clang  8.0.0
SemaStmt.cpp
Go to the documentation of this file.
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for statements.
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/AST/TypeOrdering.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallString.h"
40 #include "llvm/ADT/SmallVector.h"
41 
42 using namespace clang;
43 using namespace sema;
44 
46  if (FE.isInvalid())
47  return StmtError();
48 
49  FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
50  /*DiscardedValue*/ true);
51  if (FE.isInvalid())
52  return StmtError();
53 
54  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
55  // void expression for its side effects. Conversion to void allows any
56  // operand, even incomplete types.
57 
58  // Same thing in for stmt first clause (when expr) and third clause.
59  return StmtResult(FE.getAs<Stmt>());
60 }
61 
62 
64  DiscardCleanupsInEvaluationContext();
65  return StmtError();
66 }
67 
69  bool HasLeadingEmptyMacro) {
70  return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
71 }
72 
74  SourceLocation EndLoc) {
75  DeclGroupRef DG = dg.get();
76 
77  // If we have an invalid decl, just return an error.
78  if (DG.isNull()) return StmtError();
79 
80  return new (Context) DeclStmt(DG, StartLoc, EndLoc);
81 }
82 
84  DeclGroupRef DG = dg.get();
85 
86  // If we don't have a declaration, or we have an invalid declaration,
87  // just return.
88  if (DG.isNull() || !DG.isSingleDecl())
89  return;
90 
91  Decl *decl = DG.getSingleDecl();
92  if (!decl || decl->isInvalidDecl())
93  return;
94 
95  // Only variable declarations are permitted.
96  VarDecl *var = dyn_cast<VarDecl>(decl);
97  if (!var) {
98  Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
99  decl->setInvalidDecl();
100  return;
101  }
102 
103  // foreach variables are never actually initialized in the way that
104  // the parser came up with.
105  var->setInit(nullptr);
106 
107  // In ARC, we don't need to retain the iteration variable of a fast
108  // enumeration loop. Rather than actually trying to catch that
109  // during declaration processing, we remove the consequences here.
110  if (getLangOpts().ObjCAutoRefCount) {
111  QualType type = var->getType();
112 
113  // Only do this if we inferred the lifetime. Inferred lifetime
114  // will show up as a local qualifier because explicit lifetime
115  // should have shown up as an AttributedType instead.
117  // Add 'const' and mark the variable as pseudo-strong.
118  var->setType(type.withConst());
119  var->setARCPseudoStrong(true);
120  }
121  }
122 }
123 
124 /// Diagnose unused comparisons, both builtin and overloaded operators.
125 /// For '==' and '!=', suggest fixits for '=' or '|='.
126 ///
127 /// Adding a cast to void (or other expression wrappers) will prevent the
128 /// warning from firing.
129 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
130  SourceLocation Loc;
131  bool CanAssign;
132  enum { Equality, Inequality, Relational, ThreeWay } Kind;
133 
134  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
135  if (!Op->isComparisonOp())
136  return false;
137 
138  if (Op->getOpcode() == BO_EQ)
139  Kind = Equality;
140  else if (Op->getOpcode() == BO_NE)
141  Kind = Inequality;
142  else if (Op->getOpcode() == BO_Cmp)
143  Kind = ThreeWay;
144  else {
145  assert(Op->isRelationalOp());
146  Kind = Relational;
147  }
148  Loc = Op->getOperatorLoc();
149  CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
150  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
151  switch (Op->getOperator()) {
152  case OO_EqualEqual:
153  Kind = Equality;
154  break;
155  case OO_ExclaimEqual:
156  Kind = Inequality;
157  break;
158  case OO_Less:
159  case OO_Greater:
160  case OO_GreaterEqual:
161  case OO_LessEqual:
162  Kind = Relational;
163  break;
164  case OO_Spaceship:
165  Kind = ThreeWay;
166  break;
167  default:
168  return false;
169  }
170 
171  Loc = Op->getOperatorLoc();
172  CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
173  } else {
174  // Not a typo-prone comparison.
175  return false;
176  }
177 
178  // Suppress warnings when the operator, suspicious as it may be, comes from
179  // a macro expansion.
180  if (S.SourceMgr.isMacroBodyExpansion(Loc))
181  return false;
182 
183  S.Diag(Loc, diag::warn_unused_comparison)
184  << (unsigned)Kind << E->getSourceRange();
185 
186  // If the LHS is a plausible entity to assign to, provide a fixit hint to
187  // correct common typos.
188  if (CanAssign) {
189  if (Kind == Inequality)
190  S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
191  << FixItHint::CreateReplacement(Loc, "|=");
192  else if (Kind == Equality)
193  S.Diag(Loc, diag::note_equality_comparison_to_assign)
194  << FixItHint::CreateReplacement(Loc, "=");
195  }
196 
197  return true;
198 }
199 
201  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
202  return DiagnoseUnusedExprResult(Label->getSubStmt());
203 
204  const Expr *E = dyn_cast_or_null<Expr>(S);
205  if (!E)
206  return;
207 
208  // If we are in an unevaluated expression context, then there can be no unused
209  // results because the results aren't expected to be used in the first place.
210  if (isUnevaluatedContext())
211  return;
212 
213  SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
214  // In most cases, we don't want to warn if the expression is written in a
215  // macro body, or if the macro comes from a system header. If the offending
216  // expression is a call to a function with the warn_unused_result attribute,
217  // we warn no matter the location. Because of the order in which the various
218  // checks need to happen, we factor out the macro-related test here.
219  bool ShouldSuppress =
220  SourceMgr.isMacroBodyExpansion(ExprLoc) ||
221  SourceMgr.isInSystemMacro(ExprLoc);
222 
223  const Expr *WarnExpr;
224  SourceLocation Loc;
225  SourceRange R1, R2;
226  if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
227  return;
228 
229  // If this is a GNU statement expression expanded from a macro, it is probably
230  // unused because it is a function-like macro that can be used as either an
231  // expression or statement. Don't warn, because it is almost certainly a
232  // false positive.
233  if (isa<StmtExpr>(E) && Loc.isMacroID())
234  return;
235 
236  // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
237  // That macro is frequently used to suppress "unused parameter" warnings,
238  // but its implementation makes clang's -Wunused-value fire. Prevent this.
239  if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
240  SourceLocation SpellLoc = Loc;
241  if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
242  return;
243  }
244 
245  // Okay, we have an unused result. Depending on what the base expression is,
246  // we might want to make a more specific diagnostic. Check for one of these
247  // cases now.
248  unsigned DiagID = diag::warn_unused_expr;
249  if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
250  E = Temps->getSubExpr();
251  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
252  E = TempExpr->getSubExpr();
253 
254  if (DiagnoseUnusedComparison(*this, E))
255  return;
256 
257  E = WarnExpr;
258  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
259  if (E->getType()->isVoidType())
260  return;
261 
262  if (const Attr *A = CE->getUnusedResultAttr(Context)) {
263  Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
264  return;
265  }
266 
267  // If the callee has attribute pure, const, or warn_unused_result, warn with
268  // a more specific message to make it clear what is happening. If the call
269  // is written in a macro body, only warn if it has the warn_unused_result
270  // attribute.
271  if (const Decl *FD = CE->getCalleeDecl()) {
272  if (ShouldSuppress)
273  return;
274  if (FD->hasAttr<PureAttr>()) {
275  Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
276  return;
277  }
278  if (FD->hasAttr<ConstAttr>()) {
279  Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
280  return;
281  }
282  }
283  } else if (ShouldSuppress)
284  return;
285 
286  if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
287  if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
288  Diag(Loc, diag::err_arc_unused_init_message) << R1;
289  return;
290  }
291  const ObjCMethodDecl *MD = ME->getMethodDecl();
292  if (MD) {
293  if (const auto *A = MD->getAttr<WarnUnusedResultAttr>()) {
294  Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
295  return;
296  }
297  }
298  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
299  const Expr *Source = POE->getSyntacticForm();
300  if (isa<ObjCSubscriptRefExpr>(Source))
301  DiagID = diag::warn_unused_container_subscript_expr;
302  else
303  DiagID = diag::warn_unused_property_expr;
304  } else if (const CXXFunctionalCastExpr *FC
305  = dyn_cast<CXXFunctionalCastExpr>(E)) {
306  const Expr *E = FC->getSubExpr();
307  if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
308  E = TE->getSubExpr();
309  if (isa<CXXTemporaryObjectExpr>(E))
310  return;
311  if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
312  if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
313  if (!RD->getAttr<WarnUnusedAttr>())
314  return;
315  }
316  // Diagnose "(void*) blah" as a typo for "(void) blah".
317  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
318  TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
319  QualType T = TI->getType();
320 
321  // We really do want to use the non-canonical type here.
322  if (T == Context.VoidPtrTy) {
324 
325  Diag(Loc, diag::warn_unused_voidptr)
327  return;
328  }
329  }
330 
331  if (E->isGLValue() && E->getType().isVolatileQualified()) {
332  Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
333  return;
334  }
335 
336  DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
337 }
338 
339 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
340  PushCompoundScope(IsStmtExpr);
341 }
342 
344  PopCompoundScope();
345 }
346 
348  return getCurFunction()->CompoundScopes.back();
349 }
350 
352  ArrayRef<Stmt *> Elts, bool isStmtExpr) {
353  const unsigned NumElts = Elts.size();
354 
355  // If we're in C89 mode, check that we don't have any decls after stmts. If
356  // so, emit an extension diagnostic.
357  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
358  // Note that __extension__ can be around a decl.
359  unsigned i = 0;
360  // Skip over all declarations.
361  for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
362  /*empty*/;
363 
364  // We found the end of the list or a statement. Scan for another declstmt.
365  for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
366  /*empty*/;
367 
368  if (i != NumElts) {
369  Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
370  Diag(D->getLocation(), diag::ext_mixed_decls_code);
371  }
372  }
373  // Warn about unused expressions in statements.
374  for (unsigned i = 0; i != NumElts; ++i) {
375  // Ignore statements that are last in a statement expression.
376  if (isStmtExpr && i == NumElts - 1)
377  continue;
378 
379  DiagnoseUnusedExprResult(Elts[i]);
380  }
381 
382  // Check for suspicious empty body (null statement) in `for' and `while'
383  // statements. Don't do anything for template instantiations, this just adds
384  // noise.
385  if (NumElts != 0 && !CurrentInstantiationScope &&
386  getCurCompoundScope().HasEmptyLoopBodies) {
387  for (unsigned i = 0; i != NumElts - 1; ++i)
388  DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
389  }
390 
391  return CompoundStmt::Create(Context, Elts, L, R);
392 }
393 
396  if (!Val.get())
397  return Val;
398 
399  if (DiagnoseUnexpandedParameterPack(Val.get()))
400  return ExprError();
401 
402  // If we're not inside a switch, let the 'case' statement handling diagnose
403  // this. Just clean up after the expression as best we can.
404  if (!getCurFunction()->SwitchStack.empty()) {
405  Expr *CondExpr =
406  getCurFunction()->SwitchStack.back().getPointer()->getCond();
407  if (!CondExpr)
408  return ExprError();
409  QualType CondType = CondExpr->getType();
410 
411  auto CheckAndFinish = [&](Expr *E) {
412  if (CondType->isDependentType() || E->isTypeDependent())
413  return ExprResult(E);
414 
415  if (getLangOpts().CPlusPlus11) {
416  // C++11 [stmt.switch]p2: the constant-expression shall be a converted
417  // constant expression of the promoted type of the switch condition.
418  llvm::APSInt TempVal;
419  return CheckConvertedConstantExpression(E, CondType, TempVal,
420  CCEK_CaseValue);
421  }
422 
423  ExprResult ER = E;
424  if (!E->isValueDependent())
425  ER = VerifyIntegerConstantExpression(E);
426  if (!ER.isInvalid())
427  ER = DefaultLvalueConversion(ER.get());
428  if (!ER.isInvalid())
429  ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
430  return ER;
431  };
432 
433  ExprResult Converted = CorrectDelayedTyposInExpr(Val, CheckAndFinish);
434  if (Converted.get() == Val.get())
435  Converted = CheckAndFinish(Val.get());
436  if (Converted.isInvalid())
437  return ExprError();
438  Val = Converted;
439  }
440 
441  return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
442  getLangOpts().CPlusPlus11);
443 }
444 
447  SourceLocation DotDotDotLoc, ExprResult RHSVal,
449  assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
450  assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
451  : RHSVal.isInvalid() || RHSVal.get()) &&
452  "missing RHS value");
453 
454  if (getCurFunction()->SwitchStack.empty()) {
455  Diag(CaseLoc, diag::err_case_not_in_switch);
456  return StmtError();
457  }
458 
459  if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
460  getCurFunction()->SwitchStack.back().setInt(true);
461  return StmtError();
462  }
463 
464  auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
465  CaseLoc, DotDotDotLoc, ColonLoc);
466  getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
467  return CS;
468 }
469 
470 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
471 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
472  DiagnoseUnusedExprResult(SubStmt);
473  cast<CaseStmt>(S)->setSubStmt(SubStmt);
474 }
475 
478  Stmt *SubStmt, Scope *CurScope) {
479  DiagnoseUnusedExprResult(SubStmt);
480 
481  if (getCurFunction()->SwitchStack.empty()) {
482  Diag(DefaultLoc, diag::err_default_not_in_switch);
483  return SubStmt;
484  }
485 
486  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
487  getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
488  return DS;
489 }
490 
493  SourceLocation ColonLoc, Stmt *SubStmt) {
494  // If the label was multiply defined, reject it now.
