clang  8.0.0
Expr.h
Go to the documentation of this file.
1 //===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the Expr interface and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_AST_EXPR_H
15 #define LLVM_CLANG_AST_EXPR_H
16 
17 #include "clang/AST/APValue.h"
18 #include "clang/AST/ASTVector.h"
19 #include "clang/AST/Decl.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/TemplateBase.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/CharInfo.h"
27 #include "clang/Basic/SyncScope.h"
28 #include "clang/Basic/TypeTraits.h"
29 #include "llvm/ADT/APFloat.h"
30 #include "llvm/ADT/APSInt.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/AtomicOrdering.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/TrailingObjects.h"
36 
37 namespace clang {
38  class APValue;
39  class ASTContext;
40  class BlockDecl;
41  class CXXBaseSpecifier;
42  class CXXMemberCallExpr;
43  class CXXOperatorCallExpr;
44  class CastExpr;
45  class Decl;
46  class IdentifierInfo;
47  class MaterializeTemporaryExpr;
48  class NamedDecl;
49  class ObjCPropertyRefExpr;
50  class OpaqueValueExpr;
51  class ParmVarDecl;
52  class StringLiteral;
53  class TargetInfo;
54  class ValueDecl;
55 
56 /// A simple array of base specifiers.
58 
59 /// An adjustment to be made to the temporary created when emitting a
60 /// reference binding, which accesses a particular subobject of that temporary.
62  enum {
66  } Kind;
67 
68  struct DTB {
71  };
72 
73  struct P {
76  };
77 
78  union {
81  struct P Ptr;
82  };
83 
86  : Kind(DerivedToBaseAdjustment) {
89  }
90 
92  : Kind(FieldAdjustment) {
93  this->Field = Field;
94  }
95 
97  : Kind(MemberPointerAdjustment) {
98  this->Ptr.MPT = MPT;
99  this->Ptr.RHS = RHS;
100  }
101 };
102 
103 /// This represents one expression. Note that Expr's are subclasses of Stmt.
104 /// This allows an expression to be transparently used any place a Stmt is
105 /// required.
106 class Expr : public Stmt {
107  QualType TR;
108 
109 protected:
111  bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
112  : Stmt(SC)
113  {
114  ExprBits.TypeDependent = TD;
115  ExprBits.ValueDependent = VD;
116  ExprBits.InstantiationDependent = ID;
117  ExprBits.ValueKind = VK;
118  ExprBits.ObjectKind = OK;
119  assert(ExprBits.ObjectKind == OK && "truncated kind");
120  ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
121  setType(T);
122  }
123 
124  /// Construct an empty expression.
125  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
126 
127 public:
128  QualType getType() const { return TR; }
129  void setType(QualType t) {
130  // In C++, the type of an expression is always adjusted so that it
131  // will not have reference type (C++ [expr]p6). Use
132  // QualType::getNonReferenceType() to retrieve the non-reference
133  // type. Additionally, inspect Expr::isLvalue to determine whether
134  // an expression that is adjusted in this manner should be
135  // considered an lvalue.
136  assert((t.isNull() || !t->isReferenceType()) &&
137  "Expressions can't have reference type");
138 
139  TR = t;
140  }
141 
142  /// isValueDependent - Determines whether this expression is
143  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
144  /// array bound of "Chars" in the following example is
145  /// value-dependent.
146  /// @code
147  /// template<int Size, char (&Chars)[Size]> struct meta_string;
148  /// @endcode
149  bool isValueDependent() const { return ExprBits.ValueDependent; }
150 
151  /// Set whether this expression is value-dependent or not.
152  void setValueDependent(bool VD) {
153  ExprBits.ValueDependent = VD;
154  }
155 
156  /// isTypeDependent - Determines whether this expression is
157  /// type-dependent (C++ [temp.dep.expr]), which means that its type
158  /// could change from one template instantiation to the next. For
159  /// example, the expressions "x" and "x + y" are type-dependent in
160  /// the following code, but "y" is not type-dependent:
161  /// @code
162  /// template<typename T>
163  /// void add(T x, int y) {
164  /// x + y;
165  /// }
166  /// @endcode
167  bool isTypeDependent() const { return ExprBits.TypeDependent; }
168 
169  /// Set whether this expression is type-dependent or not.
170  void setTypeDependent(bool TD) {
171  ExprBits.TypeDependent = TD;
172  }
173 
174  /// Whether this expression is instantiation-dependent, meaning that
175  /// it depends in some way on a template parameter, even if neither its type
176  /// nor (constant) value can change due to the template instantiation.
177  ///
178  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
179  /// instantiation-dependent (since it involves a template parameter \c T), but
180  /// is neither type- nor value-dependent, since the type of the inner
181  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
182  /// \c sizeof is known.
183  ///
184  /// \code
185  /// template<typename T>
186  /// void f(T x, T y) {
187  /// sizeof(sizeof(T() + T());
188  /// }
189  /// \endcode
190  ///
192  return ExprBits.InstantiationDependent;
193  }
194 
195  /// Set whether this expression is instantiation-dependent or not.
197  ExprBits.InstantiationDependent = ID;
198  }
199 
200  /// Whether this expression contains an unexpanded parameter
201  /// pack (for C++11 variadic templates).
202  ///
203  /// Given the following function template:
204  ///
205  /// \code
206  /// template<typename F, typename ...Types>
207  /// void forward(const F &f, Types &&...args) {
208  /// f(static_cast<Types&&>(args)...);
209  /// }
210  /// \endcode
211  ///
212  /// The expressions \c args and \c static_cast<Types&&>(args) both
213  /// contain parameter packs.
215  return ExprBits.ContainsUnexpandedParameterPack;
216  }
217 
218  /// Set the bit that describes whether this expression
219  /// contains an unexpanded parameter pack.
220  void setContainsUnexpandedParameterPack(bool PP = true) {
221  ExprBits.ContainsUnexpandedParameterPack = PP;
222  }
223 
224  /// getExprLoc - Return the preferred location for the arrow when diagnosing
225  /// a problem with a generic expression.
226  SourceLocation getExprLoc() const LLVM_READONLY;
227 
228  /// isUnusedResultAWarning - Return true if this immediate expression should
229  /// be warned about if the result is unused. If so, fill in expr, location,
230  /// and ranges with expr to warn on and source locations/ranges appropriate
231  /// for a warning.
232  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
233  SourceRange &R1, SourceRange &R2,
234  ASTContext &Ctx) const;
235 
236  /// isLValue - True if this expression is an "l-value" according to
237  /// the rules of the current language. C and C++ give somewhat
238  /// different rules for this concept, but in general, the result of
239  /// an l-value expression identifies a specific object whereas the
240  /// result of an r-value expression is a value detached from any
241  /// specific storage.
242  ///
243  /// C++11 divides the concept of "r-value" into pure r-values
244  /// ("pr-values") and so-called expiring values ("x-values"), which
245  /// identify specific objects that can be safely cannibalized for
246  /// their resources. This is an unfortunate abuse of terminology on
247  /// the part of the C++ committee. In Clang, when we say "r-value",
248  /// we generally mean a pr-value.
249  bool isLValue() const { return getValueKind() == VK_LValue; }
250  bool isRValue() const { return getValueKind() == VK_RValue; }
251  bool isXValue() const { return getValueKind() == VK_XValue; }
252  bool isGLValue() const { return getValueKind() != VK_RValue; }
253 
264  LV_ArrayTemporary
265  };
266  /// Reasons why an expression might not be an l-value.
267  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
268 
275  MLV_LValueCast, // Specialized form of MLV_InvalidExpression.
286  MLV_ArrayTemporary
287  };
288  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
289  /// does not have an incomplete type, does not have a const-qualified type,
290  /// and if it is a structure or union, does not have any member (including,
291  /// recursively, any member or element of all contained aggregates or unions)
292  /// with a const-qualified type.
293  ///
294  /// \param Loc [in,out] - A source location which *may* be filled
295  /// in with the location of the expression making this a
296  /// non-modifiable lvalue, if specified.
298  isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;
299 
300  /// The return type of classify(). Represents the C++11 expression
301  /// taxonomy.
303  public:
304  /// The various classification results. Most of these mean prvalue.
305  enum Kinds {
308  CL_Function, // Functions cannot be lvalues in C.
309  CL_Void, // Void cannot be an lvalue in C.
310  CL_AddressableVoid, // Void expression whose address can be taken in C.
311  CL_DuplicateVectorComponents, // A vector shuffle with dupes.
312  CL_MemberFunction, // An expression referring to a member function
314  CL_ClassTemporary, // A temporary of class type, or subobject thereof.
315  CL_ArrayTemporary, // A temporary of array type.
316  CL_ObjCMessageRValue, // ObjC message is an rvalue
317  CL_PRValue // A prvalue for any other reason, of any other type
318  };
319  /// The results of modification testing.
321  CM_Untested, // testModifiable was false.
323  CM_RValue, // Not modifiable because it's an rvalue
324  CM_Function, // Not modifiable because it's a function; C++ only
325  CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
326  CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
331  CM_IncompleteType
332  };
333 
334  private:
335  friend class Expr;
336 
337  unsigned short Kind;
338  unsigned short Modifiable;
339 
340  explicit Classification(Kinds k, ModifiableType m)
341  : Kind(k), Modifiable(m)
342  {}
343 
344  public:
346 
347  Kinds getKind() const { return static_cast<Kinds>(Kind); }
349  assert(Modifiable != CM_Untested && "Did not test for modifiability.");
350  return static_cast<ModifiableType>(Modifiable);
351  }
352  bool isLValue() const { return Kind == CL_LValue; }
353  bool isXValue() const { return Kind == CL_XValue; }
354  bool isGLValue() const { return Kind <= CL_XValue; }
355  bool isPRValue() const { return Kind >= CL_Function; }
356  bool isRValue() const { return Kind >= CL_XValue; }
357  bool isModifiable() const { return getModifiable() == CM_Modifiable; }
358 
359  /// Create a simple, modifiably lvalue
361  return Classification(CL_LValue, CM_Modifiable);
362  }
363 
364  };
365  /// Classify - Classify this expression according to the C++11
366  /// expression taxonomy.
367  ///
368  /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
369  /// old lvalue vs rvalue. This function determines the type of expression this
370  /// is. There are three expression types:
371  /// - lvalues are classical lvalues as in C++03.
372  /// - prvalues are equivalent to rvalues in C++03.
373  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
374  /// function returning an rvalue reference.
375  /// lvalues and xvalues are collectively referred to as glvalues, while
376  /// prvalues and xvalues together form rvalues.
378  return ClassifyImpl(Ctx, nullptr);
379  }
380 
381  /// ClassifyModifiable - Classify this expression according to the
382  /// C++11 expression taxonomy, and see if it is valid on the left side
383  /// of an assignment.
384  ///
385  /// This function extends classify in that it also tests whether the
386  /// expression is modifiable (C99 6.3.2.1p1).
387  /// \param Loc A source location that might be filled with a relevant location
388  /// if the expression is not modifiable.
390  return ClassifyImpl(Ctx, &Loc);
391  }
392 
393  /// getValueKindForType - Given a formal return or parameter type,
394  /// give its value kind.
396  if (const ReferenceType *RT = T->getAs<ReferenceType>())
397  return (isa<LValueReferenceType>(RT)
398  ? VK_LValue
399  : (RT->getPointeeType()->isFunctionType()
400  ? VK_LValue : VK_XValue));
401  return VK_RValue;
402  }
403 
404  /// getValueKind - The value kind that this expression produces.
406  return static_cast<ExprValueKind>(ExprBits.ValueKind);
407  }
408 
409  /// getObjectKind - The object kind that this expression produces.
410  /// Object kinds are meaningful only for expressions that yield an
411  /// l-value or x-value.
413  return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
414  }
415 
417  ExprObjectKind OK = getObjectKind();
418  return (OK == OK_Ordinary || OK == OK_BitField);
419  }
420 
421  /// setValueKind - Set the value kind produced by this expression.
422  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
423 
424  /// setObjectKind - Set the object kind produced by this expression.
425  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
426 
427 private:
428  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
429 
430 public:
431 
432  /// Returns true if this expression is a gl-value that
433  /// potentially refers to a bit-field.
434  ///
435  /// In C++, whether a gl-value refers to a bitfield is essentially
436  /// an aspect of the value-kind type system.
437  bool refersToBitField() const { return getObjectKind() == OK_BitField; }
438 
439  /// If this expression refers to a bit-field, retrieve the
440  /// declaration of that bit-field.
441  ///
442  /// Note that this returns a non-null pointer in subtly different
443  /// places than refersToBitField returns true. In particular, this can
444  /// return a non-null pointer even for r-values loaded from
445  /// bit-fields, but it will return null for a conditional bit-field.
446  FieldDecl *getSourceBitField();
447 
448  const FieldDecl *getSourceBitField() const {
449  return const_cast<Expr*>(this)->getSourceBitField();
450  }
451 
452  Decl *getReferencedDeclOfCallee();
454  return const_cast<Expr*>(this)->getReferencedDeclOfCallee();
455  }
456 
457  /// If this expression is an l-value for an Objective C
458  /// property, find the underlying property reference expression.
459  const ObjCPropertyRefExpr *getObjCProperty() const;
460 
461  /// Check if this expression is the ObjC 'self' implicit parameter.
462  bool isObjCSelfExpr() const;
463 
464  /// Returns whether this expression refers to a vector element.
465  bool refersToVectorElement() const;
466 
467  /// Returns whether this expression refers to a global register
468  /// variable.
469  bool refersToGlobalRegisterVar() const;
470 
471  /// Returns whether this expression has a placeholder type.
472  bool hasPlaceholderType() const {
473  return getType()->isPlaceholderType();
474  }
475 
476  /// Returns whether this expression has a specific placeholder type.
479  if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
480  return BT->getKind() == K;
481  return false;
482  }
483 
484  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
485  /// that is known to return 0 or 1. This happens for _Bool/bool expressions
486  /// but also int expressions which are produced by things like comparisons in
487  /// C.
488  bool isKnownToHaveBooleanValue() const;
489 
490  /// isIntegerConstantExpr - Return true if this expression is a valid integer
491  /// constant expression, and, if so, return its value in Result. If not a
492  /// valid i-c-e, return false and fill in Loc (if specified) with the location
493  /// of the invalid expression.
494  ///
495  /// Note: This does not perform the implicit conversions required by C++11
496  /// [expr.const]p5.
497  bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
498  SourceLocation *Loc = nullptr,
499  bool isEvaluated = true) const;
500  bool isIntegerConstantExpr(const ASTContext &Ctx,
501  SourceLocation *Loc = nullptr) const;
502 
503  /// isCXX98IntegralConstantExpr - Return true if this expression is an
504  /// integral constant expression in C++98. Can only be used in C++.
505  bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
506 
507  /// isCXX11ConstantExpr - Return true if this expression is a constant
508  /// expression in C++11. Can only be used in C++.
509  ///
510  /// Note: This does not perform the implicit conversions required by C++11
511  /// [expr.const]p5.
512  bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
513  SourceLocation *Loc = nullptr) const;
514 
515  /// isPotentialConstantExpr - Return true if this function's definition
516  /// might be usable in a constant expression in C++11, if it were marked
517  /// constexpr. Return false if the function can never produce a constant
518  /// expression, along with diagnostics describing why not.
519  static bool isPotentialConstantExpr(const FunctionDecl *FD,
521  PartialDiagnosticAt> &Diags);
522 
523  /// isPotentialConstantExprUnevaluted - Return true if this expression might
524  /// be usable in a constant expression in C++11 in an unevaluated context, if
525  /// it were in function FD marked constexpr. Return false if the function can
526  /// never produce a constant expression, along with diagnostics describing
527  /// why not.
528  static bool isPotentialConstantExprUnevaluated(Expr *E,
529  const FunctionDecl *FD,
531  PartialDiagnosticAt> &Diags);
532 
533  /// isConstantInitializer - Returns true if this expression can be emitted to
534  /// IR as a constant, and thus can be used as a constant initializer in C.
535  /// If this expression is not constant and Culprit is non-null,
536  /// it is used to store the address of first non constant expr.
537  bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
538  const Expr **Culprit = nullptr) const;
539 
540  /// EvalStatus is a struct with detailed info about an evaluation in progress.
541  struct EvalStatus {
542  /// Whether the evaluated expression has side effects.
543  /// For example, (f() && 0) can be folded, but it still has side effects.
545 
546  /// Whether the evaluation hit undefined behavior.
547  /// For example, 1.0 / 0.0 can be folded to Inf, but has undefined behavior.
548  /// Likewise, INT_MAX + 1 can be folded to INT_MIN, but has UB.
550 
551  /// Diag - If this is non-null, it will be filled in with a stack of notes
552  /// indicating why evaluation failed (or why it failed to produce a constant
553  /// expression).
554  /// If the expression is unfoldable, the notes will indicate why it's not
555  /// foldable. If the expression is foldable, but not a constant expression,
556  /// the notes will describes why it isn't a constant expression. If the
557  /// expression *is* a constant expression, no notes will be produced.
559 
561  : HasSideEffects(false), HasUndefinedBehavior(false), Diag(nullptr) {}
562 
563  // hasSideEffects - Return true if the evaluated expression has
564  // side effects.
565  bool hasSideEffects() const {
566  return HasSideEffects;
567  }
568  };
569 
570  /// EvalResult is a struct with detailed info about an evaluated expression.
572  /// Val - This is the value the expression can be folded to.
574 
575  // isGlobalLValue - Return true if the evaluated lvalue expression
576  // is global.
577  bool isGlobalLValue() const;
578  };
579 
580  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
581  /// an rvalue using any crazy technique (that has nothing to do with language
582  /// standards) that we want to, even if the expression has side-effects. If
583  /// this function returns true, it returns the folded constant in Result. If
584  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
585  /// applied.
586  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
587  bool InConstantContext = false) const;
588 
589  /// EvaluateAsBooleanCondition - Return true if this is a constant
590  /// which we can fold and convert to a boolean condition using
591  /// any crazy technique that we want to, even if the expression has
592  /// side-effects.
593  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
594 
596  SE_NoSideEffects, ///< Strictly evaluate the expression.
597  SE_AllowUndefinedBehavior, ///< Allow UB that we can give a value, but not
598  ///< arbitrary unmodeled side effects.
599  SE_AllowSideEffects ///< Allow any unmodeled side effect.
600  };
601 
602  /// EvaluateAsInt - Return true if this is a constant which we can fold and
603  /// convert to an integer, using any crazy technique that we want to.
604  bool EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
605  SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
606 
607  /// EvaluateAsFloat - Return true if this is a constant which we can fold and
608  /// convert to a floating point value, using any crazy technique that we
609  /// want to.
610  bool
611  EvaluateAsFloat(llvm::APFloat &Result, const ASTContext &Ctx,
612  SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
613 
614  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
615  /// constant folded without side-effects, but discard the result.
616  bool isEvaluatable(const ASTContext &Ctx,
617  SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
618 
619  /// HasSideEffects - This routine returns true for all those expressions
620  /// which have any effect other than producing a value. Example is a function
621  /// call, volatile variable read, or throwing an exception. If
622  /// IncludePossibleEffects is false, this call treats certain expressions with
623  /// potential side effects (such as function call-like expressions,
624  /// instantiation-dependent expressions, or invocations from a macro) as not
625  /// having side effects.
626  bool HasSideEffects(const ASTContext &Ctx,
627  bool IncludePossibleEffects = true) const;
628 
629  /// Determine whether this expression involves a call to any function
630  /// that is not trivial.
631  bool hasNonTrivialCall(const ASTContext &Ctx) const;
632 
633  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
634  /// integer. This must be called on an expression that constant folds to an
635  /// integer.
636  llvm::APSInt EvaluateKnownConstInt(
637  const ASTContext &Ctx,
638  SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
639 
640  llvm::APSInt EvaluateKnownConstIntCheckOverflow(
641  const ASTContext &Ctx,
642  SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
643 
644  void EvaluateForOverflow(const ASTContext &Ctx) const;
645 
646  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
647  /// lvalue with link time known address, with no side-effects.
648  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
649 
650  /// EvaluateAsInitializer - Evaluate an expression as if it were the
651  /// initializer of the given declaration. Returns true if the initializer
652  /// can be folded to a constant, and produces any relevant notes. In C++11,
653  /// notes will be produced if the expression is not a constant expression.
654  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
655  const VarDecl *VD,
657 
658  /// EvaluateWithSubstitution - Evaluate an expression as if from the context
659  /// of a call to the given function with the given arguments, inside an
660  /// unevaluated context. Returns true if the expression could be folded to a
661  /// constant.
662  bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
663  const FunctionDecl *Callee,
665  const Expr *This = nullptr) const;
666 
667  /// Indicates how the constant expression will be used.
668  enum ConstExprUsage { EvaluateForCodeGen, EvaluateForMangling };
669 
670  /// Evaluate an expression that is required to be a constant expression.
671  bool EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage,
672  const ASTContext &Ctx) const;
673 
674  /// If the current Expr is a pointer, this will try to statically
675  /// determine the number of bytes available where the pointer is pointing.
676  /// Returns true if all of the above holds and we were able to figure out the
677  /// size, false otherwise.
678  ///
679  /// \param Type - How to evaluate the size of the Expr, as defined by the
680  /// "type" parameter of __builtin_object_size
681  bool tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
682  unsigned Type) const;
683 
684  /// Enumeration used to describe the kind of Null pointer constant
685  /// returned from \c isNullPointerConstant().
687  /// Expression is not a Null pointer constant.
688  NPCK_NotNull = 0,
689 
690  /// Expression is a Null pointer constant built from a zero integer
691  /// expression that is not a simple, possibly parenthesized, zero literal.
692  /// C++ Core Issue 903 will classify these expressions as "not pointers"
693  /// once it is adopted.
694  /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
696 
697  /// Expression is a Null pointer constant built from a literal zero.
699 
700  /// Expression is a C++11 nullptr.
702 
703  /// Expression is a GNU-style __null constant.
704  NPCK_GNUNull
705  };
706 
707  /// Enumeration used to describe how \c isNullPointerConstant()
708  /// should cope with value-dependent expressions.
710  /// Specifies that the expression should never be value-dependent.
711  NPC_NeverValueDependent = 0,
712 
713  /// Specifies that a value-dependent expression of integral or
714  /// dependent type should be considered a null pointer constant.
716 
717  /// Specifies that a value-dependent expression should be considered
718  /// to never be a null pointer constant.
719  NPC_ValueDependentIsNotNull
720  };
721 
722  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
723  /// a Null pointer constant. The return value can further distinguish the
724  /// kind of NULL pointer constant that was detected.
725  NullPointerConstantKind isNullPointerConstant(
726  ASTContext &Ctx,
728 
729  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
730  /// write barrier.
731  bool isOBJCGCCandidate(ASTContext &Ctx) const;
732 
733  /// Returns true if this expression is a bound member function.
734  bool isBoundMemberFunction(ASTContext &Ctx) const;
735 
736  /// Given an expression of bound-member type, find the type
737  /// of the member. Returns null if this is an *overloaded* bound
738  /// member expression.
739  static QualType findBoundMemberType(const Expr *expr);
740 
741  /// IgnoreImpCasts - Skip past any implicit casts which might
742  /// surround this expression. Only skips ImplicitCastExprs.
743  Expr *IgnoreImpCasts() LLVM_READONLY;
744 
745  /// IgnoreImplicit - Skip past any implicit AST nodes which might
746  /// surround this expression.
747  Expr *IgnoreImplicit() LLVM_READONLY {
748  return cast<Expr>(Stmt::IgnoreImplicit());
749  }
750 
751  const Expr *IgnoreImplicit() const LLVM_READONLY {
752  return const_cast<Expr*>(this)->IgnoreImplicit();
753  }
754 
755  /// IgnoreParens - Ignore parentheses. If this Expr is a ParenExpr, return
756  /// its subexpression. If that subexpression is also a ParenExpr,
757  /// then this method recursively returns its subexpression, and so forth.
758  /// Otherwise, the method returns the current Expr.
759  Expr *IgnoreParens() LLVM_READONLY;
760 
761  /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
762  /// or CastExprs, returning their operand.
763  Expr *IgnoreParenCasts() LLVM_READONLY;
764 
765  /// Ignore casts. Strip off any CastExprs, returning their operand.
766  Expr *IgnoreCasts() LLVM_READONLY;
767 
768  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts. Strip off
769  /// any ParenExpr or ImplicitCastExprs, returning their operand.
770  Expr *IgnoreParenImpCasts() LLVM_READONLY;
771 
772  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
773  /// call to a conversion operator, return the argument.
774  Expr *IgnoreConversionOperator() LLVM_READONLY;
775 
776  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
777  return const_cast<Expr*>(this)->IgnoreConversionOperator();
778  }
779 
780  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
781  return const_cast<Expr*>(this)->IgnoreParenImpCasts();
782  }
783 
784  /// Ignore parentheses and lvalue casts. Strip off any ParenExpr and
785  /// CastExprs that represent lvalue casts, returning their operand.
786  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
787 
788  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
789  return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
790  }
791 
792  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
793  /// value (including ptr->int casts of the same size). Strip off any
794  /// ParenExpr or CastExprs, returning their operand.
795  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
796 
797  /// Ignore parentheses and derived-to-base casts.
798  Expr *ignoreParenBaseCasts() LLVM_READONLY;
799 
800  const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
801  return const_cast<Expr*>(this)->ignoreParenBaseCasts();
802  }
803 
804  /// Determine whether this expression is a default function argument.
805  ///
806  /// Default arguments are implicitly generated in the abstract syntax tree
807  /// by semantic analysis for function calls, object constructions, etc. in
808  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
809  /// this routine also looks through any implicit casts to determine whether
810  /// the expression is a default argument.
811  bool isDefaultArgument() const;
812 
813  /// Determine whether the result of this expression is a
814  /// temporary object of the given class type.
815  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
816 
817  /// Whether this expression is an implicit reference to 'this' in C++.
818  bool isImplicitCXXThis() const;
819 
820  const Expr *IgnoreImpCasts() const LLVM_READONLY {
821  return const_cast<Expr*>(this)->IgnoreImpCasts();
822  }
823  const Expr *IgnoreParens() const LLVM_READONLY {
824  return const_cast<Expr*>(this)->IgnoreParens();
825  }
826  const Expr *IgnoreParenCasts() const LLVM_READONLY {
827  return const_cast<Expr*>(this)->IgnoreParenCasts();
828  }
829  /// Strip off casts, but keep parentheses.
830  const Expr *IgnoreCasts() const LLVM_READONLY {
831  return const_cast<Expr*>(this)->IgnoreCasts();
832  }
833 
834  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
835  return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
836  }
837 
838  static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
839 
840  /// For an expression of class type or pointer to class type,
841  /// return the most derived class decl the expression is known to refer to.
842  ///
843  /// If this expression is a cast, this method looks through it to find the
844  /// most derived decl that can be inferred from the expression.
845  /// This is valid because derived-to-base conversions have undefined
846  /// behavior if the object isn't dynamically of the derived type.
847  const CXXRecordDecl *getBestDynamicClassType() const;
848 
849  /// Get the inner expression that determines the best dynamic class.
850  /// If this is a prvalue, we guarantee that it is of the most-derived type
851  /// for the object itself.
852  const Expr *getBestDynamicClassTypeExpr() const;
853 
854  /// Walk outwards from an expression we want to bind a reference to and
855  /// find the expression whose lifetime needs to be extended. Record
856  /// the LHSs of comma expressions and adjustments needed along the path.
857  const Expr *skipRValueSubobjectAdjustments(
859  SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
863  return skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
864  }
865 
866  static bool classof(const Stmt *T) {
867  return T->getStmtClass() >= firstExprConstant &&
868  T->getStmtClass() <= lastExprConstant;
869  }
870 };
871 
872 //===----------------------------------------------------------------------===//
873 // Wrapper Expressions.
874 //===----------------------------------------------------------------------===//
875 
876 /// FullExpr - Represents a "full-expression" node.
877 class FullExpr : public Expr {
878 protected:
880 
881  FullExpr(StmtClass SC, Expr *subexpr)
882  : Expr(SC, subexpr->getType(),
883  subexpr->getValueKind(), subexpr->getObjectKind(),
884  subexpr->isTypeDependent(), subexpr->isValueDependent(),
885  subexpr->isInstantiationDependent(),
886  subexpr->containsUnexpandedParameterPack()), SubExpr(subexpr) {}
888  : Expr(SC, Empty) {}
889 public:
890  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
891  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
892 
893  /// As with any mutator of the AST, be very careful when modifying an
894  /// existing AST to preserve its invariants.
895  void setSubExpr(Expr *E) { SubExpr = E; }
896 
897  static bool classof(const Stmt *T) {
898  return T->getStmtClass() >= firstFullExprConstant &&
899  T->getStmtClass() <= lastFullExprConstant;
900  }
901 };
902 
903 /// ConstantExpr - An expression that occurs in a constant context.
904 class ConstantExpr : public FullExpr {
905  ConstantExpr(Expr *subexpr)
906  : FullExpr(ConstantExprClass, subexpr) {}
907 
908 public:
909  static ConstantExpr *Create(const ASTContext &Context, Expr *E) {
910  assert(!isa<ConstantExpr>(E));
911  return new (Context) ConstantExpr(E);
912  }
913 
914  /// Build an empty constant expression wrapper.
915  explicit ConstantExpr(EmptyShell Empty)
916  : FullExpr(ConstantExprClass, Empty) {}
917 
918  SourceLocation getBeginLoc() const LLVM_READONLY {
919  return SubExpr->getBeginLoc();
920  }
921  SourceLocation getEndLoc() const LLVM_READONLY {
922  return SubExpr->getEndLoc();
923  }
924 
925  static bool classof(const Stmt *T) {
926  return T->getStmtClass() == ConstantExprClass;
927  }
928 
929  // Iterators
930  child_range children() { return child_range(&SubExpr, &SubExpr+1); }
932  return const_child_range(&SubExpr, &SubExpr + 1);
933  }
934 };
935 
936 //===----------------------------------------------------------------------===//
937 // Primary Expressions.
938 //===----------------------------------------------------------------------===//
939 
940 /// OpaqueValueExpr - An expression referring to an opaque object of a
941 /// fixed type and value class. These don't correspond to concrete
942 /// syntax; instead they're used to express operations (usually copy
943 /// operations) on values whose source is generally obvious from
944 /// context.
945 class OpaqueValueExpr : public Expr {
946  friend class ASTStmtReader;
947  Expr *SourceExpr;
948 
949 public:
952  Expr *SourceExpr = nullptr)
953  : Expr(OpaqueValueExprClass, T, VK, OK,
954  T->isDependentType() ||
955  (SourceExpr && SourceExpr->isTypeDependent()),
956  T->isDependentType() ||
957  (SourceExpr && SourceExpr->isValueDependent()),
958  T->isInstantiationDependentType() ||
959  (SourceExpr && SourceExpr->isInstantiationDependent()),
960  false),
961  SourceExpr(SourceExpr) {
962  setIsUnique(false);
963  OpaqueValueExprBits.Loc = Loc;
964  }
965 
966  /// Given an expression which invokes a copy constructor --- i.e. a
967  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
968  /// find the OpaqueValueExpr that's the source of the construction.
969  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
970 
971  explicit OpaqueValueExpr(EmptyShell Empty)
972  : Expr(OpaqueValueExprClass, Empty) {}
973 
974  /// Retrieve the location of this expression.
975  SourceLocation getLocation() const { return OpaqueValueExprBits.Loc; }
976 
977  SourceLocation getBeginLoc() const LLVM_READONLY {
978  return SourceExpr ? SourceExpr->getBeginLoc() : getLocation();
979  }
980  SourceLocation getEndLoc() const LLVM_READONLY {
981  return SourceExpr ? SourceExpr->getEndLoc() : getLocation();
982  }
983  SourceLocation getExprLoc() const LLVM_READONLY {
984  return SourceExpr ? SourceExpr->getExprLoc() : getLocation();
985  }
986 
989  }
990 
993  }
994 
995  /// The source expression of an opaque value expression is the
996  /// expression which originally generated the value. This is
997  /// provided as a convenience for analyses that don't wish to
998  /// precisely model the execution behavior of the program.
999  ///
1000  /// The source expression is typically set when building the
1001  /// expression which binds the opaque value expression in the first
1002  /// place.
1003  Expr *getSourceExpr() const { return SourceExpr; }
1004 
1005  void setIsUnique(bool V) {
1006  assert((!V || SourceExpr) &&
1007  "unique OVEs are expected to have source expressions");
1008  OpaqueValueExprBits.IsUnique = V;
1009  }
1010 
1011  bool isUnique() const { return OpaqueValueExprBits.IsUnique; }
1012 
1013  static bool classof(const Stmt *T) {
1014  return T->getStmtClass() == OpaqueValueExprClass;
1015  }
1016 };
1017 
1018 /// A reference to a declared variable, function, enum, etc.
1019 /// [C99 6.5.1p2]
1020 ///
1021 /// This encodes all the information about how a declaration is referenced
1022 /// within an expression.
1023 ///
1024 /// There are several optional constructs attached to DeclRefExprs only when
1025 /// they apply in order to conserve memory. These are laid out past the end of
1026 /// the object, and flags in the DeclRefExprBitfield track whether they exist:
1027 ///
1028 /// DeclRefExprBits.HasQualifier:
1029 /// Specifies when this declaration reference expression has a C++
1030 /// nested-name-specifier.
1031 /// DeclRefExprBits.HasFoundDecl:
1032 /// Specifies when this declaration reference expression has a record of
1033 /// a NamedDecl (different from the referenced ValueDecl) which was found
1034 /// during name lookup and/or overload resolution.
1035 /// DeclRefExprBits.HasTemplateKWAndArgsInfo:
1036 /// Specifies when this declaration reference expression has an explicit
1037 /// C++ template keyword and/or template argument list.
1038 /// DeclRefExprBits.RefersToEnclosingVariableOrCapture
1039 /// Specifies when this declaration reference expression (validly)
1040 /// refers to an enclosed local or a captured variable.
