArgTy,
3735  const CallExpr *E);
3736  llvm::Value *EmitNeonCall(llvm::Function *F,
3738  const char *name,
3739  unsigned shift = 0, bool rightshift = false);
3740  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3741  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3742  bool negateForRightShift);
3743  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3744  llvm::Type *Ty, bool usgn, const char *name);
3745  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3746  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3747  llvm::Triple::ArchType Arch);
3748 
3749  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3750  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3751  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3752  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3753  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3754  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3755  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3756  const CallExpr *E);
3757  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3758 
3759 private:
3760  enum class MSVCIntrin;
3761 
3762 public:
3763  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3764 
3765  llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3766 
3767  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3768  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3769  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3770  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3771  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3772  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3773  const ObjCMethodDecl *MethodWithObjects);
3774  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3775  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3776  ReturnValueSlot Return = ReturnValueSlot());
3777 
3778  /// Retrieves the default cleanup kind for an ARC cleanup.
3779  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3781  return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3783  }
3784 
3785  // ARC primitives.
3786  void EmitARCInitWeak(Address addr, llvm::Value *value);
3787  void EmitARCDestroyWeak(Address addr);
3788  llvm::Value *EmitARCLoadWeak(Address addr);
3789  llvm::Value *EmitARCLoadWeakRetained(Address addr);
3790  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3791  void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3792  void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3793  void EmitARCCopyWeak(Address dst, Address src);
3794  void EmitARCMoveWeak(Address dst, Address src);
3795  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3796  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3797  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3798  bool resultIgnored);
3799  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3800  bool resultIgnored);
3801  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3802  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3803  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3804  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3805  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3806  llvm::Value *EmitARCAutorelease(llvm::Value *value);
3807  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3808  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3809  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3810  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3811 
3812  llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
3813  llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
3814  llvm::Type *returnType);
3815  void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3816 
3817  std::pair<LValue,llvm::Value*>
3818  EmitARCStoreAutoreleasing(const BinaryOperator *e);
3819  std::pair<LValue,llvm::Value*>
3820  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3821  std::pair<LValue,llvm::Value*>
3822  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3823 
3824  llvm::Value *EmitObjCAlloc(llvm::Value *value,
3825  llvm::Type *returnType);
3826  llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
3827  llvm::Type *returnType);
3828  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3829  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3830  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3831 
3832  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3833  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3834  bool allowUnsafeClaim);
3835  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3836  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3837  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3838 
3839  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3840 
3841  static Destroyer destroyARCStrongImprecise;
3842  static Destroyer destroyARCStrongPrecise;
3843  static Destroyer destroyARCWeak;
3844  static Destroyer emitARCIntrinsicUse;
3845  static Destroyer destroyNonTrivialCStruct;
3846 
3847  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3848  llvm::Value *EmitObjCAutoreleasePoolPush();
3849  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3850  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3851  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3852 
3853  /// Emits a reference binding to the passed in expression.
3854  RValue EmitReferenceBindingToExpr(const Expr *E);
3855 
3856  //===--------------------------------------------------------------------===//
3857  // Expression Emission
3858  //===--------------------------------------------------------------------===//
3859 
3860  // Expressions are broken into three classes: scalar, complex, aggregate.
3861 
3862  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3863  /// scalar type, returning the result.
3864  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3865 
3866  /// Emit a conversion from the specified type to the specified destination
3867  /// type, both of which are LLVM scalar types.
3868  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3869  QualType DstTy, SourceLocation Loc);
3870 
3871  /// Emit a conversion from the specified complex type to the specified
3872  /// destination type, where the destination type is an LLVM scalar type.
3873  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3874  QualType DstTy,
3875  SourceLocation Loc);
3876 
3877  /// EmitAggExpr - Emit the computation of the specified expression
3878  /// of aggregate type. The result is computed into the given slot,
3879  /// which may be null to indicate that the value is not needed.
3880  void EmitAggExpr(const Expr *E, AggValueSlot AS);
3881 
3882  /// EmitAggExprToLValue - Emit the computation of the specified expression of
3883  /// aggregate type into a temporary LValue.
3884  LValue EmitAggExprToLValue(const Expr *E);
3885 
3886  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3887  /// make sure it survives garbage collection until this point.
3888  void EmitExtendGCLifetime(llvm::Value *object);
3889 
3890  /// EmitComplexExpr - Emit the computation of the specified expression of
3891  /// complex type, returning the result.
3892  ComplexPairTy EmitComplexExpr(const Expr *E,
3893  bool IgnoreReal = false,
3894  bool IgnoreImag = false);
3895 
3896  /// EmitComplexExprIntoLValue - Emit the given expression of complex
3897  /// type and place its result into the specified l-value.
3898  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3899 
3900  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3901  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3902 
3903  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3904  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3905 
3906  Address emitAddrOfRealComponent(Address complex, QualType complexType);
3907  Address emitAddrOfImagComponent(Address complex, QualType complexType);
3908 
3909  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3910  /// global variable that has already been created for it. If the initializer
3911  /// has a different type than GV does, this may free GV and return a different
3912  /// one. Otherwise it just returns GV.
3913  llvm::GlobalVariable *
3914  AddInitializerToStaticVarDecl(const VarDecl &D,
3915  llvm::GlobalVariable *GV);
3916 
3917  // Emit an @llvm.invariant.start call for the given memory region.
3918  void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
3919 
3920  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3921  /// variable with global storage.
3922  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3923  bool PerformInit);
3924 
3925  llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3926  llvm::Constant *Addr);
3927 
3928  /// Call atexit() with a function that passes the given argument to
3929  /// the given function.
3930  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3931  llvm::Constant *addr);
3932 
3933  /// Call atexit() with function dtorStub.
3934  void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
3935 
3936  /// Emit code in this function to perform a guarded variable
3937  /// initialization. Guarded initializations are used when it's not
3938  /// possible to prove that an initialization will be done exactly
3939  /// once, e.g. with a static local variable or a static data member
3940  /// of a class template.
3941  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3942  bool PerformInit);
3943 
3944  enum class GuardKind { VariableGuard, TlsGuard };
3945 
3946  /// Emit a branch to select whether or not to perform guarded initialization.
3947  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3948  llvm::BasicBlock *InitBlock,
3949  llvm::BasicBlock *NoInitBlock,
3950  GuardKind Kind, const VarDecl *D);
3951 
3952  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3953  /// variables.
3954  void
3955  GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3956  ArrayRef<llvm::Function *> CXXThreadLocals,
3957  ConstantAddress Guard = ConstantAddress::invalid());
3958 
3959  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3960  /// variables.