495  if (TheDecl->getStmt()) {
496  Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
497  Diag(TheDecl->getLocation(), diag::note_previous_definition);
498  return SubStmt;
499  }
500 
501  // Otherwise, things are good. Fill in the declaration and return it.
502  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
503  TheDecl->setStmt(LS);
504  if (!TheDecl->isGnuLocal()) {
505  TheDecl->setLocStart(IdentLoc);
506  if (!TheDecl->isMSAsmLabel()) {
507  // Don't update the location of MS ASM labels. These will result in
508  // a diagnostic, and changing the location here will mess that up.
509  TheDecl->setLocation(IdentLoc);
510  }
511  }
512  return LS;
513 }
514 
516  ArrayRef<const Attr*> Attrs,
517  Stmt *SubStmt) {
518  // Fill in the declaration and return it.
519  AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
520  return LS;
521 }
522 
523 namespace {
524 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
525  typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
526  Sema &SemaRef;
527 public:
528  CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
529  void VisitBinaryOperator(BinaryOperator *E) {
530  if (E->getOpcode() == BO_Comma)
531  SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
533  }
534 };
535 }
536 
538 Sema::ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt,
539  ConditionResult Cond,
540  Stmt *thenStmt, SourceLocation ElseLoc,
541  Stmt *elseStmt) {
542  if (Cond.isInvalid())
543  Cond = ConditionResult(
544  *this, nullptr,
545  MakeFullExpr(new (Context) OpaqueValueExpr(SourceLocation(),
546  Context.BoolTy, VK_RValue),
547  IfLoc),
548  false);
549 
550  Expr *CondExpr = Cond.get().second;
551  // Only call the CommaVisitor when not C89 due to differences in scope flags.
552  if ((getLangOpts().C99 || getLangOpts().CPlusPlus) &&
553  !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
554  CommaVisitor(*this).Visit(CondExpr);
555 
556  if (!elseStmt)
557  DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), thenStmt,
558  diag::warn_empty_if_body);
559 
560  return BuildIfStmt(IfLoc, IsConstexpr, InitStmt, Cond, thenStmt, ElseLoc,
561  elseStmt);
562 }
563 
565  Stmt *InitStmt, ConditionResult Cond,
566  Stmt *thenStmt, SourceLocation ElseLoc,
567  Stmt *elseStmt) {
568  if (Cond.isInvalid())
569  return StmtError();
570 
571  if (IsConstexpr || isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
572  setFunctionHasBranchProtectedScope();
573 
574  DiagnoseUnusedExprResult(thenStmt);
575  DiagnoseUnusedExprResult(elseStmt);
576 
577  return IfStmt::Create(Context, IfLoc, IsConstexpr, InitStmt, Cond.get().first,
578  Cond.get().second, thenStmt, ElseLoc, elseStmt);
579 }
580 
581 namespace {
582  struct CaseCompareFunctor {
583  bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
584  const llvm::APSInt &RHS) {
585  return LHS.first < RHS;
586  }
587  bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
588  const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
589  return LHS.first < RHS.first;
590  }
591  bool operator()(const llvm::APSInt &LHS,
592  const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
593  return LHS < RHS.first;
594  }
595  };
596 }
597 
598 /// CmpCaseVals - Comparison predicate for sorting case values.
599 ///
600 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
601  const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
602  if (lhs.first < rhs.first)
603  return true;
604 
605  if (lhs.first == rhs.first &&
606  lhs.second->getCaseLoc().getRawEncoding()
607  < rhs.second->getCaseLoc().getRawEncoding())
608  return true;
609  return false;
610 }
611 
612 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
613 ///
614 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
615  const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
616 {
617  return lhs.first < rhs.first;
618 }
619 
620 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
621 ///
622 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
623  const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
624 {
625  return lhs.first == rhs.first;
626 }
627 
628 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
629 /// potentially integral-promoted expression @p expr.
631  if (const auto *FE = dyn_cast<FullExpr>(E))
632  E = FE->getSubExpr();
633  while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
634  if (ImpCast->getCastKind() != CK_IntegralCast) break;
635  E = ImpCast->getSubExpr();
636  }
637  return E->getType();
638 }
639 
641  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
642  Expr *Cond;
643 
644  public:
645  SwitchConvertDiagnoser(Expr *Cond)
646  : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
647  Cond(Cond) {}
648 
649  SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
650  QualType T) override {
651  return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
652  }
653 
654  SemaDiagnosticBuilder diagnoseIncomplete(
655  Sema &S, SourceLocation Loc, QualType T) override {
656  return S.Diag(Loc, diag::err_switch_incomplete_class_type)
657  << T << Cond->getSourceRange();
658  }
659 
660  SemaDiagnosticBuilder diagnoseExplicitConv(
661  Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
662  return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
663  }
664 
665  SemaDiagnosticBuilder noteExplicitConv(
666  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
667  return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
668  << ConvTy->isEnumeralType() << ConvTy;
669  }
670 
671  SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
672  QualType T) override {
673  return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
674  }
675 
676  SemaDiagnosticBuilder noteAmbiguous(
677  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
678  return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
679  << ConvTy->isEnumeralType() << ConvTy;
680  }
681 
682  SemaDiagnosticBuilder diagnoseConversion(
683  Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
684  llvm_unreachable("conversion functions are permitted");
685  }
686  } SwitchDiagnoser(Cond);
687 
688  ExprResult CondResult =
689  PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
690  if (CondResult.isInvalid())
691  return ExprError();
692 
693  // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
694  // failed and produced a diagnostic.
695  Cond = CondResult.get();
696  if (!Cond->isTypeDependent() &&
698  return ExprError();
699 
700  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
701  return UsualUnaryConversions(Cond);
702 }
703 
705  Stmt *InitStmt, ConditionResult Cond) {
706  Expr *CondExpr = Cond.get().second;
707  assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
708 
709  if (CondExpr && !CondExpr->isTypeDependent()) {
710  // We have already converted the expression to an integral or enumeration
711  // type, when we parsed the switch condition. If we don't have an
712  // appropriate type now, enter the switch scope but remember that it's
713  // invalid.
714  assert(CondExpr->getType()->isIntegralOrEnumerationType() &&
715  "invalid condition type");
716  if (CondExpr->isKnownToHaveBooleanValue()) {
717  // switch(bool_expr) {...} is often a programmer error, e.g.
718  // switch(n && mask) { ... } // Doh - should be "n & mask".
719  // One can always use an if statement instead of switch(bool_expr).
720  Diag(SwitchLoc, diag::warn_bool_switch_condition)
721  << CondExpr->getSourceRange();
722  }
723  }
724 
725  setFunctionHasBranchIntoScope();
726 
727  auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr);
728  getCurFunction()->SwitchStack.push_back(
729  FunctionScopeInfo::SwitchInfo(SS, false));
730  return SS;
731 }
732 
733 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
734  Val = Val.extOrTrunc(BitWidth);
735  Val.setIsSigned(IsSigned);
736 }
737 
738 /// Check the specified case value is in range for the given unpromoted switch
739 /// type.
740 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
741  unsigned UnpromotedWidth, bool UnpromotedSign) {
742  // In C++11 onwards, this is checked by the language rules.
743  if (S.getLangOpts().CPlusPlus11)
744  return;
745 
746  // If the case value was signed and negative and the switch expression is
747  // unsigned, don't bother to warn: this is implementation-defined behavior.
748  // FIXME: Introduce a second, default-ignored warning for this case?
749  if (UnpromotedWidth < Val.getBitWidth()) {
750  llvm::APSInt ConvVal(Val);
751  AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
752  AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
753  // FIXME: Use different diagnostics for overflow in conversion to promoted
754  // type versus "switch expression cannot have this value". Use proper
755  // IntRange checking rather than just looking at the unpromoted type here.
756  if (ConvVal != Val)
757  S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
758  << ConvVal.toString(10);
759  }
760 }
761 
763 
764 /// Returns true if we should emit a diagnostic about this case expression not
765 /// being a part of the enum used in the switch controlling expression.
767  const EnumDecl *ED,
768  const Expr *CaseExpr,
769  EnumValsTy::iterator &EI,
770  EnumValsTy::iterator &EIEnd,
771  const llvm::APSInt &Val) {
772  if (!ED->isClosed())
773  return false;
774 
775  if (const DeclRefExpr *DRE =
776  dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
777  if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
778  QualType VarType = VD->getType();
780  if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
781  S.Context.hasSameUnqualifiedType(EnumType, VarType))
782  return false;
783  }
784  }
785 
786  if (ED->hasAttr<FlagEnumAttr>())
787  return !S.IsValueInFlagEnum(ED, Val, false);
788 
789  while (EI != EIEnd && EI->first < Val)
790  EI++;
791 
792  if (EI != EIEnd && EI->first == Val)
793  return false;
794 
795  return true;
796 }
797 
798 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
799  const Expr *Case) {
800  QualType CondType = Cond->getType();
801  QualType CaseType = Case->getType();
802 
803  const EnumType *CondEnumType = CondType->getAs<EnumType>();
804  const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
805  if (!CondEnumType || !CaseEnumType)
806  return;
807 
808  // Ignore anonymous enums.
809  if (!CondEnumType->getDecl()->getIdentifier() &&
810  !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
811  return;
812  if (!CaseEnumType->getDecl()->getIdentifier() &&
813  !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
814  return;
815 
816  if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
817  return;
818 
819  S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
820  << CondType << CaseType << Cond->getSourceRange()
821  << Case->getSourceRange();
822 }
823 
826  Stmt *BodyStmt) {
827  SwitchStmt *SS = cast<SwitchStmt>(Switch);
828  bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
829  assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
830  "switch stack missing push/pop!");
831 
832  getCurFunction()->SwitchStack.pop_back();
833 
834  if (!BodyStmt) return StmtError();
835  SS->setBody(BodyStmt, SwitchLoc);
836 
837  Expr *CondExpr = SS->getCond();
838  if (!CondExpr) return StmtError();
839 
840  QualType CondType = CondExpr->getType();
841 
842  // C++ 6.4.2.p2:
843  // Integral promotions are performed (on the switch condition).
844  //
845  // A case value unrepresentable by the original switch condition
846  // type (before the promotion) doesn't make sense, even when it can
847  // be represented by the promoted type. Therefore we need to find
848  // the pre-promotion type of the switch condition.
849  const Expr *CondExprBeforePromotion = CondExpr;
850  QualType CondTypeBeforePromotion =
851  GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
852 
853  // Get the bitwidth of the switched-on value after promotions. We must
854  // convert the integer case values to this width before comparison.
855  bool HasDependentValue
856  = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
857  unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
858  bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
859 
860  // Get the width and signedness that the condition might actually have, for
861  // warning purposes.
862  // FIXME: Grab an IntRange for the condition rather than using the unpromoted
863  // type.
864  unsigned CondWidthBeforePromotion
865  = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
866  bool CondIsSignedBeforePromotion
867  = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
868 
869  // Accumulate all of the case values in a vector so that we can sort them
870  // and detect duplicates. This vector contains the APInt for the case after
871  // it has been converted to the condition type.
872  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
873  CaseValsTy CaseVals;
874 
875  // Keep track of any GNU case ranges we see. The APSInt is the low value.
876  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
877  CaseRangesTy CaseRanges;
878 
879  DefaultStmt *TheDefaultStmt = nullptr;
880 
881  bool CaseListIsErroneous = false;
882 
883  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
884  SC = SC->getNextSwitchCase()) {
885 
886  if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
887  if (TheDefaultStmt) {
888  Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
889  Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
890 
891  // FIXME: Remove the default statement from the switch block so that
892  // we'll return a valid AST. This requires recursing down the AST and
893  // finding it, not something we are set up to do right now. For now,
894  // just lop the entire switch stmt out of the AST.
895  CaseListIsErroneous = true;
896  }
897  TheDefaultStmt = DS;
898 
899  } else {
900  CaseStmt *CS = cast<CaseStmt>(SC);
901 
902  Expr *Lo = CS->getLHS();
903 
904  if (Lo->isValueDependent()) {
905  HasDependentValue = true;
906  break;
907  }
908 
909  // We already verified that the expression has a constant value;
910  // get that value (prior to conversions).
911  const Expr *LoBeforePromotion = Lo;
912  GetTypeBeforeIntegralPromotion(LoBeforePromotion);
913  llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
914 
915  // Check the unconverted value is within the range of possible values of
916  // the switch expression.
917  checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
918  CondIsSignedBeforePromotion);
919 
920  // FIXME: This duplicates the check performed for warn_not_in_enum below.
921  checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
922  LoBeforePromotion);
923 
924  // Convert the value to the same width/sign as the condition.