1041 class DeclRefExpr final
1042  : public Expr,
1043  private llvm::TrailingObjects<DeclRefExpr, NestedNameSpecifierLoc,
1044  NamedDecl *, ASTTemplateKWAndArgsInfo,
1045  TemplateArgumentLoc> {
1046  friend class ASTStmtReader;
1047  friend class ASTStmtWriter;
1048  friend TrailingObjects;
1049 
1050  /// The declaration that we are referencing.
1051  ValueDecl *D;
1052 
1053  /// Provides source/type location info for the declaration name
1054  /// embedded in D.
1055  DeclarationNameLoc DNLoc;
1056 
1057  size_t numTrailingObjects(OverloadToken<NestedNameSpecifierLoc>) const {
1058  return hasQualifier();
1059  }
1060 
1061  size_t numTrailingObjects(OverloadToken<NamedDecl *>) const {
1062  return hasFoundDecl();
1063  }
1064 
1065  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
1066  return hasTemplateKWAndArgsInfo();
1067  }
1068 
1069  /// Test whether there is a distinct FoundDecl attached to the end of
1070  /// this DRE.
1071  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
1072 
1073  DeclRefExpr(const ASTContext &Ctx, NestedNameSpecifierLoc QualifierLoc,
1074  SourceLocation TemplateKWLoc, ValueDecl *D,
1075  bool RefersToEnlosingVariableOrCapture,
1076  const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
1077  const TemplateArgumentListInfo *TemplateArgs, QualType T,
1078  ExprValueKind VK);
1079 
1080  /// Construct an empty declaration reference expression.
1081  explicit DeclRefExpr(EmptyShell Empty) : Expr(DeclRefExprClass, Empty) {}
1082 
1083  /// Computes the type- and value-dependence flags for this
1084  /// declaration reference expression.
1085  void computeDependence(const ASTContext &Ctx);
1086 
1087 public:
1088  DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
1089  bool RefersToEnclosingVariableOrCapture, QualType T,
1091  const DeclarationNameLoc &LocInfo = DeclarationNameLoc());
1092 
1093  static DeclRefExpr *
1094  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
1095  SourceLocation TemplateKWLoc, ValueDecl *D,
1096  bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
1097  QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
1098  const TemplateArgumentListInfo *TemplateArgs = nullptr);
1099 
1100  static DeclRefExpr *
1101  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
1102  SourceLocation TemplateKWLoc, ValueDecl *D,
1103  bool RefersToEnclosingVariableOrCapture,
1104  const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
1105  NamedDecl *FoundD = nullptr,
1106  const TemplateArgumentListInfo *TemplateArgs = nullptr);
1107 
1108  /// Construct an empty declaration reference expression.
1109  static DeclRefExpr *CreateEmpty(const ASTContext &Context, bool HasQualifier,
1110  bool HasFoundDecl,
1111  bool HasTemplateKWAndArgsInfo,
1112  unsigned NumTemplateArgs);
1113 
1114  ValueDecl *getDecl() { return D; }
1115  const ValueDecl *getDecl() const { return D; }
1116  void setDecl(ValueDecl *NewD) { D = NewD; }
1117 
1119  return DeclarationNameInfo(getDecl()->getDeclName(), getLocation(), DNLoc);
1120  }
1121 
1122  SourceLocation getLocation() const { return DeclRefExprBits.Loc; }
1123  void setLocation(SourceLocation L) { DeclRefExprBits.Loc = L; }
1124  SourceLocation getBeginLoc() const LLVM_READONLY;
1125  SourceLocation getEndLoc() const LLVM_READONLY;
1126 
1127  /// Determine whether this declaration reference was preceded by a
1128  /// C++ nested-name-specifier, e.g., \c N::foo.
1129  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
1130 
1131  /// If the name was qualified, retrieves the nested-name-specifier
1132  /// that precedes the name, with source-location information.
1134  if (!hasQualifier())
1135  return NestedNameSpecifierLoc();
1136  return *getTrailingObjects<NestedNameSpecifierLoc>();
1137  }
1138 
1139  /// If the name was qualified, retrieves the nested-name-specifier
1140  /// that precedes the name. Otherwise, returns NULL.
1142  return getQualifierLoc().getNestedNameSpecifier();
1143  }
1144 
1145  /// Get the NamedDecl through which this reference occurred.
1146  ///
1147  /// This Decl may be different from the ValueDecl actually referred to in the
1148  /// presence of using declarations, etc. It always returns non-NULL, and may
1149  /// simple return the ValueDecl when appropriate.
1150 
1152  return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
1153  }
1154 
1155  /// Get the NamedDecl through which this reference occurred.
1156  /// See non-const variant.
1157  const NamedDecl *getFoundDecl() const {
1158  return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
1159  }
1160 
1162  return DeclRefExprBits.HasTemplateKWAndArgsInfo;
1163  }
1164 
1165  /// Retrieve the location of the template keyword preceding
1166  /// this name, if any.
1168  if (!hasTemplateKWAndArgsInfo())
1169  return SourceLocation();
1170  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
1171  }
1172 
1173  /// Retrieve the location of the left angle bracket starting the
1174  /// explicit template argument list following the name, if any.
1176  if (!hasTemplateKWAndArgsInfo())
1177  return SourceLocation();
1178  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
1179  }
1180 
1181  /// Retrieve the location of the right angle bracket ending the
1182  /// explicit template argument list following the name, if any.
1184  if (!hasTemplateKWAndArgsInfo())
1185  return SourceLocation();
1186  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
1187  }
1188 
1189  /// Determines whether the name in this declaration reference
1190  /// was preceded by the template keyword.
1191  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
1192 
1193  /// Determines whether this declaration reference was followed by an
1194  /// explicit template argument list.
1195  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
1196 
1197  /// Copies the template arguments (if present) into the given
1198  /// structure.
1200  if (hasExplicitTemplateArgs())
1201  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
1202  getTrailingObjects<TemplateArgumentLoc>(), List);
1203  }
1204 
1205  /// Retrieve the template arguments provided as part of this
1206  /// template-id.
1208  if (!hasExplicitTemplateArgs())
1209  return nullptr;
1210  return getTrailingObjects<TemplateArgumentLoc>();
1211  }
1212 
1213  /// Retrieve the number of template arguments provided as part of this
1214  /// template-id.
1215  unsigned getNumTemplateArgs() const {
1216  if (!hasExplicitTemplateArgs())
1217  return 0;
1218  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
1219  }
1220 
1222  return {getTemplateArgs(), getNumTemplateArgs()};
1223  }
1224 
1225  /// Returns true if this expression refers to a function that
1226  /// was resolved from an overloaded set having size greater than 1.
1227  bool hadMultipleCandidates() const {
1228  return DeclRefExprBits.HadMultipleCandidates;
1229  }
1230  /// Sets the flag telling whether this expression refers to
1231  /// a function that was resolved from an overloaded set having size
1232  /// greater than 1.
1233  void setHadMultipleCandidates(bool V = true) {
1234  DeclRefExprBits.HadMultipleCandidates = V;
1235  }
1236 
1237  /// Does this DeclRefExpr refer to an enclosing local or a captured
1238  /// variable?
1240  return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
1241  }
1242 
1243  static bool classof(const Stmt *T) {
1244  return T->getStmtClass() == DeclRefExprClass;
1245  }
1246 
1247  // Iterators
1250  }
1251 
1254  }
1255 };
1256 
1257 /// Used by IntegerLiteral/FloatingLiteral to store the numeric without
1258 /// leaking memory.
1259 ///
1260 /// For large floats/integers, APFloat/APInt will allocate memory from the heap
1261 /// to represent these numbers. Unfortunately, when we use a BumpPtrAllocator
1262 /// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1263 /// the APFloat/APInt values will never get freed. APNumericStorage uses
1264 /// ASTContext's allocator for memory allocation.
1266  union {
1267  uint64_t VAL; ///< Used to store the <= 64 bits integer value.
1268  uint64_t *pVal; ///< Used to store the >64 bits integer value.
1269  };
1270  unsigned BitWidth;
1271 
1272  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1273 
1274  APNumericStorage(const APNumericStorage &) = delete;
1275  void operator=(const APNumericStorage &) = delete;
1276 
1277 protected:
1278  APNumericStorage() : VAL(0), BitWidth(0) { }
1279 
1280  llvm::APInt getIntValue() const {
1281  unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1282  if (NumWords > 1)
1283  return llvm::APInt(BitWidth, NumWords, pVal);
1284  else
1285  return llvm::APInt(BitWidth, VAL);
1286  }
1287  void setIntValue(const ASTContext &C, const llvm::APInt &Val);
1288 };
1289 
1291 public:
1292  llvm::APInt getValue() const { return getIntValue(); }
1293  void setValue(const ASTContext &C, const llvm::APInt &Val) {
1294  setIntValue(C, Val);
1295  }
1296 };
1297 
1299 public:
1300  llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
1301  return llvm::APFloat(Semantics, getIntValue());
1302  }
1303  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1304  setIntValue(C, Val.bitcastToAPInt());
1305  }
1306 };
1307 
1308 class IntegerLiteral : public Expr, public APIntStorage {
1309  SourceLocation Loc;
1310 
1311  /// Construct an empty integer literal.
1312  explicit IntegerLiteral(EmptyShell Empty)
1313  : Expr(IntegerLiteralClass, Empty) { }
1314 
1315 public:
1316  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1317  // or UnsignedLongLongTy
1318  IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
1319  SourceLocation l);
1320 
1321  /// Returns a new integer literal with value 'V' and type 'type'.
1322  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1323  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1324  /// \param V - the value that the returned integer literal contains.
1325  static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
1326  QualType type, SourceLocation l);
1327  /// Returns a new empty integer literal.
1328  static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
1329 
1330  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
1331  SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
1332 
1333  /// Retrieve the location of the literal.
1334  SourceLocation getLocation() const { return Loc; }
1335 
1336  void setLocation(SourceLocation Location) { Loc = Location; }
1337 
1338  static bool classof(const Stmt *T) {
1339  return T->getStmtClass() == IntegerLiteralClass;
1340  }
1341 
1342  // Iterators
1345  }
1348  }
1349 };
1350 
1351 class FixedPointLiteral : public Expr, public APIntStorage {
1352  SourceLocation Loc;
1353  unsigned Scale;
1354 
1355  /// \brief Construct an empty integer literal.
1356  explicit FixedPointLiteral(EmptyShell Empty)
1357  : Expr(FixedPointLiteralClass, Empty) {}
1358 
1359  public:
1360  FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
1361  SourceLocation l, unsigned Scale);
1362 
1363  // Store the int as is without any bit shifting.
1364  static FixedPointLiteral *CreateFromRawInt(const ASTContext &C,
1365  const llvm::APInt &V,
1366  QualType type, SourceLocation l,
1367  unsigned Scale);
1368 
1369  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
1370  SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
1371 
1372  /// \brief Retrieve the location of the literal.
1373  SourceLocation getLocation() const { return Loc; }
1374 
1375  void setLocation(SourceLocation Location) { Loc = Location; }
1376 
1377  static bool classof(const Stmt *T) {
1378  return T->getStmtClass() == FixedPointLiteralClass;
1379  }
1380 
1381  std::string getValueAsString(unsigned Radix) const;
1382 
1383  // Iterators
1386  }
1389  }
1390 };
1391 
1392 class CharacterLiteral : public Expr {
1393 public:
1399  UTF32
1400  };
1401 
1402 private:
1403  unsigned Value;
1404  SourceLocation Loc;
1405 public:
1406  // type should be IntTy
1408  SourceLocation l)
1409  : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1410  false, false),
1411  Value(value), Loc(l) {
1412  CharacterLiteralBits.Kind = kind;
1413  }
1414 
1415  /// Construct an empty character literal.
1416  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1417 
1418  SourceLocation getLocation() const { return Loc; }
1420  return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1421  }
1422 
1423  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
1424  SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
1425 
1426  unsigned getValue() const { return Value; }
1427 
1428  void setLocation(SourceLocation Location) { Loc = Location; }
1429  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1430  void setValue(unsigned Val) { Value = Val; }
1431 
1432  static bool classof(const Stmt *T) {
1433  return T->getStmtClass() == CharacterLiteralClass;
1434  }
1435 
1436  // Iterators
1439  }
1442  }
1443 };
1444 
1445 class FloatingLiteral : public Expr, private APFloatStorage {
1446  SourceLocation Loc;
1447 
1448  FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
1450 
1451  /// Construct an empty floating-point literal.
1452  explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
1453 
1454 public:
1455  static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
1456  bool isexact, QualType Type, SourceLocation L);
1457  static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
1458 
1459  llvm::APFloat getValue() const {
1460  return APFloatStorage::getValue(getSemantics());
1461  }
1462  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1463  assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
1464  APFloatStorage::setValue(C, Val);
1465  }
1466 
1467  /// Get a raw enumeration value representing the floating-point semantics of
1468  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1470  return static_cast<APFloatSemantics>(FloatingLiteralBits.Semantics);
1471  }
1472 
1473  /// Set the raw enumeration value representing the floating-point semantics of
1474  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1476  FloatingLiteralBits.Semantics = Sem;
1477  }
1478 
1479  /// Return the APFloat semantics this literal uses.
1480  const llvm::fltSemantics &getSemantics() const;
1481 
1482  /// Set the APFloat semantics this literal uses.
1483  void setSemantics(const llvm::fltSemantics &Sem);
1484 
1485  bool isExact() const { return FloatingLiteralBits.IsExact; }
1486  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1487 
1488  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1489  /// double. Note that this may cause loss of precision, but is useful for
1490  /// debugging dumps, etc.
1491  double getValueAsApproximateDouble() const;
1492 
1493  SourceLocation getLocation() const { return Loc; }
1494  void setLocation(SourceLocation L) { Loc = L; }
1495 
1496  SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
1497  SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
1498 
1499  static bool classof(const Stmt *T) {
1500  return T->getStmtClass() == FloatingLiteralClass;
1501  }
1502 
1503  // Iterators
1506  }
1509  }
1510 };
1511 
1512 /// ImaginaryLiteral - We support imaginary integer and floating point literals,
1513 /// like "1.0i". We represent these as a wrapper around FloatingLiteral and
1514 /// IntegerLiteral classes. Instances of this class always have a Complex type
1515 /// whose element type matches the subexpression.
1516 ///
1517 class ImaginaryLiteral : public Expr {
1518  Stmt *Val;
1519 public:
1521  : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1522  false, false),
1523  Val(val) {}
1524 
1525  /// Build an empty imaginary literal.
1527  : Expr(ImaginaryLiteralClass, Empty) { }
1528 
1529  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1530  Expr *getSubExpr() { return cast<Expr>(Val); }
1531  void setSubExpr(Expr *E) { Val = E; }
1532 
1533  SourceLocation getBeginLoc() const LLVM_READONLY {
1534  return Val->getBeginLoc();
1535  }
1536  SourceLocation getEndLoc() const LLVM_READONLY { return Val->getEndLoc(); }
1537 
1538  static bool classof(const Stmt *T) {
1539  return T->getStmtClass() == ImaginaryLiteralClass;
1540  }
1541 
1542  // Iterators
1543  child_range children() { return child_range(&Val, &Val+1); }
1545  return const_child_range(&Val, &Val + 1);
1546  }
1547 };
1548 
1549 /// StringLiteral - This represents a string literal expression, e.g. "foo"
1550 /// or L"bar" (wide strings). The actual string data can be obtained with
1551 /// getBytes() and is NOT null-terminated. The length of the string data is
1552 /// determined by calling getByteLength().
1553 ///
1554 /// The C type for a string is always a ConstantArrayType. In C++, the char
1555 /// type is const qualified, in C it is not.
1556 ///
1557 /// Note that strings in C can be formed by concatenation of multiple string
1558 /// literal pptokens in translation phase #6. This keeps track of the locations
1559 /// of each of these pieces.
1560 ///
1561 /// Strings in C can also be truncated and extended by assigning into arrays,
1562 /// e.g. with constructs like:
1563 /// char X[2] = "foobar";
1564 /// In this case, getByteLength() will return 6, but the string literal will
1565 /// have type "char[2]".
1566 class StringLiteral final
1567  : public Expr,
1568  private llvm::TrailingObjects<StringLiteral, unsigned, SourceLocation,
1569  char> {
1570  friend class ASTStmtReader;
1571  friend TrailingObjects;
1572 
1573  /// StringLiteral is followed by several trailing objects. They are in order:
1574  ///
1575  /// * A single unsigned storing the length in characters of this string. The
1576  /// length in bytes is this length times the width of a single character.
1577  /// Always present and stored as a trailing objects because storing it in
1578  /// StringLiteral would increase the size of StringLiteral by sizeof(void *)
1579  /// due to alignment requirements. If you add some data to StringLiteral,
1580  /// consider moving it inside StringLiteral.
1581  ///
1582  /// * An array of getNumConcatenated() SourceLocation, one for each of the
1583  /// token this string is made of.
1584  ///
1585  /// * An array of getByteLength() char used to store the string data.
1586 
1587 public:
1588  enum StringKind { Ascii, Wide, UTF8, UTF16, UTF32 };
1589 
1590 private:
1591  unsigned numTrailingObjects(OverloadToken<unsigned>) const { return 1; }
1592  unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
1593  return getNumConcatenated();
1594  }
1595 
1596  unsigned numTrailingObjects(OverloadToken<char>) const {
1597  return getByteLength();
1598  }
1599 
1600  char *getStrDataAsChar() { return getTrailingObjects<char>(); }
1601  const char *getStrDataAsChar() const { return getTrailingObjects<char>(); }
1602 
1603  const uint16_t *getStrDataAsUInt16() const {
1604  return reinterpret_cast<const uint16_t *>(getTrailingObjects<char>());
1605  }
1606 
1607  const uint32_t *getStrDataAsUInt32() const {
1608  return reinterpret_cast<const uint32_t *>(getTrailingObjects<char>());
1609  }
1610 
1611  /// Build a string literal.
1612  StringLiteral(const ASTContext &Ctx, StringRef Str, StringKind Kind,
1613  bool Pascal, QualType Ty, const SourceLocation *Loc,
1614  unsigned NumConcatenated);
1615 
1616  /// Build an empty string literal.
1617  StringLiteral(EmptyShell Empty, unsigned NumConcatenated, unsigned Length,
1618  unsigned CharByteWidth);
1619 
1620  /// Map a target and string kind to the appropriate character width.
1621  static unsigned mapCharByteWidth(TargetInfo const &Target, StringKind SK);
1622 
1623  /// Set one of the string literal token.
1624  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1625  assert(TokNum < getNumConcatenated() && "Invalid tok number");
1626  getTrailingObjects<SourceLocation>()[TokNum] = L;
1627  }
1628 
1629 public:
1630  /// This is the "fully general" constructor that allows representation of
1631  /// strings formed from multiple concatenated tokens.
1632  static StringLiteral *Create(const ASTContext &Ctx, StringRef Str,
1633  StringKind Kind, bool Pascal, QualType Ty,
1634  const SourceLocation *Loc,
1635  unsigned NumConcatenated);
1636 
1637  /// Simple constructor for string literals made from one token.
1638  static StringLiteral *Create(const ASTContext &Ctx, StringRef Str,
1639  StringKind Kind, bool Pascal, QualType Ty,
1640  SourceLocation Loc) {
1641  return Create(Ctx, Str, Kind, Pascal, Ty, &Loc, 1);
1642  }
1643 
1644  /// Construct an empty string literal.
1645  static StringLiteral *CreateEmpty(const ASTContext &Ctx,
1646  unsigned NumConcatenated, unsigned Length,
1647  unsigned CharByteWidth);
1648 
1649  StringRef getString() const {
1650  assert(getCharByteWidth() == 1 &&
1651  "This function is used in places that assume strings use char");
1652  return StringRef(getStrDataAsChar(), getByteLength());
1653  }
1654 
1655  /// Allow access to clients that need the byte representation, such as
1656  /// ASTWriterStmt::VisitStringLiteral().
1657  StringRef getBytes() const {
1658  // FIXME: StringRef may not be the right type to use as a result for this.
1659  return StringRef(getStrDataAsChar(), getByteLength());
1660  }
1661 
1662  void outputString(raw_ostream &OS) const;
1663 
1664  uint32_t getCodeUnit(size_t i) const {
1665  assert(i < getLength() && "out of bounds access");
1666  switch (getCharByteWidth()) {
1667  case 1:
1668  return static_cast<unsigned char>(getStrDataAsChar()[i]);
1669  case 2:
1670  return getStrDataAsUInt16()[i];
1671  case 4:
1672  return getStrDataAsUInt32()[i];
1673  }
1674  llvm_unreachable("Unsupported character width!");
1675  }
1676 
1677  unsigned getByteLength() const { return getCharByteWidth() * getLength(); }
1678  unsigned getLength() const { return *getTrailingObjects<unsigned>(); }
1679  unsigned getCharByteWidth() const { return StringLiteralBits.CharByteWidth; }
1680 
1682  return static_cast<StringKind>(StringLiteralBits.Kind);
1683  }
1684 
1685  bool isAscii() const { return getKind() == Ascii; }
1686  bool isWide() const { return getKind() == Wide; }
1687  bool isUTF8() const { return getKind() == UTF8; }
1688  bool isUTF16() const { return getKind() == UTF16; }
1689  bool isUTF32() const { return getKind() == UTF32; }
1690  bool isPascal() const { return StringLiteralBits.IsPascal; }
1691 
1692  bool containsNonAscii() const {
1693  for (auto c : getString())
1694  if (!isASCII(c))
1695  return true;
1696  return false;
1697  }
1698 
1699  bool containsNonAsciiOrNull() const {
1700  for (auto c : getString())
1701  if (!isASCII(c) || !c)
1702  return true;
1703  return false;
1704  }
1705 
1706  /// getNumConcatenated - Get the number of string literal tokens that were
1707  /// concatenated in translation phase #6 to form this string literal.
1708  unsigned getNumConcatenated() const {
1709  return StringLiteralBits.NumConcatenated;
1710  }
1711 
1712  /// Get one of the string literal token.
1713  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1714  assert(TokNum < getNumConcatenated() && "Invalid tok number");
1715  return getTrailingObjects<SourceLocation>()[TokNum];
1716  }
1717 
1718  /// getLocationOfByte - Return a source location that points to the specified
1719  /// byte of this string literal.
1720  ///
1721  /// Strings are amazingly complex. They can be formed from multiple tokens
1722  /// and can have escape sequences in them in addition to the usual trigraph
1723  /// and escaped newline business. This routine handles this complexity.
1724  ///
1726  getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1727  const LangOptions &Features, const TargetInfo &Target,
1728  unsigned *StartToken = nullptr,
1729  unsigned *StartTokenByteOffset = nullptr) const;
1730 
1732 
1733  tokloc_iterator tokloc_begin() const {
1734  return getTrailingObjects<SourceLocation>();
1735  }
1736 
1737  tokloc_iterator tokloc_end() const {
1738  return getTrailingObjects<SourceLocation>() + getNumConcatenated();
1739  }
1740 
1741  SourceLocation getBeginLoc() const LLVM_READONLY { return *tokloc_begin(); }
1742  SourceLocation getEndLoc() const LLVM_READONLY { return *(tokloc_end() - 1); }
1743 
1744  static bool classof(const Stmt *T) {
1745  return T->getStmtClass() == StringLiteralClass;
1746  }
1747 
1748  // Iterators
1751  }
1754  }
1755 };
1756 
1757 /// [C99 6.4.2.2] - A predefined identifier such as __func__.
1758 class PredefinedExpr final
1759  : public Expr,
1760  private llvm::TrailingObjects<PredefinedExpr, Stmt *> {
1761  friend class ASTStmtReader;
1762  friend TrailingObjects;
1763 
1764  // PredefinedExpr is optionally followed by a single trailing
1765  // "Stmt *" for the predefined identifier. It is present if and only if
1766  // hasFunctionName() is true and is always a "StringLiteral *".
1767 
1768 public:
1769  enum IdentKind {
1772  LFunction, // Same as Function, but as wide string.
1775  LFuncSig, // Same as FuncSig, but as as wide string
1777  /// The same as PrettyFunction, except that the
1778  /// 'virtual' keyword is omitted for virtual member functions.
1779  PrettyFunctionNoVirtual
1780  };
1781 
1782 private:
1784  StringLiteral *SL);
1785 
1786  explicit PredefinedExpr(EmptyShell Empty, bool HasFunctionName);
1787 
1788  /// True if this PredefinedExpr has storage for a function name.
1789  bool hasFunctionName() const { return PredefinedExprBits.HasFunctionName; }
1790 
1791  void setFunctionName(StringLiteral *SL) {
1792  assert(hasFunctionName() &&
1793  "This PredefinedExpr has no storage for a function name!");
1794  *getTrailingObjects<Stmt *>() = SL;
1795  }
1796 
1797 public:
1798  /// Create a PredefinedExpr.
1799  static PredefinedExpr *Create(const ASTContext &Ctx, SourceLocation L,
1800  QualType FNTy, IdentKind IK, StringLiteral *SL);
1801 
1802  /// Create an empty PredefinedExpr.
1803  static PredefinedExpr *CreateEmpty(const ASTContext &Ctx,
1804  bool HasFunctionName);
1805 
1807  return static_cast<IdentKind>(PredefinedExprBits.Kind);
1808  }
1809 
1810  SourceLocation getLocation() const { return PredefinedExprBits.Loc; }
1811  void setLocation(SourceLocation L) { PredefinedExprBits.Loc = L; }
1812 
1814  return hasFunctionName()
1815  ? static_cast<StringLiteral *>(*getTrailingObjects<Stmt *>())
1816  : nullptr;
1817  }
1818 
1820  return hasFunctionName()
1821  ? static_cast<StringLiteral *>(*getTrailingObjects<Stmt *>())
1822  : nullptr;
1823  }
1824 
1825  static StringRef getIdentKindName(IdentKind IK);
1826  static std::string ComputeName(IdentKind IK, const Decl *CurrentDecl);
1827 
1828  SourceLocation getBeginLoc() const { return getLocation(); }
1829  SourceLocation getEndLoc() const { return getLocation(); }
1830 
1831  static bool classof(const Stmt *T) {
1832  return T->getStmtClass() == PredefinedExprClass;
1833  }
1834 
1835  // Iterators
1837  return child_range(getTrailingObjects<Stmt *>(),
1838  getTrailingObjects<Stmt *>() + hasFunctionName());
1839  }
1840 };
1841 
1842 /// ParenExpr - This represents a parethesized expression, e.g. "(1)". This
1843 /// AST node is only formed if full location information is requested.
1844 class ParenExpr : public Expr {
1845  SourceLocation L, R;
1846  Stmt *Val;
1847 public:
1849  : Expr(ParenExprClass, val->getType(),
1850  val->getValueKind(), val->getObjectKind(),
1851  val->isTypeDependent(), val->isValueDependent(),
1852  val->isInstantiationDependent(),
1853  val->containsUnexpandedParameterPack()),
1854  L(l), R(r), Val(val) {}
1855 
1856  /// Construct an empty parenthesized expression.
1857  explicit ParenExpr(EmptyShell Empty)
1858  : Expr(ParenExprClass, Empty) { }
1859 
1860  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1861  Expr *getSubExpr() { return cast<Expr>(Val); }
1862  void setSubExpr(Expr *E) { Val = E; }
1863 
1864  SourceLocation getBeginLoc() const LLVM_READONLY { return L; }
1865  SourceLocation getEndLoc() const LLVM_READONLY { return R; }
1866 
1867  /// Get the location of the left parentheses '('.
1868  SourceLocation getLParen() const { return L; }
1869  void setLParen(SourceLocation Loc) { L = Loc; }
1870 
1871  /// Get the location of the right parentheses ')'.
1872  SourceLocation getRParen() const { return R; }
1873  void setRParen(SourceLocation Loc) { R = Loc; }
1874 
1875  static bool classof(const Stmt *T) {
1876  return T->getStmtClass() == ParenExprClass;
1877  }
1878 
1879  // Iterators
1880  child_range children() { return child_range(&Val, &Val+1); }
1882  return const_child_range(&Val, &Val + 1);
1883  }
1884 };
1885 
1886 /// UnaryOperator - This represents the unary-expression's (except sizeof and
1887 /// alignof), the postinc/postdec operators from postfix-expression, and various
1888 /// extensions.
1889 ///
1890 /// Notes on various nodes:
1891 ///
1892 /// Real/Imag - These return the real/imag part of a complex operand. If
1893 /// applied to a non-complex value, the former returns its operand and the
1894 /// later returns zero in the type of the operand.
1895 ///
1896 class UnaryOperator : public Expr {
1897  Stmt *Val;
1898 
1899 public:
1901 
1902  UnaryOperator(Expr *input, Opcode opc, QualType type, ExprValueKind VK,
1903  ExprObjectKind OK, SourceLocation l, bool CanOverflow)
1904  : Expr(UnaryOperatorClass, type, VK, OK,
1905  input->isTypeDependent() || type->isDependentType(),
1906  input->isValueDependent(),
1907  (input->isInstantiationDependent() ||
1908  type->isInstantiationDependentType()),
1909  input->containsUnexpandedParameterPack()),
1910  Val(input) {
1911  UnaryOperatorBits.Opc = opc;
1912  UnaryOperatorBits.CanOverflow = CanOverflow;
1913  UnaryOperatorBits.Loc = l;
1914  }
1915 
1916  /// Build an empty unary operator.
1917  explicit UnaryOperator(EmptyShell Empty) : Expr(UnaryOperatorClass, Empty) {
1918  UnaryOperatorBits.Opc = UO_AddrOf;
1919  }
1920 
1921  Opcode getOpcode() const {
1922  return static_cast<Opcode>(UnaryOperatorBits.Opc);
1923  }
1924  void setOpcode(Opcode Opc) { UnaryOperatorBits.Opc = Opc; }
1925 
1926  Expr *getSubExpr() const { return cast<Expr>(Val); }
1927  void setSubExpr(Expr *E) { Val = E; }
1928 
1929  /// getOperatorLoc - Return the location of the operator.
1930  SourceLocation getOperatorLoc() const { return UnaryOperatorBits.Loc; }
1931  void setOperatorLoc(SourceLocation L) { UnaryOperatorBits.Loc = L; }
1932 
1933  /// Returns true if the unary operator can cause an overflow. For instance,
1934  /// signed int i = INT_MAX; i++;
1935  /// signed char c = CHAR_MAX; c++;
1936  /// Due to integer promotions, c++ is promoted to an int before the postfix
1937  /// increment, and the result is an int that cannot overflow. However, i++
1938  /// can overflow.
1939  bool canOverflow() const { return UnaryOperatorBits.CanOverflow; }
1940  void setCanOverflow(bool C) { UnaryOperatorBits.CanOverflow = C; }
1941 
1942  /// isPostfix - Return true if this is a postfix operation, like x++.
1943  static bool isPostfix(Opcode Op) {
1944  return Op == UO_PostInc || Op == UO_PostDec;
1945  }
1946 
1947  /// isPrefix - Return true if this is a prefix operation, like --x.
1948  static bool isPrefix(Opcode Op) {
1949  return Op == UO_PreInc || Op == UO_PreDec;
1950  }
1951 
1952  bool isPrefix() const { return isPrefix(getOpcode()); }
1953  bool isPostfix() const { return isPostfix(getOpcode()); }
1954 
1955  static bool isIncrementOp(Opcode Op) {
1956  return Op == UO_PreInc || Op == UO_PostInc;
1957  }
1958  bool isIncrementOp() const {
1959  return isIncrementOp(getOpcode());
1960  }
1961 
1962  static bool isDecrementOp(Opcode Op) {
1963  return Op == UO_PreDec || Op == UO_PostDec;
1964  }
1965  bool isDecrementOp() const {
1966  return isDecrementOp(getOpcode());
1967  }
1968 
1969  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1970  bool isIncrementDecrementOp() const {
1971  return isIncrementDecrementOp(getOpcode());
1972  }
1973 
1974  static bool isArithmeticOp(Opcode Op) {
1975  return Op >= UO_Plus && Op <= UO_LNot;
1976  }
1977  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1978 
1979  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1980  /// corresponds to, e.g. "sizeof" or "[pre]++"
1981  static StringRef getOpcodeStr(Opcode Op);
1982 
1983  /// Retrieve the unary opcode that corresponds to the given
1984  /// overloaded operator.
1985  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1986 
1987  /// Retrieve the overloaded operator kind that corresponds to
1988  /// the given unary opcode.
1989  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1990 
1991  SourceLocation getBeginLoc() const LLVM_READONLY {
1992  return isPostfix() ? Val->getBeginLoc() : getOperatorLoc();
1993  }
1994  SourceLocation getEndLoc() const LLVM_READONLY {
1995  return isPostfix() ? getOperatorLoc() : Val->getEndLoc();
1996  }
1997  SourceLocation getExprLoc() const { return getOperatorLoc(); }
1998 
1999  static bool classof(const Stmt *T) {
2000  return T->getStmtClass() == UnaryOperatorClass;
2001  }
2002 
2003  // Iterators
2004  child_range children() { return child_range(&Val, &Val+1); }
2006  return const_child_range(&Val, &Val + 1);
2007  }
2008 };
2009 
2010 /// Helper class for OffsetOfExpr.
2011 
2012 // __builtin_offsetof(type, identifier(.identifier|[expr])*)
2014 public:
2015  /// The kind of offsetof node we have.
2016  enum Kind {
2017  /// An index into an array.
2018  Array = 0x00,
2019  /// A field.
2020  Field = 0x01,
2021  /// A field in a dependent type, known only by its name.
2022  Identifier = 0x02,
2023  /// An implicit indirection through a C++ base class, when the
2024  /// field found is in a base class.
2025  Base = 0x03
2026  };
2027 
2028 private:
2029  enum { MaskBits = 2, Mask = 0x03 };
2030 
2031  /// The source range that covers this part of the designator.