3961  void GenerateCXXGlobalDtorsFunc(
3962  llvm::Function *Fn,
3963  const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3964  &DtorsAndObjects);
3965 
3966  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3967  const VarDecl *D,
3968  llvm::GlobalVariable *Addr,
3969  bool PerformInit);
3970 
3971  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3972 
3973  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3974 
3976  if (const auto *EWC = dyn_cast<ExprWithCleanups>(E))
3977  if (EWC->getNumObjects() == 0)
3978  return;
3979  enterNonTrivialFullExpression(E);
3980  }
3981  void enterNonTrivialFullExpression(const FullExpr *E);
3982 
3983  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3984 
3985  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3986 
3987  RValue EmitAtomicExpr(AtomicExpr *E);
3988 
3989  //===--------------------------------------------------------------------===//
3990  // Annotations Emission
3991  //===--------------------------------------------------------------------===//
3992 
3993  /// Emit an annotation call (intrinsic or builtin).
3994  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3995  llvm::Value *AnnotatedVal,
3996  StringRef AnnotationStr,
3997  SourceLocation Location);
3998 
3999  /// Emit local annotations for the local variable V, declared by D.
4000  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4001 
4002  /// Emit field annotations for the given field & value. Returns the
4003  /// annotation result.
4004  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4005 
4006  //===--------------------------------------------------------------------===//
4007  // Internal Helpers
4008  //===--------------------------------------------------------------------===//
4009 
4010  /// ContainsLabel - Return true if the statement contains a label in it. If
4011  /// this statement is not executed normally, it not containing a label means
4012  /// that we can just remove the code.
4013  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4014 
4015  /// containsBreak - Return true if the statement contains a break out of it.
4016  /// If the statement (recursively) contains a switch or loop with a break
4017  /// inside of it, this is fine.
4018  static bool containsBreak(const Stmt *S);
4019 
4020  /// Determine if the given statement might introduce a declaration into the
4021  /// current scope, by being a (possibly-labelled) DeclStmt.
4022  static bool mightAddDeclToScope(const Stmt *S);
4023 
4024  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4025  /// to a constant, or if it does but contains a label, return false. If it
4026  /// constant folds return true and set the boolean result in Result.
4027  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4028  bool AllowLabels = false);
4029 
4030  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4031  /// to a constant, or if it does but contains a label, return false. If it
4032  /// constant folds return true and set the folded value.
4033  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4034  bool AllowLabels = false);
4035 
4036  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4037  /// if statement) to the specified blocks. Based on the condition, this might
4038  /// try to simplify the codegen of the conditional based on the branch.
4039  /// TrueCount should be the number of times we expect the condition to
4040  /// evaluate to true based on PGO data.
4041  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4042  llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
4043 
4044  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4045  /// nonnull, if \p LHS is marked _Nonnull.
4046  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4047 
4048  /// An enumeration which makes it easier to specify whether or not an
4049  /// operation is a subtraction.
4050  enum { NotSubtraction = false, IsSubtraction = true };
4051 
4052  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4053  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4054  /// \p SignedIndices indicates whether any of the GEP indices are signed.
4055  /// \p IsSubtraction indicates whether the expression used to form the GEP
4056  /// is a subtraction.
4057  llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4058  ArrayRef<llvm::Value *> IdxList,
4059  bool SignedIndices,
4060  bool IsSubtraction,
4061  SourceLocation Loc,
4062  const Twine &Name = "");
4063 
4064  /// Specifies which type of sanitizer check to apply when handling a
4065  /// particular builtin.
4069  };
4070 
4071  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4072  /// enabled, a runtime check specified by \p Kind is also emitted.
4073  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4074 
4075  /// Emit a description of a type in a format suitable for passing to
4076  /// a runtime sanitizer handler.
4077  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4078 
4079  /// Convert a value into a format suitable for passing to a runtime
4080  /// sanitizer handler.
4081  llvm::Value *EmitCheckValue(llvm::Value *V);
4082 
4083  /// Emit a description of a source location in a format suitable for
4084  /// passing to a runtime sanitizer handler.
4085  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4086 
4087  /// Create a basic block that will call a handler function in a
4088  /// sanitizer runtime with the provided arguments, and create a conditional
4089  /// branch to it.
4090  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4091  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4092  ArrayRef<llvm::Value *> DynamicArgs);
4093 
4094  /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4095  /// if Cond if false.
4096  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4097  llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4098  ArrayRef<llvm::Constant *> StaticArgs);
4099 
4100  /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4101  /// checking is enabled. Otherwise, just emit an unreachable instruction.
4102  void EmitUnreachable(SourceLocation Loc);
4103 
4104  /// Create a basic block that will call the trap intrinsic, and emit a
4105  /// conditional branch to it, for the -ftrapv checks.
4106  void EmitTrapCheck(llvm::Value *Checked);
4107 
4108  /// Emit a call to trap or debugtrap and attach function attribute
4109  /// "trap-func-name" if specified.
4110  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4111 
4112  /// Emit a stub for the cross-DSO CFI check function.
4113  void EmitCfiCheckStub();
4114 
4115  /// Emit a cross-DSO CFI failure handling function.
4116  void EmitCfiCheckFail();
4117 
4118  /// Create a check for a function parameter that may potentially be
4119  /// declared as non-null.
4120  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4121  AbstractCallee AC, unsigned ParmNum);
4122 
4123  /// EmitCallArg - Emit a single call argument.
4124  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4125 
4126  /// EmitDelegateCallArg - We are performing a delegate call; that
4127  /// is, the current function is delegating to another one. Produce
4128  /// a r-value suitable for passing the given parameter.
4129  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4130  SourceLocation loc);
4131 
4132  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4133  /// point operation, expressed as the maximum relative error in ulp.
4134  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4135 
4136 private:
4137  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4138  void EmitReturnOfRValue(RValue RV, QualType Ty);
4139 
4140  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4141 
4143  DeferredReplacements;
4144 
4145  /// Set the address of a local variable.
4146  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4147  assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4148  LocalDeclMap.insert({VD, Addr});
4149  }
4150 
4151  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4152  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4153  ///
4154  /// \param AI - The first function argument of the expansion.
4155  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4157 
4158  /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4159  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4160  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4161  void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4162  SmallVectorImpl<llvm::Value *> &IRCallArgs,
4163  unsigned &IRCallArgPos);
4164 
4165  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4166  const Expr *InputExpr, std::string &ConstraintStr);
4167 
4168  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4169  LValue InputValue, QualType InputType,
4170  std::string &ConstraintStr,
4171  SourceLocation Loc);
4172 
4173  /// Attempts to statically evaluate the object size of E. If that
4174  /// fails, emits code to figure the size of E out for us. This is
4175  /// pass_object_size aware.