925  AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
926 
927  // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
928  if (CS->getRHS()) {
929  if (CS->getRHS()->isValueDependent()) {
930  HasDependentValue = true;
931  break;
932  }
933  CaseRanges.push_back(std::make_pair(LoVal, CS));
934  } else
935  CaseVals.push_back(std::make_pair(LoVal, CS));
936  }
937  }
938 
939  if (!HasDependentValue) {
940  // If we don't have a default statement, check whether the
941  // condition is constant.
942  llvm::APSInt ConstantCondValue;
943  bool HasConstantCond = false;
944  if (!HasDependentValue && !TheDefaultStmt) {
945  Expr::EvalResult Result;
946  HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
948  if (Result.Val.isInt())
949  ConstantCondValue = Result.Val.getInt();
950  assert(!HasConstantCond ||
951  (ConstantCondValue.getBitWidth() == CondWidth &&
952  ConstantCondValue.isSigned() == CondIsSigned));
953  }
954  bool ShouldCheckConstantCond = HasConstantCond;
955 
956  // Sort all the scalar case values so we can easily detect duplicates.
957  std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
958 
959  if (!CaseVals.empty()) {
960  for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
961  if (ShouldCheckConstantCond &&
962  CaseVals[i].first == ConstantCondValue)
963  ShouldCheckConstantCond = false;
964 
965  if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
966  // If we have a duplicate, report it.
967  // First, determine if either case value has a name
968  StringRef PrevString, CurrString;
969  Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
970  Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
971  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
972  PrevString = DeclRef->getDecl()->getName();
973  }
974  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
975  CurrString = DeclRef->getDecl()->getName();
976  }
977  SmallString<16> CaseValStr;
978  CaseVals[i-1].first.toString(CaseValStr);
979 
980  if (PrevString == CurrString)
981  Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
982  diag::err_duplicate_case)
983  << (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
984  else
985  Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
986  diag::err_duplicate_case_differing_expr)
987  << (PrevString.empty() ? StringRef(CaseValStr) : PrevString)
988  << (CurrString.empty() ? StringRef(CaseValStr) : CurrString)
989  << CaseValStr;
990 
991  Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
992  diag::note_duplicate_case_prev);
993  // FIXME: We really want to remove the bogus case stmt from the
994  // substmt, but we have no way to do this right now.
995  CaseListIsErroneous = true;
996  }
997  }
998  }
999 
1000  // Detect duplicate case ranges, which usually don't exist at all in
1001  // the first place.
1002  if (!CaseRanges.empty()) {
1003  // Sort all the case ranges by their low value so we can easily detect
1004  // overlaps between ranges.
1005  std::stable_sort(CaseRanges.begin(), CaseRanges.end());
1006 
1007  // Scan the ranges, computing the high values and removing empty ranges.
1008  std::vector<llvm::APSInt> HiVals;
1009  for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1010  llvm::APSInt &LoVal = CaseRanges[i].first;
1011  CaseStmt *CR = CaseRanges[i].second;
1012  Expr *Hi = CR->getRHS();
1013 
1014  const Expr *HiBeforePromotion = Hi;
1015  GetTypeBeforeIntegralPromotion(HiBeforePromotion);
1016  llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
1017 
1018  // Check the unconverted value is within the range of possible values of
1019  // the switch expression.
1020  checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
1021  CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1022 
1023  // Convert the value to the same width/sign as the condition.
1024  AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1025 
1026  // If the low value is bigger than the high value, the case is empty.
1027  if (LoVal > HiVal) {
1028  Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
1029  << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
1030  CaseRanges.erase(CaseRanges.begin()+i);
1031  --i;
1032  --e;
1033  continue;
1034  }
1035 
1036  if (ShouldCheckConstantCond &&
1037  LoVal <= ConstantCondValue &&
1038  ConstantCondValue <= HiVal)
1039  ShouldCheckConstantCond = false;
1040 
1041  HiVals.push_back(HiVal);
1042  }
1043 
1044  // Rescan the ranges, looking for overlap with singleton values and other
1045  // ranges. Since the range list is sorted, we only need to compare case
1046  // ranges with their neighbors.
1047  for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1048  llvm::APSInt &CRLo = CaseRanges[i].first;
1049  llvm::APSInt &CRHi = HiVals[i];
1050  CaseStmt *CR = CaseRanges[i].second;
1051 
1052  // Check to see whether the case range overlaps with any
1053  // singleton cases.
1054  CaseStmt *OverlapStmt = nullptr;
1055  llvm::APSInt OverlapVal(32);
1056 
1057  // Find the smallest value >= the lower bound. If I is in the
1058  // case range, then we have overlap.
1059  CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
1060  CaseVals.end(), CRLo,
1061  CaseCompareFunctor());
1062  if (I != CaseVals.end() && I->first < CRHi) {
1063  OverlapVal = I->first; // Found overlap with scalar.
1064  OverlapStmt = I->second;
1065  }
1066 
1067  // Find the smallest value bigger than the upper bound.
1068  I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1069  if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1070  OverlapVal = (I-1)->first; // Found overlap with scalar.
1071  OverlapStmt = (I-1)->second;
1072  }
1073 
1074  // Check to see if this case stmt overlaps with the subsequent
1075  // case range.
1076  if (i && CRLo <= HiVals[i-1]) {
1077  OverlapVal = HiVals[i-1]; // Found overlap with range.
1078  OverlapStmt = CaseRanges[i-1].second;
1079  }
1080 
1081  if (OverlapStmt) {
1082  // If we have a duplicate, report it.
1083  Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
1084  << OverlapVal.toString(10);
1085  Diag(OverlapStmt->getLHS()->getBeginLoc(),
1086  diag::note_duplicate_case_prev);
1087  // FIXME: We really want to remove the bogus case stmt from the
1088  // substmt, but we have no way to do this right now.
1089  CaseListIsErroneous = true;
1090  }
1091  }
1092  }
1093 
1094  // Complain if we have a constant condition and we didn't find a match.
1095  if (!CaseListIsErroneous && !CaseListIsIncomplete &&
1096  ShouldCheckConstantCond) {
1097  // TODO: it would be nice if we printed enums as enums, chars as
1098  // chars, etc.
1099  Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1100  << ConstantCondValue.toString(10)
1101  << CondExpr->getSourceRange();
1102  }
1103 
1104  // Check to see if switch is over an Enum and handles all of its
1105  // values. We only issue a warning if there is not 'default:', but
1106  // we still do the analysis to preserve this information in the AST
1107  // (which can be used by flow-based analyes).
1108  //
1109  const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1110 
1111  // If switch has default case, then ignore it.
1112  if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
1113  ET && ET->getDecl()->isCompleteDefinition()) {
1114  const EnumDecl *ED = ET->getDecl();
1115  EnumValsTy EnumVals;
1116 
1117  // Gather all enum values, set their type and sort them,
1118  // allowing easier comparison with CaseVals.
1119  for (auto *EDI : ED->enumerators()) {
1120  llvm::APSInt Val = EDI->getInitVal();
1121  AdjustAPSInt(Val, CondWidth, CondIsSigned);
1122  EnumVals.push_back(std::make_pair(Val, EDI));
1123  }
1124  std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1125  auto EI = EnumVals.begin(), EIEnd =
1126  std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1127 
1128  // See which case values aren't in enum.
1129  for (CaseValsTy::const_iterator CI = CaseVals.begin();
1130  CI != CaseVals.end(); CI++) {
1131  Expr *CaseExpr = CI->second->getLHS();
1132  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1133  CI->first))
1134  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1135  << CondTypeBeforePromotion;
1136  }
1137 
1138  // See which of case ranges aren't in enum
1139  EI = EnumVals.begin();
1140  for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1141  RI != CaseRanges.end(); RI++) {
1142  Expr *CaseExpr = RI->second->getLHS();
1143  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1144  RI->first))
1145  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1146  << CondTypeBeforePromotion;
1147 
1148  llvm::APSInt Hi =
1149  RI->second->getRHS()->EvaluateKnownConstInt(Context);
1150  AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1151 
1152  CaseExpr = RI->second->getRHS();
1153  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1154  Hi))
1155  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1156  << CondTypeBeforePromotion;
1157  }
1158 
1159  // Check which enum vals aren't in switch
1160  auto CI = CaseVals.begin();
1161  auto RI = CaseRanges.begin();
1162  bool hasCasesNotInSwitch = false;
1163 
1164  SmallVector<DeclarationName,8> UnhandledNames;
1165 
1166  for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
1167  // Don't warn about omitted unavailable EnumConstantDecls.
1168  switch (EI->second->getAvailability()) {
1169  case AR_Deprecated:
1170  // Omitting a deprecated constant is ok; it should never materialize.
1171  case AR_Unavailable:
1172  continue;
1173 
1174  case AR_NotYetIntroduced:
1175  // Partially available enum constants should be present. Note that we
1176  // suppress -Wunguarded-availability diagnostics for such uses.
1177  case AR_Available:
1178  break;
1179  }
1180 
1181  // Drop unneeded case values
1182  while (CI != CaseVals.end() && CI->first < EI->first)
1183  CI++;
1184 
1185  if (CI != CaseVals.end() && CI->first == EI->first)
1186  continue;
1187 
1188  // Drop unneeded case ranges
1189  for (; RI != CaseRanges.end(); RI++) {
1190  llvm::APSInt Hi =
1191  RI->second->getRHS()->EvaluateKnownConstInt(Context);
1192  AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1193  if (EI->first <= Hi)
1194  break;
1195  }
1196 
1197  if (RI == CaseRanges.end() || EI->first < RI->first) {
1198  hasCasesNotInSwitch = true;
1199  UnhandledNames.push_back(EI->second->getDeclName());
1200  }
1201  }
1202 
1203  if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1204  Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1205 
1206  // Produce a nice diagnostic if multiple values aren't handled.
1207  if (!UnhandledNames.empty()) {
1208  DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
1209  TheDefaultStmt ? diag::warn_def_missing_case
1210  : diag::warn_missing_case)
1211  << (int)UnhandledNames.size();
1212 
1213  for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1214  I != E; ++I)
1215  DB << UnhandledNames[I];
1216  }
1217 
1218  if (!hasCasesNotInSwitch)
1219  SS->setAllEnumCasesCovered();
1220  }
1221  }
1222 
1223  if (BodyStmt)
1224  DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
1225  diag::warn_empty_switch_body);
1226 
1227  // FIXME: If the case list was broken is some way, we don't have a good system
1228  // to patch it up. Instead, just return the whole substmt as broken.
1229  if (CaseListIsErroneous)
1230  return StmtError();
1231 
1232  return SS;
1233 }
1234 
1235 void
1237  Expr *SrcExpr) {
1238  if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1239  return;
1240 
1241  if (const EnumType *ET = DstType->getAs<EnumType>())
1242  if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1243  SrcType->isIntegerType()) {
1244  if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1245  SrcExpr->isIntegerConstantExpr(Context)) {
1246  // Get the bitwidth of the enum value before promotions.
1247  unsigned DstWidth = Context.getIntWidth(DstType);
1248  bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1249 
1250  llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1251  AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1252  const EnumDecl *ED = ET->getDecl();
1253 
1254  if (!ED->isClosed())
1255  return;
1256 
1257  if (ED->hasAttr<FlagEnumAttr>()) {
1258  if (!IsValueInFlagEnum(ED, RhsVal, true))
1259  Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1260  << DstType.getUnqualifiedType();
1261  } else {
1263  EnumValsTy;
1264  EnumValsTy EnumVals;
1265 
1266  // Gather all enum values, set their type and sort them,
1267  // allowing easier comparison with rhs constant.
1268  for (auto *EDI : ED->enumerators()) {
1269  llvm::APSInt Val = EDI->getInitVal();
1270  AdjustAPSInt(Val, DstWidth, DstIsSigned);
1271  EnumVals.push_back(std::make_pair(Val, EDI));
1272  }
1273  if (EnumVals.empty())
1274  return;
1275  std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1276  EnumValsTy::iterator EIend =
1277  std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1278 
1279  // See which values aren't in the enum.
1280  EnumValsTy::const_iterator EI = EnumVals.begin();
1281  while (EI != EIend && EI->first < RhsVal)
1282  EI++;
1283  if (EI == EIend || EI->first != RhsVal) {
1284  Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1285  << DstType.getUnqualifiedType();
1286  }
1287  }
1288  }
1289  }
1290 }
1291 
1293  Stmt *Body) {
1294  if (Cond.isInvalid())
1295  return StmtError();
1296 
1297  auto CondVal = Cond.get();
1298  CheckBreakContinueBinding(CondVal.second);
1299 
1300  if (CondVal.second &&
1301  !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1302  CommaVisitor(*this).Visit(CondVal.second);
1303 
1304  DiagnoseUnusedExprResult(Body);
1305 
1306  if (isa<NullStmt>(Body))
1307  getCurCompoundScope().setHasEmptyLoopBodies();
1308 
1309  return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
1310  WhileLoc);
1311 }
1312 
1313 StmtResult
1315  SourceLocation WhileLoc, SourceLocation CondLParen,
1316  Expr *Cond, SourceLocation CondRParen) {
1317  assert(Cond && "ActOnDoStmt(): missing expression");
1318 
1319  CheckBreakContinueBinding(Cond);
1320  ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1321  if (CondResult.isInvalid())
1322  return StmtError();
1323  Cond = CondResult.get();
1324 
1325  CondResult = ActOnFinishFullExpr(Cond, DoLoc);
1326  if (CondResult.isInvalid())
1327  return StmtError();
1328  Cond = CondResult.get();
1329 
1330  // Only call the CommaVisitor for C89 due to differences in scope flags.