2032  SourceRange Range;
2033 
2034  /// The data describing the designator, which comes in three
2035  /// different forms, depending on the lower two bits.
2036  /// - An unsigned index into the array of Expr*'s stored after this node
2037  /// in memory, for [constant-expression] designators.
2038  /// - A FieldDecl*, for references to a known field.
2039  /// - An IdentifierInfo*, for references to a field with a given name
2040  /// when the class type is dependent.
2041  /// - A CXXBaseSpecifier*, for references that look at a field in a
2042  /// base class.
2043  uintptr_t Data;
2044 
2045 public:
2046  /// Create an offsetof node that refers to an array element.
2047  OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
2048  SourceLocation RBracketLoc)
2049  : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) {}
2050 
2051  /// Create an offsetof node that refers to a field.
2053  : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
2054  Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) {}
2055 
2056  /// Create an offsetof node that refers to an identifier.
2058  SourceLocation NameLoc)
2059  : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
2060  Data(reinterpret_cast<uintptr_t>(Name) | Identifier) {}
2061 
2062  /// Create an offsetof node that refers into a C++ base class.
2064  : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
2065 
2066  /// Determine what kind of offsetof node this is.
2067  Kind getKind() const { return static_cast<Kind>(Data & Mask); }
2068 
2069  /// For an array element node, returns the index into the array
2070  /// of expressions.
2071  unsigned getArrayExprIndex() const {
2072  assert(getKind() == Array);
2073  return Data >> 2;
2074  }
2075 
2076  /// For a field offsetof node, returns the field.
2077  FieldDecl *getField() const {
2078  assert(getKind() == Field);
2079  return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
2080  }
2081 
2082  /// For a field or identifier offsetof node, returns the name of
2083  /// the field.
2084  IdentifierInfo *getFieldName() const;
2085 
2086  /// For a base class node, returns the base specifier.
2088  assert(getKind() == Base);
2089  return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
2090  }
2091 
2092  /// Retrieve the source range that covers this offsetof node.
2093  ///
2094  /// For an array element node, the source range contains the locations of
2095  /// the square brackets. For a field or identifier node, the source range
2096  /// contains the location of the period (if there is one) and the
2097  /// identifier.
2098  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
2099  SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
2100  SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
2101 };
2102 
2103 /// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
2104 /// offsetof(record-type, member-designator). For example, given:
2105 /// @code
2106 /// struct S {
2107 /// float f;
2108 /// double d;
2109 /// };
2110 /// struct T {
2111 /// int i;
2112 /// struct S s[10];
2113 /// };
2114 /// @endcode
2115 /// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
2116 
2117 class OffsetOfExpr final
2118  : public Expr,
2119  private llvm::TrailingObjects<OffsetOfExpr, OffsetOfNode, Expr *> {
2120  SourceLocation OperatorLoc, RParenLoc;
2121  // Base type;
2122  TypeSourceInfo *TSInfo;
2123  // Number of sub-components (i.e. instances of OffsetOfNode).
2124  unsigned NumComps;
2125  // Number of sub-expressions (i.e. array subscript expressions).
2126  unsigned NumExprs;
2127 
2128  size_t numTrailingObjects(OverloadToken<OffsetOfNode>) const {
2129  return NumComps;
2130  }
2131 
2133  SourceLocation OperatorLoc, TypeSourceInfo *tsi,
2135  SourceLocation RParenLoc);
2136 
2137  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
2138  : Expr(OffsetOfExprClass, EmptyShell()),
2139  TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}
2140 
2141 public:
2142 
2143  static OffsetOfExpr *Create(const ASTContext &C, QualType type,
2144  SourceLocation OperatorLoc, TypeSourceInfo *tsi,
2145  ArrayRef<OffsetOfNode> comps,
2146  ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
2147 
2148  static OffsetOfExpr *CreateEmpty(const ASTContext &C,
2149  unsigned NumComps, unsigned NumExprs);
2150 
2151  /// getOperatorLoc - Return the location of the operator.
2152  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2153  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2154 
2155  /// Return the location of the right parentheses.
2156  SourceLocation getRParenLoc() const { return RParenLoc; }
2157  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
2158 
2160  return TSInfo;
2161  }
2163  TSInfo = tsi;
2164  }
2165 
2166  const OffsetOfNode &getComponent(unsigned Idx) const {
2167  assert(Idx < NumComps && "Subscript out of range");
2168  return getTrailingObjects<OffsetOfNode>()[Idx];
2169  }
2170 
2171  void setComponent(unsigned Idx, OffsetOfNode ON) {
2172  assert(Idx < NumComps && "Subscript out of range");
2173  getTrailingObjects<OffsetOfNode>()[Idx] = ON;
2174  }
2175 
2176  unsigned getNumComponents() const {
2177  return NumComps;
2178  }
2179 
2180  Expr* getIndexExpr(unsigned Idx) {
2181  assert(Idx < NumExprs && "Subscript out of range");
2182  return getTrailingObjects<Expr *>()[Idx];
2183  }
2184 
2185  const Expr *getIndexExpr(unsigned Idx) const {
2186  assert(Idx < NumExprs && "Subscript out of range");
2187  return getTrailingObjects<Expr *>()[Idx];
2188  }
2189 
2190  void setIndexExpr(unsigned Idx, Expr* E) {
2191  assert(Idx < NumComps && "Subscript out of range");
2192  getTrailingObjects<Expr *>()[Idx] = E;
2193  }
2194 
2195  unsigned getNumExpressions() const {
2196  return NumExprs;
2197  }
2198 
2199  SourceLocation getBeginLoc() const LLVM_READONLY { return OperatorLoc; }
2200  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
2201 
2202  static bool classof(const Stmt *T) {
2203  return T->getStmtClass() == OffsetOfExprClass;
2204  }
2205 
2206  // Iterators
2208  Stmt **begin = reinterpret_cast<Stmt **>(getTrailingObjects<Expr *>());
2209  return child_range(begin, begin + NumExprs);
2210  }
2212  Stmt *const *begin =
2213  reinterpret_cast<Stmt *const *>(getTrailingObjects<Expr *>());
2214  return const_child_range(begin, begin + NumExprs);
2215  }
2217 };
2218 
2219 /// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
2220 /// expression operand. Used for sizeof/alignof (C99 6.5.3.4) and
2221 /// vec_step (OpenCL 1.1 6.11.12).
2223  union {
2226  } Argument;
2227  SourceLocation OpLoc, RParenLoc;
2228 
2229 public:
2231  QualType resultType, SourceLocation op,
2232  SourceLocation rp) :
2233  Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2234  false, // Never type-dependent (C++ [temp.dep.expr]p3).
2235  // Value-dependent if the argument is type-dependent.
2236  TInfo->getType()->isDependentType(),
2237  TInfo->getType()->isInstantiationDependentType(),
2238  TInfo->getType()->containsUnexpandedParameterPack()),
2239  OpLoc(op), RParenLoc(rp) {
2240  UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
2241  UnaryExprOrTypeTraitExprBits.IsType = true;
2242  Argument.Ty = TInfo;
2243  }
2244 
2246  QualType resultType, SourceLocation op,
2247  SourceLocation rp);
2248 
2249  /// Construct an empty sizeof/alignof expression.
2251  : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
2252 
2254  return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
2255  }
2256  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
2257 
2258  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
2260  return getArgumentTypeInfo()->getType();
2261  }
2263  assert(isArgumentType() && "calling getArgumentType() when arg is expr");
2264  return Argument.Ty;
2265  }
2267  assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
2268  return static_cast<Expr*>(Argument.Ex);
2269  }
2270  const Expr *getArgumentExpr() const {
2271  return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
2272  }
2273 
2274  void setArgument(Expr *E) {
2275  Argument.Ex = E;
2276  UnaryExprOrTypeTraitExprBits.IsType = false;
2277  }
2279  Argument.Ty = TInfo;
2280  UnaryExprOrTypeTraitExprBits.IsType = true;
2281  }
2282 
2283  /// Gets the argument type, or the type of the argument expression, whichever
2284  /// is appropriate.
2286  return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
2287  }
2288 
2289  SourceLocation getOperatorLoc() const { return OpLoc; }
2290  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2291 
2292  SourceLocation getRParenLoc() const { return RParenLoc; }
2293  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2294 
2295  SourceLocation getBeginLoc() const LLVM_READONLY { return OpLoc; }
2296  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
2297 
2298  static bool classof(const Stmt *T) {
2299  return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
2300  }
2301 
2302  // Iterators
2304  const_child_range children() const;
2305 };
2306 
2307 //===----------------------------------------------------------------------===//
2308 // Postfix Operators.
2309 //===----------------------------------------------------------------------===//
2310 
2311 /// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
2312 class ArraySubscriptExpr : public Expr {
2313  enum { LHS, RHS, END_EXPR };
2314  Stmt *SubExprs[END_EXPR];
2315 
2316  bool lhsIsBase() const { return getRHS()->getType()->isIntegerType(); }
2317 
2318 public:
2321  SourceLocation rbracketloc)
2322  : Expr(ArraySubscriptExprClass, t, VK, OK,
2323  lhs->isTypeDependent() || rhs->isTypeDependent(),
2324  lhs->isValueDependent() || rhs->isValueDependent(),
2325  (lhs->isInstantiationDependent() ||
2326  rhs->isInstantiationDependent()),
2327  (lhs->containsUnexpandedParameterPack() ||
2328  rhs->containsUnexpandedParameterPack())) {
2329  SubExprs[LHS] = lhs;
2330  SubExprs[RHS] = rhs;
2331  ArraySubscriptExprBits.RBracketLoc = rbracketloc;
2332  }
2333 
2334  /// Create an empty array subscript expression.
2336  : Expr(ArraySubscriptExprClass, Shell) { }
2337 
2338  /// An array access can be written A[4] or 4[A] (both are equivalent).
2339  /// - getBase() and getIdx() always present the normalized view: A[4].
2340  /// In this case getBase() returns "A" and getIdx() returns "4".
2341  /// - getLHS() and getRHS() present the syntactic view. e.g. for
2342  /// 4[A] getLHS() returns "4".
2343  /// Note: Because vector element access is also written A[4] we must
2344  /// predicate the format conversion in getBase and getIdx only on the
2345  /// the type of the RHS, as it is possible for the LHS to be a vector of
2346  /// integer type
2347  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
2348  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2349  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2350 
2351  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
2352  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2353  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2354 
2355  Expr *getBase() { return lhsIsBase() ? getLHS() : getRHS(); }
2356  const Expr *getBase() const { return lhsIsBase() ? getLHS() : getRHS(); }
2357 
2358  Expr *getIdx() { return lhsIsBase() ? getRHS() : getLHS(); }
2359  const Expr *getIdx() const { return lhsIsBase() ? getRHS() : getLHS(); }
2360 
2361  SourceLocation getBeginLoc() const LLVM_READONLY {
2362  return getLHS()->getBeginLoc();
2363  }
2364  SourceLocation getEndLoc() const { return getRBracketLoc(); }
2365 
2367  return ArraySubscriptExprBits.RBracketLoc;
2368  }
2370  ArraySubscriptExprBits.RBracketLoc = L;
2371  }
2372 
2373  SourceLocation getExprLoc() const LLVM_READONLY {
2374  return getBase()->getExprLoc();
2375  }
2376 
2377  static bool classof(const Stmt *T) {
2378  return T->getStmtClass() == ArraySubscriptExprClass;
2379  }
2380 
2381  // Iterators
2383  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2384  }
2386  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
2387  }
2388 };
2389 
2390 /// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2391 /// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2392 /// while its subclasses may represent alternative syntax that (semantically)
2393 /// results in a function call. For example, CXXOperatorCallExpr is
2394 /// a subclass for overloaded operator calls that use operator syntax, e.g.,
2395 /// "str1 + str2" to resolve to a function call.
2396 class CallExpr : public Expr {
2397  enum { FN = 0, PREARGS_START = 1 };
2398 
2399  /// The number of arguments in the call expression.
2400  unsigned NumArgs;
2401 
2402  /// The location of the right parenthese. This has a different meaning for
2403  /// the derived classes of CallExpr.
2404  SourceLocation RParenLoc;
2405 
2406  void updateDependenciesFromArg(Expr *Arg);
2407 
2408  // CallExpr store some data in trailing objects. However since CallExpr
2409  // is used a base of other expression classes we cannot use
2410  // llvm::TrailingObjects. Instead we manually perform the pointer arithmetic
2411  // and casts.
2412  //
2413  // The trailing objects are in order:
2414  //
2415  // * A single "Stmt *" for the callee expression.
2416  //
2417  // * An array of getNumPreArgs() "Stmt *" for the pre-argument expressions.
2418  //
2419  // * An array of getNumArgs() "Stmt *" for the argument expressions.
2420  //
2421  // Note that we store the offset in bytes from the this pointer to the start
2422  // of the trailing objects. It would be perfectly possible to compute it
2423  // based on the dynamic kind of the CallExpr. However 1.) we have plenty of
2424  // space in the bit-fields of Stmt. 2.) It was benchmarked to be faster to
2425  // compute this once and then load the offset from the bit-fields of Stmt,
2426  // instead of re-computing the offset each time the trailing objects are
2427  // accessed.
2428 
2429  /// Return a pointer to the start of the trailing array of "Stmt *".
2430  Stmt **getTrailingStmts() {
2431  return reinterpret_cast<Stmt **>(reinterpret_cast<char *>(this) +
2432  CallExprBits.OffsetToTrailingObjects);
2433  }
2434  Stmt *const *getTrailingStmts() const {
2435  return const_cast<CallExpr *>(this)->getTrailingStmts();
2436  }
2437 
2438  /// Map a statement class to the appropriate offset in bytes from the
2439  /// this pointer to the trailing objects.
2440  static unsigned offsetToTrailingObjects(StmtClass SC);
2441 
2442 public:
2443  enum class ADLCallKind : bool { NotADL, UsesADL };
2444  static constexpr ADLCallKind NotADL = ADLCallKind::NotADL;
2445  static constexpr ADLCallKind UsesADL = ADLCallKind::UsesADL;
2446 
2447 protected:
2448  /// Build a call expression, assuming that appropriate storage has been
2449  /// allocated for the trailing objects.
2450  CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
2452  SourceLocation RParenLoc, unsigned MinNumArgs, ADLCallKind UsesADL);
2453 
2454  /// Build an empty call expression, for deserialization.
2455  CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
2456  EmptyShell Empty);
2457 
2458  /// Return the size in bytes needed for the trailing objects.
2459  /// Used by the derived classes to allocate the right amount of storage.
2460  static unsigned sizeOfTrailingObjects(unsigned NumPreArgs, unsigned NumArgs) {
2461  return (1 + NumPreArgs + NumArgs) * sizeof(Stmt *);
2462  }
2463 
2464  Stmt *getPreArg(unsigned I) {
2465  assert(I < getNumPreArgs() && "Prearg access out of range!");
2466  return getTrailingStmts()[PREARGS_START + I];
2467  }
2468  const Stmt *getPreArg(unsigned I) const {
2469  assert(I < getNumPreArgs() && "Prearg access out of range!");
2470  return getTrailingStmts()[PREARGS_START + I];
2471  }
2472  void setPreArg(unsigned I, Stmt *PreArg) {
2473  assert(I < getNumPreArgs() && "Prearg access out of range!");
2474  getTrailingStmts()[PREARGS_START + I] = PreArg;
2475  }
2476 
2477  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2478 
2479 public:
2480  /// Create a call expression. Fn is the callee expression, Args is the
2481  /// argument array, Ty is the type of the call expression (which is *not*
2482  /// the return type in general), VK is the value kind of the call expression
2483  /// (lvalue, rvalue, ...), and RParenLoc is the location of the right
2484  /// parenthese in the call expression. MinNumArgs specifies the minimum
2485  /// number of arguments. The actual number of arguments will be the greater
2486  /// of Args.size() and MinNumArgs. This is used in a few places to allocate
2487  /// enough storage for the default arguments. UsesADL specifies whether the
2488  /// callee was found through argument-dependent lookup.
2489  ///
2490  /// Note that you can use CreateTemporary if you need a temporary call
2491  /// expression on the stack.
2492  static CallExpr *Create(const ASTContext &Ctx, Expr *Fn,
2494  SourceLocation RParenLoc, unsigned MinNumArgs = 0,
2495  ADLCallKind UsesADL = NotADL);
2496 
2497  /// Create a temporary call expression with no arguments in the memory
2498  /// pointed to by Mem. Mem must points to at least sizeof(CallExpr)
2499  /// + sizeof(Stmt *) bytes of storage, aligned to alignof(CallExpr):
2500  ///
2501  /// \code{.cpp}
2502  /// llvm::AlignedCharArray<alignof(CallExpr),
2503  /// sizeof(CallExpr) + sizeof(Stmt *)> Buffer;
2504  /// CallExpr *TheCall = CallExpr::CreateTemporary(Buffer.buffer, etc);
2505  /// \endcode
2506  static CallExpr *CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
2507  ExprValueKind VK, SourceLocation RParenLoc,
2508  ADLCallKind UsesADL = NotADL);
2509 
2510  /// Create an empty call expression, for deserialization.
2511  static CallExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
2512  EmptyShell Empty);
2513 
2514  Expr *getCallee() { return cast<Expr>(getTrailingStmts()[FN]); }
2515  const Expr *getCallee() const { return cast<Expr>(getTrailingStmts()[FN]); }
2516  void setCallee(Expr *F) { getTrailingStmts()[FN] = F; }
2517 
2519  return static_cast<ADLCallKind>(CallExprBits.UsesADL);
2520  }
2521  void setADLCallKind(ADLCallKind V = UsesADL) {
2522  CallExprBits.UsesADL = static_cast<bool>(V);
2523  }
2524  bool usesADL() const { return getADLCallKind() == UsesADL; }
2525 
2526  Decl *getCalleeDecl() { return getCallee()->getReferencedDeclOfCallee(); }
2527  const Decl *getCalleeDecl() const {
2528  return getCallee()->getReferencedDeclOfCallee();
2529  }
2530 
2531  /// If the callee is a FunctionDecl, return it. Otherwise return null.
2533  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
2534  }
2536  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
2537  }
2538 
2539  /// getNumArgs - Return the number of actual arguments to this call.
2540  unsigned getNumArgs() const { return NumArgs; }
2541 
2542  /// Retrieve the call arguments.
2544  return reinterpret_cast<Expr **>(getTrailingStmts() + PREARGS_START +
2545  getNumPreArgs());
2546  }
2547  const Expr *const *getArgs() const {
2548  return reinterpret_cast<const Expr *const *>(
2549  getTrailingStmts() + PREARGS_START + getNumPreArgs());
2550  }
2551 
2552  /// getArg - Return the specified argument.
2553  Expr *getArg(unsigned Arg) {
2554  assert(Arg < getNumArgs() && "Arg access out of range!");
2555  return getArgs()[Arg];
2556  }
2557  const Expr *getArg(unsigned Arg) const {
2558  assert(Arg < getNumArgs() && "Arg access out of range!");
2559  return getArgs()[Arg];
2560  }
2561 
2562  /// setArg - Set the specified argument.
2563  void setArg(unsigned Arg, Expr *ArgExpr) {
2564  assert(Arg < getNumArgs() && "Arg access out of range!");
2565  getArgs()[Arg] = ArgExpr;
2566  }
2567 
2568  /// Reduce the number of arguments in this call expression. This is used for
2569  /// example during error recovery to drop extra arguments. There is no way
2570  /// to perform the opposite because: 1.) We don't track how much storage
2571  /// we have for the argument array 2.) This would potentially require growing
2572  /// the argument array, something we cannot support since the arguments are
2573  /// stored in a trailing array.
2574  void shrinkNumArgs(unsigned NewNumArgs) {
2575  assert((NewNumArgs <= getNumArgs()) &&
2576  "shrinkNumArgs cannot increase the number of arguments!");
2577  NumArgs = NewNumArgs;
2578  }
2579 
2582  typedef llvm::iterator_range<arg_iterator> arg_range;
2583  typedef llvm::iterator_range<const_arg_iterator> const_arg_range;
2584 
2585  arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
2586  const_arg_range arguments() const {
2587  return const_arg_range(arg_begin(), arg_end());
2588  }
2589 
2590  arg_iterator arg_begin() {
2591  return getTrailingStmts() + PREARGS_START + getNumPreArgs();
2592  }
2593  arg_iterator arg_end() { return arg_begin() + getNumArgs(); }
2594 
2595  const_arg_iterator arg_begin() const {
2596  return getTrailingStmts() + PREARGS_START + getNumPreArgs();
2597  }
2598  const_arg_iterator arg_end() const { return arg_begin() + getNumArgs(); }
2599 
2600  /// This method provides fast access to all the subexpressions of
2601  /// a CallExpr without going through the slower virtual child_iterator
2602  /// interface. This provides efficient reverse iteration of the
2603  /// subexpressions. This is currently used for CFG construction.
2605  return llvm::makeArrayRef(getTrailingStmts(),
2606  PREARGS_START + getNumPreArgs() + getNumArgs());
2607  }
2608 
2609  /// getNumCommas - Return the number of commas that must have been present in
2610  /// this function call.
2611  unsigned getNumCommas() const { return getNumArgs() ? getNumArgs() - 1 : 0; }
2612 
2613  /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
2614  /// of the callee. If not, return 0.
2615  unsigned getBuiltinCallee() const;
2616 
2617  /// Returns \c true if this is a call to a builtin which does not
2618  /// evaluate side-effects within its arguments.
2619  bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const;
2620 
2621  /// getCallReturnType - Get the return type of the call expr. This is not
2622  /// always the type of the expr itself, if the return type is a reference
2623  /// type.
2624  QualType getCallReturnType(const ASTContext &Ctx) const;
2625 
2626  /// Returns the WarnUnusedResultAttr that is either declared on the called
2627  /// function, or its return type declaration.
2628  const Attr *getUnusedResultAttr(const ASTContext &Ctx) const;
2629 
2630  /// Returns true if this call expression should warn on unused results.
2631  bool hasUnusedResultAttr(const ASTContext &Ctx) const {
2632  return getUnusedResultAttr(Ctx) != nullptr;
2633  }
2634 
2635  SourceLocation getRParenLoc() const { return RParenLoc; }
2636  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2637 
2638  SourceLocation getBeginLoc() const LLVM_READONLY;
2639  SourceLocation getEndLoc() const LLVM_READONLY;
2640 
2641  /// Return true if this is a call to __assume() or __builtin_assume() with
2642  /// a non-value-dependent constant parameter evaluating as false.
2643  bool isBuiltinAssumeFalse(const ASTContext &Ctx) const;
2644 
2645  bool isCallToStdMove() const {
2646  const FunctionDecl *FD = getDirectCallee();
2647  return getNumArgs() == 1 && FD && FD->isInStdNamespace() &&
2648  FD->getIdentifier() && FD->getIdentifier()->isStr("move");
2649  }
2650 
2651  static bool classof(const Stmt *T) {
2652  return T->getStmtClass() >= firstCallExprConstant &&
2653  T->getStmtClass() <= lastCallExprConstant;
2654  }
2655 
2656  // Iterators
2658  return child_range(getTrailingStmts(), getTrailingStmts() + PREARGS_START +
2659  getNumPreArgs() + getNumArgs());
2660  }
2661 
2663  return const_child_range(getTrailingStmts(),
2664  getTrailingStmts() + PREARGS_START +
2665  getNumPreArgs() + getNumArgs());
2666  }
2667 };
2668 
2669 /// Extra data stored in some MemberExpr objects.
2671  /// The nested-name-specifier that qualifies the name, including
2672  /// source-location information.
2674 
2675  /// The DeclAccessPair through which the MemberDecl was found due to
2676  /// name qualifiers.
2678 };
2679 
2680 /// MemberExpr - [C99 6.5.2.3] Structure and Union Members. X->F and X.F.
2681 ///
2682 class MemberExpr final
2683  : public Expr,
2684  private llvm::TrailingObjects<MemberExpr, MemberExprNameQualifier,
2685  ASTTemplateKWAndArgsInfo,
2686  TemplateArgumentLoc> {
2687  friend class ASTReader;
2688  friend class ASTStmtWriter;
2689  friend TrailingObjects;
2690 
2691  /// Base - the expression for the base pointer or structure references. In
2692  /// X.F, this is "X".
2693  Stmt *Base;
2694 
2695  /// MemberDecl - This is the decl being referenced by the field/member name.
2696  /// In X.F, this is the decl referenced by F.
2697  ValueDecl *MemberDecl;
2698 
2699  /// MemberDNLoc - Provides source/type location info for the
2700  /// declaration name embedded in MemberDecl.
2701  DeclarationNameLoc MemberDNLoc;
2702 
2703  /// MemberLoc - This is the location of the member name.
2704  SourceLocation MemberLoc;
2705 
2706  size_t numTrailingObjects(OverloadToken<MemberExprNameQualifier>) const {
2707  return hasQualifierOrFoundDecl();
2708  }
2709 
2710  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
2711  return hasTemplateKWAndArgsInfo();
2712  }
2713 
2714  bool hasQualifierOrFoundDecl() const {
2715  return MemberExprBits.HasQualifierOrFoundDecl;
2716  }
2717 
2718  bool hasTemplateKWAndArgsInfo() const {
2719  return MemberExprBits.HasTemplateKWAndArgsInfo;
2720  }
2721 
2722 public:
2723  MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2724  ValueDecl *memberdecl, const DeclarationNameInfo &NameInfo,
2726  : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2727  base->isValueDependent(), base->isInstantiationDependent(),
2728  base->containsUnexpandedParameterPack()),
2729  Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2730  MemberLoc(NameInfo.getLoc()) {
2731  assert(memberdecl->getDeclName() == NameInfo.getName());
2732  MemberExprBits.IsArrow = isarrow;
2733  MemberExprBits.HasQualifierOrFoundDecl = false;
2734  MemberExprBits.HasTemplateKWAndArgsInfo = false;
2735  MemberExprBits.HadMultipleCandidates = false;
2736  MemberExprBits.OperatorLoc = operatorloc;
2737  }
2738 
2739  // NOTE: this constructor should be used only when it is known that
2740  // the member name can not provide additional syntactic info
2741  // (i.e., source locations for C++ operator names or type source info
2742  // for constructors, destructors and conversion operators).
2743  MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2744  ValueDecl *memberdecl, SourceLocation l, QualType ty,
2746  : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2747  base->isValueDependent(), base->isInstantiationDependent(),
2748  base->containsUnexpandedParameterPack()),
2749  Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l) {
2750  MemberExprBits.IsArrow = isarrow;
2751  MemberExprBits.HasQualifierOrFoundDecl = false;
2752  MemberExprBits.HasTemplateKWAndArgsInfo = false;
2753  MemberExprBits.HadMultipleCandidates = false;
2754  MemberExprBits.OperatorLoc = operatorloc;
2755  }
2756 
2757  static MemberExpr *Create(const ASTContext &C, Expr *base, bool isarrow,
2758  SourceLocation OperatorLoc,
2759  NestedNameSpecifierLoc QualifierLoc,
2760  SourceLocation TemplateKWLoc, ValueDecl *memberdecl,
2761  DeclAccessPair founddecl,
2762  DeclarationNameInfo MemberNameInfo,
2763  const TemplateArgumentListInfo *targs, QualType ty,
2764  ExprValueKind VK, ExprObjectKind OK);
2765 
2766  void setBase(Expr *E) { Base = E; }
2767  Expr *getBase() const { return cast<Expr>(Base); }
2768 
2769  /// Retrieve the member declaration to which this expression refers.
2770  ///
2771  /// The returned declaration will be a FieldDecl or (in C++) a VarDecl (for
2772  /// static data members), a CXXMethodDecl, or an EnumConstantDecl.
2773  ValueDecl *getMemberDecl() const { return MemberDecl; }
2774  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2775 
2776  /// Retrieves the declaration found by lookup.
2778  if (!hasQualifierOrFoundDecl())
2779  return DeclAccessPair::make(getMemberDecl(),
2780  getMemberDecl()->getAccess());
2781  return getTrailingObjects<MemberExprNameQualifier>()->FoundDecl;
2782  }
2783 
2784  /// Determines whether this member expression actually had
2785  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2786  /// x->Base::foo.
2787  bool hasQualifier() const { return getQualifier() != nullptr; }
2788 
2789  /// If the member name was qualified, retrieves the
2790  /// nested-name-specifier that precedes the member name, with source-location
2791  /// information.
2793  if (!hasQualifierOrFoundDecl())
2794  return NestedNameSpecifierLoc();
2795  return getTrailingObjects<MemberExprNameQualifier>()->QualifierLoc;
2796  }
2797 
2798  /// If the member name was qualified, retrieves the
2799  /// nested-name-specifier that precedes the member name. Otherwise, returns
2800  /// NULL.
2802  return getQualifierLoc().getNestedNameSpecifier();
2803  }
2804 
2805  /// Retrieve the location of the template keyword preceding
2806  /// the member name, if any.
2808  if (!hasTemplateKWAndArgsInfo())
2809  return SourceLocation();
2810  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
2811  }
2812 
2813  /// Retrieve the location of the left angle bracket starting the
2814  /// explicit template argument list following the member name, if any.
2816  if (!hasTemplateKWAndArgsInfo())
2817  return SourceLocation();
2818  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
2819  }
2820 
2821  /// Retrieve the location of the right angle bracket ending the
2822  /// explicit template argument list following the member name, if any.
2824  if (!hasTemplateKWAndArgsInfo())
2825  return SourceLocation();
2826  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
2827  }
2828 
2829  /// Determines whether the member name was preceded by the template keyword.
2830  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2831 
2832  /// Determines whether the member name was followed by an
2833  /// explicit template argument list.
2834  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2835 
2836  /// Copies the template arguments (if present) into the given
2837  /// structure.
2839  if (hasExplicitTemplateArgs())
2840  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
2841  getTrailingObjects<TemplateArgumentLoc>(), List);
2842  }
2843 
2844  /// Retrieve the template arguments provided as part of this
2845  /// template-id.
2847  if (!hasExplicitTemplateArgs())
2848  return nullptr;
2849 
2850  return getTrailingObjects<TemplateArgumentLoc>();
2851  }
2852 
2853  /// Retrieve the number of template arguments provided as part of this
2854  /// template-id.
2855  unsigned getNumTemplateArgs() const {
2856  if (!hasExplicitTemplateArgs())
2857  return 0;
2858 
2859  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
2860  }
2861 
2863  return {getTemplateArgs(), getNumTemplateArgs()};
2864  }
2865 
2866  /// Retrieve the member declaration name info.
2868  return DeclarationNameInfo(MemberDecl->getDeclName(),
2869  MemberLoc, MemberDNLoc);
2870  }
2871 
2872  SourceLocation getOperatorLoc() const { return MemberExprBits.OperatorLoc; }
2873 
2874  bool isArrow() const { return MemberExprBits.IsArrow; }
2875  void setArrow(bool A) { MemberExprBits.IsArrow = A; }
2876 
2877  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2878  /// location of 'F'.
2879  SourceLocation getMemberLoc() const { return MemberLoc; }
2880  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2881 
2882  SourceLocation getBeginLoc() const LLVM_READONLY;
2883  SourceLocation getEndLoc() const LLVM_READONLY;
2884 
2885  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2886 
2887  /// Determine whether the base of this explicit is implicit.
2888  bool isImplicitAccess() const {
2889  return getBase() && getBase()->isImplicitCXXThis();
2890  }
2891 
2892  /// Returns true if this member expression refers to a method that
2893  /// was resolved from an overloaded set having size greater than 1.
2894  bool hadMultipleCandidates() const {
2895  return MemberExprBits.HadMultipleCandidates;
2896  }
2897  /// Sets the flag telling whether this expression refers to
2898  /// a method that was resolved from an overloaded set having size
2899  /// greater than 1.
2900  void setHadMultipleCandidates(bool V = true) {
2901  MemberExprBits.HadMultipleCandidates = V;
2902  }
2903 
2904  /// Returns true if virtual dispatch is performed.
2905  /// If the member access is fully qualified, (i.e. X::f()), virtual
2906  /// dispatching is not performed. In -fapple-kext mode qualified
2907  /// calls to virtual method will still go through the vtable.
2908  bool performsVirtualDispatch(const LangOptions &LO) const {
2909  return LO.AppleKext || !hasQualifier();
2910  }
2911 
2912  static bool classof(const Stmt *T) {
2913  return T->getStmtClass() == MemberExprClass;
2914  }
2915 
2916  // Iterators
2917  child_range children() { return child_range(&Base, &Base+1); }
2919  return const_child_range(&Base, &Base + 1);
2920  }
2921 };
2922 
2923 /// CompoundLiteralExpr - [C99 6.5.2.5]
2924 ///
2925 class CompoundLiteralExpr : public Expr {
2926  /// LParenLoc - If non-null, this is the location of the left paren in a
2927  /// compound literal like "(int){4}". This can be null if this is a
2928  /// synthesized compound expression.
2929  SourceLocation LParenLoc;
2930 
2931  /// The type as written. This can be an incomplete array type, in
2932  /// which case the actual expression type will be different.
2933  /// The int part of the pair stores whether this expr is file scope.
2934  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2935  Stmt *Init;
2936 public:
2938  QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2939  : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2940  tinfo->getType()->isDependentType(),
2941  init->isValueDependent(),
2942  (init->isInstantiationDependent() ||
2943  tinfo->getType()->isInstantiationDependentType()),
2944  init->containsUnexpandedParameterPack()),
2945  LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2946 
2947  /// Construct an empty compound literal.
2949  : Expr(CompoundLiteralExprClass, Empty) { }
2950 
2951  const Expr *getInitializer() const { return cast<Expr>(Init); }
2952  Expr *getInitializer() { return cast<Expr>(Init); }
2953  void setInitializer(Expr *E) { Init = E; }
2954 
2955  bool isFileScope() const { return TInfoAndScope.getInt(); }
2956  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2957 
2958  SourceLocation getLParenLoc() const { return LParenLoc; }
2959  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2960 
2962  return TInfoAndScope.getPointer();
2963  }
2965  TInfoAndScope.setPointer(tinfo);
2966  }
2967 
2968  SourceLocation getBeginLoc() const LLVM_READONLY {
2969  // FIXME: Init should never be null.