4176  ///
4177  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4178  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4179  llvm::IntegerType *ResType,
4180  llvm::Value *EmittedE);
4181 
4182  /// Emits the size of E, as required by __builtin_object_size. This
4183  /// function is aware of pass_object_size parameters, and will act accordingly
4184  /// if E is a parameter with the pass_object_size attribute.
4185  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4186  llvm::IntegerType *ResType,
4187  llvm::Value *EmittedE);
4188 
4189 public:
4190 #ifndef NDEBUG
4191  // Determine whether the given argument is an Objective-C method
4192  // that may have type parameters in its signature.
4193  static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4194  const DeclContext *dc = method->getDeclContext();
4195  if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
4196  return classDecl->getTypeParamListAsWritten();
4197  }
4198 
4199  if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4200  return catDecl->getTypeParamList();
4201  }
4202 
4203  return false;
4204  }
4205 
4206  template<typename T>
4207  static bool isObjCMethodWithTypeParams(const T *) { return false; }
4208 #endif
4209 
4210  enum class EvaluationOrder {
4211  ///! No language constraints on evaluation order.
4212  Default,
4213  ///! Language semantics require left-to-right evaluation.
4214  ForceLeftToRight,
4215  ///! Language semantics require right-to-left evaluation.
4216  ForceRightToLeft
4217  };
4218 
4219  /// EmitCallArgs - Emit call arguments for a function.
4220  template <typename T>
4221  void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4222  llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4224  unsigned ParamsToSkip = 0,
4225  EvaluationOrder Order = EvaluationOrder::Default) {
4226  SmallVector<QualType, 16> ArgTypes;
4227  CallExpr::const_arg_iterator Arg = ArgRange.begin();
4228 
4229  assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4230  "Can't skip parameters if type info is not provided");
4231  if (CallArgTypeInfo) {
4232 #ifndef NDEBUG
4233  bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4234 #endif
4235 
4236  // First, use the argument types that the type info knows about
4237  for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4238  E = CallArgTypeInfo->param_type_end();
4239  I != E; ++I, ++Arg) {
4240  assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4241  assert((isGenericMethod ||
4242  ((*I)->isVariablyModifiedType() ||
4243  (*I).getNonReferenceType()->isObjCRetainableType() ||
4244  getContext()
4245  .getCanonicalType((*I).getNonReferenceType())
4246  .getTypePtr() ==
4247  getContext()
4248  .getCanonicalType((*Arg)->getType())
4249  .getTypePtr())) &&
4250  "type mismatch in call argument!");
4251  ArgTypes.push_back(*I);
4252  }
4253  }
4254 
4255  // Either we've emitted all the call args, or we have a call to variadic
4256  // function.
4257  assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4258  CallArgTypeInfo->isVariadic()) &&
4259  "Extra arguments in non-variadic function!");
4260 
4261  // If we still have any arguments, emit them using the type of the argument.
4262  for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4263  ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4264 
4265  EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4266  }
4267 
4268  void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4269  llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4271  unsigned ParamsToSkip = 0,
4272  EvaluationOrder Order = EvaluationOrder::Default);
4273 
4274  /// EmitPointerWithAlignment - Given an expression with a pointer type,
4275  /// emit the value and compute our best estimate of the alignment of the
4276  /// pointee.
4277  ///
4278  /// \param BaseInfo - If non-null, this will be initialized with
4279  /// information about the source of the alignment and the may-alias
4280  /// attribute. Note that this function will conservatively fall back on
4281  /// the type when it doesn't recognize the expression and may-alias will
4282  /// be set to false.
4283  ///
4284  /// One reasonable way to use this information is when there's a language
4285  /// guarantee that the pointer must be aligned to some stricter value, and
4286  /// we're simply trying to ensure that sufficiently obvious uses of under-
4287  /// aligned objects don't get miscompiled; for example, a placement new
4288  /// into the address of a local variable. In such a case, it's quite
4289  /// reasonable to just ignore the returned alignment when it isn't from an
4290  /// explicit source.
4291  Address EmitPointerWithAlignment(const Expr *Addr,
4292  LValueBaseInfo *BaseInfo = nullptr,
4293  TBAAAccessInfo *TBAAInfo = nullptr);
4294 
4295  /// If \p E references a parameter with pass_object_size info or a constant
4296  /// array size modifier, emit the object size divided by the size of \p EltTy.
4297  /// Otherwise return null.
4298  llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4299 
4300  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4301 
4303  llvm::Function *Function;
4305  struct Conds {
4306  StringRef Architecture;
4308 
4309  Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4310  : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4311  } Conditions;
4312 
4313  MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4314  ArrayRef<StringRef> Feats)
4315  : Function(F), Conditions(Arch, Feats) {}
4316  };
4317 
4318  // Emits the body of a multiversion function's resolver. Assumes that the
4319  // options are already sorted in the proper order, with the 'default' option
4320  // last (if it exists).
4321  void EmitMultiVersionResolver(llvm::Function *Resolver,
4323 
4324  static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4325 
4326 private:
4327  QualType getVarArgType(const Expr *Arg);
4328 
4329  void EmitDeclMetadata();
4330 
4331  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4332  const AutoVarEmission &emission);
4333 
4334  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4335 
4336  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4337  llvm::Value *EmitX86CpuIs(const CallExpr *E);
4338  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4339  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4340  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4341  llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4342  llvm::Value *EmitX86CpuInit();
4343  llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4344 };
4345 
4347 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4348  if (!needsSaving(value)) return saved_type(value, false);
4349 
4350  // Otherwise, we need an alloca.
4351  auto align = CharUnits::fromQuantity(
4352  CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4353  Address alloca =
4354  CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4355  CGF.Builder.CreateStore(value, alloca);
4356 
4357  return saved_type(alloca.getPointer(), true);
4358 }
4359 
4360 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4361  saved_type value) {
4362  // If the value says it wasn't saved, trust that it's still dominating.
4363  if (!value.getInt()) return value.getPointer();
4364 
4365  // Otherwise, it should be an alloca instruction, as set up in save().
4366  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4367  return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
4368 }
4369 
4370 } // end namespace CodeGen
4371 } // end namespace clang
4372 
4373 #endif
const llvm::DataLayout & getDataLayout() const
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:361
llvm::Value * getArrayInitIndex()
Get the index of the current ArrayInitLoopExpr, if any.
Optional< uint64_t > getStmtCount(const Stmt *S)
Check if an execution count is known for a given statement.