1331  if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
1332  !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
1333  CommaVisitor(*this).Visit(Cond);
1334 
1335  DiagnoseUnusedExprResult(Body);
1336 
1337  return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1338 }
1339 
1340 namespace {
1341  // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1342  using DeclSetVector =
1343  llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>,
1344  llvm::SmallPtrSet<VarDecl *, 8>>;
1345 
1346  // This visitor will traverse a conditional statement and store all
1347  // the evaluated decls into a vector. Simple is set to true if none
1348  // of the excluded constructs are used.
1349  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1350  DeclSetVector &Decls;
1352  bool Simple;
1353  public:
1354  typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1355 
1356  DeclExtractor(Sema &S, DeclSetVector &Decls,
1357  SmallVectorImpl<SourceRange> &Ranges) :
1358  Inherited(S.Context),
1359  Decls(Decls),
1360  Ranges(Ranges),
1361  Simple(true) {}
1362 
1363  bool isSimple() { return Simple; }
1364 
1365  // Replaces the method in EvaluatedExprVisitor.
1366  void VisitMemberExpr(MemberExpr* E) {
1367  Simple = false;
1368  }
1369 
1370  // Any Stmt not whitelisted will cause the condition to be marked complex.
1371  void VisitStmt(Stmt *S) {
1372  Simple = false;
1373  }
1374 
1375  void VisitBinaryOperator(BinaryOperator *E) {
1376  Visit(E->getLHS());
1377  Visit(E->getRHS());
1378  }
1379 
1380  void VisitCastExpr(CastExpr *E) {
1381  Visit(E->getSubExpr());
1382  }
1383 
1384  void VisitUnaryOperator(UnaryOperator *E) {
1385  // Skip checking conditionals with derefernces.
1386  if (E->getOpcode() == UO_Deref)
1387  Simple = false;
1388  else
1389  Visit(E->getSubExpr());
1390  }
1391 
1392  void VisitConditionalOperator(ConditionalOperator *E) {
1393  Visit(E->getCond());
1394  Visit(E->getTrueExpr());
1395  Visit(E->getFalseExpr());
1396  }
1397 
1398  void VisitParenExpr(ParenExpr *E) {
1399  Visit(E->getSubExpr());
1400  }
1401 
1402  void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1403  Visit(E->getOpaqueValue()->getSourceExpr());
1404  Visit(E->getFalseExpr());
1405  }
1406 
1407  void VisitIntegerLiteral(IntegerLiteral *E) { }
1408  void VisitFloatingLiteral(FloatingLiteral *E) { }
1409  void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1410  void VisitCharacterLiteral(CharacterLiteral *E) { }
1411  void VisitGNUNullExpr(GNUNullExpr *E) { }
1412  void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1413 
1414  void VisitDeclRefExpr(DeclRefExpr *E) {
1415  VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1416  if (!VD) {
1417  // Don't allow unhandled Decl types.
1418  Simple = false;
1419  return;
1420  }
1421 
1422  Ranges.push_back(E->getSourceRange());
1423 
1424  Decls.insert(VD);
1425  }
1426 
1427  }; // end class DeclExtractor
1428 
1429  // DeclMatcher checks to see if the decls are used in a non-evaluated
1430  // context.
1431  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1432  DeclSetVector &Decls;
1433  bool FoundDecl;
1434 
1435  public:
1436  typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1437 
1438  DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1439  Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1440  if (!Statement) return;
1441 
1442  Visit(Statement);
1443  }
1444 
1445  void VisitReturnStmt(ReturnStmt *S) {
1446  FoundDecl = true;
1447  }
1448 
1449  void VisitBreakStmt(BreakStmt *S) {
1450  FoundDecl = true;
1451  }
1452 
1453  void VisitGotoStmt(GotoStmt *S) {
1454  FoundDecl = true;
1455  }
1456 
1457  void VisitCastExpr(CastExpr *E) {
1458  if (E->getCastKind() == CK_LValueToRValue)
1459  CheckLValueToRValueCast(E->getSubExpr());
1460  else
1461  Visit(E->getSubExpr());
1462  }
1463 
1464  void CheckLValueToRValueCast(Expr *E) {
1465  E = E->IgnoreParenImpCasts();
1466 
1467  if (isa<DeclRefExpr>(E)) {
1468  return;
1469  }
1470 
1471  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1472  Visit(CO->getCond());
1473  CheckLValueToRValueCast(CO->getTrueExpr());
1474  CheckLValueToRValueCast(CO->getFalseExpr());
1475  return;
1476  }
1477 
1478  if (BinaryConditionalOperator *BCO =
1479  dyn_cast<BinaryConditionalOperator>(E)) {
1480  CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1481  CheckLValueToRValueCast(BCO->getFalseExpr());
1482  return;
1483  }
1484 
1485  Visit(E);
1486  }
1487 
1488  void VisitDeclRefExpr(DeclRefExpr *E) {
1489  if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1490  if (Decls.count(VD))
1491  FoundDecl = true;
1492  }
1493 
1494  void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
1495  // Only need to visit the semantics for POE.
1496  // SyntaticForm doesn't really use the Decal.
1497  for (auto *S : POE->semantics()) {
1498  if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
1499  // Look past the OVE into the expression it binds.
1500  Visit(OVE->getSourceExpr());
1501  else
1502  Visit(S);
1503  }
1504  }
1505 
1506  bool FoundDeclInUse() { return FoundDecl; }
1507 
1508  }; // end class DeclMatcher
1509 
1510  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1511  Expr *Third, Stmt *Body) {
1512  // Condition is empty
1513  if (!Second) return;
1514 
1515  if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1516  Second->getBeginLoc()))
1517  return;
1518 
1519  PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1520  DeclSetVector Decls;
1522  DeclExtractor DE(S, Decls, Ranges);
1523  DE.Visit(Second);
1524 
1525  // Don't analyze complex conditionals.
1526  if (!DE.isSimple()) return;
1527 
1528  // No decls found.
1529  if (Decls.size() == 0) return;
1530 
1531  // Don't warn on volatile, static, or global variables.
1532  for (auto *VD : Decls)
1533  if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
1534  return;
1535 
1536  if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1537  DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1538  DeclMatcher(S, Decls, Body).FoundDeclInUse())
1539  return;
1540 
1541  // Load decl names into diagnostic.
1542  if (Decls.size() > 4) {
1543  PDiag << 0;
1544  } else {
1545  PDiag << (unsigned)Decls.size();
1546  for (auto *VD : Decls)
1547  PDiag << VD->getDeclName();
1548  }
1549 
1550  for (auto Range : Ranges)
1551  PDiag << Range;
1552 
1553  S.Diag(Ranges.begin()->getBegin(), PDiag);
1554  }
1555 
1556  // If Statement is an incemement or decrement, return true and sets the
1557  // variables Increment and DRE.
1558  bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1559  DeclRefExpr *&DRE) {
1560  if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
1561  if (!Cleanups->cleanupsHaveSideEffects())
1562  Statement = Cleanups->getSubExpr();
1563 
1564  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1565  switch (UO->getOpcode()) {
1566  default: return false;
1567  case UO_PostInc:
1568  case UO_PreInc:
1569  Increment = true;
1570  break;
1571  case UO_PostDec:
1572  case UO_PreDec:
1573  Increment = false;
1574  break;
1575  }
1576  DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1577  return DRE;
1578  }
1579 
1580  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1581  FunctionDecl *FD = Call->getDirectCallee();
1582  if (!FD || !FD->isOverloadedOperator()) return false;
1583  switch (FD->getOverloadedOperator()) {
1584  default: return false;
1585  case OO_PlusPlus:
1586  Increment = true;
1587  break;
1588  case OO_MinusMinus:
1589  Increment = false;
1590  break;
1591  }
1592  DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1593  return DRE;
1594  }
1595 
1596  return false;
1597  }
1598 
1599  // A visitor to determine if a continue or break statement is a
1600  // subexpression.
1601  class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
1602  SourceLocation BreakLoc;
1603  SourceLocation ContinueLoc;
1604  bool InSwitch = false;
1605 
1606  public:
1607  BreakContinueFinder(Sema &S, const Stmt* Body) :
1608  Inherited(S.Context) {
1609  Visit(Body);
1610  }
1611 
1613 
1614  void VisitContinueStmt(const ContinueStmt* E) {
1615  ContinueLoc = E->getContinueLoc();
1616  }
1617 
1618  void VisitBreakStmt(const BreakStmt* E) {
1619  if (!InSwitch)
1620  BreakLoc = E->getBreakLoc();
1621  }
1622 
1623  void VisitSwitchStmt(const SwitchStmt* S) {
1624  if (const Stmt *Init = S->getInit())
1625  Visit(Init);
1626  if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
1627  Visit(CondVar);
1628  if (const Stmt *Cond = S->getCond())
1629  Visit(Cond);
1630 
1631  // Don't return break statements from the body of a switch.
1632  InSwitch = true;
1633  if (const Stmt *Body = S->getBody())
1634  Visit(Body);
1635  InSwitch = false;
1636  }
1637 
1638  void VisitForStmt(const ForStmt *S) {
1639  // Only visit the init statement of a for loop; the body
1640  // has a different break/continue scope.
1641  if (const Stmt *Init = S->getInit())
1642  Visit(Init);
1643  }
1644 
1645  void VisitWhileStmt(const WhileStmt *) {
1646  // Do nothing; the children of a while loop have a different
1647  // break/continue scope.
1648  }
1649 
1650  void VisitDoStmt(const DoStmt *) {
1651  // Do nothing; the children of a while loop have a different
1652  // break/continue scope.
1653  }
1654 
1655  void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
1656  // Only visit the initialization of a for loop; the body
1657  // has a different break/continue scope.
1658  if (const Stmt *Init = S->getInit())
1659  Visit(Init);
1660  if (const Stmt *Range = S->getRangeStmt())
1661  Visit(Range);
1662  if (const Stmt *Begin = S->getBeginStmt())
1663  Visit(Begin);
1664  if (const Stmt *End = S->getEndStmt())
1665  Visit(End);
1666  }
1667 
1668  void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
1669  // Only visit the initialization of a for loop; the body
1670  // has a different break/continue scope.
1671  if (const Stmt *Element = S->getElement())
1672  Visit(Element);
1673  if (const Stmt *Collection = S->getCollection())
1674  Visit(Collection);
1675  }
1676 
1677  bool ContinueFound() { return ContinueLoc.isValid(); }
1678  bool BreakFound() { return BreakLoc.isValid(); }
1679  SourceLocation GetContinueLoc() { return ContinueLoc; }
1680  SourceLocation GetBreakLoc() { return BreakLoc; }
1681 
1682  }; // end class BreakContinueFinder
1683 
1684  // Emit a warning when a loop increment/decrement appears twice per loop
1685  // iteration. The conditions which trigger this warning are:
1686  // 1) The last statement in the loop body and the third expression in the
1687  // for loop are both increment or both decrement of the same variable
1688  // 2) No continue statements in the loop body.
1689  void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1690  // Return when there is nothing to check.
1691  if (!Body || !Third) return;
1692 
1693  if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
1694  Third->getBeginLoc()))
1695  return;
1696 
1697  // Get the last statement from the loop body.
1698  CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1699  if (!CS || CS->body_empty()) return;
1700  Stmt *LastStmt = CS->body_back();
1701  if (!LastStmt) return;
1702 
1703  bool LoopIncrement, LastIncrement;
1704  DeclRefExpr *LoopDRE, *LastDRE;
1705 
1706  if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1707  if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1708 
1709  // Check that the two statements are both increments or both decrements
1710  // on the same variable.
1711  if (LoopIncrement != LastIncrement ||
1712  LoopDRE->getDecl() != LastDRE->getDecl()) return;
1713 
1714  if (BreakContinueFinder(S, Body).ContinueFound()) return;
1715 
1716  S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1717  << LastDRE->getDecl() << LastIncrement;
1718  S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1719  << LoopIncrement;
1720  }
1721 
1722 } // end namespace
1723 
1724 
1725 void Sema::CheckBreakContinueBinding(Expr *E) {
1726  if (!E || getLangOpts().CPlusPlus)
1727  return;
1728  BreakContinueFinder BCFinder(*this, E);
1729  Scope *BreakParent = CurScope->getBreakParent();
1730  if (BCFinder.BreakFound() && BreakParent) {
1731  if (BreakParent->getFlags() & Scope::SwitchScope) {
1732  Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
1733  } else {
1734  Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
1735  << "break";
1736  }
1737  } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
1738  Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
1739  << "continue";
1740  }
1741 }
1742 
1744  Stmt *First, ConditionResult Second,
1745  FullExprArg third, SourceLocation RParenLoc,
1746  Stmt *Body) {
1747  if (Second.isInvalid())
1748  return StmtError();
1749 
1750  if (!getLangOpts().CPlusPlus) {
1751  if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1752  // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1753  // declare identifiers for objects having storage class 'auto' or
1754  // 'register'.