2970  if (!Init)
2971  return SourceLocation();
2972  if (LParenLoc.isInvalid())
2973  return Init->getBeginLoc();
2974  return LParenLoc;
2975  }
2976  SourceLocation getEndLoc() const LLVM_READONLY {
2977  // FIXME: Init should never be null.
2978  if (!Init)
2979  return SourceLocation();
2980  return Init->getEndLoc();
2981  }
2982 
2983  static bool classof(const Stmt *T) {
2984  return T->getStmtClass() == CompoundLiteralExprClass;
2985  }
2986 
2987  // Iterators
2988  child_range children() { return child_range(&Init, &Init+1); }
2990  return const_child_range(&Init, &Init + 1);
2991  }
2992 };
2993 
2994 /// CastExpr - Base class for type casts, including both implicit
2995 /// casts (ImplicitCastExpr) and explicit casts that have some
2996 /// representation in the source code (ExplicitCastExpr's derived
2997 /// classes).
2998 class CastExpr : public Expr {
2999  Stmt *Op;
3000 
3001  bool CastConsistency() const;
3002 
3003  const CXXBaseSpecifier * const *path_buffer() const {
3004  return const_cast<CastExpr*>(this)->path_buffer();
3005  }
3006  CXXBaseSpecifier **path_buffer();
3007 
3008 protected:
3010  Expr *op, unsigned BasePathSize)
3011  : Expr(SC, ty, VK, OK_Ordinary,
3012  // Cast expressions are type-dependent if the type is
3013  // dependent (C++ [temp.dep.expr]p3).
3014  ty->isDependentType(),
3015  // Cast expressions are value-dependent if the type is
3016  // dependent or if the subexpression is value-dependent.
3017  ty->isDependentType() || (op && op->isValueDependent()),
3018  (ty->isInstantiationDependentType() ||
3019  (op && op->isInstantiationDependent())),
3020  // An implicit cast expression doesn't (lexically) contain an
3021  // unexpanded pack, even if its target type does.
3022  ((SC != ImplicitCastExprClass &&
3023  ty->containsUnexpandedParameterPack()) ||
3024  (op && op->containsUnexpandedParameterPack()))),
3025  Op(op) {
3026  CastExprBits.Kind = kind;
3027  CastExprBits.PartOfExplicitCast = false;
3028  CastExprBits.BasePathSize = BasePathSize;
3029  assert((CastExprBits.BasePathSize == BasePathSize) &&
3030  "BasePathSize overflow!");
3031  assert(CastConsistency());
3032  }
3033 
3034  /// Construct an empty cast.
3035  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
3036  : Expr(SC, Empty) {
3037  CastExprBits.PartOfExplicitCast = false;
3038  CastExprBits.BasePathSize = BasePathSize;
3039  assert((CastExprBits.BasePathSize == BasePathSize) &&
3040  "BasePathSize overflow!");
3041  }
3042 
3043 public:
3044  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
3045  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
3046 
3047  static const char *getCastKindName(CastKind CK);
3048  const char *getCastKindName() const { return getCastKindName(getCastKind()); }
3049 
3050  Expr *getSubExpr() { return cast<Expr>(Op); }
3051  const Expr *getSubExpr() const { return cast<Expr>(Op); }
3052  void setSubExpr(Expr *E) { Op = E; }
3053 
3054  /// Retrieve the cast subexpression as it was written in the source
3055  /// code, looking through any implicit casts or other intermediate nodes
3056  /// introduced by semantic analysis.
3057  Expr *getSubExprAsWritten();
3058  const Expr *getSubExprAsWritten() const {
3059  return const_cast<CastExpr *>(this)->getSubExprAsWritten();
3060  }
3061 
3062  /// If this cast applies a user-defined conversion, retrieve the conversion
3063  /// function that it invokes.
3064  NamedDecl *getConversionFunction() const;
3065 
3067  typedef const CXXBaseSpecifier *const *path_const_iterator;
3068  bool path_empty() const { return path_size() == 0; }
3069  unsigned path_size() const { return CastExprBits.BasePathSize; }
3070  path_iterator path_begin() { return path_buffer(); }
3071  path_iterator path_end() { return path_buffer() + path_size(); }
3072  path_const_iterator path_begin() const { return path_buffer(); }
3073  path_const_iterator path_end() const { return path_buffer() + path_size(); }
3074 
3076  assert(getCastKind() == CK_ToUnion);
3077  return getTargetFieldForToUnionCast(getType(), getSubExpr()->getType());
3078  }
3079 
3080  static const FieldDecl *getTargetFieldForToUnionCast(QualType unionType,
3081  QualType opType);
3082  static const FieldDecl *getTargetFieldForToUnionCast(const RecordDecl *RD,
3083  QualType opType);
3084 
3085  static bool classof(const Stmt *T) {
3086  return T->getStmtClass() >= firstCastExprConstant &&
3087  T->getStmtClass() <= lastCastExprConstant;
3088  }
3089 
3090  // Iterators
3091  child_range children() { return child_range(&Op, &Op+1); }
3092  const_child_range children() const { return const_child_range(&Op, &Op + 1); }
3093 };
3094 
3095 /// ImplicitCastExpr - Allows us to explicitly represent implicit type
3096 /// conversions, which have no direct representation in the original
3097 /// source code. For example: converting T[]->T*, void f()->void
3098 /// (*f)(), float->double, short->int, etc.
3099 ///
3100 /// In C, implicit casts always produce rvalues. However, in C++, an
3101 /// implicit cast whose result is being bound to a reference will be
3102 /// an lvalue or xvalue. For example:
3103 ///
3104 /// @code
3105 /// class Base { };
3106 /// class Derived : public Base { };
3107 /// Derived &&ref();
3108 /// void f(Derived d) {
3109 /// Base& b = d; // initializer is an ImplicitCastExpr
3110 /// // to an lvalue of type Base
3111 /// Base&& r = ref(); // initializer is an ImplicitCastExpr
3112 /// // to an xvalue of type Base
3113 /// }
3114 /// @endcode
3115 class ImplicitCastExpr final
3116  : public CastExpr,
3117  private llvm::TrailingObjects<ImplicitCastExpr, CXXBaseSpecifier *> {
3118 
3120  unsigned BasePathLength, ExprValueKind VK)
3121  : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) { }
3122 
3123  /// Construct an empty implicit cast.
3124  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
3125  : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
3126 
3127 public:
3128  enum OnStack_t { OnStack };
3130  ExprValueKind VK)
3131  : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
3132  }
3133 
3134  bool isPartOfExplicitCast() const { return CastExprBits.PartOfExplicitCast; }
3135  void setIsPartOfExplicitCast(bool PartOfExplicitCast) {
3136  CastExprBits.PartOfExplicitCast = PartOfExplicitCast;
3137  }
3138 
3139  static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
3140  CastKind Kind, Expr *Operand,
3141  const CXXCastPath *BasePath,
3142  ExprValueKind Cat);
3143 
3144  static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
3145  unsigned PathSize);
3146 
3147  SourceLocation getBeginLoc() const LLVM_READONLY {
3148  return getSubExpr()->getBeginLoc();
3149  }
3150  SourceLocation getEndLoc() const LLVM_READONLY {
3151  return getSubExpr()->getEndLoc();
3152  }
3153 
3154  static bool classof(const Stmt *T) {
3155  return T->getStmtClass() == ImplicitCastExprClass;
3156  }
3157 
3159  friend class CastExpr;
3160 };
3161 
3163  Expr *e = this;
3164  while (true)
3165  if (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3166  e = ice->getSubExpr();
3167  else if (FullExpr *fe = dyn_cast<FullExpr>(e))
3168  e = fe->getSubExpr();
3169  else
3170  break;
3171  return e;
3172 }
3173 
3174 /// ExplicitCastExpr - An explicit cast written in the source
3175 /// code.
3176 ///
3177 /// This class is effectively an abstract class, because it provides
3178 /// the basic representation of an explicitly-written cast without
3179 /// specifying which kind of cast (C cast, functional cast, static
3180 /// cast, etc.) was written; specific derived classes represent the
3181 /// particular style of cast and its location information.
3182 ///
3183 /// Unlike implicit casts, explicit cast nodes have two different
3184 /// types: the type that was written into the source code, and the
3185 /// actual type of the expression as determined by semantic
3186 /// analysis. These types may differ slightly. For example, in C++ one
3187 /// can cast to a reference type, which indicates that the resulting
3188 /// expression will be an lvalue or xvalue. The reference type, however,
3189 /// will not be used as the type of the expression.
3190 class ExplicitCastExpr : public CastExpr {
3191  /// TInfo - Source type info for the (written) type
3192  /// this expression is casting to.
3193  TypeSourceInfo *TInfo;
3194 
3195 protected:
3197  CastKind kind, Expr *op, unsigned PathSize,
3198  TypeSourceInfo *writtenTy)
3199  : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
3200 
3201  /// Construct an empty explicit cast.
3202  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
3203  : CastExpr(SC, Shell, PathSize) { }
3204 
3205 public:
3206  /// getTypeInfoAsWritten - Returns the type source info for the type
3207  /// that this expression is casting to.
3208  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
3209  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
3210 
3211  /// getTypeAsWritten - Returns the type that this expression is
3212  /// casting to, as written in the source code.
3213  QualType getTypeAsWritten() const { return TInfo->getType(); }
3214 
3215  static bool classof(const Stmt *T) {
3216  return T->getStmtClass() >= firstExplicitCastExprConstant &&
3217  T->getStmtClass() <= lastExplicitCastExprConstant;
3218  }
3219 };
3220 
3221 /// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
3222 /// cast in C++ (C++ [expr.cast]), which uses the syntax
3223 /// (Type)expr. For example: @c (int)f.
3224 class CStyleCastExpr final
3225  : public ExplicitCastExpr,
3226  private llvm::TrailingObjects<CStyleCastExpr, CXXBaseSpecifier *> {
3227  SourceLocation LPLoc; // the location of the left paren
3228  SourceLocation RPLoc; // the location of the right paren
3229 
3231  unsigned PathSize, TypeSourceInfo *writtenTy,
3233  : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
3234  writtenTy), LPLoc(l), RPLoc(r) {}
3235 
3236  /// Construct an empty C-style explicit cast.
3237  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
3238  : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
3239 
3240 public:
3241  static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
3242  ExprValueKind VK, CastKind K,
3243  Expr *Op, const CXXCastPath *BasePath,
3244  TypeSourceInfo *WrittenTy, SourceLocation L,
3245  SourceLocation R);
3246 
3247  static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
3248  unsigned PathSize);
3249 
3250  SourceLocation getLParenLoc() const { return LPLoc; }
3251  void setLParenLoc(SourceLocation L) { LPLoc = L; }
3252 
3253  SourceLocation getRParenLoc() const { return RPLoc; }
3254  void setRParenLoc(SourceLocation L) { RPLoc = L; }
3255 
3256  SourceLocation getBeginLoc() const LLVM_READONLY { return LPLoc; }
3257  SourceLocation getEndLoc() const LLVM_READONLY {
3258  return getSubExpr()->getEndLoc();
3259  }
3260 
3261  static bool classof(const Stmt *T) {
3262  return T->getStmtClass() == CStyleCastExprClass;
3263  }
3264 
3266  friend class CastExpr;
3267 };
3268 
3269 /// A builtin binary operation expression such as "x + y" or "x <= y".
3270 ///
3271 /// This expression node kind describes a builtin binary operation,
3272 /// such as "x + y" for integer values "x" and "y". The operands will
3273 /// already have been converted to appropriate types (e.g., by
3274 /// performing promotions or conversions).
3275 ///
3276 /// In C++, where operators may be overloaded, a different kind of
3277 /// expression node (CXXOperatorCallExpr) is used to express the
3278 /// invocation of an overloaded operator with operator syntax. Within
3279 /// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
3280 /// used to store an expression "x + y" depends on the subexpressions
3281 /// for x and y. If neither x or y is type-dependent, and the "+"
3282 /// operator resolves to a built-in operation, BinaryOperator will be
3283 /// used to express the computation (x and y may still be
3284 /// value-dependent). If either x or y is type-dependent, or if the
3285 /// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
3286 /// be used to express the computation.
3287 class BinaryOperator : public Expr {
3288  enum { LHS, RHS, END_EXPR };
3289  Stmt *SubExprs[END_EXPR];
3290 
3291 public:
3293 
3294  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3296  SourceLocation opLoc, FPOptions FPFeatures)
3297  : Expr(BinaryOperatorClass, ResTy, VK, OK,
3298  lhs->isTypeDependent() || rhs->isTypeDependent(),
3299  lhs->isValueDependent() || rhs->isValueDependent(),
3300  (lhs->isInstantiationDependent() ||
3301  rhs->isInstantiationDependent()),
3302  (lhs->containsUnexpandedParameterPack() ||
3303  rhs->containsUnexpandedParameterPack())) {
3304  BinaryOperatorBits.Opc = opc;
3305  BinaryOperatorBits.FPFeatures = FPFeatures.getInt();
3306  BinaryOperatorBits.OpLoc = opLoc;
3307  SubExprs[LHS] = lhs;
3308  SubExprs[RHS] = rhs;
3309  assert(!isCompoundAssignmentOp() &&
3310  "Use CompoundAssignOperator for compound assignments");
3311  }
3312 
3313  /// Construct an empty binary operator.
3314  explicit BinaryOperator(EmptyShell Empty) : Expr(BinaryOperatorClass, Empty) {
3315  BinaryOperatorBits.Opc = BO_Comma;
3316  }
3317 
3318  SourceLocation getExprLoc() const { return getOperatorLoc(); }
3319  SourceLocation getOperatorLoc() const { return BinaryOperatorBits.OpLoc; }
3320  void setOperatorLoc(SourceLocation L) { BinaryOperatorBits.OpLoc = L; }
3321 
3322  Opcode getOpcode() const {
3323  return static_cast<Opcode>(BinaryOperatorBits.Opc);
3324  }
3325  void setOpcode(Opcode Opc) { BinaryOperatorBits.Opc = Opc; }
3326 
3327  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3328  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3329  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3330  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3331 
3332  SourceLocation getBeginLoc() const LLVM_READONLY {
3333  return getLHS()->getBeginLoc();
3334  }
3335  SourceLocation getEndLoc() const LLVM_READONLY {
3336  return getRHS()->getEndLoc();
3337  }
3338 
3339  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
3340  /// corresponds to, e.g. "<<=".
3341  static StringRef getOpcodeStr(Opcode Op);
3342 
3343  StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
3344 
3345  /// Retrieve the binary opcode that corresponds to the given
3346  /// overloaded operator.
3347  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
3348 
3349  /// Retrieve the overloaded operator kind that corresponds to
3350  /// the given binary opcode.
3351  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
3352 
3353  /// predicates to categorize the respective opcodes.
3354  static bool isPtrMemOp(Opcode Opc) {
3355  return Opc == BO_PtrMemD || Opc == BO_PtrMemI;
3356  }
3357  bool isPtrMemOp() const { return isPtrMemOp(getOpcode()); }
3358 
3359  static bool isMultiplicativeOp(Opcode Opc) {
3360  return Opc >= BO_Mul && Opc <= BO_Rem;
3361  }
3363  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
3364  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
3365  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
3366  bool isShiftOp() const { return isShiftOp(getOpcode()); }
3367 
3368  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
3369  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
3370 
3371  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
3372  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
3373 
3374  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
3375  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
3376 
3377  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_Cmp && Opc<=BO_NE; }
3378  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
3379 
3380  static Opcode negateComparisonOp(Opcode Opc) {
3381  switch (Opc) {
3382  default:
3383  llvm_unreachable("Not a comparison operator.");
3384  case BO_LT: return BO_GE;
3385  case BO_GT: return BO_LE;
3386  case BO_LE: return BO_GT;
3387  case BO_GE: return BO_LT;
3388  case BO_EQ: return BO_NE;
3389  case BO_NE: return BO_EQ;
3390  }
3391  }
3392 
3393  static Opcode reverseComparisonOp(Opcode Opc) {
3394  switch (Opc) {
3395  default:
3396  llvm_unreachable("Not a comparison operator.");
3397  case BO_LT: return BO_GT;
3398  case BO_GT: return BO_LT;
3399  case BO_LE: return BO_GE;
3400  case BO_GE: return BO_LE;
3401  case BO_EQ:
3402  case BO_NE:
3403  return Opc;
3404  }
3405  }
3406 
3407  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
3408  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
3409 
3410  static bool isAssignmentOp(Opcode Opc) {
3411  return Opc >= BO_Assign && Opc <= BO_OrAssign;
3412  }
3413  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
3414 
3415  static bool isCompoundAssignmentOp(Opcode Opc) {
3416  return Opc > BO_Assign && Opc <= BO_OrAssign;
3417  }
3418  bool isCompoundAssignmentOp() const {
3419  return isCompoundAssignmentOp(getOpcode());
3420  }
3421  static Opcode getOpForCompoundAssignment(Opcode Opc) {
3422  assert(isCompoundAssignmentOp(Opc));
3423  if (Opc >= BO_AndAssign)
3424  return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
3425  else
3426  return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
3427  }
3428 
3429  static bool isShiftAssignOp(Opcode Opc) {
3430  return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
3431  }
3432  bool isShiftAssignOp() const {
3433  return isShiftAssignOp(getOpcode());
3434  }
3435 
3436  // Return true if a binary operator using the specified opcode and operands
3437  // would match the 'p = (i8*)nullptr + n' idiom for casting a pointer-sized
3438  // integer to a pointer.
3439  static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc,
3440  Expr *LHS, Expr *RHS);
3441 
3442  static bool classof(const Stmt *S) {
3443  return S->getStmtClass() >= firstBinaryOperatorConstant &&
3444  S->getStmtClass() <= lastBinaryOperatorConstant;
3445  }
3446 
3447  // Iterators
3449  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3450  }
3452  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
3453  }
3454 
3455  // Set the FP contractability status of this operator. Only meaningful for
3456  // operations on floating point types.
3458  BinaryOperatorBits.FPFeatures = F.getInt();
3459  }
3460 
3462  return FPOptions(BinaryOperatorBits.FPFeatures);
3463  }
3464 
3465  // Get the FP contractability status of this operator. Only meaningful for
3466  // operations on floating point types.
3468  return getFPFeatures().allowFPContractWithinStatement();
3469  }
3470 
3471  // Get the FENV_ACCESS status of this operator. Only meaningful for
3472  // operations on floating point types.
3473  bool isFEnvAccessOn() const { return getFPFeatures().allowFEnvAccess(); }
3474 
3475 protected:
3476  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3478  SourceLocation opLoc, FPOptions FPFeatures, bool dead2)
3479  : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
3480  lhs->isTypeDependent() || rhs->isTypeDependent(),
3481  lhs->isValueDependent() || rhs->isValueDependent(),
3482  (lhs->isInstantiationDependent() ||
3483  rhs->isInstantiationDependent()),
3484  (lhs->containsUnexpandedParameterPack() ||
3485  rhs->containsUnexpandedParameterPack())) {
3486  BinaryOperatorBits.Opc = opc;
3487  BinaryOperatorBits.FPFeatures = FPFeatures.getInt();
3488  BinaryOperatorBits.OpLoc = opLoc;
3489  SubExprs[LHS] = lhs;
3490  SubExprs[RHS] = rhs;
3491  }
3492 
3493  BinaryOperator(StmtClass SC, EmptyShell Empty) : Expr(SC, Empty) {
3494  BinaryOperatorBits.Opc = BO_MulAssign;
3495  }
3496 };
3497 
3498 /// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
3499 /// track of the type the operation is performed in. Due to the semantics of
3500 /// these operators, the operands are promoted, the arithmetic performed, an
3501 /// implicit conversion back to the result type done, then the assignment takes
3502 /// place. This captures the intermediate type which the computation is done
3503 /// in.
3505  QualType ComputationLHSType;
3506  QualType ComputationResultType;
3507 public:
3508  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
3510  QualType CompLHSType, QualType CompResultType,
3511  SourceLocation OpLoc, FPOptions FPFeatures)
3512  : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, FPFeatures,
3513  true),
3514  ComputationLHSType(CompLHSType),
3515  ComputationResultType(CompResultType) {
3516  assert(isCompoundAssignmentOp() &&
3517  "Only should be used for compound assignments");
3518  }
3519 
3520  /// Build an empty compound assignment operator expression.
3522  : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
3523 
3524  // The two computation types are the type the LHS is converted
3525  // to for the computation and the type of the result; the two are
3526  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
3527  QualType getComputationLHSType() const { return ComputationLHSType; }
3528  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
3529 
3530  QualType getComputationResultType() const { return ComputationResultType; }
3531  void setComputationResultType(QualType T) { ComputationResultType = T; }
3532 
3533  static bool classof(const Stmt *S) {
3534  return S->getStmtClass() == CompoundAssignOperatorClass;
3535  }
3536 };
3537 
3538 /// AbstractConditionalOperator - An abstract base class for
3539 /// ConditionalOperator and BinaryConditionalOperator.
3541  SourceLocation QuestionLoc, ColonLoc;
3542  friend class ASTStmtReader;
3543 
3544 protected:
3547  bool TD, bool VD, bool ID,
3548  bool ContainsUnexpandedParameterPack,
3549  SourceLocation qloc,
3550  SourceLocation cloc)
3551  : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
3552  QuestionLoc(qloc), ColonLoc(cloc) {}
3553 
3555  : Expr(SC, Empty) { }
3556 
3557 public:
3558  // getCond - Return the expression representing the condition for
3559  // the ?: operator.
3560  Expr *getCond() const;
3561 
3562  // getTrueExpr - Return the subexpression representing the value of
3563  // the expression if the condition evaluates to true.
3564  Expr *getTrueExpr() const;
3565 
3566  // getFalseExpr - Return the subexpression representing the value of
3567  // the expression if the condition evaluates to false. This is
3568  // the same as getRHS.
3569  Expr *getFalseExpr() const;
3570 
3571  SourceLocation getQuestionLoc() const { return QuestionLoc; }
3573 
3574  static bool classof(const Stmt *T) {
3575  return T->getStmtClass() == ConditionalOperatorClass ||
3576  T->getStmtClass() == BinaryConditionalOperatorClass;
3577  }
3578 };
3579 
3580 /// ConditionalOperator - The ?: ternary operator. The GNU "missing
3581 /// middle" extension is a BinaryConditionalOperator.
3583  enum { COND, LHS, RHS, END_EXPR };
3584  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3585 
3586  friend class ASTStmtReader;
3587 public:
3589  SourceLocation CLoc, Expr *rhs,
3591  : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3592  // FIXME: the type of the conditional operator doesn't
3593  // depend on the type of the conditional, but the standard
3594  // seems to imply that it could. File a bug!
3595  (lhs->isTypeDependent() || rhs->isTypeDependent()),
3596  (cond->isValueDependent() || lhs->isValueDependent() ||
3597  rhs->isValueDependent()),
3598  (cond->isInstantiationDependent() ||
3599  lhs->isInstantiationDependent() ||
3600  rhs->isInstantiationDependent()),
3601  (cond->containsUnexpandedParameterPack() ||
3602  lhs->containsUnexpandedParameterPack() ||
3603  rhs->containsUnexpandedParameterPack()),
3604  QLoc, CLoc) {
3605  SubExprs[COND] = cond;
3606  SubExprs[LHS] = lhs;
3607  SubExprs[RHS] = rhs;
3608  }
3609 
3610  /// Build an empty conditional operator.
3612  : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3613 
3614  // getCond - Return the expression representing the condition for
3615  // the ?: operator.
3616  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3617 
3618  // getTrueExpr - Return the subexpression representing the value of
3619  // the expression if the condition evaluates to true.
3620  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3621 
3622  // getFalseExpr - Return the subexpression representing the value of
3623  // the expression if the condition evaluates to false. This is
3624  // the same as getRHS.
3625  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3626 
3627  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3628  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3629 
3630  SourceLocation getBeginLoc() const LLVM_READONLY {
3631  return getCond()->getBeginLoc();
3632  }
3633  SourceLocation getEndLoc() const LLVM_READONLY {
3634  return getRHS()->getEndLoc();
3635  }
3636 
3637  static bool classof(const Stmt *T) {
3638  return T->getStmtClass() == ConditionalOperatorClass;
3639  }
3640 
3641  // Iterators
3643  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3644  }
3646  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
3647  }
3648 };
3649 
3650 /// BinaryConditionalOperator - The GNU extension to the conditional
3651 /// operator which allows the middle operand to be omitted.
3652 ///
3653 /// This is a different expression kind on the assumption that almost
3654 /// every client ends up needing to know that these are different.
3656  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3657 
3658  /// - the common condition/left-hand-side expression, which will be
3659  /// evaluated as the opaque value
3660  /// - the condition, expressed in terms of the opaque value
3661  /// - the left-hand-side, expressed in terms of the opaque value
3662  /// - the right-hand-side
3663  Stmt *SubExprs[NUM_SUBEXPRS];
3664  OpaqueValueExpr *OpaqueValue;
3665 
3666  friend class ASTStmtReader;
3667 public:
3669  Expr *cond, Expr *lhs, Expr *rhs,
3670  SourceLocation qloc, SourceLocation cloc,
3672  : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3673  (common->isTypeDependent() || rhs->isTypeDependent()),
3674  (common->isValueDependent() || rhs->isValueDependent()),
3675  (common->isInstantiationDependent() ||
3676  rhs->isInstantiationDependent()),
3677  (common->containsUnexpandedParameterPack() ||
3678  rhs->containsUnexpandedParameterPack()),
3679  qloc, cloc),
3680  OpaqueValue(opaqueValue) {
3681  SubExprs[COMMON] = common;
3682  SubExprs[COND] = cond;
3683  SubExprs[LHS] = lhs;
3684  SubExprs[RHS] = rhs;
3685  assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3686  }
3687 
3688  /// Build an empty conditional operator.
3690  : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3691 
3692  /// getCommon - Return the common expression, written to the
3693  /// left of the condition. The opaque value will be bound to the
3694  /// result of this expression.
3695  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3696 
3697  /// getOpaqueValue - Return the opaque value placeholder.
3698  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3699 
3700  /// getCond - Return the condition expression; this is defined
3701  /// in terms of the opaque value.
3702  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3703 
3704  /// getTrueExpr - Return the subexpression which will be
3705  /// evaluated if the condition evaluates to true; this is defined
3706  /// in terms of the opaque value.
3707  Expr *getTrueExpr() const {
3708  return cast<Expr>(SubExprs[LHS]);
3709  }
3710 
3711  /// getFalseExpr - Return the subexpression which will be
3712  /// evaluated if the condnition evaluates to false; this is
3713  /// defined in terms of the opaque value.
3714  Expr *getFalseExpr() const {
3715  return cast<Expr>(SubExprs[RHS]);
3716  }
3717 
3718  SourceLocation getBeginLoc() const LLVM_READONLY {
3719  return getCommon()->getBeginLoc();
3720  }
3721  SourceLocation getEndLoc() const LLVM_READONLY {
3722  return getFalseExpr()->getEndLoc();
3723  }
3724 
3725  static bool classof(const Stmt *T) {
3726  return T->getStmtClass() == BinaryConditionalOperatorClass;
3727  }
3728 
3729  // Iterators
3731  return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3732  }
3734  return const_child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3735  }
3736 };
3737 
3739  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3740  return co->getCond();
3741  return cast<BinaryConditionalOperator>(this)->getCond();
3742 }
3743 
3745  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3746  return co->getTrueExpr();
3747  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3748 }
3749 
3751  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3752  return co->getFalseExpr();
3753  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3754 }
3755 
3756 /// AddrLabelExpr - The GNU address of label extension, representing &&label.
3757 class AddrLabelExpr : public Expr {
3758  SourceLocation AmpAmpLoc, LabelLoc;
3759  LabelDecl *Label;
3760 public:
3762  QualType t)
3763  : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3764  false),
3765  AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3766 
3767  /// Build an empty address of a label expression.
3768  explicit AddrLabelExpr(EmptyShell Empty)
3769  : Expr(AddrLabelExprClass, Empty) { }
3770 
3771  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3772  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3773  SourceLocation getLabelLoc() const { return LabelLoc; }
3774  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3775 
3776  SourceLocation getBeginLoc() const LLVM_READONLY { return AmpAmpLoc; }
3777  SourceLocation getEndLoc() const LLVM_READONLY { return LabelLoc; }
3778 
3779  LabelDecl *getLabel() const { return Label; }
3780  void setLabel(LabelDecl *L) { Label = L; }
3781 
3782  static bool classof(const Stmt *T) {
3783  return T->getStmtClass() == AddrLabelExprClass;
3784  }
3785 
3786  // Iterators
3789  }
3792  }
3793 };
3794 
3795 /// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3796 /// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3797 /// takes the value of the last subexpression.
3798 ///
3799 /// A StmtExpr is always an r-value; values "returned" out of a
3800 /// StmtExpr will be copied.
3801 class StmtExpr : public Expr {
3802  Stmt *SubStmt;
3803  SourceLocation LParenLoc, RParenLoc;
3804 public:
3805  // FIXME: Does type-dependence need to be computed differently?
3806  // FIXME: Do we need to compute instantiation instantiation-dependence for
3807  // statements? (ugh!)
3809  SourceLocation lp, SourceLocation rp) :
3810  Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3811  T->isDependentType(), false, false, false),
3812  SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3813 
3814  /// Build an empty statement expression.
3815  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3816 
3817  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3818  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3819  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3820 
3821  SourceLocation getBeginLoc() const LLVM_READONLY { return LParenLoc; }
3822  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
3823 
3824  SourceLocation getLParenLoc() const { return LParenLoc; }
3825  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3826  SourceLocation getRParenLoc() const { return RParenLoc; }
3827  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3828 
3829  static bool classof(const Stmt *T) {
3830  return T->getStmtClass() == StmtExprClass;
3831  }
3832 
3833  // Iterators
3834  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3836  return const_child_range(&SubStmt, &SubStmt + 1);
3837  }
3838 };
3839 
3840 /// ShuffleVectorExpr - clang-specific builtin-in function
3841 /// __builtin_shufflevector.
3842 /// This AST node represents a operator that does a constant
3843 /// shuffle, similar to LLVM's shufflevector instruction. It takes
3844 /// two vectors and a variable number of constant indices,
3845 /// and returns the appropriately shuffled vector.
3846 class ShuffleVectorExpr : public Expr {
3847  SourceLocation BuiltinLoc, RParenLoc;
3848 
3849  // SubExprs - the list of values passed to the __builtin_shufflevector
3850  // function. The first two are vectors, and the rest are constant
3851  // indices. The number of values in this list is always
3852  // 2+the number of indices in the vector type.
3853  Stmt **SubExprs;
3854  unsigned NumExprs;
3855 
3856 public:
3858  SourceLocation BLoc, SourceLocation RP);
3859 
3860  /// Build an empty vector-shuffle expression.
3862  : Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }
3863 
3864  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3865  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3866 
3867  SourceLocation getRParenLoc() const { return RParenLoc; }
3868  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3869 
3870  SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
3871  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
3872 
3873  static bool classof(const Stmt *T) {
3874  return T->getStmtClass() == ShuffleVectorExprClass;
3875  }
3876 
3877  /// getNumSubExprs - Return the size of the SubExprs array. This includes the
3878  /// constant expression, the actual arguments passed in, and the function
3879  /// pointers.
3880  unsigned getNumSubExprs() const { return NumExprs; }
3881 
3882  /// Retrieve the array of expressions.
3883  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3884 
3885  /// getExpr - Return the Expr at the specified index.
3886  Expr *getExpr(unsigned Index) {
3887  assert((Index < NumExprs) && "Arg access out of range!");
3888  return cast<Expr>(SubExprs[Index]);
3889  }
3890  const Expr *getExpr(unsigned Index) const {
3891  assert((Index < NumExprs) && "Arg access out of range!");
3892  return cast<Expr>(SubExprs[Index]);
3893  }
3894 
3895  void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
3896 
3897  llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
3898  assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3899  return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
3900  }
3901 
3902  // Iterators
3904  return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3905  }
3907  return const_child_range(&SubExprs[0], &SubExprs[0] + NumExprs);
3908  }
3909 };
3910 
3911 /// ConvertVectorExpr - Clang builtin function __builtin_convertvector
3912 /// This AST node provides support for converting a vector type to another
3913 /// vector type of the same arity.
3914 class ConvertVectorExpr : public Expr {
3915 private:
3916  Stmt *SrcExpr;
3917  TypeSourceInfo *TInfo;
3918  SourceLocation BuiltinLoc, RParenLoc;
3919 
3920  friend class ASTReader;
3921  friend class ASTStmtReader;
3922  explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
3923 
3924 public:
3927  SourceLocation BuiltinLoc, SourceLocation RParenLoc)
3928  : Expr(ConvertVectorExprClass, DstType, VK, OK,
3929  DstType->isDependentType(),
3930  DstType->isDependentType() || SrcExpr->isValueDependent(),
3931  (DstType->isInstantiationDependentType() ||
3932  SrcExpr->isInstantiationDependent()),
3933  (DstType->containsUnexpandedParameterPack() ||
3934  SrcExpr->containsUnexpandedParameterPack())),
3935  SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
3936 
3937  /// getSrcExpr - Return the Expr to be converted.
3938  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
3939 
3940  /// getTypeSourceInfo - Return the destination type.
3942  return TInfo;
3943  }
3945  TInfo = ti;
3946  }
3947 
3948  /// getBuiltinLoc - Return the location of the __builtin_convertvector token.
3949  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3950 
3951  /// getRParenLoc - Return the location of final right parenthesis.
