clang  8.0.0
ThreadSafetyCommon.cpp
Go to the documentation of this file.
1 //===- ThreadSafetyCommon.cpp ---------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the interfaces declared in ThreadSafetyCommon.h
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclGroup.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/Stmt.h"
24 #include "clang/AST/Type.h"
26 #include "clang/Analysis/CFG.h"
27 #include "clang/Basic/LLVM.h"
29 #include "clang/Basic/Specifiers.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Support/Casting.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <string>
35 #include <utility>
36 
37 using namespace clang;
38 using namespace threadSafety;
39 
40 // From ThreadSafetyUtil.h
42  switch (CE->getStmtClass()) {
43  case Stmt::IntegerLiteralClass:
44  return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
45  case Stmt::StringLiteralClass: {
46  std::string ret("\"");
47  ret += cast<StringLiteral>(CE)->getString();
48  ret += "\"";
49  return ret;
50  }
51  case Stmt::CharacterLiteralClass:
52  case Stmt::CXXNullPtrLiteralExprClass:
53  case Stmt::GNUNullExprClass:
54  case Stmt::CXXBoolLiteralExprClass:
55  case Stmt::FloatingLiteralClass:
56  case Stmt::ImaginaryLiteralClass:
57  case Stmt::ObjCStringLiteralClass:
58  default:
59  return "#lit";
60  }
61 }
62 
63 // Return true if E is a variable that points to an incomplete Phi node.
64 static bool isIncompletePhi(const til::SExpr *E) {
65  if (const auto *Ph = dyn_cast<til::Phi>(E))
66  return Ph->status() == til::Phi::PH_Incomplete;
67  return false;
68 }
69 
71 
73  auto It = SMap.find(S);
74  if (It != SMap.end())
75  return It->second;
76  return nullptr;
77 }
78 
80  Walker.walk(*this);
81  return Scfg;
82 }
83 
84 static bool isCalleeArrow(const Expr *E) {
85  const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
86  return ME ? ME->isArrow() : false;
87 }
88 
89 /// Translate a clang expression in an attribute to a til::SExpr.
90 /// Constructs the context from D, DeclExp, and SelfDecl.
91 ///
92 /// \param AttrExp The expression to translate.
93 /// \param D The declaration to which the attribute is attached.
94 /// \param DeclExp An expression involving the Decl to which the attribute
95 /// is attached. E.g. the call to a function.
97  const NamedDecl *D,
98  const Expr *DeclExp,
99  VarDecl *SelfDecl) {
100  // If we are processing a raw attribute expression, with no substitutions.
101  if (!DeclExp)
102  return translateAttrExpr(AttrExp, nullptr);
103 
104  CallingContext Ctx(nullptr, D);
105 
106  // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
107  // for formal parameters when we call buildMutexID later.
108  if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) {
109  Ctx.SelfArg = ME->getBase();
110  Ctx.SelfArrow = ME->isArrow();
111  } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
112  Ctx.SelfArg = CE->getImplicitObjectArgument();
113  Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
114  Ctx.NumArgs = CE->getNumArgs();
115  Ctx.FunArgs = CE->getArgs();
116  } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) {
117  Ctx.NumArgs = CE->getNumArgs();
118  Ctx.FunArgs = CE->getArgs();
119  } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
120  Ctx.SelfArg = nullptr; // Will be set below
121  Ctx.NumArgs = CE->getNumArgs();
122  Ctx.FunArgs = CE->getArgs();
123  } else if (D && isa<CXXDestructorDecl>(D)) {
124  // There's no such thing as a "destructor call" in the AST.
125  Ctx.SelfArg = DeclExp;
126  }
127 
128  // Hack to handle constructors, where self cannot be recovered from
129  // the expression.
130  if (SelfDecl && !Ctx.SelfArg) {
131  DeclRefExpr SelfDRE(SelfDecl->getASTContext(), SelfDecl, false,
132  SelfDecl->getType(), VK_LValue,
133  SelfDecl->getLocation());
134  Ctx.SelfArg = &SelfDRE;
135 
136  // If the attribute has no arguments, then assume the argument is "this".
137  if (!AttrExp)
138  return translateAttrExpr(Ctx.SelfArg, nullptr);
139  else // For most attributes.
140  return translateAttrExpr(AttrExp, &Ctx);
141  }
142 
143  // If the attribute has no arguments, then assume the argument is "this".
144  if (!AttrExp)
145  return translateAttrExpr(Ctx.SelfArg, nullptr);
146  else // For most attributes.
147  return translateAttrExpr(AttrExp, &Ctx);
148 }
149 
150 /// Translate a clang expression in an attribute to a til::SExpr.
151 // This assumes a CallingContext has already been created.
153  CallingContext *Ctx) {
154  if (!AttrExp)
155  return CapabilityExpr(nullptr, false);
156 
157  if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
158  if (SLit->getString() == StringRef("*"))
159  // The "*" expr is a universal lock, which essentially turns off
160  // checks until it is removed from the lockset.