1755  for (auto *DI : DS->decls()) {
1756  VarDecl *VD = dyn_cast<VarDecl>(DI);
1757  if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1758  VD = nullptr;
1759  if (!VD) {
1760  Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
1761  DI->setInvalidDecl();
1762  }
1763  }
1764  }
1765  }
1766 
1767  CheckBreakContinueBinding(Second.get().second);
1768  CheckBreakContinueBinding(third.get());
1769 
1770  if (!Second.get().first)
1771  CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
1772  Body);
1773  CheckForRedundantIteration(*this, third.get(), Body);
1774 
1775  if (Second.get().second &&
1776  !Diags.isIgnored(diag::warn_comma_operator,
1777  Second.get().second->getExprLoc()))
1778  CommaVisitor(*this).Visit(Second.get().second);
1779 
1780  Expr *Third = third.release().getAs<Expr>();
1781 
1782  DiagnoseUnusedExprResult(First);
1783  DiagnoseUnusedExprResult(Third);
1784  DiagnoseUnusedExprResult(Body);
1785 
1786  if (isa<NullStmt>(Body))
1787  getCurCompoundScope().setHasEmptyLoopBodies();
1788 
1789  return new (Context)
1790  ForStmt(Context, First, Second.get().second, Second.get().first, Third,
1791  Body, ForLoc, LParenLoc, RParenLoc);
1792 }
1793 
1794 /// In an Objective C collection iteration statement:
1795 /// for (x in y)
1796 /// x can be an arbitrary l-value expression. Bind it up as a
1797 /// full-expression.
1799  // Reduce placeholder expressions here. Note that this rejects the
1800  // use of pseudo-object l-values in this position.
1801  ExprResult result = CheckPlaceholderExpr(E);
1802  if (result.isInvalid()) return StmtError();
1803  E = result.get();
1804 
1805  ExprResult FullExpr = ActOnFinishFullExpr(E);
1806  if (FullExpr.isInvalid())
1807  return StmtError();
1808  return StmtResult(static_cast<Stmt*>(FullExpr.get()));
1809 }
1810 
1811 ExprResult
1813  if (!collection)
1814  return ExprError();
1815 
1816  ExprResult result = CorrectDelayedTyposInExpr(collection);
1817  if (!result.isUsable())
1818  return ExprError();
1819  collection = result.get();
1820 
1821  // Bail out early if we've got a type-dependent expression.
1822  if (collection->isTypeDependent()) return collection;
1823 
1824  // Perform normal l-value conversion.
1825  result = DefaultFunctionArrayLvalueConversion(collection);
1826  if (result.isInvalid())
1827  return ExprError();
1828  collection = result.get();
1829 
1830  // The operand needs to have object-pointer type.
1831  // TODO: should we do a contextual conversion?
1833  collection->getType()->getAs<ObjCObjectPointerType>();
1834  if (!pointerType)
1835  return Diag(forLoc, diag::err_collection_expr_type)
1836  << collection->getType() << collection->getSourceRange();
1837 
1838  // Check that the operand provides
1839  // - countByEnumeratingWithState:objects:count:
1840  const ObjCObjectType *objectType = pointerType->getObjectType();
1841  ObjCInterfaceDecl *iface = objectType->getInterface();
1842 
1843  // If we have a forward-declared type, we can't do this check.
1844  // Under ARC, it is an error not to have a forward-declared class.
1845  if (iface &&
1846  (getLangOpts().ObjCAutoRefCount
1847  ? RequireCompleteType(forLoc, QualType(objectType, 0),
1848  diag::err_arc_collection_forward, collection)
1849  : !isCompleteType(forLoc, QualType(objectType, 0)))) {
1850  // Otherwise, if we have any useful type information, check that
1851  // the type declares the appropriate method.
1852  } else if (iface || !objectType->qual_empty()) {
1853  IdentifierInfo *selectorIdents[] = {
1854  &Context.Idents.get("countByEnumeratingWithState"),
1855  &Context.Idents.get("objects"),
1856  &Context.Idents.get("count")
1857  };
1858  Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1859 
1860  ObjCMethodDecl *method = nullptr;
1861 
1862  // If there's an interface, look in both the public and private APIs.
1863  if (iface) {
1864  method = iface->lookupInstanceMethod(selector);
1865  if (!method) method = iface->lookupPrivateMethod(selector);
1866  }
1867 
1868  // Also check protocol qualifiers.
1869  if (!method)
1870  method = LookupMethodInQualifiedType(selector, pointerType,
1871  /*instance*/ true);
1872 
1873  // If we didn't find it anywhere, give up.
1874  if (!method) {
1875  Diag(forLoc, diag::warn_collection_expr_type)
1876  << collection->getType() << selector << collection->getSourceRange();
1877  }
1878 
1879  // TODO: check for an incompatible signature?
1880  }
1881 
1882  // Wrap up any cleanups in the expression.
1883  return collection;
1884 }
1885 
1886 StmtResult
1888  Stmt *First, Expr *collection,
1889  SourceLocation RParenLoc) {
1890  setFunctionHasBranchProtectedScope();
1891 
1892  ExprResult CollectionExprResult =
1893  CheckObjCForCollectionOperand(ForLoc, collection);
1894 
1895  if (First) {
1896  QualType FirstType;
1897  if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1898  if (!DS->isSingleDecl())
1899  return StmtError(Diag((*DS->decl_begin())->getLocation(),
1900  diag::err_toomany_element_decls));
1901 
1902  VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1903  if (!D || D->isInvalidDecl())
1904  return StmtError();
1905 
1906  FirstType = D->getType();
1907  // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1908  // declare identifiers for objects having storage class 'auto' or
1909  // 'register'.
1910  if (!D->hasLocalStorage())
1911  return StmtError(Diag(D->getLocation(),
1912  diag::err_non_local_variable_decl_in_for));
1913 
1914  // If the type contained 'auto', deduce the 'auto' to 'id'.
1915  if (FirstType->getContainedAutoType()) {
1916  OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1917  VK_RValue);
1918  Expr *DeducedInit = &OpaqueId;
1919  if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1920  DAR_Failed)
1921  DiagnoseAutoDeductionFailure(D, DeducedInit);
1922  if (FirstType.isNull()) {
1923  D->setInvalidDecl();
1924  return StmtError();
1925  }
1926 
1927  D->setType(FirstType);
1928 
1929  if (!inTemplateInstantiation()) {
1930  SourceLocation Loc =
1932  Diag(Loc, diag::warn_auto_var_is_id)
1933  << D->getDeclName();
1934  }
1935  }
1936 
1937  } else {
1938  Expr *FirstE = cast<Expr>(First);
1939  if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1940  return StmtError(
1941  Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue)
1942  << First->getSourceRange());
1943 
1944  FirstType = static_cast<Expr*>(First)->getType();
1945  if (FirstType.isConstQualified())
1946  Diag(ForLoc, diag::err_selector_element_const_type)
1947  << FirstType << First->getSourceRange();
1948  }
1949  if (!FirstType->isDependentType() &&
1950  !FirstType->isObjCObjectPointerType() &&
1951  !FirstType->isBlockPointerType())
1952  return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1953  << FirstType << First->getSourceRange());
1954  }
1955 
1956  if (CollectionExprResult.isInvalid())
1957  return StmtError();
1958 
1959  CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.get());
1960  if (CollectionExprResult.isInvalid())
1961  return StmtError();
1962 
1963  return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
1964  nullptr, ForLoc, RParenLoc);
1965 }
1966 
1967 /// Finish building a variable declaration for a for-range statement.
1968 /// \return true if an error occurs.
1969 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1970  SourceLocation Loc, int DiagID) {
1971  if (Decl->getType()->isUndeducedType()) {
1972  ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
1973  if (!Res.isUsable()) {
1974  Decl->setInvalidDecl();
1975  return true;
1976  }
1977  Init = Res.get();
1978  }
1979 
1980  // Deduce the type for the iterator variable now rather than leaving it to
1981  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1982  QualType InitType;
1983  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1984  SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
1986  SemaRef.Diag(Loc, DiagID) << Init->getType();
1987  if (InitType.isNull()) {
1988  Decl->setInvalidDecl();
1989  return true;
1990  }
1991  Decl->setType(InitType);
1992 
1993  // In ARC, infer lifetime.
1994  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1995  // we're doing the equivalent of fast iteration.
1996  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1997  SemaRef.inferObjCARCLifetime(Decl))
1998  Decl->setInvalidDecl();
1999 
2000  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
2001  SemaRef.FinalizeDeclaration(Decl);
2002  SemaRef.CurContext->addHiddenDecl(Decl);
2003  return false;
2004 }
2005 
2006 namespace {
2007 // An enum to represent whether something is dealing with a call to begin()
2008 // or a call to end() in a range-based for loop.
2010  BEF_begin,
2011  BEF_end
2012 };
2013 
2014 /// Produce a note indicating which begin/end function was implicitly called
2015 /// by a C++11 for-range statement. This is often not obvious from the code,
2016 /// nor from the diagnostics produced when analysing the implicit expressions
2017 /// required in a for-range statement.
2018 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
2019  BeginEndFunction BEF) {
2020  CallExpr *CE = dyn_cast<CallExpr>(E);
2021  if (!CE)
2022  return;
2023  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
2024  if (!D)
2025  return;
2026  SourceLocation Loc = D->getLocation();
2027 
2028  std::string Description;
2029  bool IsTemplate = false;
2030  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2031  Description = SemaRef.getTemplateArgumentBindingsText(
2032  FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2033  IsTemplate = true;
2034  }
2035 
2036  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2037  << BEF << IsTemplate << Description << E->getType();
2038 }
2039 
2040 /// Build a variable declaration for a for-range statement.
2041 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2042  QualType Type, StringRef Name) {
2043  DeclContext *DC = SemaRef.CurContext;
2044  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2045  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2046  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2047  TInfo, SC_None);
2048  Decl->setImplicit();
2049  return Decl;
2050 }
2051 
2052 }
2053 
2054 static bool ObjCEnumerationCollection(Expr *Collection) {
2055  return !Collection->isTypeDependent()
2056  && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2057 }
2058 
2059 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
2060 ///
2061 /// C++11 [stmt.ranged]:
2062 /// A range-based for statement is equivalent to
2063 ///
2064 /// {
2065 /// auto && __range = range-init;
2066 /// for ( auto __begin = begin-expr,
2067 /// __end = end-expr;
2068 /// __begin != __end;
2069 /// ++__begin ) {
2070 /// for-range-declaration = *__begin;
2071 /// statement
2072 /// }
2073 /// }
2074 ///
2075 /// The body of the loop is not available yet, since it cannot be analysed until
2076 /// we have determined the type of the for-range-declaration.
2078  SourceLocation CoawaitLoc, Stmt *InitStmt,
2079  Stmt *First, SourceLocation ColonLoc,
2080  Expr *Range, SourceLocation RParenLoc,
2082  if (!First)
2083  return StmtError();
2084 
2085  if (Range && ObjCEnumerationCollection(Range)) {
2086  // FIXME: Support init-statements in Objective-C++20 ranged for statement.
2087  if (InitStmt)
2088  return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
2089  << InitStmt->getSourceRange();
2090  return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2091  }
2092 
2093  DeclStmt *DS = dyn_cast<DeclStmt>(First);
2094  assert(DS && "first part of for range not a decl stmt");
2095 
2096  if (!DS->isSingleDecl()) {
2097  Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
2098  return StmtError();
2099  }
2100 
2101  Decl *LoopVar = DS->getSingleDecl();
2102  if (LoopVar->isInvalidDecl() || !Range ||
2103  DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2104  LoopVar->setInvalidDecl();
2105  return StmtError();
2106  }
2107 
2108  // Build the coroutine state immediately and not later during template
2109  // instantiation
2110  if (!CoawaitLoc.isInvalid()) {
2111  if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await"))
2112  return StmtError();
2113  }
2114 
2115  // Build auto && __range = range-init
2116  // Divide by 2, since the variables are in the inner scope (loop body).
2117  const auto DepthStr = std::to_string(S->getDepth() / 2);
2118  SourceLocation RangeLoc = Range->getBeginLoc();
2119  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2120  Context.getAutoRRefDeductType(),
2121  std::string("__range") + DepthStr);
2122  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2123  diag::err_for_range_deduction_failure)) {
2124  LoopVar->setInvalidDecl();
2125  return StmtError();
2126  }
2127 
2128  // Claim the type doesn't contain auto: we've already done the checking.
2129  DeclGroupPtrTy RangeGroup =
2130  BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2131  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2132  if (RangeDecl.isInvalid()) {
2133  LoopVar->setInvalidDecl();
2134  return StmtError();
2135  }
2136 
2137  return BuildCXXForRangeStmt(
2138  ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
2139  /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2140  /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind);
2141 }
2142 
2143 /// Create the initialization, compare, and increment steps for
2144 /// the range-based for loop expression.