3952  SourceLocation getRParenLoc() const { return RParenLoc; }
3953 
3954  SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
3955  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
3956 
3957  static bool classof(const Stmt *T) {
3958  return T->getStmtClass() == ConvertVectorExprClass;
3959  }
3960 
3961  // Iterators
3962  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
3964  return const_child_range(&SrcExpr, &SrcExpr + 1);
3965  }
3966 };
3967 
3968 /// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3969 /// This AST node is similar to the conditional operator (?:) in C, with
3970 /// the following exceptions:
3971 /// - the test expression must be a integer constant expression.
3972 /// - the expression returned acts like the chosen subexpression in every
3973 /// visible way: the type is the same as that of the chosen subexpression,
3974 /// and all predicates (whether it's an l-value, whether it's an integer
3975 /// constant expression, etc.) return the same result as for the chosen
3976 /// sub-expression.
3977 class ChooseExpr : public Expr {
3978  enum { COND, LHS, RHS, END_EXPR };
3979  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3980  SourceLocation BuiltinLoc, RParenLoc;
3981  bool CondIsTrue;
3982 public:
3983  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3985  SourceLocation RP, bool condIsTrue,
3986  bool TypeDependent, bool ValueDependent)
3987  : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3988  (cond->isInstantiationDependent() ||
3989  lhs->isInstantiationDependent() ||
3990  rhs->isInstantiationDependent()),
3991  (cond->containsUnexpandedParameterPack() ||
3992  lhs->containsUnexpandedParameterPack() ||
3993  rhs->containsUnexpandedParameterPack())),
3994  BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
3995  SubExprs[COND] = cond;
3996  SubExprs[LHS] = lhs;
3997  SubExprs[RHS] = rhs;
3998  }
3999 
4000  /// Build an empty __builtin_choose_expr.
4001  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
4002 
4003  /// isConditionTrue - Return whether the condition is true (i.e. not
4004  /// equal to zero).
4005  bool isConditionTrue() const {
4006  assert(!isConditionDependent() &&
4007  "Dependent condition isn't true or false");
4008  return CondIsTrue;
4009  }
4010  void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
4011 
4012  bool isConditionDependent() const {
4013  return getCond()->isTypeDependent() || getCond()->isValueDependent();
4014  }
4015 
4016  /// getChosenSubExpr - Return the subexpression chosen according to the
4017  /// condition.
4019  return isConditionTrue() ? getLHS() : getRHS();
4020  }
4021 
4022  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
4023  void setCond(Expr *E) { SubExprs[COND] = E; }
4024  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
4025  void setLHS(Expr *E) { SubExprs[LHS] = E; }
4026  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
4027  void setRHS(Expr *E) { SubExprs[RHS] = E; }
4028 
4029  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4030  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
4031 
4032  SourceLocation getRParenLoc() const { return RParenLoc; }
4033  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4034 
4035  SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
4036  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
4037 
4038  static bool classof(const Stmt *T) {
4039  return T->getStmtClass() == ChooseExprClass;
4040  }
4041 
4042  // Iterators
4044  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
4045  }
4047  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
4048  }
4049 };
4050 
4051 /// GNUNullExpr - Implements the GNU __null extension, which is a name
4052 /// for a null pointer constant that has integral type (e.g., int or
4053 /// long) and is the same size and alignment as a pointer. The __null
4054 /// extension is typically only used by system headers, which define
4055 /// NULL as __null in C++ rather than using 0 (which is an integer
4056 /// that may not match the size of a pointer).
4057 class GNUNullExpr : public Expr {
4058  /// TokenLoc - The location of the __null keyword.
4059  SourceLocation TokenLoc;
4060 
4061 public:
4063  : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
4064  false),
4065  TokenLoc(Loc) { }
4066 
4067  /// Build an empty GNU __null expression.
4068  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
4069 
4070  /// getTokenLocation - The location of the __null token.
4071  SourceLocation getTokenLocation() const { return TokenLoc; }
4072  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
4073 
4074  SourceLocation getBeginLoc() const LLVM_READONLY { return TokenLoc; }
4075  SourceLocation getEndLoc() const LLVM_READONLY { return TokenLoc; }
4076 
4077  static bool classof(const Stmt *T) {
4078  return T->getStmtClass() == GNUNullExprClass;
4079  }
4080 
4081  // Iterators
4084  }
4087  }
4088 };
4089 
4090 /// Represents a call to the builtin function \c __builtin_va_arg.
4091 class VAArgExpr : public Expr {
4092  Stmt *Val;
4093  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfo;
4094  SourceLocation BuiltinLoc, RParenLoc;
4095 public:
4097  SourceLocation RPLoc, QualType t, bool IsMS)
4098  : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary, t->isDependentType(),
4099  false, (TInfo->getType()->isInstantiationDependentType() ||
4100  e->isInstantiationDependent()),
4101  (TInfo->getType()->containsUnexpandedParameterPack() ||
4102  e->containsUnexpandedParameterPack())),
4103  Val(e), TInfo(TInfo, IsMS), BuiltinLoc(BLoc), RParenLoc(RPLoc) {}
4104 
4105  /// Create an empty __builtin_va_arg expression.
4106  explicit VAArgExpr(EmptyShell Empty)
4107  : Expr(VAArgExprClass, Empty), Val(nullptr), TInfo(nullptr, false) {}
4108 
4109  const Expr *getSubExpr() const { return cast<Expr>(Val); }
4110  Expr *getSubExpr() { return cast<Expr>(Val); }
4111  void setSubExpr(Expr *E) { Val = E; }
4112 
4113  /// Returns whether this is really a Win64 ABI va_arg expression.
4114  bool isMicrosoftABI() const { return TInfo.getInt(); }
4115  void setIsMicrosoftABI(bool IsMS) { TInfo.setInt(IsMS); }
4116 
4117  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo.getPointer(); }
4118  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo.setPointer(TI); }
4119 
4120  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4121  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
4122 
4123  SourceLocation getRParenLoc() const { return RParenLoc; }
4124  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4125 
4126  SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
4127  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
4128 
4129  static bool classof(const Stmt *T) {
4130  return T->getStmtClass() == VAArgExprClass;
4131  }
4132 
4133  // Iterators
4134  child_range children() { return child_range(&Val, &Val+1); }
4136  return const_child_range(&Val, &Val + 1);
4137  }
4138 };
4139 
4140 /// Describes an C or C++ initializer list.
4141 ///
4142 /// InitListExpr describes an initializer list, which can be used to
4143 /// initialize objects of different types, including
4144 /// struct/class/union types, arrays, and vectors. For example:
4145 ///
4146 /// @code
4147 /// struct foo x = { 1, { 2, 3 } };
4148 /// @endcode
4149 ///
4150 /// Prior to semantic analysis, an initializer list will represent the
4151 /// initializer list as written by the user, but will have the
4152 /// placeholder type "void". This initializer list is called the
4153 /// syntactic form of the initializer, and may contain C99 designated
4154 /// initializers (represented as DesignatedInitExprs), initializations
4155 /// of subobject members without explicit braces, and so on. Clients
4156 /// interested in the original syntax of the initializer list should
4157 /// use the syntactic form of the initializer list.
4158 ///
4159 /// After semantic analysis, the initializer list will represent the
4160 /// semantic form of the initializer, where the initializations of all
4161 /// subobjects are made explicit with nested InitListExpr nodes and
4162 /// C99 designators have been eliminated by placing the designated
4163 /// initializations into the subobject they initialize. Additionally,
4164 /// any "holes" in the initialization, where no initializer has been
4165 /// specified for a particular subobject, will be replaced with
4166 /// implicitly-generated ImplicitValueInitExpr expressions that
4167 /// value-initialize the subobjects. Note, however, that the
4168 /// initializer lists may still have fewer initializers than there are
4169 /// elements to initialize within the object.
4170 ///
4171 /// After semantic analysis has completed, given an initializer list,
4172 /// method isSemanticForm() returns true if and only if this is the
4173 /// semantic form of the initializer list (note: the same AST node
4174 /// may at the same time be the syntactic form).
4175 /// Given the semantic form of the initializer list, one can retrieve
4176 /// the syntactic form of that initializer list (when different)
4177 /// using method getSyntacticForm(); the method returns null if applied
4178 /// to a initializer list which is already in syntactic form.
4179 /// Similarly, given the syntactic form (i.e., an initializer list such
4180 /// that isSemanticForm() returns false), one can retrieve the semantic
4181 /// form using method getSemanticForm().
4182 /// Since many initializer lists have the same syntactic and semantic forms,
4183 /// getSyntacticForm() may return NULL, indicating that the current
4184 /// semantic initializer list also serves as its syntactic form.
4185 class InitListExpr : public Expr {
4186  // FIXME: Eliminate this vector in favor of ASTContext allocation
4188  InitExprsTy InitExprs;
4189  SourceLocation LBraceLoc, RBraceLoc;
4190 
4191  /// The alternative form of the initializer list (if it exists).
4192  /// The int part of the pair stores whether this initializer list is
4193  /// in semantic form. If not null, the pointer points to:
4194  /// - the syntactic form, if this is in semantic form;
4195  /// - the semantic form, if this is in syntactic form.
4196  llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
4197 
4198  /// Either:
4199  /// If this initializer list initializes an array with more elements than
4200  /// there are initializers in the list, specifies an expression to be used
4201  /// for value initialization of the rest of the elements.
4202  /// Or
4203  /// If this initializer list initializes a union, specifies which
4204  /// field within the union will be initialized.
4205  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
4206 
4207 public:
4208  InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
4209  ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
4210 
4211  /// Build an empty initializer list.
4212  explicit InitListExpr(EmptyShell Empty)
4213  : Expr(InitListExprClass, Empty), AltForm(nullptr, true) { }
4214 
4215  unsigned getNumInits() const { return InitExprs.size(); }
4216 
4217  /// Retrieve the set of initializers.
4218  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
4219 
4220  /// Retrieve the set of initializers.
4221  Expr * const *getInits() const {
4222  return reinterpret_cast<Expr * const *>(InitExprs.data());
4223  }
4224 
4226  return llvm::makeArrayRef(getInits(), getNumInits());
4227  }
4228 
4230  return llvm::makeArrayRef(getInits(), getNumInits());
4231  }
4232 
4233  const Expr *getInit(unsigned Init) const {
4234  assert(Init < getNumInits() && "Initializer access out of range!");
4235  return cast_or_null<Expr>(InitExprs[Init]);
4236  }
4237 
4238  Expr *getInit(unsigned Init) {
4239  assert(Init < getNumInits() && "Initializer access out of range!");
4240  return cast_or_null<Expr>(InitExprs[Init]);
4241  }
4242 
4243  void setInit(unsigned Init, Expr *expr) {
4244  assert(Init < getNumInits() && "Initializer access out of range!");
4245  InitExprs[Init] = expr;
4246 
4247  if (expr) {
4248  ExprBits.TypeDependent |= expr->isTypeDependent();
4249  ExprBits.ValueDependent |= expr->isValueDependent();
4250  ExprBits.InstantiationDependent |= expr->isInstantiationDependent();
4251  ExprBits.ContainsUnexpandedParameterPack |=
4253  }
4254  }
4255 
4256  /// Reserve space for some number of initializers.
4257  void reserveInits(const ASTContext &C, unsigned NumInits);
4258 
4259  /// Specify the number of initializers
4260  ///
4261  /// If there are more than @p NumInits initializers, the remaining
4262  /// initializers will be destroyed. If there are fewer than @p
4263  /// NumInits initializers, NULL expressions will be added for the
4264  /// unknown initializers.
4265  void resizeInits(const ASTContext &Context, unsigned NumInits);
4266 
4267  /// Updates the initializer at index @p Init with the new
4268  /// expression @p expr, and returns the old expression at that
4269  /// location.
4270  ///
4271  /// When @p Init is out of range for this initializer list, the
4272  /// initializer list will be extended with NULL expressions to
4273  /// accommodate the new entry.
4274  Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
4275 
4276  /// If this initializer list initializes an array with more elements
4277  /// than there are initializers in the list, specifies an expression to be
4278  /// used for value initialization of the rest of the elements.
4280  return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
4281  }
4282  const Expr *getArrayFiller() const {
4283  return const_cast<InitListExpr *>(this)->getArrayFiller();
4284  }
4285  void setArrayFiller(Expr *filler);
4286 
4287  /// Return true if this is an array initializer and its array "filler"
4288  /// has been set.
4289  bool hasArrayFiller() const { return getArrayFiller(); }
4290 
4291  /// If this initializes a union, specifies which field in the
4292  /// union to initialize.
4293  ///
4294  /// Typically, this field is the first named field within the
4295  /// union. However, a designated initializer can specify the
4296  /// initialization of a different field within the union.
4298  return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
4299  }
4301  return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
4302  }
4304  assert((FD == nullptr
4305  || getInitializedFieldInUnion() == nullptr
4306  || getInitializedFieldInUnion() == FD)
4307  && "Only one field of a union may be initialized at a time!");
4308  ArrayFillerOrUnionFieldInit = FD;
4309  }
4310 
4311  // Explicit InitListExpr's originate from source code (and have valid source
4312  // locations). Implicit InitListExpr's are created by the semantic analyzer.
4313  bool isExplicit() const {
4314  return LBraceLoc.isValid() && RBraceLoc.isValid();
4315  }
4316 
4317  // Is this an initializer for an array of characters, initialized by a string
4318  // literal or an @encode?
4319  bool isStringLiteralInit() const;
4320 
4321  /// Is this a transparent initializer list (that is, an InitListExpr that is
4322  /// purely syntactic, and whose semantics are that of the sole contained
4323  /// initializer)?
4324  bool isTransparent() const;
4325 
4326  /// Is this the zero initializer {0} in a language which considers it
4327  /// idiomatic?
4328  bool isIdiomaticZeroInitializer(const LangOptions &LangOpts) const;
4329 
4330  SourceLocation getLBraceLoc() const { return LBraceLoc; }
4331  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
4332  SourceLocation getRBraceLoc() const { return RBraceLoc; }
4333  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
4334 
4335  bool isSemanticForm() const { return AltForm.getInt(); }
4337  return isSemanticForm() ? nullptr : AltForm.getPointer();
4338  }
4339  bool isSyntacticForm() const {
4340  return !AltForm.getInt() || !AltForm.getPointer();
4341  }
4343  return isSemanticForm() ? AltForm.getPointer() : nullptr;
4344  }
4345 
4347  AltForm.setPointer(Init);
4348  AltForm.setInt(true);
4349  Init->AltForm.setPointer(this);
4350  Init->AltForm.setInt(false);
4351  }
4352 
4354  return InitListExprBits.HadArrayRangeDesignator != 0;
4355  }
4356  void sawArrayRangeDesignator(bool ARD = true) {
4357  InitListExprBits.HadArrayRangeDesignator = ARD;
4358  }
4359 
4360  SourceLocation getBeginLoc() const LLVM_READONLY;
4361  SourceLocation getEndLoc() const LLVM_READONLY;
4362 
4363  static bool classof(const Stmt *T) {
4364  return T->getStmtClass() == InitListExprClass;
4365  }
4366 
4367  // Iterators
4369  const_child_range CCR = const_cast<const InitListExpr *>(this)->children();
4370  return child_range(cast_away_const(CCR.begin()),
4371  cast_away_const(CCR.end()));
4372  }
4373 
4375  // FIXME: This does not include the array filler expression.
4376  if (InitExprs.empty())
4378  return const_child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
4379  }
4380 
4385 
4386  iterator begin() { return InitExprs.begin(); }
4387  const_iterator begin() const { return InitExprs.begin(); }
4388  iterator end() { return InitExprs.end(); }
4389  const_iterator end() const { return InitExprs.end(); }
4390  reverse_iterator rbegin() { return InitExprs.rbegin(); }
4391  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
4392  reverse_iterator rend() { return InitExprs.rend(); }
4393  const_reverse_iterator rend() const { return InitExprs.rend(); }
4394 
4395  friend class ASTStmtReader;
4396  friend class ASTStmtWriter;
4397 };
4398 
4399 /// Represents a C99 designated initializer expression.
4400 ///
4401 /// A designated initializer expression (C99 6.7.8) contains one or
4402 /// more designators (which can be field designators, array
4403 /// designators, or GNU array-range designators) followed by an
4404 /// expression that initializes the field or element(s) that the
4405 /// designators refer to. For example, given:
4406 ///
4407 /// @code
4408 /// struct point {
4409 /// double x;
4410 /// double y;
4411 /// };
4412 /// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
4413 /// @endcode
4414 ///
4415 /// The InitListExpr contains three DesignatedInitExprs, the first of
4416 /// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
4417 /// designators, one array designator for @c [2] followed by one field
4418 /// designator for @c .y. The initialization expression will be 1.0.
4420  : public Expr,
4421  private llvm::TrailingObjects<DesignatedInitExpr, Stmt *> {
4422 public:
4423  /// Forward declaration of the Designator class.
4424  class Designator;
4425 
4426 private:
4427  /// The location of the '=' or ':' prior to the actual initializer
4428  /// expression.
4429  SourceLocation EqualOrColonLoc;
4430 
4431  /// Whether this designated initializer used the GNU deprecated
4432  /// syntax rather than the C99 '=' syntax.
4433  unsigned GNUSyntax : 1;
4434 
4435  /// The number of designators in this initializer expression.
4436  unsigned NumDesignators : 15;
4437 
4438  /// The number of subexpressions of this initializer expression,
4439  /// which contains both the initializer and any additional
4440  /// expressions used by array and array-range designators.
4441  unsigned NumSubExprs : 16;
4442 
4443  /// The designators in this designated initialization
4444  /// expression.
4445  Designator *Designators;
4446 
4448  llvm::ArrayRef<Designator> Designators,
4449  SourceLocation EqualOrColonLoc, bool GNUSyntax,
4450  ArrayRef<Expr *> IndexExprs, Expr *Init);
4451 
4452  explicit DesignatedInitExpr(unsigned NumSubExprs)
4453  : Expr(DesignatedInitExprClass, EmptyShell()),
4454  NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }
4455 
4456 public:
4457  /// A field designator, e.g., ".x".
4459  /// Refers to the field that is being initialized. The low bit
4460  /// of this field determines whether this is actually a pointer
4461  /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
4462  /// initially constructed, a field designator will store an
4463  /// IdentifierInfo*. After semantic analysis has resolved that
4464  /// name, the field designator will instead store a FieldDecl*.
4466 
4467  /// The location of the '.' in the designated initializer.
4468  unsigned DotLoc;
4469 
4470  /// The location of the field name in the designated initializer.
4471  unsigned FieldLoc;
4472  };
4473 
4474  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4476  /// Location of the first index expression within the designated
4477  /// initializer expression's list of subexpressions.
4478  unsigned Index;
4479  /// The location of the '[' starting the array range designator.
4480  unsigned LBracketLoc;
4481  /// The location of the ellipsis separating the start and end
4482  /// indices. Only valid for GNU array-range designators.
4483  unsigned EllipsisLoc;
4484  /// The location of the ']' terminating the array range designator.
4485  unsigned RBracketLoc;
4486  };
4487 
4488  /// Represents a single C99 designator.
4489  ///
4490  /// @todo This class is infuriatingly similar to clang::Designator,
4491  /// but minor differences (storing indices vs. storing pointers)
4492  /// keep us from reusing it. Try harder, later, to rectify these
4493  /// differences.
4494  class Designator {
4495  /// The kind of designator this describes.
4496  enum {
4498  ArrayDesignator,
4499  ArrayRangeDesignator
4500  } Kind;
4501 
4502  union {
4503  /// A field designator, e.g., ".x".
4505  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4506  struct ArrayOrRangeDesignator ArrayOrRange;
4507  };
4508  friend class DesignatedInitExpr;
4509 
4510  public:
4512 
4513  /// Initializes a field designator.
4514  Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
4515  SourceLocation FieldLoc)
4516  : Kind(FieldDesignator) {
4517  Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
4518  Field.DotLoc = DotLoc.getRawEncoding();
4519  Field.FieldLoc = FieldLoc.getRawEncoding();
4520  }
4521 
4522  /// Initializes an array designator.
4523  Designator(unsigned Index, SourceLocation LBracketLoc,
4524  SourceLocation RBracketLoc)
4525  : Kind(ArrayDesignator) {
4526  ArrayOrRange.Index = Index;
4527  ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4528  ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
4529  ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4530  }
4531 
4532  /// Initializes a GNU array-range designator.
4533  Designator(unsigned Index, SourceLocation LBracketLoc,
4534  SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
4535  : Kind(ArrayRangeDesignator) {
4536  ArrayOrRange.Index = Index;
4537  ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4538  ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
4539  ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4540  }
4541 
4542  bool isFieldDesignator() const { return Kind == FieldDesignator; }
4543  bool isArrayDesignator() const { return Kind == ArrayDesignator; }
4544  bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
4545 
4546  IdentifierInfo *getFieldName() const;
4547 
4548  FieldDecl *getField() const {
4549  assert(Kind == FieldDesignator && "Only valid on a field designator");
4550  if (Field.NameOrField & 0x01)
4551  return nullptr;
4552  else
4553  return reinterpret_cast<FieldDecl *>(Field.NameOrField);
4554  }
4555 
4556  void setField(FieldDecl *FD) {
4557  assert(Kind == FieldDesignator && "Only valid on a field designator");
4558  Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
4559  }
4560 
4562  assert(Kind == FieldDesignator && "Only valid on a field designator");
4564  }
4565 
4567  assert(Kind == FieldDesignator && "Only valid on a field designator");
4568  return SourceLocation::getFromRawEncoding(Field.FieldLoc);
4569  }
4570 
4572  assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4573  "Only valid on an array or array-range designator");
4574  return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
4575  }
4576 
4578  assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4579  "Only valid on an array or array-range designator");
4580  return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
4581  }
4582 
4584  assert(Kind == ArrayRangeDesignator &&
4585  "Only valid on an array-range designator");
4586  return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
4587  }
4588 
4589  unsigned getFirstExprIndex() const {
4590  assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4591  "Only valid on an array or array-range designator");
4592  return ArrayOrRange.Index;
4593  }
4594 
4595  SourceLocation getBeginLoc() const LLVM_READONLY {
4596  if (Kind == FieldDesignator)
4597  return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
4598  else
4599  return getLBracketLoc();
4600  }
4601  SourceLocation getEndLoc() const LLVM_READONLY {
4602  return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
4603  }
4604  SourceRange getSourceRange() const LLVM_READONLY {
4605  return SourceRange(getBeginLoc(), getEndLoc());
4606  }
4607  };
4608 
4609  static DesignatedInitExpr *Create(const ASTContext &C,
4610  llvm::ArrayRef<Designator> Designators,
4611  ArrayRef<Expr*> IndexExprs,
4612  SourceLocation EqualOrColonLoc,
4613  bool GNUSyntax, Expr *Init);
4614 
4615  static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
4616  unsigned NumIndexExprs);
4617 
4618  /// Returns the number of designators in this initializer.
4619  unsigned size() const { return NumDesignators; }
4620 
4621  // Iterator access to the designators.
4623  return {Designators, NumDesignators};
4624  }
4625 
4627  return {Designators, NumDesignators};
4628  }
4629 
4630  Designator *getDesignator(unsigned Idx) { return &designators()[Idx]; }
4631  const Designator *getDesignator(unsigned Idx) const {
4632  return &designators()[Idx];
4633  }
4634 
4635  void setDesignators(const ASTContext &C, const Designator *Desigs,
4636  unsigned NumDesigs);
4637 
4638  Expr *getArrayIndex(const Designator &D) const;
4639  Expr *getArrayRangeStart(const Designator &D) const;
4640  Expr *getArrayRangeEnd(const Designator &D) const;
4641 
4642  /// Retrieve the location of the '=' that precedes the
4643  /// initializer value itself, if present.
4644  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
4645  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
4646 
4647  /// Determines whether this designated initializer used the
4648  /// deprecated GNU syntax for designated initializers.
4649  bool usesGNUSyntax() const { return GNUSyntax; }
4650  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
4651 
4652  /// Retrieve the initializer value.
4653  Expr *getInit() const {
4654  return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
4655  }
4656 
4657  void setInit(Expr *init) {
4658  *child_begin() = init;
4659  }
4660 
4661  /// Retrieve the total number of subexpressions in this
4662  /// designated initializer expression, including the actual
4663  /// initialized value and any expressions that occur within array
4664  /// and array-range designators.
4665  unsigned getNumSubExprs() const { return NumSubExprs; }
4666 
4667  Expr *getSubExpr(unsigned Idx) const {
4668  assert(Idx < NumSubExprs && "Subscript out of range");
4669  return cast<Expr>(getTrailingObjects<Stmt *>()[Idx]);
4670  }
4671 
4672  void setSubExpr(unsigned Idx, Expr *E) {
4673  assert(Idx < NumSubExprs && "Subscript out of range");
4674  getTrailingObjects<Stmt *>()[Idx] = E;
4675  }
4676 
4677  /// Replaces the designator at index @p Idx with the series
4678  /// of designators in [First, Last).
4679  void ExpandDesignator(const ASTContext &C, unsigned Idx,
4680  const Designator *First, const Designator *Last);
4681 
4682  SourceRange getDesignatorsSourceRange() const;
4683 
4684  SourceLocation getBeginLoc() const LLVM_READONLY;
4685  SourceLocation getEndLoc() const LLVM_READONLY;
4686 
4687  static bool classof(const Stmt *T) {
4688  return T->getStmtClass() == DesignatedInitExprClass;
4689  }
4690 
4691  // Iterators
4693  Stmt **begin = getTrailingObjects<Stmt *>();
4694  return child_range(begin, begin + NumSubExprs);
4695  }
4697  Stmt * const *begin = getTrailingObjects<Stmt *>();
4698  return const_child_range(begin, begin + NumSubExprs);
4699  }
4700 
4702 };
4703 
4704 /// Represents a place-holder for an object not to be initialized by
4705 /// anything.
4706 ///
4707 /// This only makes sense when it appears as part of an updater of a
4708 /// DesignatedInitUpdateExpr (see below). The base expression of a DIUE
4709 /// initializes a big object, and the NoInitExpr's mark the spots within the
4710 /// big object not to be overwritten by the updater.
4711 ///
4712 /// \see DesignatedInitUpdateExpr
4713 class NoInitExpr : public Expr {
4714 public:
4715  explicit NoInitExpr(QualType ty)
4716  : Expr(NoInitExprClass, ty, VK_RValue, OK_Ordinary,
4717  false, false, ty->isInstantiationDependentType(), false) { }
4718 
4719  explicit NoInitExpr(EmptyShell Empty)
4720  : Expr(NoInitExprClass, Empty) { }
4721 
4722  static bool classof(const Stmt *T) {
4723  return T->getStmtClass() == NoInitExprClass;
4724  }
4725 
4726  SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
4727  SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }
4728 
4729  // Iterators
4732  }
4735  }
4736 };
4737 
4738 // In cases like:
4739 // struct Q { int a, b, c; };
4740 // Q *getQ();
4741 // void foo() {
4742 // struct A { Q q; } a = { *getQ(), .q.b = 3 };
4743 // }
4744 //
4745 // We will have an InitListExpr for a, with type A, and then a
4746 // DesignatedInitUpdateExpr for "a.q" with type Q. The "base" for this DIUE
4747 // is the call expression *getQ(); the "updater" for the DIUE is ".q.b = 3"
4748 //
4750  // BaseAndUpdaterExprs[0] is the base expression;
4751  // BaseAndUpdaterExprs[1] is an InitListExpr overwriting part of the base.
4752  Stmt *BaseAndUpdaterExprs[2];
4753 
4754 public:
4756  Expr *baseExprs, SourceLocation rBraceLoc);
4757 
4759  : Expr(DesignatedInitUpdateExprClass, Empty) { }
4760 
4761  SourceLocation getBeginLoc() const LLVM_READONLY;
4762  SourceLocation getEndLoc() const LLVM_READONLY;
4763 
4764  static bool classof(const Stmt *T) {
4765  return T->getStmtClass() == DesignatedInitUpdateExprClass;
4766  }
4767 
4768  Expr *getBase() const { return cast<Expr>(BaseAndUpdaterExprs[0]); }
4769  void setBase(Expr *Base) { BaseAndUpdaterExprs[0] = Base; }
4770 
4772  return cast<InitListExpr>(BaseAndUpdaterExprs[1]);
4773  }
4774  void setUpdater(Expr *Updater) { BaseAndUpdaterExprs[1] = Updater; }
4775 
4776  // Iterators
4777  // children = the base and the updater
4779  return child_range(&BaseAndUpdaterExprs[0], &BaseAndUpdaterExprs[0] + 2);
4780  }
4782  return const_child_range(&BaseAndUpdaterExprs[0],
4783  &BaseAndUpdaterExprs[0] + 2);
4784  }
4785 };
4786 
4787 /// Represents a loop initializing the elements of an array.
4788 ///
4789 /// The need to initialize the elements of an array occurs in a number of
4790 /// contexts:
4791 ///
4792 /// * in the implicit copy/move constructor for a class with an array member
4793 /// * when a lambda-expression captures an array by value
4794 /// * when a decomposition declaration decomposes an array
4795 ///
4796 /// There are two subexpressions: a common expression (the source array)
4797 /// that is evaluated once up-front, and a per-element initializer that
4798 /// runs once for each array element.
4799 ///
4800 /// Within the per-element initializer, the common expression may be referenced
4801 /// via an OpaqueValueExpr, and the current index may be obtained via an
4802 /// ArrayInitIndexExpr.
4803 class ArrayInitLoopExpr : public Expr {
4804  Stmt *SubExprs[2];
4805 
4806  explicit ArrayInitLoopExpr(EmptyShell Empty)
4807  : Expr(ArrayInitLoopExprClass, Empty), SubExprs{} {}
4808 
4809 public:
4810  explicit ArrayInitLoopExpr(QualType T, Expr *CommonInit, Expr *ElementInit)
4811  : Expr(ArrayInitLoopExprClass, T, VK_RValue, OK_Ordinary, false,
4812  CommonInit->isValueDependent() || ElementInit->isValueDependent(),
4813  T->isInstantiationDependentType(),
4814  CommonInit->containsUnexpandedParameterPack() ||
4815  ElementInit->containsUnexpandedParameterPack()),
4816  SubExprs{CommonInit, ElementInit} {}
4817 
4818  /// Get the common subexpression shared by all initializations (the source
4819  /// array).
4821  return cast<OpaqueValueExpr>(SubExprs[0]);
4822  }
4823 
4824  /// Get the initializer to use for each array element.
4825  Expr *getSubExpr() const { return cast<Expr>(SubExprs[1]); }
4826 
4827  llvm::APInt getArraySize() const {
4828  return cast<ConstantArrayType>(getType()->castAsArrayTypeUnsafe())
4829  ->getSize();
4830  }
4831 
4832  static bool classof(const Stmt *S) {
4833  return S->getStmtClass() == ArrayInitLoopExprClass;
4834  }
4835 
4836  SourceLocation getBeginLoc() const LLVM_READONLY {
4837  return getCommonExpr()->getBeginLoc();
4838  }
4839  SourceLocation getEndLoc() const LLVM_READONLY {
4840  return getCommonExpr()->getEndLoc();
4841  }
4842 
4844  return child_range(SubExprs, SubExprs + 2);
4845  }
4847  return const_child_range(SubExprs, SubExprs + 2);
4848  }
4849 
4850  friend class ASTReader;
4851  friend class ASTStmtReader;
4852  friend class ASTStmtWriter;
4853 };
4854 
4855 /// Represents the index of the current element of an array being
4856 /// initialized by an ArrayInitLoopExpr. This can only appear within the
4857 /// subexpression of an ArrayInitLoopExpr.
4858 class ArrayInitIndexExpr : public Expr {
4859  explicit ArrayInitIndexExpr(EmptyShell Empty)
4860  : Expr(ArrayInitIndexExprClass, Empty) {}
4861 
4862 public:
4864  : Expr(ArrayInitIndexExprClass, T, VK_RValue, OK_Ordinary,
4865  false, false, false, false) {}
4866 
4867  static bool classof(const Stmt *S) {
4868  return S->getStmtClass() == ArrayInitIndexExprClass;
4869  }
4870 
4871  SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
4872  SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }
4873 
4876  }
4879  }
4880 
4881  friend class ASTReader;
4882  friend class ASTStmtReader;
4883 };
4884 
4885 /// Represents an implicitly-generated value initialization of
4886 /// an object of a given type.
4887 ///
4888 /// Implicit value initializations occur within semantic initializer
4889 /// list expressions (InitListExpr) as placeholders for subobject
4890 /// initializations not explicitly specified by the user.
4891 ///
4892 /// \see InitListExpr
4893 class ImplicitValueInitExpr : public Expr {
4894 public:
4896  : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4897  false, false, ty->isInstantiationDependentType(), false) { }
4898 
4899  /// Construct an empty implicit value initialization.
4901  : Expr(ImplicitValueInitExprClass, Empty) { }
4902 
4903  static bool classof(const Stmt *T) {
4904  return T->getStmtClass() == ImplicitValueInitExprClass;
4905  }
4906 
4907  SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
4908  SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }
4909 
4910  // Iterators
4913  }
4916  }
4917 };
4918 
4919 class ParenListExpr final
4920  : public Expr,
4921  private llvm::TrailingObjects<ParenListExpr, Stmt *> {
4922  friend class ASTStmtReader;
4923  friend TrailingObjects;
4924 
4925  /// The location of the left and right parentheses.
4926  SourceLocation LParenLoc, RParenLoc;
4927 
4928  /// Build a paren list.
4930  SourceLocation RParenLoc);
4931 
4932  /// Build an empty paren list.
4933  ParenListExpr(EmptyShell Empty, unsigned NumExprs);
4934 
4935 public:
4936  /// Create a paren list.
4937  static ParenListExpr *Create(const ASTContext &Ctx, SourceLocation LParenLoc,
4938  ArrayRef<Expr *> Exprs,
4939  SourceLocation RParenLoc);
4940 
4941  /// Create an empty paren list.
4942  static ParenListExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumExprs);
4943 
4944  /// Return the number of expressions in this paren list.