161  return CapabilityExpr(new (Arena) til::Wildcard(), false);
162  else
163  // Ignore other string literals for now.
164  return CapabilityExpr(nullptr, false);
165  }
166 
167  bool Neg = false;
168  if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
169  if (OE->getOperator() == OO_Exclaim) {
170  Neg = true;
171  AttrExp = OE->getArg(0);
172  }
173  }
174  else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
175  if (UO->getOpcode() == UO_LNot) {
176  Neg = true;
177  AttrExp = UO->getSubExpr();
178  }
179  }
180 
181  til::SExpr *E = translate(AttrExp, Ctx);
182 
183  // Trap mutex expressions like nullptr, or 0.
184  // Any literal value is nonsense.
185  if (!E || isa<til::Literal>(E))
186  return CapabilityExpr(nullptr, false);
187 
188  // Hack to deal with smart pointers -- strip off top-level pointer casts.
189  if (const auto *CE = dyn_cast_or_null<til::Cast>(E)) {
190  if (CE->castOpcode() == til::CAST_objToPtr)
191  return CapabilityExpr(CE->expr(), Neg);
192  }
193  return CapabilityExpr(E, Neg);
194 }
195 
196 // Translate a clang statement or expression to a TIL expression.
197 // Also performs substitution of variables; Ctx provides the context.
198 // Dispatches on the type of S.
200  if (!S)
201  return nullptr;
202 
203  // Check if S has already been translated and cached.
204  // This handles the lookup of SSA names for DeclRefExprs here.
205  if (til::SExpr *E = lookupStmt(S))
206  return E;
207 
208  switch (S->getStmtClass()) {
209  case Stmt::DeclRefExprClass:
210  return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
211  case Stmt::CXXThisExprClass:
212  return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
213  case Stmt::MemberExprClass:
214  return translateMemberExpr(cast<MemberExpr>(S), Ctx);
215  case Stmt::ObjCIvarRefExprClass:
216  return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx);
217  case Stmt::CallExprClass:
218  return translateCallExpr(cast<CallExpr>(S), Ctx);
219  case Stmt::CXXMemberCallExprClass:
220  return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
221  case Stmt::CXXOperatorCallExprClass:
222  return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
223  case Stmt::UnaryOperatorClass:
224  return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
225  case Stmt::BinaryOperatorClass:
226  case Stmt::CompoundAssignOperatorClass:
227  return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
228 
229  case Stmt::ArraySubscriptExprClass:
230  return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
231  case Stmt::ConditionalOperatorClass:
232  return translateAbstractConditionalOperator(
233  cast<ConditionalOperator>(S), Ctx);
234  case Stmt::BinaryConditionalOperatorClass:
235  return translateAbstractConditionalOperator(
236  cast<BinaryConditionalOperator>(S), Ctx);
237 
238  // We treat these as no-ops
239  case Stmt::ConstantExprClass:
240  return translate(cast<ConstantExpr>(S)->getSubExpr(), Ctx);
241  case Stmt::ParenExprClass:
242  return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
243  case Stmt::ExprWithCleanupsClass:
244  return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
245  case Stmt::CXXBindTemporaryExprClass:
246  return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
247  case Stmt::MaterializeTemporaryExprClass:
248  return translate(cast<MaterializeTemporaryExpr>(S)->GetTemporaryExpr(),
249  Ctx);
250 
251  // Collect all literals
252  case Stmt::CharacterLiteralClass:
253  case Stmt::CXXNullPtrLiteralExprClass:
254  case Stmt::GNUNullExprClass:
255  case Stmt::CXXBoolLiteralExprClass:
256  case Stmt::FloatingLiteralClass:
257  case Stmt::ImaginaryLiteralClass:
258  case Stmt::IntegerLiteralClass:
259  case Stmt::StringLiteralClass:
260  case Stmt::ObjCStringLiteralClass:
261  return new (Arena) til::Literal(cast<Expr>(S));
262 
263  case Stmt::DeclStmtClass:
264  return translateDeclStmt(cast<DeclStmt>(S), Ctx);
265  default:
266  break;
267  }
268  if (const auto *CE = dyn_cast<CastExpr>(S))
269  return translateCastExpr(CE, Ctx);
270 
271  return new (Arena) til::Undefined(S);
272 }
273 
274 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
275  CallingContext *Ctx) {
276  const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
277 
278  // Function parameters require substitution and/or renaming.
279  if (const auto *PV = dyn_cast_or_null<ParmVarDecl>(VD)) {
280  const auto *FD =
281  cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
282  unsigned I = PV->getFunctionScopeIndex();
283 
284  if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) {
285  // Substitute call arguments for references to function parameters
286  assert(I < Ctx->NumArgs);
287  return translate(Ctx->FunArgs[I], Ctx->Prev);
288  }
289  // Map the param back to the param of the original function declaration
290  // for consistent comparisons.