2145 /// This function does not handle array-based for loops,
2146 /// which are created in Sema::BuildCXXForRangeStmt.
2147 ///
2148 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2149 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2150 /// CandidateSet and BEF are set and some non-success value is returned on
2151 /// failure.
2152 static Sema::ForRangeStatus
2153 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2154  QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2156  OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2157  ExprResult *EndExpr, BeginEndFunction *BEF) {
2158  DeclarationNameInfo BeginNameInfo(
2159  &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2160  DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2161  ColonLoc);
2162 
2163  LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2165  LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2166 
2167  auto BuildBegin = [&] {
2168  *BEF = BEF_begin;
2169  Sema::ForRangeStatus RangeStatus =
2170  SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2171  BeginMemberLookup, CandidateSet,
2172  BeginRange, BeginExpr);
2173 
2174  if (RangeStatus != Sema::FRS_Success) {
2175  if (RangeStatus == Sema::FRS_DiagnosticIssued)
2176  SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
2177  << ColonLoc << BEF_begin << BeginRange->getType();
2178  return RangeStatus;
2179  }
2180  if (!CoawaitLoc.isInvalid()) {
2181  // FIXME: getCurScope() should not be used during template instantiation.
2182  // We should pick up the set of unqualified lookup results for operator
2183  // co_await during the initial parse.
2184  *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2185  BeginExpr->get());
2186  if (BeginExpr->isInvalid())
2188  }
2189  if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2190  diag::err_for_range_iter_deduction_failure)) {
2191  NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2193  }
2194  return Sema::FRS_Success;
2195  };
2196 
2197  auto BuildEnd = [&] {
2198  *BEF = BEF_end;
2199  Sema::ForRangeStatus RangeStatus =
2200  SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2201  EndMemberLookup, CandidateSet,
2202  EndRange, EndExpr);
2203  if (RangeStatus != Sema::FRS_Success) {
2204  if (RangeStatus == Sema::FRS_DiagnosticIssued)
2205  SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
2206  << ColonLoc << BEF_end << EndRange->getType();
2207  return RangeStatus;
2208  }
2209  if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2210  diag::err_for_range_iter_deduction_failure)) {
2211  NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2213  }
2214  return Sema::FRS_Success;
2215  };
2216 
2217  if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2218  // - if _RangeT is a class type, the unqualified-ids begin and end are
2219  // looked up in the scope of class _RangeT as if by class member access
2220  // lookup (3.4.5), and if either (or both) finds at least one
2221  // declaration, begin-expr and end-expr are __range.begin() and
2222  // __range.end(), respectively;
2223  SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2224  if (BeginMemberLookup.isAmbiguous())
2226 
2227  SemaRef.LookupQualifiedName(EndMemberLookup, D);
2228  if (EndMemberLookup.isAmbiguous())
2230 
2231  if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2232  // Look up the non-member form of the member we didn't find, first.
2233  // This way we prefer a "no viable 'end'" diagnostic over a "i found
2234  // a 'begin' but ignored it because there was no member 'end'"
2235  // diagnostic.
2236  auto BuildNonmember = [&](
2237  BeginEndFunction BEFFound, LookupResult &Found,
2238  llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
2239  llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
2240  LookupResult OldFound = std::move(Found);
2241  Found.clear();
2242 
2243  if (Sema::ForRangeStatus Result = BuildNotFound())
2244  return Result;
2245 
2246  switch (BuildFound()) {
2247  case Sema::FRS_Success:
2248  return Sema::FRS_Success;
2249 
2251  SemaRef.Diag(BeginRange->getBeginLoc(), diag::err_for_range_invalid)
2252  << BeginRange->getType() << BEFFound;
2253  CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, BeginRange);
2254  LLVM_FALLTHROUGH;
2255 
2257  for (NamedDecl *D : OldFound) {
2258  SemaRef.Diag(D->getLocation(),
2259  diag::note_for_range_member_begin_end_ignored)
2260  << BeginRange->getType() << BEFFound;
2261  }
2263  }
2264  llvm_unreachable("unexpected ForRangeStatus");
2265  };
2266  if (BeginMemberLookup.empty())
2267  return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
2268  return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
2269  }
2270  } else {
2271  // - otherwise, begin-expr and end-expr are begin(__range) and
2272  // end(__range), respectively, where begin and end are looked up with
2273  // argument-dependent lookup (3.4.2). For the purposes of this name
2274  // lookup, namespace std is an associated namespace.
2275  }
2276 
2277  if (Sema::ForRangeStatus Result = BuildBegin())
2278  return Result;
2279  return BuildEnd();
2280 }
2281 
2282 /// Speculatively attempt to dereference an invalid range expression.
2283 /// If the attempt fails, this function will return a valid, null StmtResult
2284 /// and emit no diagnostics.
2286  SourceLocation ForLoc,
2287  SourceLocation CoawaitLoc,
2288  Stmt *InitStmt,
2289  Stmt *LoopVarDecl,
2291  Expr *Range,
2292  SourceLocation RangeLoc,
2293  SourceLocation RParenLoc) {
2294  // Determine whether we can rebuild the for-range statement with a
2295  // dereferenced range expression.
2296  ExprResult AdjustedRange;
2297  {
2298  Sema::SFINAETrap Trap(SemaRef);
2299 
2300  AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2301  if (AdjustedRange.isInvalid())
2302  return StmtResult();
2303 
2304  StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2305  S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2306  AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
2307  if (SR.isInvalid())
2308  return StmtResult();
2309  }
2310 
2311  // The attempt to dereference worked well enough that it could produce a valid
2312  // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2313  // case there are any other (non-fatal) problems with it.
2314  SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2315  << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2316  return SemaRef.ActOnCXXForRangeStmt(
2317  S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2318  AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
2319 }
2320 
2321 namespace {
2322 /// RAII object to automatically invalidate a declaration if an error occurs.
2323 struct InvalidateOnErrorScope {
2324  InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
2325  : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
2326  ~InvalidateOnErrorScope() {
2327  if (Enabled && Trap.hasErrorOccurred())
2328  D->setInvalidDecl();
2329  }
2330 
2331  DiagnosticErrorTrap Trap;
2332  Decl *D;
2333  bool Enabled;
2334 };
2335 }
2336 
2337 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2339  SourceLocation CoawaitLoc, Stmt *InitStmt,
2340  SourceLocation ColonLoc, Stmt *RangeDecl,
2341  Stmt *Begin, Stmt *End, Expr *Cond,
2342  Expr *Inc, Stmt *LoopVarDecl,
2343  SourceLocation RParenLoc,
2345  // FIXME: This should not be used during template instantiation. We should
2346  // pick up the set of unqualified lookup results for the != and + operators
2347  // in the initial parse.
2348  //
2349  // Testcase (accepts-invalid):
2350  // template<typename T> void f() { for (auto x : T()) {} }
2351  // namespace N { struct X { X begin(); X end(); int operator*(); }; }
2352  // bool operator!=(N::X, N::X); void operator++(N::X);
2353  // void g() { f<N::X>(); }
2354  Scope *S = getCurScope();
2355 
2356  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2357  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2358  QualType RangeVarType = RangeVar->getType();
2359 
2360  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2361  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2362 
2363  // If we hit any errors, mark the loop variable as invalid if its type
2364  // contains 'auto'.
2365  InvalidateOnErrorScope Invalidate(*this, LoopVar,
2366  LoopVar->getType()->isUndeducedType());
2367 
2368  StmtResult BeginDeclStmt = Begin;
2369  StmtResult EndDeclStmt = End;
2370  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2371 
2372  if (RangeVarType->isDependentType()) {
2373  // The range is implicitly used as a placeholder when it is dependent.
2374  RangeVar->markUsed(Context);
2375 
2376  // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2377  // them in properly when we instantiate the loop.
2378  if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2379  if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2380  for (auto *Binding : DD->bindings())
2381  Binding->setType(Context.DependentTy);
2382  LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2383  }
2384  } else if (!BeginDeclStmt.get()) {
2385  SourceLocation RangeLoc = RangeVar->getLocation();
2386 
2387  const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2388 
2389  ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2390  VK_LValue, ColonLoc);
2391  if (BeginRangeRef.isInvalid())
2392  return StmtError();
2393 
2394  ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2395  VK_LValue, ColonLoc);
2396  if (EndRangeRef.isInvalid())
2397  return StmtError();
2398 
2399  QualType AutoType = Context.getAutoDeductType();
2400  Expr *Range = RangeVar->getInit();
2401  if (!Range)
2402  return StmtError();
2403  QualType RangeType = Range->getType();
2404 
2405  if (RequireCompleteType(RangeLoc, RangeType,
2406  diag::err_for_range_incomplete_type))
2407  return StmtError();
2408 
2409  // Build auto __begin = begin-expr, __end = end-expr.
2410  // Divide by 2, since the variables are in the inner scope (loop body).
2411  const auto DepthStr = std::to_string(S->getDepth() / 2);
2412  VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2413  std::string("__begin") + DepthStr);
2414  VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2415  std::string("__end") + DepthStr);
2416 
2417  // Build begin-expr and end-expr and attach to __begin and __end variables.
2418  ExprResult BeginExpr, EndExpr;
2419  if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2420  // - if _RangeT is an array type, begin-expr and end-expr are __range and
2421  // __range + __bound, respectively, where __bound is the array bound. If
2422  // _RangeT is an array of unknown size or an array of incomplete type,
2423  // the program is ill-formed;
2424 
2425  // begin-expr is __range.
2426  BeginExpr = BeginRangeRef;
2427  if (!CoawaitLoc.isInvalid()) {
2428  BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2429  if (BeginExpr.isInvalid())
2430  return StmtError();
2431  }
2432  if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2433  diag::err_for_range_iter_deduction_failure)) {
2434  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2435  return StmtError();
2436  }
2437 
2438  // Find the array bound.
2439  ExprResult BoundExpr;
2440  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2441  BoundExpr = IntegerLiteral::Create(
2442  Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2443  else if (const VariableArrayType *VAT =
2444  dyn_cast<VariableArrayType>(UnqAT)) {
2445  // For a variably modified type we can't just use the expression within
2446  // the array bounds, since we don't want that to be re-evaluated here.
2447  // Rather, we need to determine what it was when the array was first
2448  // created - so we resort to using sizeof(vla)/sizeof(element).
2449  // For e.g.
2450  // void f(int b) {
2451  // int vla[b];
2452  // b = -1; <-- This should not affect the num of iterations below
2453  // for (int &c : vla) { .. }
2454  // }
2455 
2456  // FIXME: This results in codegen generating IR that recalculates the
2457  // run-time number of elements (as opposed to just using the IR Value
2458  // that corresponds to the run-time value of each bound that was
2459  // generated when the array was created.) If this proves too embarrassing
2460  // even for unoptimized IR, consider passing a magic-value/cookie to
2461  // codegen that then knows to simply use that initial llvm::Value (that
2462  // corresponds to the bound at time of array creation) within
2463  // getelementptr. But be prepared to pay the price of increasing a
2464  // customized form of coupling between the two components - which could
2465  // be hard to maintain as the codebase evolves.
2466 
2467  ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2468  EndVar->getLocation(), UETT_SizeOf,
2469  /*isType=*/true,
2470  CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2471  VAT->desugar(), RangeLoc))
2472  .getAsOpaquePtr(),
2473  EndVar->getSourceRange());
2474  if (SizeOfVLAExprR.isInvalid())
2475  return StmtError();
2476 
2477  ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2478  EndVar->getLocation(), UETT_SizeOf,
2479  /*isType=*/true,
2480  CreateParsedType(VAT->desugar(),
2481  Context.getTrivialTypeSourceInfo(
2482  VAT->getElementType(), RangeLoc))
2483  .getAsOpaquePtr(),
2484  EndVar->getSourceRange());
2485  if (SizeOfEachElementExprR.isInvalid())
2486  return StmtError();
2487 
2488  BoundExpr =
2489  ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2490  SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2491  if (BoundExpr.isInvalid())
2492  return StmtError();
2493 
2494  } else {
2495  // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2496  // UnqAT is not incomplete and Range is not type-dependent.
2497  llvm_unreachable("Unexpected array type in for-range");
2498  }
2499 
2500  // end-expr is __range + __bound.
2501  EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2502  BoundExpr.get());
2503  if (EndExpr.isInvalid())
2504  return StmtError();
2505  if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2506  diag::err_for_range_iter_deduction_failure)) {
2507  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2508  return StmtError();
2509  }
2510  } else {
2511  OverloadCandidateSet CandidateSet(RangeLoc,
2513  BeginEndFunction BEFFailure;
2514  ForRangeStatus RangeStatus = BuildNonArrayForRange(
2515  *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2516  EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2517  &BEFFailure);
2518 
2519  if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2520  BEFFailure == BEF_begin) {
2521  // If the range is being built from an array parameter, emit a
2522  // a diagnostic that it is being treated as a pointer.