4945  unsigned getNumExprs() const { return ParenListExprBits.NumExprs; }
4946 
4947  Expr *getExpr(unsigned Init) {
4948  assert(Init < getNumExprs() && "Initializer access out of range!");
4949  return getExprs()[Init];
4950  }
4951 
4952  const Expr *getExpr(unsigned Init) const {
4953  return const_cast<ParenListExpr *>(this)->getExpr(Init);
4954  }
4955 
4957  return reinterpret_cast<Expr **>(getTrailingObjects<Stmt *>());
4958  }
4959 
4961  return llvm::makeArrayRef(getExprs(), getNumExprs());
4962  }
4963 
4964  SourceLocation getLParenLoc() const { return LParenLoc; }
4965  SourceLocation getRParenLoc() const { return RParenLoc; }
4966  SourceLocation getBeginLoc() const { return getLParenLoc(); }
4967  SourceLocation getEndLoc() const { return getRParenLoc(); }
4968 
4969  static bool classof(const Stmt *T) {
4970  return T->getStmtClass() == ParenListExprClass;
4971  }
4972 
4973  // Iterators
4975  return child_range(getTrailingObjects<Stmt *>(),
4976  getTrailingObjects<Stmt *>() + getNumExprs());
4977  }
4979  return const_child_range(getTrailingObjects<Stmt *>(),
4980  getTrailingObjects<Stmt *>() + getNumExprs());
4981  }
4982 };
4983 
4984 /// Represents a C11 generic selection.
4985 ///
4986 /// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4987 /// expression, followed by one or more generic associations. Each generic
4988 /// association specifies a type name and an expression, or "default" and an
4989 /// expression (in which case it is known as a default generic association).
4990 /// The type and value of the generic selection are identical to those of its
4991 /// result expression, which is defined as the expression in the generic
4992 /// association with a type name that is compatible with the type of the
4993 /// controlling expression, or the expression in the default generic association
4994 /// if no types are compatible. For example:
4995 ///
4996 /// @code
4997 /// _Generic(X, double: 1, float: 2, default: 3)
4998 /// @endcode
4999 ///
5000 /// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
5001 /// or 3 if "hello".
5002 ///
5003 /// As an extension, generic selections are allowed in C++, where the following
5004 /// additional semantics apply:
5005 ///
5006 /// Any generic selection whose controlling expression is type-dependent or
5007 /// which names a dependent type in its association list is result-dependent,
5008 /// which means that the choice of result expression is dependent.
5009 /// Result-dependent generic associations are both type- and value-dependent.
5010 class GenericSelectionExpr : public Expr {
5011  enum { CONTROLLING, END_EXPR };
5012  TypeSourceInfo **AssocTypes;
5013  Stmt **SubExprs;
5014  unsigned NumAssocs, ResultIndex;
5015  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
5016 
5017 public:
5018  GenericSelectionExpr(const ASTContext &Context,
5019  SourceLocation GenericLoc, Expr *ControllingExpr,
5020  ArrayRef<TypeSourceInfo*> AssocTypes,
5021  ArrayRef<Expr*> AssocExprs,
5022  SourceLocation DefaultLoc, SourceLocation RParenLoc,
5023  bool ContainsUnexpandedParameterPack,
5024  unsigned ResultIndex);
5025 
5026  /// This constructor is used in the result-dependent case.
5027  GenericSelectionExpr(const ASTContext &Context,
5028  SourceLocation GenericLoc, Expr *ControllingExpr,
5029  ArrayRef<TypeSourceInfo*> AssocTypes,
5030  ArrayRef<Expr*> AssocExprs,
5031  SourceLocation DefaultLoc, SourceLocation RParenLoc,
5032  bool ContainsUnexpandedParameterPack);
5033 
5035  : Expr(GenericSelectionExprClass, Empty) { }
5036 
5037  unsigned getNumAssocs() const { return NumAssocs; }
5038 
5039  SourceLocation getGenericLoc() const { return GenericLoc; }
5040  SourceLocation getDefaultLoc() const { return DefaultLoc; }
5041  SourceLocation getRParenLoc() const { return RParenLoc; }
5042 
5043  const Expr *getAssocExpr(unsigned i) const {
5044  return cast<Expr>(SubExprs[END_EXPR+i]);
5045  }
5046  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
5048  return NumAssocs
5049  ? llvm::makeArrayRef(
5050  &reinterpret_cast<Expr **>(SubExprs)[END_EXPR], NumAssocs)
5051  : None;
5052  }
5053  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
5054  return AssocTypes[i];
5055  }
5056  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
5058  return NumAssocs ? llvm::makeArrayRef(&AssocTypes[0], NumAssocs) : None;
5059  }
5060 
5061  QualType getAssocType(unsigned i) const {
5062  if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
5063  return TS->getType();
5064  else
5065  return QualType();
5066  }
5067 
5068  const Expr *getControllingExpr() const {
5069  return cast<Expr>(SubExprs[CONTROLLING]);
5070  }
5071  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
5072 
5073  /// Whether this generic selection is result-dependent.
5074  bool isResultDependent() const { return ResultIndex == -1U; }
5075 
5076  /// The zero-based index of the result expression's generic association in
5077  /// the generic selection's association list. Defined only if the
5078  /// generic selection is not result-dependent.
5079  unsigned getResultIndex() const {
5080  assert(!isResultDependent() && "Generic selection is result-dependent");
5081  return ResultIndex;
5082  }
5083 
5084  /// The generic selection's result expression. Defined only if the
5085  /// generic selection is not result-dependent.
5086  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
5087  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
5088 
5089  SourceLocation getBeginLoc() const LLVM_READONLY { return GenericLoc; }
5090  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
5091 
5092  static bool classof(const Stmt *T) {
5093  return T->getStmtClass() == GenericSelectionExprClass;
5094  }
5095 
5097  return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
5098  }
5100  return const_child_range(SubExprs, SubExprs + END_EXPR + NumAssocs);
5101  }
5102  friend class ASTStmtReader;
5103 };
5104 
5105 //===----------------------------------------------------------------------===//
5106 // Clang Extensions
5107 //===----------------------------------------------------------------------===//
5108 
5109 /// ExtVectorElementExpr - This represents access to specific elements of a
5110 /// vector, and may occur on the left hand side or right hand side. For example
5111 /// the following is legal: "V.xy = V.zw" if V is a 4 element extended vector.
5112 ///
5113 /// Note that the base may have either vector or pointer to vector type, just
5114 /// like a struct field reference.
5115 ///
5116 class ExtVectorElementExpr : public Expr {
5117  Stmt *Base;
5118  IdentifierInfo *Accessor;
5119  SourceLocation AccessorLoc;
5120 public:
5122  IdentifierInfo &accessor, SourceLocation loc)
5123  : Expr(ExtVectorElementExprClass, ty, VK,
5125  base->isTypeDependent(), base->isValueDependent(),
5126  base->isInstantiationDependent(),
5127  base->containsUnexpandedParameterPack()),
5128  Base(base), Accessor(&accessor), AccessorLoc(loc) {}
5129 
5130  /// Build an empty vector element expression.
5132  : Expr(ExtVectorElementExprClass, Empty) { }
5133 
5134  const Expr *getBase() const { return cast<Expr>(Base); }
5135  Expr *getBase() { return cast<Expr>(Base); }
5136  void setBase(Expr *E) { Base = E; }
5137 
5138  IdentifierInfo &getAccessor() const { return *Accessor; }
5139  void setAccessor(IdentifierInfo *II) { Accessor = II; }
5140 
5141  SourceLocation getAccessorLoc() const { return AccessorLoc; }
5142  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
5143 
5144  /// getNumElements - Get the number of components being selected.
5145  unsigned getNumElements() const;
5146 
5147  /// containsDuplicateElements - Return true if any element access is
5148  /// repeated.
5149  bool containsDuplicateElements() const;
5150 
5151  /// getEncodedElementAccess - Encode the elements accessed into an llvm
5152  /// aggregate Constant of ConstantInt(s).
5153  void getEncodedElementAccess(SmallVectorImpl<uint32_t> &Elts) const;
5154 
5155  SourceLocation getBeginLoc() const LLVM_READONLY {
5156  return getBase()->getBeginLoc();
5157  }
5158  SourceLocation getEndLoc() const LLVM_READONLY { return AccessorLoc; }
5159 
5160  /// isArrow - Return true if the base expression is a pointer to vector,
5161  /// return false if the base expression is a vector.
5162  bool isArrow() const;
5163 
5164  static bool classof(const Stmt *T) {
5165  return T->getStmtClass() == ExtVectorElementExprClass;
5166  }
5167 
5168  // Iterators
5169  child_range children() { return child_range(&Base, &Base+1); }
5171  return const_child_range(&Base, &Base + 1);
5172  }
5173 };
5174 
5175 /// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
5176 /// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
5177 class BlockExpr : public Expr {
5178 protected:
5180 public:
5182  : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
5183  ty->isDependentType(), ty->isDependentType(),
5184  ty->isInstantiationDependentType() || BD->isDependentContext(),
5185  false),
5186  TheBlock(BD) {}
5187 
5188  /// Build an empty block expression.
5189  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
5190 
5191  const BlockDecl *getBlockDecl() const { return TheBlock; }
5192  BlockDecl *getBlockDecl() { return TheBlock; }
5193  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
5194 
5195  // Convenience functions for probing the underlying BlockDecl.
5196  SourceLocation getCaretLocation() const;
5197  const Stmt *getBody() const;
5198  Stmt *getBody();
5199 
5200  SourceLocation getBeginLoc() const LLVM_READONLY {
5201  return getCaretLocation();
5202  }
5203  SourceLocation getEndLoc() const LLVM_READONLY {
5204  return getBody()->getEndLoc();
5205  }
5206 
5207  /// getFunctionType - Return the underlying function type for this block.
5208  const FunctionProtoType *getFunctionType() const;
5209 
5210  static bool classof(const Stmt *T) {
5211  return T->getStmtClass() == BlockExprClass;
5212  }
5213 
5214  // Iterators
5217  }
5220  }
5221 };
5222 
5223 /// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
5224 /// This AST node provides support for reinterpreting a type to another
5225 /// type of the same size.
5226 class AsTypeExpr : public Expr {
5227 private:
5228  Stmt *SrcExpr;
5229  SourceLocation BuiltinLoc, RParenLoc;
5230 
5231  friend class ASTReader;
5232  friend class ASTStmtReader;
5233  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
5234 
5235 public:
5236  AsTypeExpr(Expr* SrcExpr, QualType DstType,
5238  SourceLocation BuiltinLoc, SourceLocation RParenLoc)
5239  : Expr(AsTypeExprClass, DstType, VK, OK,
5240  DstType->isDependentType(),
5241  DstType->isDependentType() || SrcExpr->isValueDependent(),
5242  (DstType->isInstantiationDependentType() ||
5243  SrcExpr->isInstantiationDependent()),
5244  (DstType->containsUnexpandedParameterPack() ||
5245  SrcExpr->containsUnexpandedParameterPack())),
5246  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
5247 
5248  /// getSrcExpr - Return the Expr to be converted.
5249  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
5250 
5251  /// getBuiltinLoc - Return the location of the __builtin_astype token.
5252  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
5253 
5254  /// getRParenLoc - Return the location of final right parenthesis.
5255  SourceLocation getRParenLoc() const { return RParenLoc; }
5256 
5257  SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
5258  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
5259 
5260  static bool classof(const Stmt *T) {
5261  return T->getStmtClass() == AsTypeExprClass;
5262  }
5263 
5264  // Iterators
5265  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
5267  return const_child_range(&SrcExpr, &SrcExpr + 1);
5268  }
5269 };
5270 
5271 /// PseudoObjectExpr - An expression which accesses a pseudo-object
5272 /// l-value. A pseudo-object is an abstract object, accesses to which
5273 /// are translated to calls. The pseudo-object expression has a
5274 /// syntactic form, which shows how the expression was actually
5275 /// written in the source code, and a semantic form, which is a series
5276 /// of expressions to be executed in order which detail how the
5277 /// operation is actually evaluated. Optionally, one of the semantic
5278 /// forms may also provide a result value for the expression.
5279 ///
5280 /// If any of the semantic-form expressions is an OpaqueValueExpr,
5281 /// that OVE is required to have a source expression, and it is bound
5282 /// to the result of that source expression. Such OVEs may appear
5283 /// only in subsequent semantic-form expressions and as
5284 /// sub-expressions of the syntactic form.
5285 ///
5286 /// PseudoObjectExpr should be used only when an operation can be
5287 /// usefully described in terms of fairly simple rewrite rules on
5288 /// objects and functions that are meant to be used by end-developers.
5289 /// For example, under the Itanium ABI, dynamic casts are implemented
5290 /// as a call to a runtime function called __dynamic_cast; using this
5291 /// class to describe that would be inappropriate because that call is
5292 /// not really part of the user-visible semantics, and instead the
5293 /// cast is properly reflected in the AST and IR-generation has been
5294 /// taught to generate the call as necessary. In contrast, an
5295 /// Objective-C property access is semantically defined to be
5296 /// equivalent to a particular message send, and this is very much
5297 /// part of the user model. The name of this class encourages this
5298 /// modelling design.
5299 class PseudoObjectExpr final
5300  : public Expr,
5301  private llvm::TrailingObjects<PseudoObjectExpr, Expr *> {
5302  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
5303  // Always at least two, because the first sub-expression is the
5304  // syntactic form.
5305 
5306  // PseudoObjectExprBits.ResultIndex - The index of the
5307  // sub-expression holding the result. 0 means the result is void,
5308  // which is unambiguous because it's the index of the syntactic
5309  // form. Note that this is therefore 1 higher than the value passed
5310  // in to Create, which is an index within the semantic forms.
5311  // Note also that ASTStmtWriter assumes this encoding.
5312 
5313  Expr **getSubExprsBuffer() { return getTrailingObjects<Expr *>(); }
5314  const Expr * const *getSubExprsBuffer() const {
5315  return getTrailingObjects<Expr *>();
5316  }
5317 
5319  Expr *syntactic, ArrayRef<Expr*> semantic,
5320  unsigned resultIndex);
5321 
5322  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
5323 
5324  unsigned getNumSubExprs() const {
5325  return PseudoObjectExprBits.NumSubExprs;
5326  }
5327 
5328 public:
5329  /// NoResult - A value for the result index indicating that there is
5330  /// no semantic result.
5331  enum : unsigned { NoResult = ~0U };
5332 
5333  static PseudoObjectExpr *Create(const ASTContext &Context, Expr *syntactic,
5334  ArrayRef<Expr*> semantic,
5335  unsigned resultIndex);
5336 
5337  static PseudoObjectExpr *Create(const ASTContext &Context, EmptyShell shell,
5338  unsigned numSemanticExprs);
5339 
5340  /// Return the syntactic form of this expression, i.e. the
5341  /// expression it actually looks like. Likely to be expressed in
5342  /// terms of OpaqueValueExprs bound in the semantic form.
5343  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
5344  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
5345 
5346  /// Return the index of the result-bearing expression into the semantics
5347  /// expressions, or PseudoObjectExpr::NoResult if there is none.
5348  unsigned getResultExprIndex() const {
5349  if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
5350  return PseudoObjectExprBits.ResultIndex - 1;
5351  }
5352 
5353  /// Return the result-bearing expression, or null if there is none.
5355  if (PseudoObjectExprBits.ResultIndex == 0)
5356  return nullptr;
5357  return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
5358  }
5359  const Expr *getResultExpr() const {
5360  return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
5361  }
5362 
5363  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
5364 
5365  typedef Expr * const *semantics_iterator;
5366  typedef const Expr * const *const_semantics_iterator;
5367  semantics_iterator semantics_begin() {
5368  return getSubExprsBuffer() + 1;
5369  }
5370  const_semantics_iterator semantics_begin() const {
5371  return getSubExprsBuffer() + 1;
5372  }
5373  semantics_iterator semantics_end() {
5374  return getSubExprsBuffer() + getNumSubExprs();
5375  }
5376  const_semantics_iterator semantics_end() const {
5377  return getSubExprsBuffer() + getNumSubExprs();
5378  }
5379 
5380  llvm::iterator_range<semantics_iterator> semantics() {
5381  return llvm::make_range(semantics_begin(), semantics_end());
5382  }
5383  llvm::iterator_range<const_semantics_iterator> semantics() const {
5384  return llvm::make_range(semantics_begin(), semantics_end());
5385  }
5386 
5387  Expr *getSemanticExpr(unsigned index) {
5388  assert(index + 1 < getNumSubExprs());
5389  return getSubExprsBuffer()[index + 1];
5390  }
5391  const Expr *getSemanticExpr(unsigned index) const {
5392  return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
5393  }
5394 
5395  SourceLocation getExprLoc() const LLVM_READONLY {
5396  return getSyntacticForm()->getExprLoc();
5397  }
5398 
5399  SourceLocation getBeginLoc() const LLVM_READONLY {
5400  return getSyntacticForm()->getBeginLoc();
5401  }
5402  SourceLocation getEndLoc() const LLVM_READONLY {
5403  return getSyntacticForm()->getEndLoc();
5404  }
5405 
5407  const_child_range CCR =
5408  const_cast<const PseudoObjectExpr *>(this)->children();
5409  return child_range(cast_away_const(CCR.begin()),
5410  cast_away_const(CCR.end()));
5411  }
5413  Stmt *const *cs = const_cast<Stmt *const *>(
5414  reinterpret_cast<const Stmt *const *>(getSubExprsBuffer()));
5415  return const_child_range(cs, cs + getNumSubExprs());
5416  }
5417 
5418  static bool classof(const Stmt *T) {
5419  return T->getStmtClass() == PseudoObjectExprClass;
5420  }
5421 
5423  friend class ASTStmtReader;
5424 };
5425 
5426 /// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
5427 /// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
5428 /// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>,
5429 /// and corresponding __opencl_atomic_* for OpenCL 2.0.
5430 /// All of these instructions take one primary pointer, at least one memory
5431 /// order. The instructions for which getScopeModel returns non-null value
5432 /// take one synch scope.
5433 class AtomicExpr : public Expr {
5434 public:
5435  enum AtomicOp {
5436 #define BUILTIN(ID, TYPE, ATTRS)
5437 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
5438 #include "clang/Basic/Builtins.def"
5439  // Avoid trailing comma
5440  BI_First = 0
5441  };
5442 
5443 private:
5444  /// Location of sub-expressions.
5445  /// The location of Scope sub-expression is NumSubExprs - 1, which is
5446  /// not fixed, therefore is not defined in enum.
5447  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
5448  Stmt *SubExprs[END_EXPR + 1];
5449  unsigned NumSubExprs;
5450  SourceLocation BuiltinLoc, RParenLoc;
5451  AtomicOp Op;
5452 
5453  friend class ASTStmtReader;
5454 public:
5456  AtomicOp op, SourceLocation RP);
5457 
5458  /// Determine the number of arguments the specified atomic builtin
5459  /// should have.
5460  static unsigned getNumSubExprs(AtomicOp Op);
5461 
5462  /// Build an empty AtomicExpr.
5463  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
5464 
5465  Expr *getPtr() const {
5466  return cast<Expr>(SubExprs[PTR]);
5467  }
5468  Expr *getOrder() const {
5469  return cast<Expr>(SubExprs[ORDER]);
5470  }
5471  Expr *getScope() const {
5472  assert(getScopeModel() && "No scope");
5473  return cast<Expr>(SubExprs[NumSubExprs - 1]);
5474  }
5475  Expr *getVal1() const {
5476  if (Op == AO__c11_atomic_init || Op == AO__opencl_atomic_init)
5477  return cast<Expr>(SubExprs[ORDER]);
5478  assert(NumSubExprs > VAL1);
5479  return cast<Expr>(SubExprs[VAL1]);
5480  }
5481  Expr *getOrderFail() const {
5482  assert(NumSubExprs > ORDER_FAIL);
5483  return cast<Expr>(SubExprs[ORDER_FAIL]);
5484  }
5485  Expr *getVal2() const {
5486  if (Op == AO__atomic_exchange)
5487  return cast<Expr>(SubExprs[ORDER_FAIL]);
5488  assert(NumSubExprs > VAL2);
5489  return cast<Expr>(SubExprs[VAL2]);
5490  }
5491  Expr *getWeak() const {
5492  assert(NumSubExprs > WEAK);
5493  return cast<Expr>(SubExprs[WEAK]);
5494  }
5495  QualType getValueType() const;
5496 
5497  AtomicOp getOp() const { return Op; }
5498  unsigned getNumSubExprs() const { return NumSubExprs; }
5499 
5500  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
5501  const Expr * const *getSubExprs() const {
5502  return reinterpret_cast<Expr * const *>(SubExprs);
5503  }
5504 
5505  bool isVolatile() const {
5506  return getPtr()->getType()->getPointeeType().isVolatileQualified();
5507  }
5508 
5509  bool isCmpXChg() const {
5510  return getOp() == AO__c11_atomic_compare_exchange_strong ||
5511  getOp() == AO__c11_atomic_compare_exchange_weak ||
5512  getOp() == AO__opencl_atomic_compare_exchange_strong ||
5513  getOp() == AO__opencl_atomic_compare_exchange_weak ||
5514  getOp() == AO__atomic_compare_exchange ||
5515  getOp() == AO__atomic_compare_exchange_n;
5516  }
5517 
5518  bool isOpenCL() const {
5519  return getOp() >= AO__opencl_atomic_init &&
5520  getOp() <= AO__opencl_atomic_fetch_max;
5521  }
5522 
5523  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
5524  SourceLocation getRParenLoc() const { return RParenLoc; }
5525 
5526  SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
5527  SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
5528 
5529  static bool classof(const Stmt *T) {
5530  return T->getStmtClass() == AtomicExprClass;
5531  }
5532 
5533  // Iterators
5535  return child_range(SubExprs, SubExprs+NumSubExprs);
5536  }
5538  return const_child_range(SubExprs, SubExprs + NumSubExprs);
5539  }
5540 
5541  /// Get atomic scope model for the atomic op code.
5542  /// \return empty atomic scope model if the atomic op code does not have
5543  /// scope operand.
5544  static std::unique_ptr<AtomicScopeModel> getScopeModel(AtomicOp Op) {
5545  auto Kind =
5546  (Op >= AO__opencl_atomic_load && Op <= AO__opencl_atomic_fetch_max)
5550  }
5551 
5552  /// Get atomic scope model.
5553  /// \return empty atomic scope model if this atomic expression does not have
5554  /// scope operand.
5555  std::unique_ptr<AtomicScopeModel> getScopeModel() const {
5556  return getScopeModel(getOp());
5557  }
5558 };
5559 
5560 /// TypoExpr - Internal placeholder for expressions where typo correction
5561 /// still needs to be performed and/or an error diagnostic emitted.
5562 class TypoExpr : public Expr {
5563 public:
5565  : Expr(TypoExprClass, T, VK_LValue, OK_Ordinary,
5566  /*isTypeDependent*/ true,
5567  /*isValueDependent*/ true,
5568  /*isInstantiationDependent*/ true,
5569  /*containsUnexpandedParameterPack*/ false) {
5570  assert(T->isDependentType() && "TypoExpr given a non-dependent type");
5571  }
5572 
5575  }
5578  }
5579 
5580  SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
5581  SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }
5582 
5583  static bool classof(const Stmt *T) {
5584  return T->getStmtClass() == TypoExprClass;
5585  }
5586 
5587 };
5588 } // end namespace clang
5589 
5590 #endif // LLVM_CLANG_AST_EXPR_H
void setFPFeatures(FPOptions F)
Definition: Expr.h:3457
ObjCPropertyRefExpr - A dot-syntax expression to access an ObjC property.
Definition: ExprObjC.h:577
unsigned getNumSemanticExprs() const
Definition: Expr.h:5363
const Expr * getSubExpr() const
Definition: Expr.h:890
bool hasArrayFiller() const
Return true if this is an array initializer and its array "filler" has been set.
Definition: Expr.h:4289
Represents a single C99 designator.
Definition: Expr.h:4494
unsigned getNumTemplateArgs() const
Retrieve the number of template arguments provided as part of this template-id.
Definition: Expr.h:1215
child_range children()
Definition: Expr.h:5215
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:5580
Expr * getVal2() const
Definition: Expr.h:5485
void setValueDependent(bool VD)
Set whether this expression is value-dependent or not.
Definition: Expr.h:152
friend TrailingObjects
Definition: Expr.h:3265
APFloatSemantics
Definition: Stmt.h:351
const BlockDecl * getBlockDecl() const
Definition: Expr.h:5191
const_child_range children() const
Definition: Expr.h:3092
bool isCallToStdMove() const
Definition: Expr.h:2645
bool isIncrementOp() const
Definition: Expr.h:1958
bool path_empty() const
Definition: Expr.h:3068
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Definition: Expr.h:4018
const_child_range children() const
Definition: Expr.h:4781
Represents a function declaration or definition.
Definition: Decl.h:1738
NamedDecl * getFoundDecl()
Get the NamedDecl through which this reference occurred.
Definition: Expr.h:1151
const StringLiteral * getFunctionName() const
Definition: Expr.h:1819
void setSubStmt(CompoundStmt *S)
Definition: Expr.h:3819
Expr ** getArgs()
Retrieve the call arguments.
Definition: Expr.h:2543
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
BlockExpr(EmptyShell Empty)
Build an empty block expression.
Definition: Expr.h:5189
Expr * getLHS() const
Definition: Expr.h:3627
child_range children()
Definition: Expr.h:2004
StringRef Identifier
Definition: Format.cpp:1636
BlockDecl * TheBlock
Definition: Expr.h:5179
ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op, ExprValueKind VK)
Definition: Expr.h:3129
Expr * getSyntacticForm()
Return the syntactic form of this expression, i.e.
Definition: Expr.h:5343
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:1424
bool hasTemplateKeyword() const
Determines whether the member name was preceded by the template keyword.
Definition: Expr.h:2830
reverse_iterator rbegin()
Definition: Expr.h:4390
SourceLocation getRParenLoc() const
Definition: Expr.h:2635
const TemplateArgumentLoc * getTemplateArgs() const
Retrieve the template arguments provided as part of this template-id.
Definition: Expr.h:1207
child_range children()
Definition: Expr.h:2382
unsigned getRawEncoding() const
When a SourceLocation itself cannot be used, this returns an (opaque) 32-bit integer encoding for it...
const Expr * getIdx() const
Definition: Expr.h:2359
enum clang::SubobjectAdjustment::@45 Kind
A (possibly-)qualified type.
Definition: Type.h:638
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:4872
StringKind getKind() const
Definition: Expr.h:1681
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2773
Expr * getCond() const
Definition: Expr.h:4022
void setOperatorLoc(SourceLocation L)
Definition: Expr.h:2290
static Opcode getOpForCompoundAssignment(Opcode Opc)
Definition: Expr.h:3421
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2553
SourceLocation getExprLoc() const
Definition: Expr.h:3318
void setArrow(bool A)
Definition: Expr.h:2875
void setRawSemantics(APFloatSemantics Sem)
Set the raw enumeration value representing the floating-point semantics of this literal (32-bit IEEE...
Definition: Expr.h:1475
Defines enumerations for the type traits support.
SourceLocation getLParen() const
Get the location of the left parentheses &#39;(&#39;.
Definition: Expr.h:1868
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:4839
Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK, bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
Definition: Expr.h:110
Expr * getExpr(unsigned Index)
getExpr - Return the Expr at the specified index.
Definition: Expr.h:3886
llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const
Definition: Expr.h:1300
Designator(unsigned Index, SourceLocation LBracketLoc, SourceLocation RBracketLoc)
Initializes an array designator.
Definition: Expr.h:4523
unsigned FieldLoc
The location of the field name in the designated initializer.
Definition: Expr.h:4471
CharacterLiteral(EmptyShell Empty)
Construct an empty character literal.
Definition: Expr.h:1416
unsigned getNumSubExprs() const
getNumSubExprs - Return the size of the SubExprs array.
Definition: Expr.h:3880
unsigned getResultIndex() const
The zero-based index of the result expression&#39;s generic association in the generic selection&#39;s associ...
Definition: Expr.h:5079
CompoundStmt * getSubStmt()
Definition: Expr.h:3817
InitExprsTy::const_iterator const_iterator
Definition: Expr.h:4382
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:5158
const Expr * getInit(unsigned Init) const
Definition: Expr.h:4233
static bool classof(const Stmt *S)
Definition: Expr.h:4867
Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc, SourceLocation FieldLoc)
Initializes a field designator.
Definition: Expr.h:4514
Expr * getControllingExpr()
Definition: Expr.h:5071
void setRHS(Expr *E)
Definition: Expr.h:2353
bool containsNonAsciiOrNull() const
Definition: Expr.h:1699
static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S, ASTContext &C)
TypeSourceInfo * Ty
Definition: Expr.h:2224
Expr *const * semantics_iterator
Definition: Expr.h:5365
Stmt - This represents one statement.
Definition: Stmt.h:66
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2540
CompoundLiteralExpr(EmptyShell Empty)
Construct an empty compound literal.
Definition: Expr.h:2948
SourceLocation getOperatorLoc() const
getOperatorLoc - Return the location of the operator.
Definition: Expr.h:2152
SourceLocation getRParenLoc() const
Definition: Expr.h:3867
SourceLocation getLocation() const
Definition: Expr.h:1493
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:3821
StmtExpr(CompoundStmt *substmt, QualType T, SourceLocation lp, SourceLocation rp)
Definition: Expr.h:3808
bool isFEnvAccessOn() const
Definition: Expr.h:3473
bool hasPlaceholderType() const
Returns whether this expression has a placeholder type.
Definition: Expr.h:472
ArrayRef< Stmt * > getRawSubExprs()
This method provides fast access to all the subexpressions of a CallExpr without going through the sl...
Definition: Expr.h:2604
C Language Family Type Representation.
static bool isMultiplicativeOp(Opcode Opc)
Definition: Expr.h:3359
bool isLogicalOp() const
Definition: Expr.h:3408
SourceLocation getRBracketLoc() const
Definition: Expr.h:4577
void setOpcode(Opcode Opc)
Definition: Expr.h:3325
const_child_range children() const
Definition: Expr.h:1507
bool isAscii() const
Definition: Expr.h:1685
reverse_iterator rbegin()
Definition: ASTVector.h:104
const_child_range children() const
Definition: Expr.h:4046
Expr * getBase() const
Definition: Expr.h:2767
TypeSourceInfo * getTypeSourceInfo() const
Definition: Expr.h:2961
static unsigned sizeOfTrailingObjects(unsigned NumPreArgs, unsigned NumArgs)
Return the size in bytes needed for the trailing objects.
Definition: Expr.h:2460
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:87
static bool classof(const Stmt *T)
Definition: Expr.h:1338
llvm::APFloat getValue() const
Definition: Expr.h:1459
Represents the index of the current element of an array being initialized by an ArrayInitLoopExpr.
Definition: Expr.h:4858
LLVM_READNONE bool isASCII(char c)
Returns true if this is an ASCII character.
Definition: CharInfo.h:43
void setType(QualType t)
Definition: Expr.h:129
ConstExprUsage
Indicates how the constant expression will be used.
Definition: Expr.h:668
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:2295
const Expr * getSubExpr() const
Definition: Expr.h:4109
const_child_range children() const
Definition: Expr.h:2662
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:5581
Opcode getOpcode() const
Definition: Expr.h:3322
Classification Classify(ASTContext &Ctx) const
Classify - Classify this expression according to the C++11 expression taxonomy.
Definition: Expr.h:377
static bool classof(const Stmt *T)
Definition: Expr.h:3154
const CastExpr * BasePath
Definition: Expr.h:69
unsigned getNumSubExprs() const
Retrieve the total number of subexpressions in this designated initializer expression, including the actual initialized value and any expressions that occur within array and array-range designators.
Definition: Expr.h:4665
void setComputationResultType(QualType T)
Definition: Expr.h:3531
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1844
Is the identifier known as a GNU-style attribute?
bool hasQualifier() const
Determines whether this member expression actually had a C++ nested-name-specifier prior to the name ...
Definition: Expr.h:2787
Strictly evaluate the expression.
Definition: Expr.h:596
child_range children()
Definition: Expr.h:3448
const_arg_iterator arg_begin() const
Definition: Expr.h:2595
The base class of the type hierarchy.
Definition: Type.h:1407
FullExpr(StmtClass SC, Expr *subexpr)
Definition: Expr.h:881
ImplicitValueInitExpr(QualType ty)
Definition: Expr.h:4895
bool isSemanticForm() const
Definition: Expr.h:4335
bool hasExplicitTemplateArgs() const
Determines whether this declaration reference was followed by an explicit template argument list...
Definition: Expr.h:1195
llvm::iterator_range< child_iterator > child_range
Definition: Stmt.h:1098
SourceLocation getRParenLoc() const
Definition: Expr.h:2292
CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
Construct an empty cast.
Definition: Expr.h:3035
static bool isShiftOp(Opcode Opc)
Definition: Expr.h:3365
static ExprValueKind getValueKindForType(QualType T)
getValueKindForType - Given a formal return or parameter type, give its value kind.
Definition: Expr.h:395
const Designator * getDesignator(unsigned Idx) const
Definition: Expr.h:4631
TypeSourceInfo * getTypeInfoAsWritten() const
getTypeInfoAsWritten - Returns the type source info for the type that this expression is casting to...
Definition: Expr.h:3208
void setADLCallKind(ADLCallKind V=UsesADL)
Definition: Expr.h:2521
FPOptions getFPFeatures() const
Definition: Expr.h:3461
InitExprsTy::iterator iterator
Definition: Expr.h:4381
SourceLocation getLParenLoc() const
Definition: Expr.h:3250
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
A container of type source information.
Definition: Decl.h:87
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:3147
Stmt * IgnoreImplicit()
Skip past any implicit AST nodes which might surround this statement, such as ExprWithCleanups or Imp...
Definition: Stmt.cpp:121
Stmt * SubExpr
Definition: Expr.h:879
void setCanOverflow(bool C)
Definition: Expr.h:1940
Floating point control options.