291  VD = FD->getParamDecl(I);
292  }
293 
294  // For non-local variables, treat it as a reference to a named object.
295  return new (Arena) til::LiteralPtr(VD);
296 }
297 
298 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
299  CallingContext *Ctx) {
300  // Substitute for 'this'
301  if (Ctx && Ctx->SelfArg)
302  return translate(Ctx->SelfArg, Ctx->Prev);
303  assert(SelfVar && "We have no variable for 'this'!");
304  return SelfVar;
305 }
306 
307 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
308  if (const auto *V = dyn_cast<til::Variable>(E))
309  return V->clangDecl();
310  if (const auto *Ph = dyn_cast<til::Phi>(E))
311  return Ph->clangDecl();
312  if (const auto *P = dyn_cast<til::Project>(E))
313  return P->clangDecl();
314  if (const auto *L = dyn_cast<til::LiteralPtr>(E))
315  return L->clangDecl();
316  return nullptr;
317 }
318 
319 static bool hasAnyPointerType(const til::SExpr *E) {
320  auto *VD = getValueDeclFromSExpr(E);
321  if (VD && VD->getType()->isAnyPointerType())
322  return true;
323  if (const auto *C = dyn_cast<til::Cast>(E))
324  return C->castOpcode() == til::CAST_objToPtr;
325 
326  return false;
327 }
328 
329 // Grab the very first declaration of virtual method D
331  while (true) {
332  D = D->getCanonicalDecl();
333  auto OverriddenMethods = D->overridden_methods();
334  if (OverriddenMethods.begin() == OverriddenMethods.end())
335  return D; // Method does not override anything
336  // FIXME: this does not work with multiple inheritance.
337  D = *OverriddenMethods.begin();
338  }
339  return nullptr;
340 }
341 
342 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
343  CallingContext *Ctx) {
344  til::SExpr *BE = translate(ME->getBase(), Ctx);
345  til::SExpr *E = new (Arena) til::SApply(BE);
346 
347  const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
348  if (const auto *VD = dyn_cast<CXXMethodDecl>(D))
349  D = getFirstVirtualDecl(VD);
350 
351  til::Project *P = new (Arena) til::Project(E, D);
352  if (hasAnyPointerType(BE))
353  P->setArrow(true);
354  return P;
355 }
356 
357 til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE,
358  CallingContext *Ctx) {
359  til::SExpr *BE = translate(IVRE->getBase(), Ctx);
360  til::SExpr *E = new (Arena) til::SApply(BE);
361 
362  const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl());
363 
364  til::Project *P = new (Arena) til::Project(E, D);
365  if (hasAnyPointerType(BE))
366  P->setArrow(true);
367  return P;
368 }
369 
370 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
371  CallingContext *Ctx,
372  const Expr *SelfE) {
373  if (CapabilityExprMode) {
374  // Handle LOCK_RETURNED
375  if (const FunctionDecl *FD = CE->getDirectCallee()) {
376  FD = FD->getMostRecentDecl();
377  if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) {
378  CallingContext LRCallCtx(Ctx);
379  LRCallCtx.AttrDecl = CE->getDirectCallee();
380  LRCallCtx.SelfArg = SelfE;
381  LRCallCtx.NumArgs = CE->getNumArgs();
382  LRCallCtx.FunArgs = CE->getArgs();
383  return const_cast<til::SExpr *>(
384  translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
385  }
386  }
387  }
388 
389  til::SExpr *E = translate(CE->getCallee(), Ctx);
390  for (const auto *Arg : CE->arguments()) {
391  til::SExpr *A = translate(Arg, Ctx);
392  E = new (Arena) til::Apply(E, A);
393  }
394  return new (Arena) til::Call(E, CE);
395 }
396 
397 til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
398  const CXXMemberCallExpr *ME, CallingContext *Ctx) {
399  if (CapabilityExprMode) {
400  // Ignore calls to get() on smart pointers.
401  if (ME->getMethodDecl()->getNameAsString() == "get" &&
402  ME->getNumArgs() == 0) {
403  auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
404  return new (Arena) til::Cast(til::CAST_objToPtr, E);
405  // return E;
406  }
407  }
408  return translateCallExpr(cast<CallExpr>(ME), Ctx,
410 }
411 
412 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
413  const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
414  if (CapabilityExprMode) {
415  // Ignore operator * and operator -> on smart pointers.
417  if (k == OO_Star || k == OO_Arrow) {
418  auto *E = translate(OCE->getArg(0), Ctx);
419  return new (Arena) til::Cast(til::CAST_objToPtr, E);
420  // return E;
421  }
422  }
423  return translateCallExpr(cast<CallExpr>(OCE), Ctx);
424 }
425 
426 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
427  CallingContext *Ctx) {
428  switch (UO->getOpcode()) {
429  case UO_PostInc:
430  case UO_PostDec:
431  case UO_PreInc:
432  case UO_PreDec:
433  return new (Arena) til::Undefined(UO);
434 
435  case UO_AddrOf:
436  if (CapabilityExprMode) {
437  // interpret &Graph::mu_ as an existential.