Definition: CodeGenPGO.h:63
This represents &#39;#pragma omp distribute simd&#39; composite directive.
Definition: StmtOpenMP.h:3248
Information about the layout of a __block variable.
Definition: CGBlocks.h:144
This represents &#39;#pragma omp master&#39; directive.
Definition: StmtOpenMP.h:1431
virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S)
Emit the captured statement body.
This represents &#39;#pragma omp task&#39; directive.
Definition: StmtOpenMP.h:1771
Represents a function declaration or definition.
Definition: Decl.h:1738
LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2537
Scheduling data for loop-based OpenMP directives.
Definition: OpenMPKinds.h:141
A (possibly-)qualified type.
Definition: Type.h:638
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:258
const CodeGenOptions & getCodeGenOpts() const
The class detects jumps which bypass local variables declaration: goto L; int a; L: ...
Address CreateMemTemp(QualType T, const Twine &Name="tmp", Address *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
Definition: CGExpr.cpp:139
void enterFullExpression(const FullExpr *E)
AlignmentSource
The source of the alignment of an l-value; an expression of confidence in the alignment actually matc...
Definition: CGValue.h:126
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
bool isSEHTryScope() const
Returns true inside SEH __try blocks.
llvm::LLVMContext & getLLVMContext()
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:30
FieldConstructionScope(CodeGenFunction &CGF, Address This)
Represents a &#39;co_return&#39; statement in the C++ Coroutines TS.
Definition: StmtCXX.h:435
Stmt - This represents one statement.
Definition: Stmt.h:66
IfStmt - This represents an if/then/else.
Definition: Stmt.h:1687
static T * buildByrefHelpers(CodeGenModule &CGM, const BlockByrefInfo &byrefInfo, T &&generator)
Lazily build the copy and dispose helpers for a __block variable with the given information.
Definition: CGBlocks.cpp:2592
bool requiresCleanups() const
Determine whether this scope requires any cleanups.
C Language Family Type Representation.
OpaqueValueMapping(CodeGenFunction &CGF, const AbstractConditionalOperator *op)
Build the opaque value mapping for the given conditional operator if it&#39;s the GNU ...
This represents &#39;#pragma omp for simd&#39; directive.
Definition: StmtOpenMP.h:1181
Checking the &#39;this&#39; pointer for a constructor call.
bool hasVolatileMember() const
Definition: Decl.h:3677
bool hasLabelBeenSeenInCurrentScope() const
Return true if a label was seen in the current scope.
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:87
This represents &#39;#pragma omp teams distribute parallel for&#39; composite directive.
Definition: StmtOpenMP.h:3659
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
static bool classof(const CGCapturedStmtInfo *)
Represents an attribute applied to a statement.
Definition: Stmt.h:1633
static Destroyer destroyARCStrongPrecise
llvm::Value * LoadCXXThis()
LoadCXXThis - Load the value of &#39;this&#39;.
The base class of the type hierarchy.
Definition: Type.h:1407
This represents &#39;#pragma omp target teams distribute&#39; combined directive.
Definition: StmtOpenMP.h:3796
Represents Objective-C&#39;s @throw statement.
Definition: StmtObjC.h:313
CGCapturedStmtInfo(const CapturedStmt &S, CapturedRegionKind K=CR_Default)
const RecordDecl * getCapturedRecordDecl() const
Retrieve the record declaration for captured variables.
Definition: Stmt.h:3223
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2812
void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, llvm::Value *Address)
virtual const FieldDecl * lookup(const VarDecl *VD) const
Lookup the captured field decl for a variable.
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1262
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:116
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:379
DominatingValue< T >::saved_type saveValueInCond(T value)
CGCapturedStmtInfo(CapturedRegionKind K=CR_Default)
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
const ParmVarDecl * getParamDecl(unsigned I) const
This represents &#39;#pragma omp parallel for&#39; directive.
Definition: StmtOpenMP.h:1552
void emitCounterIncrement(CGBuilderTy &Builder, const Stmt *S, llvm::Value *StepV)
Definition: CodeGenPGO.cpp:893
This represents &#39;#pragma omp target teams distribute parallel for&#39; combined directive.
Definition: StmtOpenMP.h:3864
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2484
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4156
static bool needsSaving(llvm::Value *value)
Answer whether the given value needs extra work to be saved.
static type restore(CodeGenFunction &CGF, saved_type value)
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const RValue &rv)
Represents a point when we exit a loop.
Definition: ProgramPoint.h:715
const CXXBaseSpecifier *const * path_const_iterator
Definition: Expr.h:3067
This represents &#39;#pragma omp target exit data&#39; directive.
Definition: StmtOpenMP.h:2463
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
TypeEvaluationKind
The kind of evaluation to perform on values of a particular type.
Represents a variable declaration or definition.
Definition: Decl.h:813
Address getObjectAddress(CodeGenFunction &CGF) const
Returns the address of the object within this declaration.
ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC &#39;id&#39; type.
Definition: ExprObjC.h:1437
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2925
RAII object to set/unset CodeGenFunction::IsSanitizerScope.
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6748
uint64_t getProfileCount(const Stmt *S)
Get the profiler&#39;s count for the given statement.
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:54
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
void setCurrentProfileCount(uint64_t Count)
Set the profiler&#39;s current count.
llvm::Value * getPointer() const
Definition: Address.h:38
static ConstantEmission forValue(llvm::Constant *C)
capture_iterator capture_begin()
Retrieve an iterator pointing to the first capture.
Definition: Stmt.h:3248
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:1015
Represents a parameter to a function.
Definition: Decl.h:1550
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:24
Defines the clang::Expr interface and subclasses for C++ expressions.
The collection of all-type qualifiers we support.
Definition: Type.h:141
EHScopeStack::stable_iterator PrologueCleanupDepth
PrologueCleanupDepth - The cleanup depth enclosing all the cleanups associated with the parameters...
A jump destination is an abstract label, branching to which may require a jump out through normal cle...
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:1593
Represents a struct/union/class.
Definition: Decl.h:3593
llvm::DenseMap< const VarDecl *, FieldDecl * > LambdaCaptureFields
LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
const TargetInfo & getTarget() const
An object to manage conditionally-evaluated expressions.
PeepholeProtection protectFromPeepholes(RValue rvalue)
protectFromPeepholes - Protect a value that we&#39;re intending to store to the side, but which will prob...
ConditionalCleanup stores the saved form of its parameters, then restores them and performs the clean...
Definition: EHScopeStack.h:198
ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
void setScopeDepth(EHScopeStack::stable_iterator depth)
This represents &#39;#pragma omp parallel&#39; directive.