Definition: LangOptions.h:307
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:3256
IdentKind getIdentKind() const
Definition: Expr.h:1806
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:5090
static bool classof(const Stmt *T)
Definition: Expr.h:3085
const_child_range children() const
Definition: Expr.h:5099
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:5395
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:4908
const_child_range children() const
Definition: Expr.h:4135
ShuffleVectorExpr(EmptyShell Empty)
Build an empty vector-shuffle expression.
Definition: Expr.h:3861
SourceLocation getAccessorLoc() const
Definition: Expr.h:5141
BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc, FPOptions FPFeatures)
Definition: Expr.h:3294
const Expr * getResultExpr() const
The generic selection&#39;s result expression.
Definition: Expr.h:5086
bool isImplicitAccess() const
Determine whether the base of this explicit is implicit.
Definition: Expr.h:2888
SourceLocation getRParenLoc() const
getRParenLoc - Return the location of final right parenthesis.
Definition: Expr.h:3952
isModifiableLvalueResult
Definition: Expr.h:269
const Expr * getSubExpr() const
Definition: Expr.h:1529
Expr * getIndexExpr(unsigned Idx)
Definition: Expr.h:2180
const Expr * getIndexExpr(unsigned Idx) const
Definition: Expr.h:2185
const CXXBaseSpecifier *const * path_const_iterator
Definition: Expr.h:3067
Represents a variable declaration or definition.
Definition: Decl.h:813
GenericSelectionExpr(EmptyShell Empty)
Definition: Expr.h:5034
bool hasTemplateKWAndArgsInfo() const
Definition: Expr.h:1161
void setIsPartOfExplicitCast(bool PartOfExplicitCast)
Definition: Expr.h:3135
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2925
void setSubExpr(unsigned Idx, Expr *E)
Definition: Expr.h:4672
static bool isArithmeticOp(Opcode Op)
Definition: Expr.h:1974
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
OpaqueValueExpr * getCommonExpr() const
Get the common subexpression shared by all initializations (the source array).
Definition: Expr.h:4820
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6748
void setInitializer(Expr *E)
Definition: Expr.h:2953
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:4907
const Expr * getSemanticExpr(unsigned index) const
Definition: Expr.h:5391
unsigned EllipsisLoc
The location of the ellipsis separating the start and end indices.
Definition: Expr.h:4483
llvm::iterator_range< arg_iterator > arg_range
Definition: Expr.h:2582
SourceLocation getColonLoc() const
Definition: Expr.h:3572
BlockExpr(BlockDecl *BD, QualType ty)
Definition: Expr.h:5181
void setInit(unsigned Init, Expr *expr)
Definition: Expr.h:4243
AddrLabelExpr(EmptyShell Empty)
Build an empty address of a label expression.
Definition: Expr.h:3768
void setValue(unsigned Val)
Definition: Expr.h:1430
const_iterator begin() const
Definition: Expr.h:4387
void setLocation(SourceLocation Location)
Definition: Expr.h:1375
size_type size() const
Definition: ASTVector.h:110
Expr * getVal1() const
Definition: Expr.h:5475
static bool classof(const Stmt *T)
Definition: Expr.h:925
static std::unique_ptr< AtomicScopeModel > create(AtomicScopeModelKind K)
Create an atomic scope model by AtomicScopeModelKind.
Definition: SyncScope.h:143
void setContainsUnexpandedParameterPack(bool PP=true)
Set the bit that describes whether this expression contains an unexpanded parameter pack...
Definition: Expr.h:220
ConditionalOperator(EmptyShell Empty)
Build an empty conditional operator.
Definition: Expr.h:3611
void setGNUSyntax(bool GNU)
Definition: Expr.h:4650
TypeSourceInfo * getArgumentTypeInfo() const
Definition: Expr.h:2262
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:3776
SourceRange getSourceRange() const LLVM_READONLY
Retrieve the source range that covers this offsetof node.
Definition: Expr.h:2098
bool isShiftAssignOp() const
Definition: Expr.h:3432
unsigned getNumExpressions() const
Definition: Expr.h:2195
SourceLocation getLocation() const
Retrieve the location of the literal.
Definition: Expr.h:1334
ConstantExpr(EmptyShell Empty)
Build an empty constant expression wrapper.
Definition: Expr.h:915
child_range children()
Definition: Expr.h:987
const_child_range children() const
Definition: Expr.h:4877
static bool isAssignmentOp(Opcode Opc)
Definition: Expr.h:3410
child_range children()
Definition: Expr.h:3834
SourceLocation getRParenLoc() const
Definition: Expr.h:5041
SourceLocation getLocation() const
Retrieve the location of the literal.
Definition: Expr.h:1373
const Expr * IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY
Definition: Expr.h:834
bool isAdditiveOp() const
Definition: Expr.h:3364
bool isEqualityOp() const
Definition: Expr.h:3375
SourceLocation getBuiltinLoc() const
Definition: Expr.h:4029
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:2968
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:3777
bool isXValue() const
Definition: Expr.h:251
iterator end()
Definition: Expr.h:4388
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:270
const Expr * getBase() const
Definition: Expr.h:2356
Expr * IgnoreImpCasts() LLVM_READONLY
IgnoreImpCasts - Skip past any implicit casts which might surround this expression.
Definition: Expr.h:3162
static bool classof(const Stmt *T)
Definition: Expr.h:1875
const_child_range children() const
Definition: Expr.h:4733
SourceLocation getDotLoc() const
Definition: Expr.h:4561
Represents a struct/union/class.
Definition: Decl.h:3593
InitExprsTy::const_reverse_iterator const_reverse_iterator
Definition: Expr.h:4384
Represents a C99 designated initializer expression.
Definition: Expr.h:4419
AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
Definition: Expr.h:3554
bool isOrdinaryOrBitFieldObject() const
Definition: Expr.h:416
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:298
static bool classof(const Stmt *T)
Definition: Expr.h:2298
static StringLiteral * Create(const ASTContext &Ctx, StringRef Str, StringKind Kind, bool Pascal, QualType Ty, SourceLocation Loc)
Simple constructor for string literals made from one token.
Definition: Expr.h:1638
One of these records is kept for each identifier that is lexed.
Expr * getFalseExpr() const
Definition: Expr.h:3625
FieldDecl * getField() const
For a field offsetof node, returns the field.
Definition: Expr.h:2077
SourceLocation getRParenLoc() const
Definition: Expr.h:5524
child_range children()
Definition: Expr.h:5406
AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L, QualType t)
Definition: Expr.h:3761
const_reverse_iterator rend() const
Definition: Expr.h:4393
ShuffleVectorExpr - clang-specific builtin-in function __builtin_shufflevector.
Definition: Expr.h:3846
static Opcode reverseComparisonOp(Opcode Opc)
Definition: Expr.h:3393
QualType getComputationResultType() const
Definition: Expr.h:3530
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
SourceLocation getRParen() const
Get the location of the right parentheses &#39;)&#39;.
Definition: Expr.h:1872
A vector component is an element or range of elements on a vector.
Definition: Specifiers.h:132
StmtIterator cast_away_const(const ConstStmtIterator &RHS)
Definition: StmtIterator.h:152
const_child_range children() const
Definition: Expr.h:2211
static bool classof(const Stmt *T)
Definition: Expr.h:4363
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:155
A C++ nested-name-specifier augmented with source location information.
Expr * getInit() const
Retrieve the initializer value.
Definition: Expr.h:4653
void setLHS(Expr *E)
Definition: Expr.h:2349
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:2373
bool isFileScope() const
Definition: Expr.h:2955
friend TrailingObjects
Definition: Expr.h:3158
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:3630
bool isUTF8() const
Definition: Expr.h:1687
FullExpr - Represents a "full-expression" node.
Definition: Expr.h:877
child_range children()
Definition: Expr.h:2988
SourceLocation getAmpAmpLoc() const
Definition: Expr.h:3771
static SourceLocation getFromRawEncoding(unsigned Encoding)
Turn a raw encoding of a SourceLocation object into a real SourceLocation.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:288
Represents a member of a struct/union/class.
Definition: Decl.h:2579
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:5257
void setIsMicrosoftABI(bool IsMS)
Definition: Expr.h:4115
Represents a place-holder for an object not to be initialized by anything.
Definition: Expr.h:4713
bool empty() const
Definition: ASTVector.h:109
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:4074
UnaryOperator(Expr *input, Opcode opc, QualType type, ExprValueKind VK, ExprObjectKind OK, SourceLocation l, bool CanOverflow)
Definition: Expr.h:1902
static bool isPtrMemOp(Opcode Opc)
predicates to categorize the respective opcodes.
Definition: Expr.h:3354
UnaryExprOrTypeTrait
Names for the "expression or type" traits.
Definition: TypeTraits.h:97
static bool isIncrementDecrementOp(Opcode Op)
Definition: Expr.h:1969
unsigned getArrayExprIndex() const
For an array element node, returns the index into the array of expressions.
Definition: Expr.h:2071
SourceLocation getLabelLoc() const
Definition: Expr.h:3773
ExtVectorElementExpr(EmptyShell Empty)
Build an empty vector element expression.
Definition: Expr.h:5131
bool hasExplicitTemplateArgs() const
Determines whether the member name was followed by an explicit template argument list.
Definition: Expr.h:2834
UnaryOperator(EmptyShell Empty)
Build an empty unary operator.
Definition: Expr.h:1917
const Expr * getResultExpr() const
Definition: Expr.h:5359
SourceLocation getRBraceLoc() const
Definition: Expr.h:4332
SourceLocation getOperatorLoc() const
Definition: Expr.h:2289
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:2885
unsigned getNumCommas() const
getNumCommas - Return the number of commas that must have been present in this function call...
Definition: Expr.h:2611
static bool classof(const Stmt *T)
Definition: Expr.h:3261
GNUNullExpr - Implements the GNU __null extension, which is a name for a null pointer constant that h...
Definition: Expr.h:4057
bool isReferenceType() const
Definition: Type.h:6308
SourceLocation getRParenLoc() const
Definition: Expr.h:3253
void setArg(unsigned Arg, Expr *ArgExpr)
setArg - Set the specified argument.
Definition: Expr.h:2563
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:3335
child_range children()
Definition: Expr.h:1504
child_range children()
Definition: Expr.h:4082
child_range children()
Definition: Expr.h:1437
void shrinkNumArgs(unsigned NewNumArgs)
Reduce the number of arguments in this call expression.
Definition: Expr.h:2574
void setRParen(SourceLocation Loc)
Definition: Expr.h:1873
GNUNullExpr(EmptyShell Empty)
Build an empty GNU __null expression.
Definition: Expr.h:4068
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:4836
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:1003
const_child_range children() const
Definition: Expr.h:1881
const_child_range children() const
Definition: Expr.h:1440
ExtVectorElementExpr - This represents access to specific elements of a vector, and may occur on the ...
Definition: Expr.h:5116
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:4726
Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const
ClassifyModifiable - Classify this expression according to the C++11 expression taxonomy, and see if it is valid on the left side of an assignment.
Definition: Expr.h:389
Expr * getSubExpr()
Definition: Expr.h:3050
std::unique_ptr< AtomicScopeModel > getScopeModel() const
Get atomic scope model.
Definition: Expr.h:5555
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:4126
SourceLocation getQuestionLoc() const
Definition: Expr.h:3571
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
void setComponent(unsigned Idx, OffsetOfNode ON)
Definition: Expr.h:2171
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:2296
const_child_range children() const
Definition: Expr.h:4085
unsigned getCharByteWidth() const
Definition: Expr.h:1679
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:4871
bool isAssignmentOp() const
Definition: Expr.h:3413
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:4075
NestedNameSpecifierLoc QualifierLoc
The nested-name-specifier that qualifies the name, including source-location information.
Definition: Expr.h:2673
void setRParenLoc(SourceLocation L)
Definition: Expr.h:3827
static bool classof(const Stmt *T)
Definition: Expr.h:4764
bool hadArrayRangeDesignator() const
Definition: Expr.h:4353
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:110
child_range children()
Definition: Expr.h:1343
const Expr *const * const_semantics_iterator
Definition: Expr.h:5366
static bool classof(const Stmt *T)
Definition: Expr.h:5418
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:4727
void setSubExpr(Expr *E)
As with any mutator of the AST, be very careful when modifying an existing AST to preserve its invari...
Definition: Expr.h:895
static bool isRelationalOp(Opcode Opc)
Definition: Expr.h:3371
Expr *const * getInits() const
Retrieve the set of initializers.
Definition: Expr.h:4221
void setLBraceLoc(SourceLocation Loc)
Definition: Expr.h:4331
StringRef getOpcodeStr() const
Definition: Expr.h:3343
bool isGLValue() const
Definition: Expr.h:252
const_child_range children() const
Definition: Expr.h:5266
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const
Copies the template arguments (if present) into the given structure.
Definition: Expr.h:1199
Describes an C or C++ initializer list.
Definition: Expr.h:4185
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:3955
AsTypeExpr(Expr *SrcExpr, QualType DstType, ExprValueKind VK, ExprObjectKind OK, SourceLocation BuiltinLoc, SourceLocation RParenLoc)
Definition: Expr.h:5236
void setValue(const ASTContext &C, const llvm::APInt &Val)
Definition: Expr.h:1293
void setBuiltinLoc(SourceLocation L)
Definition: Expr.h:3865
BinaryOperatorKind
bool isPostfix() const
Definition: Expr.h:1953
void setSubExpr(Expr *E)
Definition: Expr.h:1862
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:1330
SmallVectorImpl< PartialDiagnosticAt > * Diag
Diag - If this is non-null, it will be filled in with a stack of notes indicating why evaluation fail...
Definition: Expr.h:558
void setLHS(Expr *E)
Definition: Expr.h:4025
child_range children()
Definition: Expr.h:3962
unsigned getLength() const
Definition: Expr.h:1678
static bool isEqualityOp(Opcode Opc)
Definition: Expr.h:3374
unsigned getFirstExprIndex() const
Definition: Expr.h:4589
bool refersToBitField() const
Returns true if this expression is a gl-value that potentially refers to a bit-field.
Definition: Expr.h:437
static DeclAccessPair make(NamedDecl *D, AccessSpecifier AS)
static bool classof(const Stmt *T)
Definition: Expr.h:1831
APValue Val
Val - This is the value the expression can be folded to.
Definition: Expr.h:573
A convenient class for passing around template argument information.
Definition: TemplateBase.h:555
Expr * getPtr() const
Definition: Expr.h:5465
child_range children()
Definition: Expr.h:1384
APFloatSemantics getRawSemantics() const
Get a raw enumeration value representing the floating-point semantics of this literal (32-bit IEEE...
Definition: Expr.h:1469
static bool classof(const Stmt *T)
Definition: Expr.h:1432
child_range children()
Definition: Expr.h:1248
OffsetOfNode(SourceLocation LBracketLoc, unsigned Index, SourceLocation RBracketLoc)
Create an offsetof node that refers to an array element.
Definition: Expr.h:2047
ExprValueKind getValueKind() const
getValueKind - The value kind that this expression produces.
Definition: Expr.h:405
An x-value expression is a reference to an object with independent storage but which can be "moved"...
Definition: Specifiers.h:119
path_iterator path_begin()
Definition: Expr.h:3070
const Expr * getArg(unsigned Arg) const
Definition: Expr.h:2557
child_range children()
Definition: Expr.h:2657
OffsetOfNode(const CXXBaseSpecifier *Base)
Create an offsetof node that refers into a C++ base class.
Definition: Expr.h:2063
NullPointerConstantValueDependence
Enumeration used to describe how isNullPointerConstant() should cope with value-dependent expressions...
Definition: Expr.h:709
static bool classof(const Stmt *T)
Definition: Expr.h:1538
unsigned getNumPreArgs() const
Definition: Expr.h:2477
static bool classof(const Stmt *S)
Definition: Expr.h:4832
semantics_iterator semantics_end()
Definition: Expr.h:5373
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3287
static bool classof(const Stmt *T)
Definition: Expr.h:4129
TypoExpr(QualType T)
Definition: Expr.h:5564
const Expr * getAssocExpr(unsigned i) const
Definition: Expr.h:5043
tokloc_iterator tokloc_end() const
Definition: Expr.h:1737
unsigned RBracketLoc
The location of the &#39;]&#39; terminating the array range designator.
Definition: Expr.h:4485
ArrayRef< TemplateArgumentLoc > template_arguments() const
Definition: Expr.h:2862
void setAccessor(IdentifierInfo *II)
Definition: Expr.h:5139
bool hadMultipleCandidates() const
Returns true if this member expression refers to a method that was resolved from an overloaded set ha...
Definition: Expr.h:2894
unsigned getResultExprIndex() const
Return the index of the result-bearing expression into the semantics expressions, or PseudoObjectExpr...
Definition: Expr.h:5348
static bool isPostfix(Opcode Op)
isPostfix - Return true if this is a postfix operation, like x++.
Definition: Expr.h:1943
static bool classof(const Stmt *T)
Definition: Expr.h:2377
child_range children()
Definition: Expr.h:4368
bool isArrow() const
Definition: Expr.h:2874
ChooseExpr(EmptyShell Empty)
Build an empty __builtin_choose_expr.
Definition: Expr.h:4001
static bool classof(const Stmt *T)
Definition: Expr.h:3782
bool isFPContractableWithinStatement() const
Definition: Expr.h:3467
SourceLocation getEqualOrColonLoc() const
Retrieve the location of the &#39;=&#39; that precedes the initializer value itself, if present.
Definition: Expr.h:4644
BinaryOperator(EmptyShell Empty)
Construct an empty binary operator.
Definition: Expr.h:3314
StringKind
StringLiteral is followed by several trailing objects.
Definition: Expr.h:1588
child_range children()
Definition: Expr.h:4874
TypoExpr - Internal placeholder for expressions where typo correction still needs to be performed and...
Definition: Expr.h:5562
const_child_range children() const
Definition: Expr.h:4914
void setOperatorLoc(SourceLocation L)
Definition: Expr.h:2153
unsigned getInt() const
Used to serialize this.
Definition: LangOptions.h:352
bool isRelationalOp() const
Definition: Expr.h:3372
An adjustment to be made to the temporary created when emitting a reference binding, which accesses a particular subobject of that temporary.
Definition: Expr.h:61
const Expr * getControllingExpr() const
Definition: Expr.h:5068
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2998
Helper class for OffsetOfExpr.
Definition: Expr.h:2013
SourceLocation getBuiltinLoc() const
Definition: Expr.h:4120
void setOpcode(Opcode Opc)
Definition: Expr.h:1924
NestedNameSpecifierLoc getQualifierLoc() const
If the name was qualified, retrieves the nested-name-specifier that precedes the name, with source-location information.
Definition: Expr.h:1133
bool isTypeDependent() const
isTypeDependent - Determines whether this expression is type-dependent (C++ [temp.dep.expr]), which means that its type could change from one template instantiation to the next.
Definition: Expr.h:167
An ordinary object is located at an address in memory.
Definition: Specifiers.h:126
SourceLocation getOperatorLoc() const
getOperatorLoc - Return the location of the operator.
Definition: Expr.h:1930
bool isCmpXChg() const
Definition: Expr.h:5509
StmtClass
Definition: Stmt.h:68
void setRParenLoc(SourceLocation R)
Definition: Expr.h:2157
SourceLocation getEndLoc() const
Definition: Expr.h:1829
static Classification makeSimpleLValue()
Create a simple, modifiably lvalue.
Definition: Expr.h:360
bool isExact() const
Definition: Expr.h:1485
GNUNullExpr(QualType Ty, SourceLocation Loc)
Definition: Expr.h:4062
child_range children()
Definition: Expr.h:3642
ConvertVectorExpr(Expr *SrcExpr, TypeSourceInfo *TI, QualType DstType, ExprValueKind VK, ExprObjectKind OK, SourceLocation BuiltinLoc, SourceLocation RParenLoc)
Definition: Expr.h:3925
SourceLocation getTokenLocation() const
getTokenLocation - The location of the __null token.
Definition: Expr.h:4071
Iterator for iterating over Stmt * arrays that contain only Expr *.
Definition: Stmt.h:983
void setRParenLoc(SourceLocation L)
Definition: Expr.h:3254
uint64_t * pVal
Used to store the >64 bits integer value.
Definition: Expr.h:1268
const_child_range children() const
Definition: Expr.h:3733
arg_iterator arg_end()
Definition: Expr.h:2593
void setCastKind(CastKind K)
Definition: Expr.h:3045
NestedNameSpecifierLoc getQualifierLoc() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name...
Definition: Expr.h:2792
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:2199
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:1497
Expr ** getSubExprs()
Retrieve the array of expressions.
Definition: Expr.h:3883
FullExpr(StmtClass SC, EmptyShell Empty)
Definition: Expr.h:887
ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t, ExprValueKind VK, ExprObjectKind OK, SourceLocation RP, bool condIsTrue, bool TypeDependent, bool ValueDependent)
Definition: Expr.h:3983
Expr * getSubExpr()
Definition: Expr.h:1861
static bool classof(const Stmt *T)
Definition: Expr.h:5092
void setEqualOrColonLoc(SourceLocation L)
Definition: Expr.h:4645
SourceLocation getEllipsisLoc() const
Definition: Expr.h:4583
const Expr * getLHS() const
Definition: Expr.h:2348
void setArgument(Expr *E)
Definition: Expr.h:2274
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition: Expr.h:3213
void setTypeSourceInfo(TypeSourceInfo *tsi)
Definition: Expr.h:2162
static Opcode negateComparisonOp(Opcode Opc)
Definition: Expr.h:3380
SourceLocation getEndLoc() const
Definition: Expr.h:2364
static bool classof(const Stmt *T)
Definition: Expr.h:2651
const Expr * getExpr(unsigned Index) const
Definition: Expr.h:3890
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3582
Const iterator for iterating over Stmt * arrays that contain only Expr *.
Definition: Stmt.h:997
Expr * getScope() const
Definition: Expr.h:5471
void setField(FieldDecl *FD)
Definition: Expr.h:4556
StringRef getString() const
Definition: Expr.h:1649
ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
Definition: Expr.h:1848
void setAmpAmpLoc(SourceLocation L)
Definition: Expr.h:3772
llvm::iterator_range< const_child_iterator > const_child_range
Definition: Stmt.h:1099
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1241
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3687
void setBlockDecl(BlockDecl *BD)
Definition: Expr.h:5193
bool isMicrosoftABI() const
Returns whether this is really a Win64 ABI va_arg expression.
Definition: Expr.h:4114
ArrayInitIndexExpr(QualType T)
Definition: Expr.h:4863
Expr ** getSubExprs()
Definition: Expr.h:5500
SubobjectAdjustment(FieldDecl *Field)
Definition: Expr.h:91
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const
Copies the template arguments (if present) into the given structure.
Definition: Expr.h:2838
QualType getComputationLHSType() const
Definition: Expr.h:3527
CastKind
CastKind - The kind of operation required for a conversion.
NestedNameSpecifier * getQualifier() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name...
Definition: Expr.h:2801
The return type of classify().
Definition: Expr.h:302
const Expr * IgnoreParenCasts() const LLVM_READONLY
Definition: Expr.h:826
const_semantics_iterator semantics_begin() const
Definition: Expr.h:5370
Used by IntegerLiteral/FloatingLiteral to store the numeric without leaking memory.
Definition: Expr.h:1265
static std::unique_ptr< AtomicScopeModel > getScopeModel(AtomicOp Op)
Get atomic scope model for the atomic op code.
Definition: Expr.h:5544
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:2099
void setSubExpr(Expr *E)
Definition: Expr.h:1927
UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) expression operand...
Definition: Expr.h:2222
iterator end()
Definition: ASTVector.h:100
void setLParen(SourceLocation Loc)
Definition: Expr.h:1869
const Expr * IgnoreImplicit() const LLVM_READONLY
Definition: Expr.h:751
llvm::APInt getIntValue() const
Definition: Expr.h:1280
SourceLocation getLocation() const
Definition: Expr.h:1122
InitListExpr * getUpdater() const
Definition: Expr.h:4771
ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs, SourceLocation CLoc, Expr *rhs, QualType t, ExprValueKind VK, ExprObjectKind OK)
Definition: Expr.h:3588
ConstantExpr - An expression that occurs in a constant context.
Definition: Expr.h:904
bool HasUndefinedBehavior
Whether the evaluation hit undefined behavior.
Definition: Expr.h:549
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:4091
Kinds
The various classification results. Most of these mean prvalue.
Definition: Expr.h:305
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:1994
unsigned getValue() const
Definition: Expr.h:1426
Exposes information about the current target.
Definition: TargetInfo.h:54
Expr * getSrcExpr() const
getSrcExpr - Return the Expr to be converted.
Definition: Expr.h:5249
CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType, ExprValueKind VK, ExprObjectKind OK, QualType CompLHSType, QualType CompResultType, SourceLocation OpLoc, FPOptions FPFeatures)
Definition: Expr.h:3508
llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const
Definition: Expr.h:3897
ADLCallKind getADLCallKind() const
Definition: Expr.h:2518
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:3870
const_child_range children() const
Definition: Expr.h:2005
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:3822
void setLocation(SourceLocation Location)
Definition: Expr.h:1428
Expr * getCond() const
Definition: Expr.h:3616
const_arg_range arguments() const
Definition: Expr.h:2586
Pepresents a block literal declaration, which is like an unnamed FunctionDecl.
Definition: Decl.h:3858
llvm::MutableArrayRef< Designator > designators()
Definition: Expr.h:4622
static bool classof(const Stmt *T)
Definition: Expr.h:1744
DeclAccessPair getFoundDecl() const
Retrieves the declaration found by lookup.
Definition: Expr.h:2777
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:637
This represents one expression.
Definition: Expr.h:106
Defines the clang::LangOptions interface.
void setRBraceLoc(SourceLocation Loc)
Definition: Expr.h:4333
const_child_range children() const
Definition: Expr.h:3906
ExprValueKind
The categorization of expression values, currently following the C++11 scheme.
Definition: Specifiers.h:107
child_range children()
Definition: Expr.h:3903
void setCallee(Expr *F)
Definition: Expr.h:2516
std::string Label
const Expr * getSyntacticForm() const
Definition: Expr.h:5344
const_child_range children() const
Definition: Expr.h:4846
CXXBaseSpecifier * getBase() const
For a base class node, returns the base specifier.
Definition: Expr.h:2087
void setRParenLoc(SourceLocation L)
Definition: Expr.h:3868
const Expr * getRHS() const
Definition: Expr.h:2352
static bool classof(const Stmt *T)
Definition: Expr.h:1243
void setBase(Expr *Base)
Definition: Expr.h:4769
void setSyntacticForm(InitListExpr *Init)
Definition: Expr.h:4346
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:2976
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:1536
void setMemberLoc(SourceLocation L)
Definition: Expr.h:2880
NoInitExpr(QualType ty)
Definition: Expr.h:4715
void setTypeDependent(bool TD)
Set whether this expression is type-dependent or not.
Definition: Expr.h:170
const TypeSourceInfo * getAssocTypeSourceInfo(unsigned i) const
Definition: Expr.h:5053
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:5177
Expr * getCallee()
Definition: Expr.h:2514
unsigned getNumInits() const
Definition: Expr.h:4215
static bool classof(const Stmt *T)
Definition: Expr.h:4687
Expr * getSubExpr() const
Get the initializer to use for each array element.
Definition: Expr.h:4825
SourceLocation getBeginLoc() const
Definition: Expr.h:1828
const Expr * getCallee() const
Definition: Expr.h:2515
void setRHS(Expr *E)
Definition: Expr.h:3330
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:5402
An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
Definition: Expr.h:4475
Stmt * getPreArg(unsigned I)
Definition: Expr.h:2464
const Expr * skipRValueSubobjectAdjustments() const
Definition: Expr.h:860
void setTypeSourceInfo(TypeSourceInfo *ti)
Definition: Expr.h:3944
const_iterator end() const
Definition: Expr.h:4389
const_child_range children() const
Definition: Expr.h:1752
QualType getArgumentType() const
Definition: Expr.h:2259
#define bool
Definition: stdbool.h:31
struct DTB DerivedToBase
Definition: Expr.h:79
bool performsVirtualDispatch(const LangOptions &LO) const
Returns true if virtual dispatch is performed.
Definition: Expr.h:2908
void setWrittenTypeInfo(TypeSourceInfo *TI)
Definition: Expr.h:4118
Expr * getOrder() const
Definition: Expr.h:5468
child_range children()
Definition: Expr.h:4974
SourceLocation getLParenLoc() const
Definition: Expr.h:4964
ParenExpr(EmptyShell Empty)
Construct an empty parenthesized expression.
Definition: Expr.h:1857
uint32_t getCodeUnit(size_t i) const
Definition: Expr.h:1664
void setObjectKind(ExprObjectKind Cat)
setObjectKind - Set the object kind produced by this expression.
Definition: Expr.h:425
bool hasQualifier() const
Determine whether this declaration reference was preceded by a C++ nested-name-specifier, e.g., N::foo.
Definition: Expr.h:1129
Expr * getSubExpr()
Definition: Expr.h:4110
TypeSourceInfo * getTypeSourceInfo() const
Definition: Expr.h:2159
unsigned size() const
Returns the number of designators in this initializer.
Definition: Expr.h:4619
AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2] This AST node provides support ...
Definition: Expr.h:5226
const_child_range children() const
Definition: Expr.h:3645
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return null.
Definition: Expr.h:2532
bool refersToEnclosingVariableOrCapture() const
Does this DeclRefExpr refer to an enclosing local or a captured variable?
Definition: Expr.h:1239
IdentifierInfo & getAccessor() const
Definition: Expr.h:5138
static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result, EvalInfo &Info)
BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc, FPOptions FPFeatures, bool dead2)
Definition: Expr.h:3476
const ValueDecl * getDecl() const
Definition: Expr.h:1115
ArrayRef< Expr * > inits()
Definition: Expr.h:4225
ArraySubscriptExpr(EmptyShell Shell)
Create an empty array subscript expression.
Definition: Expr.h:2335
child_range children()
Definition: Expr.h:1749
Specifies that a value-dependent expression of integral or dependent type should be considered a null...
Definition: Expr.h:715
Extra data stored in some MemberExpr objects.
Definition: Expr.h:2670
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:5089
Kind getKind() const
Determine what kind of offsetof node this is.
Definition: Expr.h:2067
SourceLocation getLAngleLoc() const
Retrieve the location of the left angle bracket starting the explicit template argument list followin...
Definition: Expr.h:2815
QualType getType() const
Definition: Expr.h:128
ArrayRef< Expr * > getAssocExprs() const
Definition: Expr.h:5047
QualType getTypeOfArgument() const
Gets the argument type, or the type of the argument expression, whichever is appropriate.
Definition: Expr.h:2285
bool isVolatile() const
Definition: Expr.h:5505
bool isWide() const
Definition: Expr.h:1686
const_semantics_iterator semantics_end() const
Definition: Expr.h:5376
void setValueKind(ExprValueKind Cat)
setValueKind - Set the value kind produced by this expression.
Definition: Expr.h:422
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:5527
static OMPLinearClause * CreateEmpty(const ASTContext &C, unsigned NumVars)
Creates an empty clause with the place for NumVars variables.
SourceLocation getRParenLoc() const
getRParenLoc - Return the location of final right parenthesis.
Definition: Expr.h:5255
void setMemberDecl(ValueDecl *D)
Definition: Expr.h:2774
const_child_range children() const
Definition: Expr.h:4978
const_child_range children() const
Definition: Expr.h:5218
ModifiableType
The results of modification testing.
Definition: Expr.h:320
void setRParenLoc(SourceLocation L)
Definition: Expr.h:4033
SourceLocation getLBracketLoc() const
Definition: Expr.h:4571
SourceLocation getRBracketLoc() const
Definition: Expr.h:2366
SourceLocation getEnd() const
const_child_range children() const
Definition: Expr.h:3790
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1896
unsigned Index
Location of the first index expression within the designated initializer expression&#39;s list of subexpr...
Definition: Expr.h:4478
SourceLocation getMemberLoc() const
getMemberLoc - Return the location of the "member", in X->F, it is the location of &#39;F&#39;...
Definition: Expr.h:2879
const_child_range children() const
Definition: Expr.h:1346
bool usesGNUSyntax() const
Determines whether this designated initializer used the deprecated GNU syntax for designated initiali...
Definition: Expr.h:4649
AtomicOp getOp() const
Definition: Expr.h:5497
static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult, const ASTContext &Ctx, Expr::SideEffectsKind AllowSideEffects, EvalInfo &Info)
ArrayRef< Expr * > inits() const
Definition: Expr.h:4229
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:4595
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:3721
const_arg_iterator arg_end() const
Definition: Expr.h:2598
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:3257
const OffsetOfNode & getComponent(unsigned Idx) const
Definition: Expr.h:2166
Expr * getTrueExpr() const
getTrueExpr - Return the subexpression which will be evaluated if the condition evaluates to true; th...
Definition: Expr.h:3707
SourceLocation getTemplateKeywordLoc() const
Retrieve the location of the template keyword preceding this name, if any.
Definition: Expr.h:1167
static bool classof(const Stmt *T)
Definition: Expr.h:3574
ValueDecl * getDecl()
Definition: Expr.h:1114
child_range children()
Definition: Expr.h:5534
SourceLocation getLocation() const
Definition: Expr.h:1810
child_range children()
Definition: Expr.h:930
SourceLocation getRParenLoc() const
Definition: Expr.h:4123
The result type of a method or function.
Designator(unsigned Index, SourceLocation LBracketLoc, SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
Initializes a GNU array-range designator.
Definition: Expr.h:4533
const Expr * getSubExpr() const
Definition: Expr.h:1860
CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style cast in C++ (C++ [expr.cast]), which uses the syntax (Type)expr.
Definition: Expr.h:3224
llvm::iterator_range< semantics_iterator > semantics()
Definition: Expr.h:5380
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:703
Expr * getLHS()
An array access can be written A[4] or 4[A] (both are equivalent).