438  if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
439  if (DRE->getDecl()->isCXXInstanceMember()) {
440  // This is a pointer-to-member expression, e.g. &MyClass::mu_.
441  // We interpret this syntax specially, as a wildcard.
442  auto *W = new (Arena) til::Wildcard();
443  return new (Arena) til::Project(W, DRE->getDecl());
444  }
445  }
446  }
447  // otherwise, & is a no-op
448  return translate(UO->getSubExpr(), Ctx);
449 
450  // We treat these as no-ops
451  case UO_Deref:
452  case UO_Plus:
453  return translate(UO->getSubExpr(), Ctx);
454 
455  case UO_Minus:
456  return new (Arena)
458  case UO_Not:
459  return new (Arena)
461  case UO_LNot:
462  return new (Arena)
464 
465  // Currently unsupported
466  case UO_Real:
467  case UO_Imag:
468  case UO_Extension:
469  case UO_Coawait:
470  return new (Arena) til::Undefined(UO);
471  }
472  return new (Arena) til::Undefined(UO);
473 }
474 
475 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
476  const BinaryOperator *BO,
477  CallingContext *Ctx, bool Reverse) {
478  til::SExpr *E0 = translate(BO->getLHS(), Ctx);
479  til::SExpr *E1 = translate(BO->getRHS(), Ctx);
480  if (Reverse)
481  return new (Arena) til::BinaryOp(Op, E1, E0);
482  else
483  return new (Arena) til::BinaryOp(Op, E0, E1);
484 }
485 
486 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
487  const BinaryOperator *BO,
488  CallingContext *Ctx,
489  bool Assign) {
490  const Expr *LHS = BO->getLHS();
491  const Expr *RHS = BO->getRHS();
492  til::SExpr *E0 = translate(LHS, Ctx);
493  til::SExpr *E1 = translate(RHS, Ctx);
494 
495  const ValueDecl *VD = nullptr;
496  til::SExpr *CV = nullptr;
497  if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
498  VD = DRE->getDecl();
499  CV = lookupVarDecl(VD);
500  }
501 
502  if (!Assign) {
503  til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
504  E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
505  E1 = addStatement(E1, nullptr, VD);
506  }
507  if (VD && CV)
508  return updateVarDecl(VD, E1);
509  return new (Arena) til::Store(E0, E1);
510 }
511 
512 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
513  CallingContext *Ctx) {
514  switch (BO->getOpcode()) {
515  case BO_PtrMemD:
516  case BO_PtrMemI:
517  return new (Arena) til::Undefined(BO);
518 
519  case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx);
520  case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx);
521  case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx);
522  case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx);
523  case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx);
524  case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx);
525  case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx);
526  case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx);
527  case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true);
528  case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx);
529  case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true);
530  case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx);
531  case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx);
532  case BO_Cmp: return translateBinOp(til::BOP_Cmp, BO, Ctx);
533  case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx);
534  case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx);
535  case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx);
536  case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
537  case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx);
538 
539  case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true);
540  case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
541  case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
542  case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
543  case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
544  case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
545  case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
546  case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
547  case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
548  case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
549  case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx);
550 
551  case BO_Comma:
552  // The clang CFG should have already processed both sides.
553  return translate(BO->getRHS(), Ctx);
554  }
555  return new (Arena) til::Undefined(BO);
556 }
557 
558 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
559  CallingContext *Ctx) {
560  CastKind K = CE->getCastKind();
561  switch (K) {
562  case CK_LValueToRValue: {
563  if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
564  til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
565  if (E0)
566  return E0;
567  }
568  til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
569  return E0;
570  // FIXME!! -- get Load working properly
571  // return new (Arena) til::Load(E0);
572  }
573  case CK_NoOp:
574  case CK_DerivedToBase:
575  case CK_UncheckedDerivedToBase:
576  case CK_ArrayToPointerDecay:
577  case CK_FunctionToPointerDecay: {
578  til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
579  return E0;
580  }
581  default: {
582  // FIXME: handle different kinds of casts.