Definition: StmtOpenMP.h:276
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:155
FullExpr - Represents a "full-expression" node.
Definition: Expr.h:877
llvm::SmallPtrSet< const CXXRecordDecl *, 4 > VisitedVirtualBasesSetTy
The scope used to remap some variables as private in the OpenMP loop body (or other captured region e...
SmallVector< Address, 1 > SEHCodeSlotStack
A stack of exception code slots.
Represents a member of a struct/union/class.
Definition: Decl.h:2579
Definition: Format.h:2072
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
bool isReferenceType() const
Definition: Type.h:6308
Helper class with most of the code for saving a value for a conditional expression cleanup...
llvm::BasicBlock * getStartingBlock() const
Returns a block which will be executed prior to each evaluation of the conditional code...
This represents &#39;#pragma omp target simd&#39; directive.
Definition: StmtOpenMP.h:3384
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:1003
Defines some OpenMP-specific enums and functions.
ExtVectorElementExpr - This represents access to specific elements of a vector, and may occur on the ...
Definition: Expr.h:5116
Address getAllocatedAddress() const
Returns the raw, allocated address, which is not necessarily the address of the object itself...
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:66
This represents &#39;#pragma omp barrier&#39; directive.
Definition: StmtOpenMP.h:1883
CleanupKind getCleanupKind(QualType::DestructionKind kind)
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp, [NSNumber numberWithInt:42]];.
Definition: ExprObjC.h:171
The this pointer adjustment as well as an optional return adjustment for a thunk. ...
Definition: ABI.h:179
This is a common base class for loop directives (&#39;omp simd&#39;, &#39;omp for&#39;, &#39;omp for simd&#39; etc...
Definition: StmtOpenMP.h:338
This represents &#39;#pragma omp critical&#39; directive.
Definition: StmtOpenMP.h:1478
const AstTypeMatcher< ComplexType > complexType
Matches C99 complex types.
bool isCleanupPadScope() const
Returns true while emitting a cleanuppad.
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition: CGExpr.cpp:194
void pushFullExprCleanup(CleanupKind kind, As... A)
pushFullExprCleanup - Push a cleanup to be run at the end of the current full-expression.
OpenMPDistScheduleClauseKind
OpenMP attributes for &#39;dist_schedule&#39; clause.
Definition: OpenMPKinds.h:109
bool isGLValue() const
Definition: Expr.h:252
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:2339
Describes an C or C++ initializer list.
Definition: Expr.h:4185
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:669
This represents &#39;#pragma omp distribute parallel for&#39; composite directive.
Definition: StmtOpenMP.h:3099
void setCurrentRegionCount(uint64_t Count)
Set the counter value for the current region.
Definition: CodeGenPGO.h:59
A class controlling the emission of a finally block.
This represents &#39;#pragma omp teams distribute parallel for simd&#39; composite directive.
Definition: StmtOpenMP.h:3588
BinaryOperatorKind
static bool hasScalarEvaluationKind(QualType T)
ForStmt - This represents a &#39;for (init;cond;inc)&#39; stmt.
Definition: Stmt.h:2237
InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
MultiVersionResolverOption(llvm::Function *F, StringRef Arch, ArrayRef< StringRef > Feats)
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:969
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
llvm::function_ref< std::pair< LValue, LValue > CodeGenFunction &, const OMPExecutableDirective &S)> CodeGenLoopBoundsTy
CGCapturedStmtRAII(CodeGenFunction &CGF, CGCapturedStmtInfo *NewCapturedStmtInfo)
LexicalScope(CodeGenFunction &CGF, SourceRange Range)
Enter a new cleanup scope.
RAII for correct setting/restoring of CapturedStmtInfo.
TBAAAccessInfo getTBAAAccessInfo(QualType AccessType)
getTBAAAccessInfo - Get TBAA information that describes an access to an object of the given type...
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:67
EHScopeStack::stable_iterator CurrentCleanupScopeDepth
Represents a declaration of a type.
Definition: Decl.h:2874
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3287
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const LValue &lv)
void restore(CodeGenFunction &CGF)
Restores original addresses of the variables.
CXXForRangeStmt - This represents C++0x [stmt.ranged]&#39;s ranged for statement, represented as &#39;for (ra...
Definition: StmtCXX.h:127
#define LIST_SANITIZER_CHECKS
This represents &#39;#pragma omp cancellation point&#39; directive.
Definition: StmtOpenMP.h:2718
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:51
field_iterator field_begin() const
Definition: Decl.cpp:4145
CaseStmt - Represent a case statement.
Definition: Stmt.h:1394
A stack of scopes which respond to exceptions, including cleanups and catch blocks.
Definition: EHScopeStack.h:100
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
This represents &#39;#pragma omp teams&#39; directive.
Definition: StmtOpenMP.h:2661
Denotes a cleanup that should run when a scope is exited using normal control flow (falling off the e...
Definition: EHScopeStack.h:85
Enums/classes describing ABI related information about constructors, destructors and thunks...
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2998
This represents &#39;#pragma omp teams distribute simd&#39; combined directive.
Definition: StmtOpenMP.h:3518
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1217
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1649
GlobalDecl CurGD
CurGD - The GlobalDecl for the current function being compiled.
Controls insertion of cancellation exit blocks in worksharing constructs.
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler&#39;s counter for the given statement by StepV.
uint64_t getCurrentProfileCount()
Get the profiler&#39;s current count.
CallLifetimeEnd(Address addr, llvm::Value *size)
llvm::function_ref< std::pair< llvm::Value *, llvm::Value * > CodeGenFunction &, const OMPExecutableDirective &S, Address LB, Address UB)> CodeGenDispatchBoundsTy
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
Definition: CGExpr.cpp:106
Represents an ObjC class declaration.
Definition: DeclObjC.h:1172
Checking the operand of a cast to a virtual base object.
JumpDest getJumpDestInCurrentScope(StringRef Name=StringRef())
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
Checking the operand of a load. Must be suitably sized and aligned.
~LexicalScope()
Exit this cleanup scope, emitting any accumulated cleanups.
Checking the &#39;this&#39; pointer for a call to a non-static member function.
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
ObjCPropertyImplDecl - Represents implementation declaration of a property in a class or category imp...
Definition: DeclObjC.h:2759
This represents &#39;#pragma omp target parallel for simd&#39; directive.
Definition: StmtOpenMP.h:3316
OpenMP 4.0 [2.4, Array Sections].
Definition: ExprOpenMP.h:45
Const iterator for iterating over Stmt * arrays that contain only Expr *.