2523  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2524  if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2525  QualType ArrayTy = PVD->getOriginalType();
2526  QualType PointerTy = PVD->getType();
2527  if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2528  Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
2529  << RangeLoc << PVD << ArrayTy << PointerTy;
2530  Diag(PVD->getLocation(), diag::note_declared_at);
2531  return StmtError();
2532  }
2533  }
2534  }
2535 
2536  // If building the range failed, try dereferencing the range expression
2537  // unless a diagnostic was issued or the end function is problematic.
2538  StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2539  CoawaitLoc, InitStmt,
2540  LoopVarDecl, ColonLoc,
2541  Range, RangeLoc,
2542  RParenLoc);
2543  if (SR.isInvalid() || SR.isUsable())
2544  return SR;
2545  }
2546 
2547  // Otherwise, emit diagnostics if we haven't already.
2548  if (RangeStatus == FRS_NoViableFunction) {
2549  Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2550  Diag(Range->getBeginLoc(), diag::err_for_range_invalid)
2551  << RangeLoc << Range->getType() << BEFFailure;
2552  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
2553  }
2554  // Return an error if no fix was discovered.
2555  if (RangeStatus != FRS_Success)
2556  return StmtError();
2557  }
2558 
2559  assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2560  "invalid range expression in for loop");
2561 
2562  // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2563  // C++1z removes this restriction.
2564  QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2565  if (!Context.hasSameType(BeginType, EndType)) {
2566  Diag(RangeLoc, getLangOpts().CPlusPlus17
2567  ? diag::warn_for_range_begin_end_types_differ
2568  : diag::ext_for_range_begin_end_types_differ)
2569  << BeginType << EndType;
2570  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2571  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2572  }
2573 
2574  BeginDeclStmt =
2575  ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2576  EndDeclStmt =
2577  ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2578 
2579  const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2580  ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2581  VK_LValue, ColonLoc);
2582  if (BeginRef.isInvalid())
2583  return StmtError();
2584 
2585  ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2586  VK_LValue, ColonLoc);
2587  if (EndRef.isInvalid())
2588  return StmtError();
2589 
2590  // Build and check __begin != __end expression.
2591  NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2592  BeginRef.get(), EndRef.get());
2593  if (!NotEqExpr.isInvalid())
2594  NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
2595  if (!NotEqExpr.isInvalid())
2596  NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
2597  if (NotEqExpr.isInvalid()) {
2598  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2599  << RangeLoc << 0 << BeginRangeRef.get()->getType();
2600  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2601  if (!Context.hasSameType(BeginType, EndType))
2602  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2603  return StmtError();
2604  }
2605 
2606  // Build and check ++__begin expression.
2607  BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2608  VK_LValue, ColonLoc);
2609  if (BeginRef.isInvalid())
2610  return StmtError();
2611 
2612  IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2613  if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
2614  // FIXME: getCurScope() should not be used during template instantiation.
2615  // We should pick up the set of unqualified lookup results for operator
2616  // co_await during the initial parse.
2617  IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
2618  if (!IncrExpr.isInvalid())
2619  IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
2620  if (IncrExpr.isInvalid()) {
2621  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2622  << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2623  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2624  return StmtError();
2625  }
2626 
2627  // Build and check *__begin expression.
2628  BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2629  VK_LValue, ColonLoc);
2630  if (BeginRef.isInvalid())
2631  return StmtError();
2632 
2633  ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2634  if (DerefExpr.isInvalid()) {
2635  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2636  << RangeLoc << 1 << BeginRangeRef.get()->getType();
2637  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2638  return StmtError();
2639  }
2640 
2641  // Attach *__begin as initializer for VD. Don't touch it if we're just
2642  // trying to determine whether this would be a valid range.
2643  if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2644  AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
2645  if (LoopVar->isInvalidDecl())
2646  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2647  }
2648  }
2649 
2650  // Don't bother to actually allocate the result if we're just trying to
2651  // determine whether it would be valid.
2652  if (Kind == BFRK_Check)
2653  return StmtResult();
2654 
2655  return new (Context) CXXForRangeStmt(
2656  InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
2657  cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
2658  IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
2659  ColonLoc, RParenLoc);
2660 }
2661 
2662 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2663 /// statement.
2665  if (!S || !B)
2666  return StmtError();
2667  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2668 
2669  ForStmt->setBody(B);
2670  return S;
2671 }
2672 
2673 // Warn when the loop variable is a const reference that creates a copy.
2674 // Suggest using the non-reference type for copies. If a copy can be prevented
2675 // suggest the const reference type that would do so.
2676 // For instance, given "for (const &Foo : Range)", suggest
2677 // "for (const Foo : Range)" to denote a copy is made for the loop. If
2678 // possible, also suggest "for (const &Bar : Range)" if this type prevents
2679 // the copy altogether.
2681  const VarDecl *VD,
2682  QualType RangeInitType) {
2683  const Expr *InitExpr = VD->getInit();
2684  if (!InitExpr)
2685  return;
2686 
2687  QualType VariableType = VD->getType();
2688 
2689  if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
2690  if (!Cleanups->cleanupsHaveSideEffects())
2691  InitExpr = Cleanups->getSubExpr();
2692 
2693  const MaterializeTemporaryExpr *MTE =
2694  dyn_cast<MaterializeTemporaryExpr>(InitExpr);
2695 
2696  // No copy made.
2697  if (!MTE)
2698  return;
2699 
2700  const Expr *E = MTE->GetTemporaryExpr()->IgnoreImpCasts();
2701 
2702  // Searching for either UnaryOperator for dereference of a pointer or
2703  // CXXOperatorCallExpr for handling iterators.
2704  while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
2705  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
2706  E = CCE->getArg(0);
2707  } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
2708  const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
2709  E = ME->getBase();
2710  } else {
2711  const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
2712  E = MTE->GetTemporaryExpr();
2713  }
2714  E = E->IgnoreImpCasts();
2715  }
2716 
2717  bool ReturnsReference = false;
2718  if (isa<UnaryOperator>(E)) {
2719  ReturnsReference = true;
2720  } else {
2721  const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
2722  const FunctionDecl *FD = Call->getDirectCallee();
2723  QualType ReturnType = FD->getReturnType();
2724  ReturnsReference = ReturnType->isReferenceType();
2725  }
2726 
2727  if (ReturnsReference) {
2728  // Loop variable creates a temporary. Suggest either to go with
2729  // non-reference loop variable to indicate a copy is made, or
2730  // the correct time to bind a const reference.
2731  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy)
2732  << VD << VariableType << E->getType();
2733  QualType NonReferenceType = VariableType.getNonReferenceType();
2734  NonReferenceType.removeLocalConst();
2735  QualType NewReferenceType =
2737  SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
2738  << NonReferenceType << NewReferenceType << VD->getSourceRange();
2739  } else {
2740  // The range always returns a copy, so a temporary is always created.
2741  // Suggest removing the reference from the loop variable.
2742  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy)
2743  << VD << RangeInitType;
2744  QualType NonReferenceType = VariableType.getNonReferenceType();
2745  NonReferenceType.removeLocalConst();
2746  SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
2747  << NonReferenceType << VD->getSourceRange();
2748  }
2749 }
2750 
2751 // Warns when the loop variable can be changed to a reference type to
2752 // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest
2753 // "for (const Foo &x : Range)" if this form does not make a copy.
2755  const VarDecl *VD) {
2756  const Expr *InitExpr = VD->getInit();
2757  if (!InitExpr)
2758  return;
2759 
2760  QualType VariableType = VD->getType();
2761 
2762  if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
2763  if (!CE->getConstructor()->isCopyConstructor())
2764  return;
2765  } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
2766  if (CE->getCastKind() != CK_LValueToRValue)
2767  return;
2768  } else {
2769  return;
2770  }
2771 
2772  // TODO: Determine a maximum size that a POD type can be before a diagnostic
2773  // should be emitted. Also, only ignore POD types with trivial copy
2774  // constructors.
2775  if (VariableType.isPODType(SemaRef.Context))
2776  return;
2777 
2778  // Suggest changing from a const variable to a const reference variable
2779  // if doing so will prevent a copy.
2780  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
2781  << VD << VariableType << InitExpr->getType();
2782  SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
2783  << SemaRef.Context.getLValueReferenceType(VariableType)
2784  << VD->getSourceRange();
2785 }
2786 
2787 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
2788 /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest
2789 /// using "const foo x" to show that a copy is made
2790 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
2791 /// Suggest either "const bar x" to keep the copying or "const foo& x" to
2792 /// prevent the copy.
2793 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
2794 /// Suggest "const foo &x" to prevent the copy.
2796  const CXXForRangeStmt *ForStmt) {
2797  if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy,
2798  ForStmt->getBeginLoc()) &&
2799  SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy,
2800  ForStmt->getBeginLoc()) &&
2801  SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
2802  ForStmt->getBeginLoc())) {
2803  return;
2804  }
2805 
2806  const VarDecl *VD = ForStmt->getLoopVariable();
2807  if (!VD)
2808  return;
2809 
2810  QualType VariableType = VD->getType();
2811 
2812  if (VariableType->isIncompleteType())
2813  return;
2814 
2815  const Expr *InitExpr = VD->getInit();
2816  if (!InitExpr)
2817  return;
2818 
2819  if (VariableType->isReferenceType()) {
2821  ForStmt->getRangeInit()->getType());
2822  } else if (VariableType.isConstQualified()) {
2824  }
2825 }
2826 
2827 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2828 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2829 /// body cannot be performed until after the type of the range variable is
2830 /// determined.
2832  if (!S || !B)
2833  return StmtError();
2834 
2835  if (isa<ObjCForCollectionStmt>(S))
2836  return FinishObjCForCollectionStmt(S, B);
2837 
2838  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2839  ForStmt->setBody(B);
2840 
2841  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2842  diag::warn_empty_range_based_for_body);
2843 
2844  DiagnoseForRangeVariableCopies(*this, ForStmt);
2845 
2846  return S;
2847 }
2848 
2850  SourceLocation LabelLoc,
2851  LabelDecl *TheDecl) {
2852  setFunctionHasBranchIntoScope();
2853  TheDecl->markUsed(Context);
2854  return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
2855 }
2856 
2857 StmtResult
2859  Expr *E) {
2860  // Convert operand to void*
2861  if (!E->isTypeDependent()) {
2862  QualType ETy = E->getType();
2863  QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2864  ExprResult ExprRes = E;
2865  AssignConvertType ConvTy =
2866  CheckSingleAssignmentConstraints(DestTy, ExprRes);
2867  if (ExprRes.isInvalid())
2868  return StmtError();
2869  E = ExprRes.get();
2870  if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2871  return StmtError();
2872  }
2873 
2874  ExprResult ExprRes = ActOnFinishFullExpr(E);
2875  if (ExprRes.isInvalid())
2876  return StmtError();
2877  E = ExprRes.get();
2878 
2879  setFunctionHasIndirectGoto();
2880 
2881  return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
2882 }
2883 
2885  const Scope &DestScope) {
2886  if (!S.CurrentSEHFinally.empty() &&
2887  DestScope.Contains(*S.CurrentSEHFinally.back())) {
2888  S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
2889  }
2890 }
2891 
2892 StmtResult
2894  Scope *S = CurScope->getContinueParent();
2895  if (!S) {
2896  // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2897  return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2898  }
2899  CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
2900 
2901  return new (Context) ContinueStmt(ContinueLoc);
2902 }
2903 
2904 StmtResult
2906  Scope *S = CurScope->getBreakParent();
2907  if (!S) {
2908  // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2909  return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2910  }
2911  if (S->isOpenMPLoopScope())
2912  return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
2913  << "break");
2914  CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
2915 
2916  return new (Context) BreakStmt(BreakLoc);
2917 }
2918 
2919 /// Determine whether the given expression is a candidate for
2920 /// copy elision in either a return statement or a throw expression.
2921 ///
2922 /// \param ReturnType If we're determining the copy elision candidate for
2923 /// a return statement, this is the return type of the function. If we're
2924 /// determining the copy elision candidate for a throw expression, this will
2925 /// be a NULL type.
2926 ///
2927 /// \param E The expression being returned from the function or block, or
2928 /// being thrown.
2929 ///
2930 /// \param CESK Whether we allow function parameters or
2931 /// id-expressions that could be moved out of the function to be considered NRVO
2932 /// candidates. C++ prohibits these for NRVO itself, but we re-use this logic to
2933 /// determine whether we should try to move as part of a return or throw (which
2934 /// does allow function parameters).
2935 ///
2936 /// \returns The NRVO candidate variable, if the return statement may use the
2937 /// NRVO, or NULL if there is no such candidate.
2939  CopyElisionSemanticsKind CESK) {
2940  // - in a return statement in a function [where] ...
2941  // ... the expression is the name of a non-volatile automatic object ...
2942  DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2943  if (!DR || DR->refersToEnclosingVariableOrCapture())
2944  return nullptr;
2945  VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2946  if (!VD)
2947  return nullptr;
2948 
2949  if (isCopyElisionCandidate(ReturnType, VD, CESK))
2950  return VD;
2951  return nullptr;
2952 }
2953 
2954 bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
2955  CopyElisionSemanticsKind CESK) {
2956  QualType VDType = VD->getType();
2957  // - in a return statement in a function with ...