583  til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
584  if (CapabilityExprMode)
585  return E0;
586  return new (Arena) til::Cast(til::CAST_none, E0);
587  }
588  }
589 }
590 
591 til::SExpr *
592 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
593  CallingContext *Ctx) {
594  til::SExpr *E0 = translate(E->getBase(), Ctx);
595  til::SExpr *E1 = translate(E->getIdx(), Ctx);
596  return new (Arena) til::ArrayIndex(E0, E1);
597 }
598 
599 til::SExpr *
600 SExprBuilder::translateAbstractConditionalOperator(
602  auto *C = translate(CO->getCond(), Ctx);
603  auto *T = translate(CO->getTrueExpr(), Ctx);
604  auto *E = translate(CO->getFalseExpr(), Ctx);
605  return new (Arena) til::IfThenElse(C, T, E);
606 }
607 
608 til::SExpr *
609 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
610  DeclGroupRef DGrp = S->getDeclGroup();
611  for (auto I : DGrp) {
612  if (auto *VD = dyn_cast_or_null<VarDecl>(I)) {
613  Expr *E = VD->getInit();
614  til::SExpr* SE = translate(E, Ctx);
615 
616  // Add local variables with trivial type to the variable map
617  QualType T = VD->getType();
618  if (T.isTrivialType(VD->getASTContext()))
619  return addVarDecl(VD, SE);
620  else {
621  // TODO: add alloca
622  }
623  }
624  }
625  return nullptr;
626 }
627 
628 // If (E) is non-trivial, then add it to the current basic block, and
629 // update the statement map so that S refers to E. Returns a new variable
630 // that refers to E.
631 // If E is trivial returns E.
632 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
633  const ValueDecl *VD) {
634  if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
635  return E;
636  if (VD)
637  E = new (Arena) til::Variable(E, VD);
638  CurrentInstructions.push_back(E);
639  if (S)
640  insertStmt(S, E);
641  return E;
642 }
643 
644 // Returns the current value of VD, if known, and nullptr otherwise.
645 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
646  auto It = LVarIdxMap.find(VD);
647  if (It != LVarIdxMap.end()) {
648  assert(CurrentLVarMap[It->second].first == VD);
649  return CurrentLVarMap[It->second].second;
650  }
651  return nullptr;
652 }
653 
654 // if E is a til::Variable, update its clangDecl.
655 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
656  if (!E)
657  return;
658  if (auto *V = dyn_cast<til::Variable>(E)) {
659  if (!V->clangDecl())
660  V->setClangDecl(VD);
661  }
662 }
663 
664 // Adds a new variable declaration.
665 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
666  maybeUpdateVD(E, VD);
667  LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
668  CurrentLVarMap.makeWritable();
669  CurrentLVarMap.push_back(std::make_pair(VD, E));
670  return E;
671 }
672 
673 // Updates a current variable declaration. (E.g. by assignment)
674 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
675  maybeUpdateVD(E, VD);
676  auto It = LVarIdxMap.find(VD);
677  if (It == LVarIdxMap.end()) {
678  til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
679  til::SExpr *St = new (Arena) til::Store(Ptr, E);
680  return St;
681  }
682  CurrentLVarMap.makeWritable();
683  CurrentLVarMap.elem(It->second).second = E;
684  return E;
685 }
686 
687 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
688 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
689 // If E == null, this is a backedge and will be set later.
690 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
691  unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
692  assert(ArgIndex > 0 && ArgIndex < NPreds);
693 
694  til::SExpr *CurrE = CurrentLVarMap[i].second;
695  if (CurrE->block() == CurrentBB) {
696  // We already have a Phi node in the current block,
697  // so just add the new variable to the Phi node.
698  auto *Ph = dyn_cast<til::Phi>(CurrE);
699  assert(Ph && "Expecting Phi node.");
700  if (E)
701  Ph->values()[ArgIndex] = E;
702  return;
703  }
704 
705  // Make a new phi node: phi(..., E)
706  // All phi args up to the current index are set to the current value.
707  til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
708  Ph->values().setValues(NPreds, nullptr);
709  for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
710  Ph->values()[PIdx] = CurrE;
711  if (E)
712  Ph->values()[ArgIndex] = E;
713  Ph->setClangDecl(CurrentLVarMap[i].first);
714  // If E is from a back-edge, or either E or CurrE are incomplete, then
715  // mark this node as incomplete; we may need to remove it later.
716  if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE))
718 
719  // Add Phi node to current block, and update CurrentLVarMap[i]
720  CurrentArguments.push_back(Ph);
721  if (Ph->status() == til::Phi::PH_Incomplete)
722  IncompleteArgs.push_back(Ph);
723 
724  CurrentLVarMap.makeWritable();
725  CurrentLVarMap.elem(i).second = Ph;
726 }
727 
728 // Merge values from Map into the current variable map.
729 // This will construct Phi nodes in the current basic block as necessary.
730 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
731  assert(CurrentBlockInfo && "Not processing a block!");
732 
733  if (!CurrentLVarMap.valid()) {
734  // Steal Map, using copy-on-write.
735  CurrentLVarMap = std::move(Map);
736  return;
737  }
738  if (CurrentLVarMap.sameAs(Map))
739  return; // Easy merge: maps from different predecessors are unchanged.
740 
741  unsigned NPreds = CurrentBB->numPredecessors();
742  unsigned ESz = CurrentLVarMap.size();
743  unsigned MSz = Map.size();
744  unsigned Sz = std::min(ESz, MSz);
745 
746  for (unsigned i = 0; i < Sz; ++i) {
747  if (CurrentLVarMap[i].first != Map[i].first) {
748  // We've reached the end of variables in common.