Definition: Stmt.h:997
bool isValid() const
Definition: Address.h:36
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2286
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1241
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3687
Describes the capture of either a variable, or &#39;this&#39;, or variable-length array type.
Definition: Stmt.h:3118
This represents &#39;#pragma omp taskgroup&#39; directive.
Definition: StmtOpenMP.h:1971
const TargetCodeGenInfo & getTargetCodeGenInfo()
CGBlockInfo - Information to generate a block literal.
Definition: CGBlocks.h:153
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
CleanupKind getARCCleanupKind()
Retrieves the default cleanup kind for an ARC cleanup.
bool isGlobalVarCaptured(const VarDecl *VD) const
Checks if the global variable is captured in current function.
The class used to assign some variables some temporarily addresses.
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:4091
AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD)
Determine whether a field initialization may overlap some other object.
void pushCleanupAfterFullExpr(CleanupKind Kind, As... A)
Queue a cleanup to be pushed after finishing the current full-expression.
LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
This represents &#39;#pragma omp distribute&#39; directive.
Definition: StmtOpenMP.h:2972
Exposes information about the current target.
Definition: TargetInfo.h:54
CXXDtorType
C++ destructor types.
Definition: ABI.h:34
bool addPrivate(const VarDecl *LocalVD, const llvm::function_ref< Address()> PrivateGen)
Registers LocalVD variable as a private and apply PrivateGen function for it to generate correspondin...
EHScopeStack::stable_iterator getScopeDepth() const
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:637
This represents one expression.
Definition: Expr.h:106
Address getOriginalAllocatedAddress() const
Returns the address for the original alloca instruction.
stable_iterator getInnermostNormalCleanup() const
Returns the innermost normal cleanup on the stack, or stable_end() if there are no normal cleanups...
Definition: EHScopeStack.h:356
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
llvm::function_ref< void(CodeGenFunction &, SourceLocation, const unsigned, const bool)> CodeGenOrderedTy
static ParamValue forIndirect(Address addr)
OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, RValue rvalue)
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
void ForceCleanup()
Force the emission of cleanups now, instead of waiting until this object is destroyed.
static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method)
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:5177
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2706
This represents &#39;#pragma omp target teams distribute parallel for simd&#39; combined directive.
Definition: StmtOpenMP.h:3948
static saved_type save(CodeGenFunction &CGF, type value)
AggValueSlot CreateAggTemp(QualType T, const Twine &Name="tmp")
CreateAggTemp - Create a temporary memory object for the given aggregate type.
#define bool
Definition: stdbool.h:31
unsigned Kind
The kind of cleanup to push: a value from the CleanupKind enumeration.
unsigned Size
The size of the following cleanup object.
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:288
DeclContext * getDeclContext()
Definition: DeclBase.h:427
Represents Objective-C&#39;s @synchronized statement.
Definition: StmtObjC.h:262
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:429
CXXTryStmt - A C++ try block, including all handlers.
Definition: StmtCXX.h:65
~OMPPrivateScope()
Exit scope - all the mapped variables are restored.
This represents &#39;#pragma omp target teams distribute simd&#39; combined directive.
Definition: StmtOpenMP.h:4021
int Depth
Definition: ASTDiff.cpp:191
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
llvm::LLVMContext & getLLVMContext()
QualType getType() const
Definition: Expr.h:128
Checking the value assigned to a _Nonnull pointer. Must not be null.
An RAII object to record that we&#39;re evaluating a statement expression.
This represents &#39;#pragma omp for&#39; directive.
Definition: StmtOpenMP.h:1104
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:2443
This represents &#39;#pragma omp target teams&#39; directive.
Definition: StmtOpenMP.h:3737
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T)
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:904
JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, unsigned Index)
SourceLocation getEnd() const
An object which temporarily prevents a value from being destroyed by aggressive peephole optimization...
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1896
static bool CanThrow(Expr *E, ASTContext &Ctx)
Definition: CFG.cpp:2407
OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, Address SizesArray, unsigned NumberOfTargetItems)
This represents &#39;#pragma omp cancel&#39; directive.
Definition: StmtOpenMP.h:2776
RunCleanupsScope(CodeGenFunction &CGF)
Enter a new cleanup scope.
const LangOptions & getLangOpts() const
ASTContext & getContext() const
do v
Definition: arm_acle.h:78
VarDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:2026
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:35
This represents &#39;#pragma omp flush&#39; directive.
Definition: StmtOpenMP.h:2044
This represents &#39;#pragma omp parallel for simd&#39; directive.
Definition: StmtOpenMP.h:1632
DoStmt - This represents a &#39;do/while&#39; stmt.
Definition: Stmt.h:2185
AsmStmt is the base class for GCCAsmStmt and MSAsmStmt.
Definition: Stmt.h:2520
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, std::initializer_list< llvm::Value **> ValuesToReload={})
Takes the old cleanup stack size and emits the cleanup blocks that have been added.
Definition: CGCleanup.cpp:424
llvm::function_ref< void(CodeGenFunction &, const OMPLoopDirective &, JumpDest)> CodeGenLoopTy
This represents &#39;#pragma omp target enter data&#39; directive.
Definition: StmtOpenMP.h:2404
OMPPrivateScope(CodeGenFunction &CGF)
Enter a new OpenMP private scope.
llvm::SmallVector< VPtr, 4 > VPtrsVector
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:362
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:945
#define false
Definition: stdbool.h:33
MSVCIntrin
Definition: CGBuiltin.cpp:810
Kind
This captures a statement into a function.
Definition: Stmt.h:3105
Represents a call to an inherited base class constructor from an inheriting constructor.
Definition: ExprCXX.h:1448
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5299
void initFullExprCleanup()
Set up the last cleanup that was pushed as a conditional full-expression cleanup. ...
This represents &#39;#pragma omp single&#39; directive.
Definition: StmtOpenMP.h:1376
Encodes a location in the source.
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go...
A saved depth on the scope stack.
Definition: EHScopeStack.h:107
Represents a C++ temporary.
Definition: ExprCXX.h:1185
~RunCleanupsScope()
Exit this cleanup scope, emitting any accumulated cleanups.
llvm::BasicBlock * getUnreachableBlock()
AggValueSlot::Overlap_t overlapForReturnValue()
Determine whether a return value slot may overlap some other object.
void setBeforeOutermostConditional(llvm::Value *value, Address addr)
This is a basic class for representing single OpenMP executable directive.
Definition: StmtOpenMP.h:33
SmallVector< llvm::Value *, 8 > ObjCEHValueStack
ObjCEHValueStack - Stack of Objective-C exception values, used for rethrows.
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1914
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:171
const Decl * getDecl() const
Definition: GlobalDecl.h:69
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:1143
Checking the operand of a cast to a base object.