Definition: Expr.h:2347
reverse_iterator rend()
Definition: ASTVector.h:106
static bool classof(const Stmt *T)
Definition: Expr.h:1013
bool hadMultipleCandidates() const
Returns true if this expression refers to a function that was resolved from an overloaded set having ...
Definition: Expr.h:1227
const_child_range children() const
Definition: Expr.h:1387
const SourceManager & SM
Definition: Format.cpp:1490
__UINTPTR_TYPE__ uintptr_t
An unsigned integer type with the property that any valid pointer to void can be converted to this ty...
Definition: opencl-c.h:90
const_child_range children() const
Definition: Expr.h:3963
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:5399
ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK, CastKind kind, Expr *op, unsigned PathSize, TypeSourceInfo *writtenTy)
Definition: Expr.h:3196
child_range children()
Definition: Expr.h:2917
ImaginaryLiteral - We support imaginary integer and floating point literals, like "1...
Definition: Expr.h:1517
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:4127
ArrayRef< TypeSourceInfo * > getAssocTypeSourceInfos() const
Definition: Expr.h:5057
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:301
void setRParenLoc(SourceLocation L)
Definition: Expr.h:4124
bool isDecrementOp() const
Definition: Expr.h:1965
ExprObjectKind getObjectKind() const
getObjectKind - The object kind that this expression produces.
Definition: Expr.h:412
static bool classof(const Stmt *T)
Definition: Expr.h:5583
SideEffectsKind
Definition: Expr.h:595
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:918
bool isComparisonOp() const
Definition: Expr.h:3378
static bool isBitwiseOp(Opcode Opc)
Definition: Expr.h:3368
const Expr * IgnoreConversionOperator() const LLVM_READONLY
Definition: Expr.h:776
const_child_range children() const
Definition: Expr.h:5537
static bool classof(const Stmt *T)
Definition: Expr.h:1377
void setTypeSourceInfo(TypeSourceInfo *tinfo)
Definition: Expr.h:2964
static bool classof(const Stmt *T)
Definition: Expr.h:5260
unsigned DotLoc
The location of the &#39;.&#39; in the designated initializer.
Definition: Expr.h:4468
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo, QualType resultType, SourceLocation op, SourceLocation rp)
Definition: Expr.h:2230
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:945
void setComputationLHSType(QualType T)
Definition: Expr.h:3528
Expr * getBase() const
Definition: Expr.h:4768
ConvertVectorExpr - Clang builtin function __builtin_convertvector This AST node provides support for...
Definition: Expr.h:3914
const Stmt * getPreArg(unsigned I) const
Definition: Expr.h:2468
#define false
Definition: stdbool.h:33
SourceLocation getLParenLoc() const
Definition: Expr.h:2958
Kind
DesignatedInitUpdateExpr(EmptyShell Empty)
Definition: Expr.h:4758
unsigned path_size() const
Definition: Expr.h:3069
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5299
void setLParenLoc(SourceLocation L)
Definition: Expr.h:3251
SmallVector< CXXBaseSpecifier *, 4 > CXXCastPath
A simple array of base specifiers.
Definition: Expr.h:54
bool isInstantiationDependent() const
Whether this expression is instantiation-dependent, meaning that it depends in some way on a template...
Definition: Expr.h:191
friend TrailingObjects
Definition: Expr.h:5422
const CompoundStmt * getSubStmt() const
Definition: Expr.h:3818
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:1533
SourceLocation getRAngleLoc() const
Retrieve the location of the right angle bracket ending the explicit template argument list following...
Definition: Expr.h:1183
ConstExprIterator const_arg_iterator
Definition: Expr.h:2581
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:2200
void setAccessorLoc(SourceLocation L)
Definition: Expr.h:5142
const_child_range children() const
Definition: Expr.h:991
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:2100
SourceLocation getRAngleLoc() const
Retrieve the location of the right angle bracket ending the explicit template argument list following...
Definition: Expr.h:2823
StringLiteral * getFunctionName()
Definition: Expr.h:1813
const_child_range children() const
Definition: Expr.h:931
unsigned getNumExprs() const
Return the number of expressions in this paren list.
Definition: Expr.h:4945
void setLocation(SourceLocation L)
Definition: Expr.h:1123
const Expr * IgnoreParenImpCasts() const LLVM_READONLY
Definition: Expr.h:780
Encodes a location in the source.
void setLocation(SourceLocation L)
Definition: Expr.h:1811
void setValue(const ASTContext &C, const llvm::APFloat &Val)
Definition: Expr.h:1303
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:1742
MutableArrayRef< Expr * > getInits()
const NamedDecl * getFoundDecl() const
Get the NamedDecl through which this reference occurred.
Definition: Expr.h:1157
SourceLocation getOperatorLoc() const
Definition: Expr.h:3319
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:5200
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:5155
const Expr * IgnoreParens() const LLVM_READONLY
Definition: Expr.h:823
Expr * getSubExpr() const
Definition: Expr.h:1926
const Decl * getReferencedDeclOfCallee() const
Definition: Expr.h:453
SourceLocation getLAngleLoc() const
Retrieve the location of the left angle bracket starting the explicit template argument list followin...
Definition: Expr.h:1175
void setUpdater(Expr *Updater)
Definition: Expr.h:4774
SourceLocation getBuiltinLoc() const
getBuiltinLoc - Return the location of the __builtin_astype token.
Definition: Expr.h:5252
NoInitExpr(EmptyShell Empty)
Definition: Expr.h:4719
CastKind getCastKind() const
Definition: Expr.h:3044
Expr * getSubExpr(unsigned Idx) const
Definition: Expr.h:4667
child_range children()
Definition: Expr.h:4134
const Expr *const * getArgs() const
Definition: Expr.h:2547
DeclarationName getName() const
getName - Returns the embedded declaration name.
static ConstantExpr * Create(const ASTContext &Context, Expr *E)
Definition: Expr.h:909
pointer data()
data - Return a pointer to the vector&#39;s buffer, even if empty().
Definition: ASTVector.h:154
bool isModifiable() const
Definition: Expr.h:357
static bool isPlaceholderTypeKind(Kind K)
Determines whether the given kind corresponds to a placeholder type.
Definition: Type.h:2448
static bool classof(const Stmt *T)
Definition: Expr.h:3957
Represents the declaration of a label.
Definition: Decl.h:469
static bool classof(const Stmt *T)
Definition: Expr.h:2912
void setLabelLoc(SourceLocation L)
Definition: Expr.h:3774
const Expr * getExpr(unsigned Init) const
Definition: Expr.h:4952
ExprObjectKind
A further classification of the kind of object referenced by an l-value or x-value.
Definition: Specifiers.h:124
std::pair< SourceLocation, PartialDiagnostic > PartialDiagnosticAt
A partial diagnostic along with the source location where this diagnostic occurs. ...
const Expr * ignoreParenBaseCasts() const LLVM_READONLY
Definition: Expr.h:800
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:2361
SourceLocation getStrTokenLoc(unsigned TokNum) const
Get one of the string literal token.
Definition: Expr.h:1713
child_range children()
Definition: Expr.h:2207
StmtExpr(EmptyShell Empty)
Build an empty statement expression.
Definition: Expr.h:3815
bool canOverflow() const
Returns true if the unary operator can cause an overflow.
Definition: Expr.h:1939
CompoundAssignOperator(EmptyShell Empty)
Build an empty compound assignment operator expression.
Definition: Expr.h:3521
SourceLocation getRParenLoc() const
Definition: Expr.h:3826
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
Expr * getAssocExpr(unsigned i)
Definition: Expr.h:5046
void setLHS(Expr *E)
Definition: Expr.h:3328
static bool classof(const Stmt *T)
Definition: Expr.h:866
bool isPascal() const
Definition: Expr.h:1690
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:921
uint64_t VAL
Used to store the <= 64 bits integer value.
Definition: Expr.h:1267
MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc, ValueDecl *memberdecl, SourceLocation l, QualType ty, ExprValueKind VK, ExprObjectKind OK)
Definition: Expr.h:2743
const Expr * getSubExprAsWritten() const
Definition: Expr.h:3058
static bool classof(const Stmt *T)
Definition: Expr.h:2983
const Expr * getArgumentExpr() const
Definition: Expr.h:2270
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>, and corresponding __opencl_atomic_* for OpenCL 2.0.
Definition: Expr.h:5433
UnaryExprOrTypeTrait getKind() const
Definition: Expr.h:2253
child_range children()
Definition: Expr.h:5265
const_child_range children() const
Definition: Expr.h:5576
Expr * getExpr(unsigned Init)
Definition: Expr.h:4947
const Expr * IgnoreCasts() const LLVM_READONLY
Strip off casts, but keep parentheses.
Definition: Expr.h:830
const_reverse_iterator rbegin() const
Definition: Expr.h:4391
bool isValueDependent() const
isValueDependent - Determines whether this expression is value-dependent (C++ [temp.dep.constexpr]).
Definition: Expr.h:149
static bool classof(const Stmt *T)
Definition: Expr.h:4077
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:1741
SourceLocation getLParenLoc() const
Definition: Expr.h:3824
const_child_range children() const
Definition: Expr.h:3835
void setDecl(ValueDecl *NewD)
Definition: Expr.h:1116
arg_range arguments()
Definition: Expr.h:2585
void setArgument(TypeSourceInfo *TInfo)
Definition: Expr.h:2278
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:3633
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3115
Expr ** getInits()
Retrieve the set of initializers.
Definition: Expr.h:4218
bool isLValue() const
isLValue - True if this expression is an "l-value" according to the rules of the current language...
Definition: Expr.h:249
CharacterKind getKind() const
Definition: Expr.h:1419
static bool classof(const Stmt *T)
Definition: Expr.h:5529
InitListExpr(EmptyShell Empty)
Build an empty initializer list.
Definition: Expr.h:4212
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:1369
AtomicExpr(EmptyShell Empty)
Build an empty AtomicExpr.
Definition: Expr.h:5463
Expr * getSubExpr()
Definition: Expr.h:1530
bool isRValue() const
Definition: Expr.h:356
static bool isLogicalOp(Opcode Opc)
Definition: Expr.h:3407
const_child_range children() const
Definition: Expr.h:2918
friend TrailingObjects
Definition: Expr.h:2216
Expr ** getExprs()
Definition: Expr.h:4956
ArrayRef< Expr * > exprs()
Definition: Expr.h:4960
child_range children()
Definition: Expr.h:5096
uintptr_t NameOrField
Refers to the field that is being initialized.
Definition: Expr.h:4465
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3801
OpaqueValueExpr(EmptyShell Empty)
Definition: Expr.h:971
unsigned LBracketLoc
The location of the &#39;[&#39; starting the array range designator.
Definition: Expr.h:4480
const Expr * IgnoreParenLValueCasts() const LLVM_READONLY
Definition: Expr.h:788
child_range children()
Definition: Expr.h:4692
path_const_iterator path_end() const
Definition: Expr.h:3073
bool isArgumentType() const
Definition: Expr.h:2258
const SourceLocation * tokloc_iterator
Definition: Expr.h:1731
static bool classof(const Stmt *T)
Definition: Expr.h:897
Expr * getArrayFiller()
If this initializer list initializes an array with more elements than there are initializers in the l...
Definition: Expr.h:4279
void setSubExpr(Expr *E)
Definition: Expr.h:4111
void sawArrayRangeDesignator(bool ARD=true)
Definition: Expr.h:4356
bool isPartOfExplicitCast() const
Definition: Expr.h:3134
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:3150
A placeholder type used to construct an empty shell of a type, that will be filled in later (e...
Definition: Stmt.h:976
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:215
bool hasTemplateKeyword() const
Determines whether the name in this declaration reference was preceded by the template keyword...
Definition: Expr.h:1191
const Expr * getInitializer() const
Definition: Expr.h:2951
Expr * getLHS() const
Definition: Expr.h:3327
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:3504
A POD class for pairing a NamedDecl* with an access specifier.
DeclarationNameLoc - Additional source/type location info for a declaration name. ...
Represents a C11 generic selection.
Definition: Expr.h:5010
VAArgExpr(SourceLocation BLoc, Expr *e, TypeSourceInfo *TInfo, SourceLocation RPLoc, QualType t, bool IsMS)
Definition: Expr.h:4096
const Expr * getBase() const
Definition: Expr.h:5134
EvalStatus is a struct with detailed info about an evaluation in progress.
Definition: Expr.h:541
Expr * getSubExpr()
Definition: Expr.h:891
ArrayInitLoopExpr(QualType T, Expr *CommonInit, Expr *ElementInit)
Definition: Expr.h:4810
AddrLabelExpr - The GNU address of label extension, representing &&label.
Definition: Expr.h:3757
Expr * getResultExpr()
Return the result-bearing expression, or null if there is none.
Definition: Expr.h:5354
Expr(StmtClass SC, EmptyShell)
Construct an empty expression.
Definition: Expr.h:125
OpaqueValueExpr * getOpaqueValue() const
getOpaqueValue - Return the opaque value placeholder.
Definition: Expr.h:3698
const FieldDecl * getTargetUnionField() const
Definition: Expr.h:3075
const FieldDecl * getInitializedFieldInUnion() const
Definition: Expr.h:4300
static bool classof(const Stmt *T)
Definition: Expr.h:4722
Expr * getFalseExpr() const
getFalseExpr - Return the subexpression which will be evaluated if the condnition evaluates to false;...
Definition: Expr.h:3714
BinaryOperator(StmtClass SC, EmptyShell Empty)
Definition: Expr.h:3493
void setLocation(SourceLocation L)
Definition: Expr.h:1494
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:983
static bool classof(const Stmt *T)
Definition: Expr.h:3637
OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field, SourceLocation NameLoc)
Create an offsetof node that refers to a field.
Definition: Expr.h:2052
iterator begin()
Definition: Expr.h:4386
unsigned getNumAssocs() const
Definition: Expr.h:5037
Dataflow Directional Tag Classes.
bool isResultDependent() const
Whether this generic selection is result-dependent.
Definition: Expr.h:5074
bool isValid() const
Return true if this is a valid SourceLocation object.
child_range children()
bool hasSideEffects() const
Definition: Expr.h:565
tokloc_iterator tokloc_begin() const
Definition: Expr.h:1733
void setBuiltinLoc(SourceLocation L)
Definition: Expr.h:4030
const TemplateArgumentLoc * getTemplateArgs() const
Retrieve the template arguments provided as part of this template-id.
Definition: Expr.h:2846
[C99 6.4.2.2] - A predefined identifier such as func.
Definition: Expr.h:1758
DeclarationNameInfo getMemberNameInfo() const
Retrieve the member declaration name info.
Definition: Expr.h:2867
UnaryOperatorKind
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:5526
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:571
std::reverse_iterator< iterator > reverse_iterator
Definition: ASTVector.h:90
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:22
void setRParenLoc(SourceLocation L)
Definition: Expr.h:2636
UnaryOperatorKind Opcode
Definition: Expr.h:1900
ModifiableType getModifiable() const
Definition: Expr.h:348
void setLabel(LabelDecl *L)
Definition: Expr.h:3780
bool isExplicit() const
Definition: Expr.h:4313
static bool isShiftAssignOp(Opcode Opc)
Definition: Expr.h:3429
bool isShiftOp() const
Definition: Expr.h:3366
void setTypeInfoAsWritten(TypeSourceInfo *writtenTy)
Definition: Expr.h:3209
BinaryConditionalOperator(EmptyShell Empty)
Build an empty conditional operator.
Definition: Expr.h:3689
Reads an AST files chain containing the contents of a translation unit.
Definition: ASTReader.h:355
A field designator, e.g., ".x".
Definition: Expr.h:4458
InitExprsTy::reverse_iterator reverse_iterator
Definition: Expr.h:4383
void setIsUnique(bool V)
Definition: Expr.h:1005
ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base, IdentifierInfo &accessor, SourceLocation loc)
Definition: Expr.h:5121
child_range children()
Definition: Expr.h:1880
void setSubExpr(Expr *E)
Definition: Expr.h:1531
QualType getAssocType(unsigned i) const
Definition: Expr.h:5061
void setSubExpr(Expr *E)
Definition: Expr.h:3052
BinaryOperator::Opcode getOpcode(const SymExpr *SE)
bool isOpenCL() const
Definition: Expr.h:5518
void setFileScope(bool FS)
Definition: Expr.h:2956
void setExact(bool E)
Definition: Expr.h:1486
OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK, ExprObjectKind OK=OK_Ordinary, Expr *SourceExpr=nullptr)
Definition: Expr.h:950
child_range children()
Definition: Expr.h:5169
const Decl * getCalleeDecl() const
Definition: Expr.h:2527
const FieldDecl * getSourceBitField() const
Definition: Expr.h:448
bool usesADL() const
Definition: Expr.h:2524
SourceLocation getLBraceLoc() const
Definition: Expr.h:4330
StmtClass getStmtClass() const
Definition: Stmt.h:1029
const char * getCastKindName() const
Definition: Expr.h:3048
const_child_range children() const
Definition: Expr.h:5412
const Expr * getArrayFiller() const
Definition: Expr.h:4282
Expression is a Null pointer constant built from a zero integer expression that is not a simple...
Definition: Expr.h:695
Kinds getKind() const
Definition: Expr.h:347
llvm::iterator_range< const_semantics_iterator > semantics() const
Definition: Expr.h:5383
void setInstantiationDependent(bool ID)
Set whether this expression is instantiation-dependent or not.
Definition: Expr.h:196
const T * const_iterator
Definition: ASTVector.h:87
Kind
The kind of offsetof node we have.
Definition: Expr.h:2016
Expression is a C++11 nullptr.
Definition: Expr.h:701
OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name, SourceLocation NameLoc)
Create an offsetof node that refers to an identifier.
Definition: Expr.h:2057
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2756
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:1370
const Expr * getSubExpr() const
Definition: Expr.h:3051
VAArgExpr(EmptyShell Empty)
Create an empty __builtin_va_arg expression.
Definition: Expr.h:4106
semantics_iterator semantics_begin()
Definition: Expr.h:5367
void setLParenLoc(SourceLocation L)
Definition: Expr.h:3825
ExplicitCastExpr - An explicit cast written in the source code.
Definition: Expr.h:3190
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
static bool isPrefix(Opcode Op)
isPrefix - Return true if this is a prefix operation, like –x.
Definition: Expr.h:1948
void setInitializedFieldInUnion(FieldDecl *FD)
Definition: Expr.h:4303
static bool classof(const Stmt *T)
Definition: Expr.h:4038
bool isPtrMemOp() const
Definition: Expr.h:3357
ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
Construct an empty explicit cast.
Definition: Expr.h:3202
llvm::APInt getValue() const
Definition: Expr.h:1292
unsigned getNumSubExprs() const
Definition: Expr.h:5498
LabelDecl * getLabel() const
Definition: Expr.h:3779
void setRBracketLoc(SourceLocation L)
Definition: Expr.h:2369
path_iterator path_end()
Definition: Expr.h:3071
bool hasPlaceholderType(BuiltinType::Kind K) const
Returns whether this expression has a specific placeholder type.
Definition: Expr.h:477
unsigned getByteLength() const
Definition: Expr.h:1677
static bool classof(const Stmt *T)
Definition: Expr.h:3873
SourceLocation getFieldLoc() const
Definition: Expr.h:4566
Expr * getOrderFail() const
Definition: Expr.h:5481
DeclarationNameInfo getNameInfo() const
Definition: Expr.h:1118
bool HasSideEffects
Whether the evaluated expression has side effects.
Definition: Expr.h:544
void setHadMultipleCandidates(bool V=true)
Sets the flag telling whether this expression refers to a method that was resolved from an overloaded...
Definition: Expr.h:2900
MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc, ValueDecl *memberdecl, const DeclarationNameInfo &NameInfo, QualType ty, ExprValueKind VK, ExprObjectKind OK)
Definition: Expr.h:2723
Location wrapper for a TemplateArgument.
Definition: TemplateBase.h:450
static const TypeInfo & getInfo(unsigned id)
Definition: Types.cpp:34
SourceLocation getBuiltinLoc() const
Definition: Expr.h:3864
CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo, QualType T, ExprValueKind VK, Expr *init, bool fileScope)
Definition: Expr.h:2937
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:1331
static bool classof(const Stmt *S)
Definition: Expr.h:3533
const_child_range children() const
Definition: Expr.h:5170
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2312
bool isUTF32() const
Definition: Expr.h:1689
static bool classof(const Stmt *S)
Definition: Expr.h:3442
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:3540
TypeSourceInfo * getAssocTypeSourceInfo(unsigned i)
Definition: Expr.h:5056
child_range children()
Definition: Expr.h:5573
arg_iterator arg_begin()
Definition: Expr.h:2590
const_child_range children() const
Definition: Expr.h:1252
void setIndexExpr(unsigned Idx, Expr *E)
Definition: Expr.h:2190
SourceLocation getLocation() const
Retrieve the location of this expression.
Definition: Expr.h:975
friend TrailingObjects
Definition: OpenMPClause.h:99
child_range children()
Definition: Expr.h:1543
SourceLocation getEndLoc() const
Definition: Expr.h:4967
Expr * getCond() const
getCond - Return the condition expression; this is defined in terms of the opaque value...
Definition: Expr.h:3702
SourceLocation getRParenLoc() const
Definition: Expr.h:4032
bool isUnique() const
Definition: Expr.h:1011
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:4035
static bool classof(const Stmt *T)
Definition: Expr.h:1499
FieldDecl * getField() const
Definition: Expr.h:4548
const_child_range children() const
Definition: Expr.h:3451
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:5258
ImaginaryLiteral(Expr *val, QualType Ty)
Definition: Expr.h:1520
void setKind(UnaryExprOrTypeTrait K)
Definition: Expr.h:2256
void setRParenLoc(SourceLocation L)
Definition: Expr.h:2293
Opcode getOpcode() const
Definition: Expr.h:1921
static bool isAdditiveOp(Opcode Opc)
Definition: Expr.h:3363
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2673
void setRHS(Expr *E)
Definition: Expr.h:4027
LValueClassification
Definition: Expr.h:254
void setOperatorLoc(SourceLocation L)
Definition: Expr.h:3320
void setValue(const ASTContext &C, const llvm::APFloat &Val)
Definition: Expr.h:1462
SourceLocation getBeginLoc() const
Definition: Expr.h:4966
StringRef getBytes() const
Allow access to clients that need the byte representation, such as ASTWriterStmt::VisitStringLiteral(...
Definition: Expr.h:1657
child_range children()
Definition: Expr.h:4843
SourceLocation getDefaultLoc() const
Definition: Expr.h:5040
const_child_range children() const
Definition: Expr.h:2385
UnaryExprOrTypeTraitExpr(EmptyShell Empty)
Construct an empty sizeof/alignof expression.
Definition: Expr.h:2250
const Expr * IgnoreImpCasts() const LLVM_READONLY
Definition: Expr.h:820
SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
Definition: Expr.h:96
ExprIterator arg_iterator
Definition: Expr.h:2580
void setLParenLoc(SourceLocation L)
Definition: Expr.h:2959
unsigned getNumTemplateArgs() const
Retrieve the number of template arguments provided as part of this template-id.
Definition: Expr.h:2855
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat]...
Definition: APValue.h:38
ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t, ExprValueKind VK, ExprObjectKind OK, SourceLocation rbracketloc)
Definition: Expr.h:2319
const_child_range children() const
Definition: Expr.h:2989
Represents a base class of a C++ class.
Definition: DeclCXX.h:192
CharacterLiteral(unsigned value, CharacterKind kind, QualType type, SourceLocation l)
Definition: Expr.h:1407
A bitfield object is a bitfield on a C or C++ record.
Definition: Specifiers.h:129
iterator begin()
Definition: ASTVector.h:98
bool isGLValue() const
Definition: Expr.h:354
const_child_range children() const
Definition: Expr.h:4696
void setOperatorLoc(SourceLocation L)
Definition: Expr.h:1931
void setLocation(SourceLocation Location)
Definition: Expr.h:1336
static bool isIncrementOp(Opcode Op)
Definition: Expr.h:1955
Expr * getRHS() const
Definition: Expr.h:4026
void setHadMultipleCandidates(bool V=true)
Sets the flag telling whether this expression refers to a function that was resolved from an overload...
Definition: Expr.h:1233
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:1991
reverse_iterator rend()
Definition: Expr.h:4392
Expr * getSrcExpr() const
getSrcExpr - Return the Expr to be converted.
Definition: Expr.h:3938
bool isArithmeticOp() const
Definition: Expr.h:1977
ImplicitValueInitExpr(EmptyShell Empty)
Construct an empty implicit value initialization.
Definition: Expr.h:4900
child_range children()
Definition: Expr.h:3091
BinaryOperatorKind Opcode
Definition: Expr.h:3292
static bool classof(const Stmt *T)
Definition: Expr.h:5210
ArrayRef< TemplateArgumentLoc > template_arguments() const
Definition: Expr.h:1221
static bool classof(const Stmt *T)
Definition: Expr.h:3829
void setBuiltinLoc(SourceLocation L)
Definition: Expr.h:4121
static bool classof(const Stmt *T)
Definition: Expr.h:3725
Expression is a Null pointer constant built from a literal zero.
Definition: Expr.h:698
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:3954
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2682
const_child_range children() const
Definition: Expr.h:1544
void setBase(Expr *E)
Definition: Expr.h:5136
BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue, Expr *cond, Expr *lhs, Expr *rhs, SourceLocation qloc, SourceLocation cloc, QualType t, ExprValueKind VK, ExprObjectKind OK)
Definition: Expr.h:3668
CXXBaseSpecifier ** path_iterator
Definition: Expr.h:3066
Provides definitions for the atomic synchronization scopes.
Represents a C++ struct/union/class.
Definition: DeclCXX.h:300
static bool isCompoundAssignmentOp(Opcode Opc)
Definition: Expr.h:3415
Expr * getTrueExpr() const
Definition: Expr.h:3620
Represents a loop initializing the elements of an array.
Definition: Expr.h:4803
bool isSyntacticForm() const
Definition: Expr.h:4339
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:3977
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:1864
static bool classof(const Stmt *T)
Definition: Expr.h:5164
BinaryConditionalOperator - The GNU extension to the conditional operator which allows the middle ope...
Definition: Expr.h:3655
static bool classof(const Stmt *T)
Definition: Expr.h:2202
SourceLocation getRParenLoc() const
Definition: Expr.h:4965
Expr * getRHS() const
Definition: Expr.h:3628
bool isMultiplicativeOp() const
Definition: Expr.h:3362
bool hasUnusedResultAttr(const ASTContext &Ctx) const
Returns true if this call expression should warn on unused results.
Definition: Expr.h:2631
unsigned getNumConcatenated() const
getNumConcatenated - Get the number of string literal tokens that were concatenated in translation ph...
Definition: Expr.h:1708
bool containsNonAscii() const
Definition: Expr.h:1692
bool isPRValue() const
Definition: Expr.h:355
bool containsUnexpandedParameterPack() const
Whether this expression contains an unexpanded parameter pack (for C++11 variadic templates)...
Definition: Expr.h:214
bool isRValue() const
Definition: Expr.h:250
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:977
bool isPrefix() const
Definition: Expr.h:1952
unsigned kind
All of the diagnostics that can be emitted by the frontend.
Definition: DiagnosticIDs.h:61
This class is used for builtin types like &#39;int&#39;.
Definition: Type.h:2391
bool isXValue() const
Definition: Expr.h:353
void setPreArg(unsigned I, Stmt *PreArg)
Definition: Expr.h:2472
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:5203
Expr * getInit(unsigned Init)
Definition: Expr.h:4238
FieldDecl * Field
Definition: Expr.h:80
void setTokenLocation(SourceLocation L)
Definition: Expr.h:4072
SourceLocation getBuiltinLoc() const
getBuiltinLoc - Return the location of the __builtin_convertvector token.
Definition: Expr.h:3949
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1566
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2396
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:1496
const MemberPointerType * MPT
Definition: Expr.h:74
llvm::ArrayRef< Designator > designators() const
Definition: Expr.h:4626
Designator * getDesignator(unsigned Idx)
Definition: Expr.h:4630
void setInit(Expr *init)
Definition: Expr.h:4657
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:3332
child_range children()
Definition: Expr.h:3787
AbstractConditionalOperator(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK, bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack, SourceLocation qloc, SourceLocation cloc)
Definition: Expr.h:3545
Expr * getLHS() const
Definition: Expr.h:4024
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:954
static bool classof(const Stmt *T)
Definition: Expr.h:4903
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:3718
DeclAccessPair FoundDecl
The DeclAccessPair through which the MemberDecl was found due to name qualifiers. ...
Definition: Expr.h:2677
unsigned getNumComponents() const
Definition: Expr.h:2176
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2079
std::reverse_iterator< const_iterator > const_reverse_iterator
Definition: ASTVector.h:89
void setKind(CharacterKind kind)
Definition: Expr.h:1429
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1041
Expr * getRHS() const
Definition: Expr.h:3329
#define PTR(CLASS)
Definition: AttrVisitor.h:28
bool isBitwiseOp() const
Definition: Expr.h:3369
bool isIncrementDecrementOp() const
Definition: Expr.h:1970
Expr * getSemanticExpr(unsigned index)
Definition: Expr.h:5387
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:4036
SourceLocation getLocation() const
Definition: Expr.h:1418
const Expr *const * getSubExprs() const
Definition: Expr.h:5501
FieldDecl * getInitializedFieldInUnion()
If this initializes a union, specifies which field in the union to initialize.
Definition: Expr.h:4297
bool isConditionDependent() const
Definition: Expr.h:4012
#define true
Definition: stdbool.h:32
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:114
bool isUTF16() const
Definition: Expr.h:1688
A trivial tuple used to represent a source range.
This represents a decl that may have a name.
Definition: Decl.h:249
SourceLocation getTemplateKeywordLoc() const
Retrieve the location of the template keyword preceding the member name, if any.
Definition: Expr.h:2807
NestedNameSpecifier * getQualifier() const
If the name was qualified, retrieves the nested-name-specifier that precedes the name.
Definition: Expr.h:1141
OffsetOfExpr - [C99 7.17] - This represents an expression of the form offsetof(record-type, member-designator).
Definition: Expr.h:2117
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:980
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:4601
static bool classof(const Stmt *T)
Definition: Expr.h:3215
SourceLocation getBuiltinLoc() const
Definition: Expr.h:5523
static bool isDecrementOp(Opcode Op)
Definition: Expr.h:1962
Expr * getCommon() const
getCommon - Return the common expression, written to the left of the condition.
Definition: Expr.h:3695
TypeSourceInfo * getWrittenTypeInfo() const
Definition: Expr.h:4117
const CXXRecordDecl * DerivedClass
Definition: Expr.h:70
path_const_iterator path_begin() const
Definition: Expr.h:3072
child_range children()
Definition: Expr.h:1836
BlockDecl * getBlockDecl()
Definition: Expr.h:5192
bool isInStdNamespace() const
Definition: DeclBase.cpp:357
static bool classof(const Stmt *T)
Definition: Expr.h:1999
SourceLocation getGenericLoc() const
Definition: Expr.h:5039
bool isLValue() const
Definition: Expr.h:352
SubobjectAdjustment(const CastExpr *BasePath, const CXXRecordDecl *DerivedClass)
Definition: Expr.h:84
ImaginaryLiteral(EmptyShell Empty)
Build an empty imaginary literal.
Definition: Expr.h:1526
Decl * getCalleeDecl()
Definition: Expr.h:2526
void setBase(Expr *E)
Definition: Expr.h:2766
static bool isComparisonOp(Opcode Opc)
Definition: Expr.h:3377
SourceLocation getBegin() const
TypeSourceInfo * getTypeSourceInfo() const
getTypeSourceInfo - Return the destination type.
Definition: Expr.h:3941
const_child_range children() const
Definition: Expr.h:4374
SourceLocation ColonLoc
Location of &#39;:&#39;.
Definition: OpenMPClause.h:108
SourceLocation getRParenLoc() const
Return the location of the right parentheses.
Definition: Expr.h:2156
llvm::APInt getArraySize() const
Definition: Expr.h:4827
bool isConditionTrue() const
isConditionTrue - Return whether the condition is true (i.e.
Definition: Expr.h:4005
CastExpr(StmtClass SC, QualType ty, ExprValueKind VK, const CastKind kind, Expr *op, unsigned BasePathSize)
Definition: Expr.h:3009
This class handles loading and caching of source files into memory.
InitListExpr * getSyntacticForm() const
Definition: Expr.h:4342
child_range children()
Definition: Expr.h:4043
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:4893
NullPointerConstantKind
Enumeration used to describe the kind of Null pointer constant returned from isNullPointerConstant()...
Definition: Expr.h:686
Expr * getWeak() const
Definition: Expr.h:5491
child_range children()
Definition: Expr.h:4911
Attr - This represents one attribute.
Definition: Attr.h:44
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:3871
child_range children()
Definition: Expr.h:4730
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:98
const FunctionDecl * getDirectCallee() const
Definition: Expr.h:2535
SourceLocation getOperatorLoc() const
Definition: Expr.h:2872
InitListExpr * getSemanticForm() const
Definition: Expr.h:4336
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:1865
static OMPLinearClause * Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef< Expr *> VL, ArrayRef< Expr *> PL, ArrayRef< Expr *> IL, Expr *Step, Expr *CalcStep, Stmt *PreInit, Expr *PostUpdate)
Creates clause with a list of variables VL and a linear step Step.
static bool classof(const Stmt *T)
Definition: Expr.h:4969
void setCond(Expr *E)
Definition: Expr.h:4023
void setIsConditionTrue(bool isTrue)
Definition: Expr.h:4010
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:1423
bool isCompoundAssignmentOp() const
Definition: Expr.h:3418
SourceLocation getExprLoc() const
Definition: Expr.h:1997
SourceRange getSourceRange() const LLVM_READONLY
Definition: Expr.h:4604
static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result)
EvaluateAsRValue - Try to evaluate this expression, performing an implicit lvalue-to-rvalue cast if i...
llvm::iterator_range< const_arg_iterator > const_arg_range
Definition: Expr.h:2583