749  CurrentLVarMap.makeWritable();
750  CurrentLVarMap.downsize(i);
751  break;
752  }
753  if (CurrentLVarMap[i].second != Map[i].second)
754  makePhiNodeVar(i, NPreds, Map[i].second);
755  }
756  if (ESz > MSz) {
757  CurrentLVarMap.makeWritable();
758  CurrentLVarMap.downsize(Map.size());
759  }
760 }
761 
762 // Merge a back edge into the current variable map.
763 // This will create phi nodes for all variables in the variable map.
764 void SExprBuilder::mergeEntryMapBackEdge() {
765  // We don't have definitions for variables on the backedge, because we
766  // haven't gotten that far in the CFG. Thus, when encountering a back edge,
767  // we conservatively create Phi nodes for all variables. Unnecessary Phi
768  // nodes will be marked as incomplete, and stripped out at the end.
769  //
770  // An Phi node is unnecessary if it only refers to itself and one other
771  // variable, e.g. x = Phi(y, y, x) can be reduced to x = y.
772 
773  assert(CurrentBlockInfo && "Not processing a block!");
774 
775  if (CurrentBlockInfo->HasBackEdges)
776  return;
777  CurrentBlockInfo->HasBackEdges = true;
778 
779  CurrentLVarMap.makeWritable();
780  unsigned Sz = CurrentLVarMap.size();
781  unsigned NPreds = CurrentBB->numPredecessors();
782 
783  for (unsigned i = 0; i < Sz; ++i)
784  makePhiNodeVar(i, NPreds, nullptr);
785 }
786 
787 // Update the phi nodes that were initially created for a back edge
788 // once the variable definitions have been computed.
789 // I.e., merge the current variable map into the phi nodes for Blk.
790 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
791  til::BasicBlock *BB = lookupBlock(Blk);
792  unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
793  assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
794 
795  for (til::SExpr *PE : BB->arguments()) {
796  auto *Ph = dyn_cast_or_null<til::Phi>(PE);
797  assert(Ph && "Expecting Phi Node.");
798  assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
799 
800  til::SExpr *E = lookupVarDecl(Ph->clangDecl());
801  assert(E && "Couldn't find local variable for Phi node.");
802  Ph->values()[ArgIndex] = E;
803  }
804 }
805 
806 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
807  const CFGBlock *First) {
808  // Perform initial setup operations.
809  unsigned NBlocks = Cfg->getNumBlockIDs();
810  Scfg = new (Arena) til::SCFG(Arena, NBlocks);
811 
812  // allocate all basic blocks immediately, to handle forward references.
813  BBInfo.resize(NBlocks);
814  BlockMap.resize(NBlocks, nullptr);
815  // create map from clang blockID to til::BasicBlocks
816  for (auto *B : *Cfg) {
817  auto *BB = new (Arena) til::BasicBlock(Arena);
818  BB->reserveInstructions(B->size());
819  BlockMap[B->getBlockID()] = BB;
820  }
821 
822  CurrentBB = lookupBlock(&Cfg->getEntry());
823  auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
824  : cast<FunctionDecl>(D)->parameters();
825  for (auto *Pm : Parms) {
826  QualType T = Pm->getType();
827  if (!T.isTrivialType(Pm->getASTContext()))
828  continue;
829 
830  // Add parameters to local variable map.
831  // FIXME: right now we emulate params with loads; that should be fixed.
832  til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
833  til::SExpr *Ld = new (Arena) til::Load(Lp);
834  til::SExpr *V = addStatement(Ld, nullptr, Pm);
835  addVarDecl(Pm, V);
836  }
837 }
838 
839 void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
840  // Initialize TIL basic block and add it to the CFG.
841  CurrentBB = lookupBlock(B);
842  CurrentBB->reservePredecessors(B->pred_size());
843  Scfg->add(CurrentBB);
844 
845  CurrentBlockInfo = &BBInfo[B->getBlockID()];
846 
847  // CurrentLVarMap is moved to ExitMap on block exit.
848  // FIXME: the entry block will hold function parameters.
849  // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
850 }
851 
852 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
853  // Compute CurrentLVarMap on entry from ExitMaps of predecessors
854 
855  CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
856  BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
857  assert(PredInfo->UnprocessedSuccessors > 0);
858 
859  if (--PredInfo->UnprocessedSuccessors == 0)
860  mergeEntryMap(std::move(PredInfo->ExitMap));
861  else
862  mergeEntryMap(PredInfo->ExitMap.clone());
863 
864  ++CurrentBlockInfo->ProcessedPredecessors;
865 }
866 
867 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
868  mergeEntryMapBackEdge();
869 }
870 
871 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
872  // The merge*() methods have created arguments.
873  // Push those arguments onto the basic block.