OpenMPDirectiveKind
OpenMP directives.
Definition: OpenMPKinds.h:23
Represents the declaration of a label.
Definition: Decl.h:469
An aggregate value slot.
Definition: CGValue.h:437
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:684
Per-function PGO state.
Definition: CodeGenPGO.h:28
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2041
void EmitStmt(const Stmt *S, ArrayRef< const Attr *> Attrs=None)
EmitStmt - Emit the code for the statement.
Definition: CGStmt.cpp:46
static type restore(CodeGenFunction &CGF, saved_type value)
OpenMPLinearClauseKind Modifier
Modifier of &#39;linear&#39; clause.
Definition: OpenMPClause.h:102
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
This represents &#39;#pragma omp taskwait&#39; directive.
Definition: StmtOpenMP.h:1927
SanitizerSet SanOpts
Sanitizers enabled for this function.
ObjCCategoryDecl - Represents a category declaration.
Definition: DeclObjC.h:2280
This is a basic class for representing single OpenMP clause.
Definition: OpenMPClause.h:51
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>, and corresponding __opencl_atomic_* for OpenCL 2.0.
Definition: Expr.h:5433
ObjCProtocolExpr used for protocol expression in Objective-C.
Definition: ExprObjC.h:474
TypeCheckKind
Situations in which we might emit a check for the suitability of a pointer or glvalue.
An aligned address.
Definition: Address.h:25
This represents &#39;#pragma omp target&#39; directive.
Definition: StmtOpenMP.h:2288
All available information about a concrete callee.
Definition: CGCall.h:67
LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, AlignmentSource Source=AlignmentSource::Type)
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target)
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
TargetCodeGenInfo - This class organizes various target-specific codegeneration issues, like target-specific attributes, builtins and so on.
Definition: TargetInfo.h:46
Checking the object expression in a non-static data member access.
This represents &#39;#pragma omp ordered&#39; directive.
Definition: StmtOpenMP.h:2099
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3801
void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy)
Emit an aggregate assignment.
static ParamValue forDirect(llvm::Value *value)
QualType getType() const
Definition: CGValue.h:264
This represents &#39;#pragma omp target update&#39; directive.
Definition: StmtOpenMP.h:3040
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:117
uint64_t getCurrentRegionCount() const
Return the counter value of the current region.
Definition: CodeGenPGO.h:54
const CGFunctionInfo * CurFnInfo
void Emit(CodeGenFunction &CGF, Flags flags) override
Emit the cleanup.
static ConstantEmission forReference(llvm::Constant *C)
const TargetCodeGenInfo & getTargetHooks() const
static Destroyer destroyARCStrongImprecise
CXXCtorType
C++ constructor types.
Definition: ABI.h:25
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:3504
JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind)
FunctionArgList - Type for representing both the decl and type of parameters to a function...
Definition: CGCall.h:356
OpaqueValueExpr * getOpaqueValue() const
getOpaqueValue - Return the opaque value placeholder.
Definition: Expr.h:3698
CGFunctionInfo - Class to encapsulate the information about a function definition.
This class organizes the cross-function state that is used while generating LLVM code.
Optional< types::ID > Type
Dataflow Directional Tag Classes.
Class provides a way to call simple version of codegen for OpenMP region, or an advanced with possibl...
[C99 6.4.2.2] - A predefined identifier such as func.
Definition: Expr.h:1758
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1262
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2170
This represents &#39;#pragma omp section&#39; directive.
Definition: StmtOpenMP.h:1314
This represents &#39;#pragma omp teams distribute&#39; directive.
Definition: StmtOpenMP.h:3450
A scope within which we are constructing the fields of an object which might use a CXXDefaultInitExpr...
llvm::LoadInst * CreateAlignedLoad(llvm::Value *Addr, CharUnits Align, const llvm::Twine &Name="")
Definition: CGBuilder.h:91
Checking the bound value in a reference binding.
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we&#39;re currently emitting one branch or the other of a conditio...
This represents &#39;#pragma omp simd&#39; directive.
Definition: StmtOpenMP.h:1039
Represents a &#39;co_yield&#39; expression.
Definition: ExprCXX.h:4502
Header for data within LifetimeExtendedCleanupStack.
Checking the destination of a store. Must be suitably sized and aligned.
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2756
llvm::SmallVector< char, 256 > LifetimeExtendedCleanupStack
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:108
This represents &#39;#pragma omp atomic&#39; directive.
Definition: StmtOpenMP.h:2154
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
bool hasProfileClangInstr() const
Check if Clang profile instrumenation is on.
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:2017
Represents a __leave statement.
Definition: Stmt.h:3070
JumpDest ReturnBlock
ReturnBlock - Unified return block.
llvm::DenseMap< const Decl *, Address > DeclMapTy
Checking the operand of a static_cast to a derived reference type.
virtual StringRef getHelperName() const
Get the name of the capture helper.
static bool hasAggregateEvaluationKind(QualType T)
uint64_t SanitizerMask
Definition: Sanitizers.h:26
SwitchStmt - This represents a &#39;switch&#39; stmt.
Definition: Stmt.h:1886
ObjCImplementationDecl - Represents a class definition - this is where method definitions are specifi...
Definition: DeclObjC.h:2552
API for captured statement code generation.
static saved_type save(CodeGenFunction &CGF, type value)
static bool isObjCMethodWithTypeParams(const T *)
Represents the body of a coroutine.
Definition: StmtCXX.h:302
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4370
llvm::Type * ConvertType(const TypeDecl *T)
Checking the operand of a static_cast to a derived pointer type.
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2312
Represents Objective-C&#39;s collection statement.
Definition: StmtObjC.h:24
CodeGenTypes & getTypes() const
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:3540
Implements C++ ABI-specific code generation functions.
Definition: CGCXXABI.h:44
ObjCEncodeExpr, used for @encode in Objective-C.
Definition: ExprObjC.h:386
T * getAttr() const
Definition: DeclBase.h:527
A stack of loop information corresponding to loop nesting levels.
Definition: CGLoopInfo.h:110
This class organizes the cross-module state that is used while lowering AST types to LLVM types...
Definition: CodeGenTypes.h:119
Represents a call to a CUDA kernel function.
Definition: ExprCXX.h:219
bool isFunctionType() const
Definition: Type.h:6292
Represents a &#39;co_await&#39; expression.
Definition: ExprCXX.h:4419
llvm::AssertingVH< llvm::Instruction > AllocaInsertPt
AllocaInsertPoint - This is an instruction in the entry block before which we prefer to insert alloca...
void pushCleanupTuple(CleanupKind Kind, std::tuple< As... > A)
Push a lazily-created cleanup on the stack. Tuple version.