874  CurrentBB->arguments().reserve(
875  static_cast<unsigned>(CurrentArguments.size()), Arena);
876  for (auto *A : CurrentArguments)
877  CurrentBB->addArgument(A);
878 }
879 
880 void SExprBuilder::handleStatement(const Stmt *S) {
881  til::SExpr *E = translate(S, nullptr);
882  addStatement(E, S);
883 }
884 
885 void SExprBuilder::handleDestructorCall(const VarDecl *VD,
886  const CXXDestructorDecl *DD) {
887  til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
888  til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
889  til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
890  til::SExpr *E = new (Arena) til::Call(Ap);
891  addStatement(E, nullptr);
892 }
893 
894 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
895  CurrentBB->instructions().reserve(
896  static_cast<unsigned>(CurrentInstructions.size()), Arena);
897  for (auto *V : CurrentInstructions)
898  CurrentBB->addInstruction(V);
899 
900  // Create an appropriate terminator
901  unsigned N = B->succ_size();
902  auto It = B->succ_begin();
903  if (N == 1) {
904  til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
905  // TODO: set index
906  unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
907  auto *Tm = new (Arena) til::Goto(BB, Idx);
908  CurrentBB->setTerminator(Tm);
909  }
910  else if (N == 2) {
911  til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
912  til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
913  ++It;
914  til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
915  // FIXME: make sure these aren't critical edges.
916  auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
917  CurrentBB->setTerminator(Tm);
918  }
919 }
920 
921 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
922  ++CurrentBlockInfo->UnprocessedSuccessors;
923 }
924 
925 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
926  mergePhiNodesBackEdge(Succ);
927  ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
928 }
929 
930 void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
931  CurrentArguments.clear();
932  CurrentInstructions.clear();
933  CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
934  CurrentBB = nullptr;
935  CurrentBlockInfo = nullptr;
936 }
937 
938 void SExprBuilder::exitCFG(const CFGBlock *Last) {
939  for (auto *Ph : IncompleteArgs) {
940  if (Ph->status() == til::Phi::PH_Incomplete)
942  }
943 
944  CurrentArguments.clear();
945  CurrentInstructions.clear();
946  IncompleteArgs.clear();
947 }
948 
949 /*
950 namespace {
951 
952 class TILPrinter :
953  public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
954 
955 } // namespace
956 
957 namespace clang {
958 namespace threadSafety {
959 
960 void printSCFG(CFGWalker &Walker) {
961  llvm::BumpPtrAllocator Bpa;
962  til::MemRegionRef Arena(&Bpa);
963  SExprBuilder SxBuilder(Arena);
964  til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
965  TILPrinter::print(Scfg, llvm::errs());
966 }
967 
968 } // namespace threadSafety
969 } // namespace clang
970 */
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
Simple arithmetic unary operations, e.g.
static const Decl * getCanonicalDecl(const Decl *D)
Represents a function declaration or definition.
Definition: Decl.h:1738
Apply a self-argument to a self-applicable function.
Expr ** getArgs()
Retrieve the call arguments.
Definition: Expr.h:2543
til::SExpr * lookupStmt(const Stmt *S)
A (possibly-)qualified type.
Definition: Type.h:638
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2773
A conditional branch to two other blocks.
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2553
succ_iterator succ_begin()
Definition: CFG.h:751
Stmt - This represents one statement.
Definition: Stmt.h:66
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2540
C Language Family Type Representation.
Expr * getBase() const
Definition: Expr.h:2767
unsigned getBlockID() const
Definition: CFG.h:856
Expr * getImplicitObjectArgument() const
Retrieves the implicit object argument for the member call.
Definition: ExprCXX.cpp:640
Opcode getOpcode() const
Definition: Expr.h:3322
StringRef P
til::SExpr * translate(const Stmt *S, CallingContext *Ctx)
static const ValueDecl * getValueDeclFromSExpr(const til::SExpr *E)
unsigned succ_size() const
Definition: CFG.h:769
bool isTrivialType(const ASTContext &Context) const
Return true if this is a trivial type per (C++0x [basic.types]p9)
Definition: Type.cpp:2157
Represents a variable declaration or definition.
Definition: Decl.h:813
std::string getSourceLiteralString(const Expr *CE)
static bool isCalleeArrow(const Expr *E)
unsigned addPredecessor(BasicBlock *Pred)
static const CXXMethodDecl * getFirstVirtualDecl(const CXXMethodDecl *D)
size_t numPredecessors() const
Returns the number of predecessors.
Defines the clang::Expr interface and subclasses for C++ expressions.
If p is a reference to an array, then p[i] is a reference to the i&#39;th element of the array...
til::SCFG * buildCFG(CFGWalker &Walker)
static bool hasAnyPointerType(const til::SExpr *E)
FieldDecl * getCanonicalDecl() override
Retrieves the canonical declaration of this field.
Definition: Decl.h:2774
Project a named slot from a C++ struct or class.
CXXMethodDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclCXX.h:2127
const DeclGroupRef getDeclGroup() const
Definition: Stmt.h:1161
Expr * getSubExpr()
Definition: Expr.h:3050
unsigned findPredecessorIndex(const BasicBlock *BB) const
Return the index of BB, or Predecessors.size if BB is not a predecessor.
static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD)
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified...
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3287
bool isArrow() const
Definition: Expr.h:2874
Expr * IgnoreParenCasts() LLVM_READONLY
IgnoreParenCasts - Ignore parentheses and casts.
Definition: Expr.cpp:2595
A basic block is part of an SCFG.
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2998
void setClangDecl(const ValueDecl *Cvd)
Set the clang variable associated with this Phi node.
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:870
Placeholder for expressions that cannot be represented in the TIL.
Represents the this expression in C++.
Definition: ExprCXX.h:976
ObjCIvarDecl * getDecl()
Definition: ExprObjC.h:543
void addInstruction(SExpr *V)
Add a new instruction.
An SCFG is a control-flow graph.
CastKind
CastKind - The kind of operation required for a conversion.
Represents a single basic block in a source-level CFG.
Definition: CFG.h:552
void addArgument(Phi *V)
Add a new argument.
Apply an argument to a function.
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:637
This represents one expression.
Definition: Expr.h:106
Stmt * getTerminatorCondition(bool StripParens=true)
Definition: CFG.cpp:5467
Represents a source-level, intra-procedural CFG that represents the control-flow of a Stmt...
Definition: CFG.h:1003
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2706
Expr * getCallee()
Definition: Expr.h:2514
Defines an enumeration for C++ overloaded operators.
overridden_method_range overridden_methods() const
Definition: DeclCXX.cpp:2170
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return null.
Definition: Expr.h:2532
static SVal getValue(SVal val, SValBuilder &svalBuilder)
Jump to another basic block.
SExprBuilder::CallingContext CallingContext
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1896
CXXMethodDecl * getMethodDecl() const
Retrieves the declaration of the called method.
Definition: ExprCXX.cpp:652
ValueDecl * getDecl()
Definition: Expr.h:1114
TIL_BinaryOpcode
Opcode for binary arithmetic operations.
void reservePredecessors(unsigned NumPreds)
Expr * getSubExpr() const
Definition: Expr.h:1926
CastKind getCastKind() const
Definition: Expr.h:3044
std::string getNameAsString() const
Get a human-readable name for the declaration, even if it is one of the special kinds of names (C++ c...
Definition: Decl.h:292
const ValArray & values() const
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:171
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:376
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:1143
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2041
arg_range arguments()
Definition: Expr.h:2585
unsigned getNumBlockIDs() const
Returns the total number of BlockIDs allocated (which start at 0).
Definition: CFG.h:1169
Placeholder for a wildcard that matches any other expression.
bool sameAs(const CopyOnWriteVector &V) const
Encapsulates the lexical context of a function call.
const InstrArray & arguments() const
Expr * getLHS() const
Definition: Expr.h:3327
Defines various enumerations that describe declaration and type specifiers.
Load a value from memory.
Dataflow Directional Tag Classes.
OverloadedOperatorKind getOperator() const
Returns the kind of overloaded operator that this expression refers to.
Definition: ExprCXX.h:107
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:22
unsigned pred_size() const
Definition: CFG.h:772
An if-then-else expression.
StmtClass getStmtClass() const
Definition: Stmt.h:1029
BasicBlock * block() const
Returns the block, if this is an instruction in a basic block, otherwise returns null.
til::BasicBlock * lookupBlock(const CFGBlock *B)
Phi Node, for code in SSA form.
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2312
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:3540
Simple arithmetic binary operations, e.g.
Opcode getOpcode() const
Definition: Expr.h:1921
const Expr * getBase() const
Definition: ExprObjC.h:547
void setValues(unsigned Sz, const T &C)
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:513
CapabilityExpr translateAttrExpr(const Expr *AttrExp, const NamedDecl *D, const Expr *DeclExp, VarDecl *SelfD=nullptr)
Translate a clang expression in an attribute to a til::SExpr.
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2682
void reserve(size_t Ncp, MemRegionRef A)
void simplifyIncompleteArg(til::Phi *Ph)
Store a value to memory.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2396
static bool isIncompletePhi(const til::SExpr *E)
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1041
Expr * getRHS() const
Definition: Expr.h:3329
__DEVICE__ int min(int __a, int __b)
Base class for AST nodes in the typed intermediate language.
A Literal pointer to an object allocated in memory.
QualType getType() const
Definition: Decl.h:648
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:114
Call a function (after all arguments have been applied).
This represents a decl that may have a name.
Definition: Decl.h:249
llvm::DenseMap< const Stmt *, CFGBlock * > SMap
Definition: CFGStmtMap.cpp:22
SourceLocation getLocation() const
Definition: DeclBase.h:418
bool isCXXInstanceMember() const
Determine whether the given declaration is an instance member of a C++ class.
Definition: Decl.cpp:1738