Definition: EHScopeStack.h:283
bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, Address TempAddr)
Sets the address of the variable LocalVD to be TempAddr in function CGF.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:443
static Destroyer destroyNonTrivialCStruct
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat]...
Definition: APValue.h:38
llvm::Value * LoadCXXVTT()
LoadCXXVTT - Load the VTT parameter to base constructors/destructors have virtual bases...
ARCPreciseLifetime_t
Does an ARC strong l-value have precise lifetime?
Definition: CGValue.h:120
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:513
const Decl * CurFuncDecl
CurFuncDecl - Holds the Decl for the current outermost non-closure context.
A pair of helper functions for a __block variable.
GotoStmt - This represents a direct goto.
Definition: Stmt.h:2304
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const Expr *e)
X
Add a minimal nested name specifier fixit hint to allow lookup of a tag name from an outer enclosing ...
Definition: SemaDecl.cpp:13954
void setCurrentStmt(const Stmt *S)
If the execution count for the current statement is known, record that as the current count...
Definition: CodeGenPGO.h:74
llvm::DenseMap< const VarDecl *, llvm::Value * > NRVOFlags
A mapping from NRVO variables to the flags used to indicate when the NRVO has been applied to this va...
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2682
void unprotectFromPeepholes(PeepholeProtection protection)
A non-RAII class containing all the information about a bound opaque value.
This represents &#39;#pragma omp target parallel&#39; directive.
Definition: StmtOpenMP.h:2521
Represents a C++ struct/union/class.
Definition: DeclCXX.h:300
ContinueStmt - This represents a continue.
Definition: Stmt.h:2384
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block, taking care to avoid creation of branches from dummy blocks.
Definition: CGStmt.cpp:463
void EmitAggregateCopyCtor(LValue Dest, LValue Src, AggValueSlot::Overlap_t MayOverlap)
llvm::PointerIntPair< llvm::Value *, 1, bool > saved_type
llvm::BasicBlock * getInvokeDest()
BinaryConditionalOperator - The GNU extension to the conditional operator which allows the middle ope...
Definition: Expr.h:3655
LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, AlignmentSource Source=AlignmentSource::Type)
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:6099
A specialization of Address that requires the address to be an LLVM Constant.
Definition: Address.h:75
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1945
static type restore(CodeGenFunction &CGF, saved_type value)
BuiltinCheckKind
Specifies which type of sanitizer check to apply when handling a particular builtin.
WhileStmt - This represents a &#39;while&#39; stmt.
Definition: Stmt.h:2063
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1236
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel)
unsigned kind
All of the diagnostics that can be emitted by the frontend.
Definition: DiagnosticIDs.h:61
Represents Objective-C&#39;s @try ... @catch ... @finally statement.
Definition: StmtObjC.h:154
capture_iterator capture_end() const
Retrieve an iterator pointing past the end of the sequence of captures.
Definition: Stmt.h:3253
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:52
This represents &#39;#pragma omp taskloop simd&#39; directive.
Definition: StmtOpenMP.h:2906
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1566
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2396
CGCapturedStmtInfo * CapturedStmtInfo
void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag, As... A)
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::Instruction **callOrInvoke=nullptr)
const llvm::function_ref< void(CodeGenFunction &, llvm::Value *, const OMPTaskDataTy &)> TaskGenTy
This represents &#39;#pragma omp sections&#39; directive.
Definition: StmtOpenMP.h:1246
Struct with all information about dynamic [sub]class needed to set vptr.
bool hasVolatileMember(QualType T)
hasVolatileMember - returns true if aggregate type has a volatile member.
This represents &#39;#pragma omp target data&#39; directive.
Definition: StmtOpenMP.h:2346
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1041
This structure provides a set of types that are commonly used during IR emission. ...
BreakStmt - This represents a break.
Definition: Stmt.h:2410
void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr)
Definition: CGDecl.cpp:1225
CapturedRegionKind
The different kinds of captured statement.
Definition: CapturedStmt.h:17
void EmitBranchThroughCleanup(JumpDest Dest)
EmitBranchThroughCleanup - Emit a branch from the current insert block through the normal cleanup han...
Definition: CGCleanup.cpp:1050
QualType getType() const
Definition: Decl.h:648
#define true
Definition: stdbool.h:32
A trivial tuple used to represent a source range.
LValue - This represents an lvalue references.
Definition: CGValue.h:167
An abstract representation of regular/ObjC call/message targets.
This represents &#39;#pragma omp taskyield&#39; directive.
Definition: StmtOpenMP.h:1839
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:147
This represents a decl that may have a name.
Definition: Decl.h:249
This represents &#39;#pragma omp distribute parallel for simd&#39; composite directive.
Definition: StmtOpenMP.h:3179
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2971
This represents &#39;#pragma omp parallel sections&#39; directive.
Definition: StmtOpenMP.h:1700
A Microsoft C++ __uuidof expression, which gets the _GUID that corresponds to the supplied type or ex...
Definition: ExprCXX.h:887
const LangOptions & getLangOpts() const
Expr * getCommon() const
getCommon - Return the common expression, written to the left of the condition.
Definition: Expr.h:3695
bool apply(CodeGenFunction &CGF)
Applies new addresses to the list of the variables.
SourceLocation getBegin() const
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:260
OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, LValue lvalue)
Represents Objective-C&#39;s @autoreleasepool Statement.
Definition: StmtObjC.h:345
OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
Build the opaque value mapping for an OpaqueValueExpr whose source expression is set to the expressio...
Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, bool followForward=true)
BuildBlockByrefAddress - Computes the location of the data in a variable which is declared as __block...
Definition: CGBlocks.cpp:2702
bool isLocalVarDeclOrParm() const
Similar to isLocalVarDecl but also includes parameters.
Definition: Decl.h:1114
This represents &#39;#pragma omp target parallel for&#39; directive.
Definition: StmtOpenMP.h:2581
llvm::SmallVector< const JumpDest *, 2 > SEHTryEpilogueStack
static OMPLinearClause * Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef< Expr *> VL, ArrayRef< Expr *> PL, ArrayRef< Expr *> IL, Expr *Step, Expr *CalcStep, Stmt *PreInit, Expr *PostUpdate)
Creates clause with a list of variables VL and a linear step Step.
bool Privatize()
Privatizes local variables previously registered as private.
void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty)
unsigned IsConditional
Whether this is a conditional cleanup.
This represents &#39;#pragma omp taskloop&#39; directive.
Definition: StmtOpenMP.h:2841