2958  // ... a class return type ...
2959  if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
2960  if (!ReturnType->isRecordType())
2961  return false;
2962  // ... the same cv-unqualified type as the function return type ...
2963  // When considering moving this expression out, allow dissimilar types.
2964  if (!(CESK & CES_AllowDifferentTypes) && !VDType->isDependentType() &&
2965  !Context.hasSameUnqualifiedType(ReturnType, VDType))
2966  return false;
2967  }
2968 
2969  // ...object (other than a function or catch-clause parameter)...
2970  if (VD->getKind() != Decl::Var &&
2971  !((CESK & CES_AllowParameters) && VD->getKind() == Decl::ParmVar))
2972  return false;
2973  if (!(CESK & CES_AllowExceptionVariables) && VD->isExceptionVariable())
2974  return false;
2975 
2976  // ...automatic...
2977  if (!VD->hasLocalStorage()) return false;
2978 
2979  // Return false if VD is a __block variable. We don't want to implicitly move
2980  // out of a __block variable during a return because we cannot assume the
2981  // variable will no longer be used.
2982  if (VD->hasAttr<BlocksAttr>()) return false;
2983 
2984  if (CESK & CES_AllowDifferentTypes)
2985  return true;
2986 
2987  // ...non-volatile...
2988  if (VD->getType().isVolatileQualified()) return false;
2989 
2990  // Variables with higher required alignment than their type's ABI
2991  // alignment cannot use NRVO.
2992  if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
2993  Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2994  return false;
2995 
2996  return true;
2997 }
2998 
2999 /// Try to perform the initialization of a potentially-movable value,
3000 /// which is the operand to a return or throw statement.
3001 ///
3002 /// This routine implements C++14 [class.copy]p32, which attempts to treat
3003 /// returned lvalues as rvalues in certain cases (to prefer move construction),
3004 /// then falls back to treating them as lvalues if that failed.
3005 ///
3006 /// \param ConvertingConstructorsOnly If true, follow [class.copy]p32 and reject
3007 /// resolutions that find non-constructors, such as derived-to-base conversions
3008 /// or `operator T()&&` member functions. If false, do consider such
3009 /// conversion sequences.
3010 ///
3011 /// \param Res We will fill this in if move-initialization was possible.
3012 /// If move-initialization is not possible, such that we must fall back to
3013 /// treating the operand as an lvalue, we will leave Res in its original
3014 /// invalid state.
3016  const InitializedEntity &Entity,
3017  const VarDecl *NRVOCandidate,
3018  QualType ResultType,
3019  Expr *&Value,
3020  bool ConvertingConstructorsOnly,
3021  ExprResult &Res) {
3023  CK_NoOp, Value, VK_XValue);
3024 
3025  Expr *InitExpr = &AsRvalue;
3026 
3028  Value->getBeginLoc(), Value->getBeginLoc());
3029 
3030  InitializationSequence Seq(S, Entity, Kind, InitExpr);
3031 
3032  if (!Seq)
3033  return;
3034 
3035  for (const InitializationSequence::Step &Step : Seq.steps()) {
3038  continue;
3039 
3040  FunctionDecl *FD = Step.Function.Function;
3041  if (ConvertingConstructorsOnly) {
3042  if (isa<CXXConstructorDecl>(FD)) {
3043  // C++14 [class.copy]p32:
3044  // [...] If the first overload resolution fails or was not performed,
3045  // or if the type of the first parameter of the selected constructor
3046  // is not an rvalue reference to the object's type (possibly
3047  // cv-qualified), overload resolution is performed again, considering
3048  // the object as an lvalue.
3049  const RValueReferenceType *RRefType =
3051  if (!RRefType)
3052  break;
3053  if (!S.Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
3054  NRVOCandidate->getType()))
3055  break;
3056  } else {
3057  continue;
3058  }
3059  } else {
3060  if (isa<CXXConstructorDecl>(FD)) {
3061  // Check that overload resolution selected a constructor taking an
3062  // rvalue reference. If it selected an lvalue reference, then we
3063  // didn't need to cast this thing to an rvalue in the first place.
3064  if (!isa<RValueReferenceType>(FD->getParamDecl(0)->getType()))
3065  break;
3066  } else if (isa<CXXMethodDecl>(FD)) {
3067  // Check that overload resolution selected a conversion operator
3068  // taking an rvalue reference.
3069  if (cast<CXXMethodDecl>(FD)->getRefQualifier() != RQ_RValue)
3070  break;
3071  } else {
3072  continue;
3073  }
3074  }
3075 
3076  // Promote "AsRvalue" to the heap, since we now need this
3077  // expression node to persist.
3078  Value = ImplicitCastExpr::Create(S.Context, Value->getType(), CK_NoOp,
3079  Value, nullptr, VK_XValue);
3080 
3081  // Complete type-checking the initialization of the return type
3082  // using the constructor we found.
3083  Res = Seq.Perform(S, Entity, Kind, Value);
3084  }
3085 }
3086 
3087 /// Perform the initialization of a potentially-movable value, which
3088 /// is the result of return value.
3089 ///
3090 /// This routine implements C++14 [class.copy]p32, which attempts to treat
3091 /// returned lvalues as rvalues in certain cases (to prefer move construction),
3092 /// then falls back to treating them as lvalues if that failed.
3093 ExprResult
3095  const VarDecl *NRVOCandidate,
3096  QualType ResultType,
3097  Expr *Value,
3098  bool AllowNRVO) {
3099  // C++14 [class.copy]p32:
3100  // When the criteria for elision of a copy/move operation are met, but not for
3101  // an exception-declaration, and the object to be copied is designated by an
3102  // lvalue, or when the expression in a return statement is a (possibly
3103  // parenthesized) id-expression that names an object with automatic storage
3104  // duration declared in the body or parameter-declaration-clause of the
3105  // innermost enclosing function or lambda-expression, overload resolution to
3106  // select the constructor for the copy is first performed as if the object
3107  // were designated by an rvalue.
3108  ExprResult Res = ExprError();
3109 
3110  if (AllowNRVO) {
3111  bool AffectedByCWG1579 = false;
3112 
3113  if (!NRVOCandidate) {
3114  NRVOCandidate = getCopyElisionCandidate(ResultType, Value, CES_Default);
3115  if (NRVOCandidate &&
3116  !getDiagnostics().isIgnored(diag::warn_return_std_move_in_cxx11,
3117  Value->getExprLoc())) {
3118  const VarDecl *NRVOCandidateInCXX11 =
3119  getCopyElisionCandidate(ResultType, Value, CES_FormerDefault);
3120  AffectedByCWG1579 = (!NRVOCandidateInCXX11);
3121  }
3122  }
3123 
3124  if (NRVOCandidate) {
3125  TryMoveInitialization(*this, Entity, NRVOCandidate, ResultType, Value,
3126  true, Res);
3127  }
3128 
3129  if (!Res.isInvalid() && AffectedByCWG1579) {
3130  QualType QT = NRVOCandidate->getType();
3131  if (QT.getNonReferenceType()
3133  .isTriviallyCopyableType(Context)) {
3134  // Adding 'std::move' around a trivially copyable variable is probably
3135  // pointless. Don't suggest it.
3136  } else {
3137  // Common cases for this are returning unique_ptr<Derived> from a
3138  // function of return type unique_ptr<Base>, or returning T from a
3139  // function of return type Expected<T>. This is totally fine in a
3140  // post-CWG1579 world, but was not fine before.
3141  assert(!ResultType.isNull());
3142  SmallString<32> Str;
3143  Str += "std::move(";
3144  Str += NRVOCandidate->getDeclName().getAsString();
3145  Str += ")";
3146  Diag(Value->getExprLoc(), diag::warn_return_std_move_in_cxx11)
3147  << Value->getSourceRange()
3148  << NRVOCandidate->getDeclName() << ResultType << QT;
3149  Diag(Value->getExprLoc(), diag::note_add_std_move_in_cxx11)
3150  << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
3151  }
3152  } else if (Res.isInvalid() &&
3153  !getDiagnostics().isIgnored(diag::warn_return_std_move,
3154  Value->getExprLoc())) {
3155  const VarDecl *FakeNRVOCandidate =
3156  getCopyElisionCandidate(QualType(), Value, CES_AsIfByStdMove);
3157  if (FakeNRVOCandidate) {
3158  QualType QT = FakeNRVOCandidate->getType();
3159  if (QT->isLValueReferenceType()) {
3160  // Adding 'std::move' around an lvalue reference variable's name is
3161  // dangerous. Don't suggest it.
3162  } else if (QT.getNonReferenceType()
3164  .isTriviallyCopyableType(Context)) {
3165  // Adding 'std::move' around a trivially copyable variable is probably
3166  // pointless. Don't suggest it.
3167  } else {
3168  ExprResult FakeRes = ExprError();
3169  Expr *FakeValue = Value;
3170  TryMoveInitialization(*this, Entity, FakeNRVOCandidate, ResultType,
3171  FakeValue, false, FakeRes);
3172  if (!FakeRes.isInvalid()) {
3173  bool IsThrow =
3175  SmallString<32> Str;
3176  Str += "std::move(";
3177  Str += FakeNRVOCandidate->getDeclName().getAsString();
3178  Str += ")";
3179  Diag(Value->getExprLoc(), diag::warn_return_std_move)
3180  << Value->getSourceRange()
3181  << FakeNRVOCandidate->getDeclName() << IsThrow;
3182  Diag(Value->getExprLoc(), diag::note_add_std_move)
3183  << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
3184  }
3185  }
3186  }
3187  }
3188  }
3189 
3190  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
3191  // above, or overload resolution failed. Either way, we need to try
3192  // (again) now with the return value expression as written.
3193  if (Res.isInvalid())
3194  Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
3195 
3196  return Res;
3197 }
3198 
3199 /// Determine whether the declared return type of the specified function
3200 /// contains 'auto'.
3202  const FunctionProtoType *FPT =
3204  return FPT->getReturnType()->isUndeducedType();
3205 }
3206 
3207 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
3208 /// for capturing scopes.
3209 ///
3210 StmtResult
3212  // If this is the first return we've seen, infer the return type.
3213  // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3214  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3215  QualType FnRetType = CurCap->ReturnType;
3216  LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3217  bool HasDeducedReturnType =
3218  CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3219 
3220  if (ExprEvalContexts.back().Context ==
3221  ExpressionEvaluationContext::DiscardedStatement &&
3222  (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3223  if (RetValExp) {
3224  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3225  if (ER.isInvalid())
3226  return StmtError();
3227  RetValExp = ER.get();
3228  }
3229  return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3230  /* NRVOCandidate=*/nullptr);
3231  }
3232 
3233  if (HasDeducedReturnType) {
3234  // In C++1y, the return type may involve 'auto'.
3235  // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3236  FunctionDecl *FD = CurLambda->CallOperator;
3237  if (CurCap->ReturnType.isNull())
3238  CurCap->ReturnType = FD->getReturnType();
3239 
3240  AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3241  assert(AT && "lost auto type from lambda return type");
3242  if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3243  FD->setInvalidDecl();
3244  return StmtError();
3245  }
3246  CurCap->ReturnType = FnRetType = FD->getReturnType();
3247  } else if (CurCap->HasImplicitReturnType) {
3248  // For blocks/lambdas with implicit return types, we check each return
3249  // statement individually, and deduce the common return type when the block
3250  // or lambda is completed.
3251  // FIXME: Fold this into the 'auto' codepath above.
3252  if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3253  ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3254  if (Result.isInvalid())
3255  return StmtError();
3256  RetValExp = Result.get();
3257 
3258  // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3259  // when deducing a return type for a lambda-expression (or by extension
3260  // for a block). These rules differ from the stated C++11 rules only in
3261  // that they remove top-level cv-qualifiers.
3262  if (!CurContext->isDependentContext())
3263  FnRetType = RetValExp->getType().getUnqualifiedType();
3264  else
3265  FnRetType = CurCap->ReturnType = Context.DependentTy;
3266  } else {
3267  if (RetValExp) {
3268  // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3269  // initializer list, because it is not an expression (even
3270  // though we represent it as one). We still deduce 'void'.
3271  Diag(ReturnLoc, diag::err_lambda_return_init_list)
3272  << RetValExp->getSourceRange();
3273  }
3274 
3275  FnRetType = Context.VoidTy;
3276  }
3277 
3278  // Although we'll properly infer the type of the block once it's completed,
3279  // make sure we provide a return type now for better error recovery.
3280  if (CurCap->ReturnType.isNull())
3281  CurCap->ReturnType = FnRetType;
3282  }
3283  assert(!FnRetType.isNull());
3284 
3285  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3286  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
3287  Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3288  return StmtError();
3289  }
3290  } else if (CapturedRegionScopeInfo *CurRegion =
3291  dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3292  Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3293  return StmtError();
3294  } else {
3295  assert(CurLambda && "unknown kind of captured scope");
3296  if (CurLambda->CallOperator->getType()->getAs<FunctionType>()
3297  ->getNoReturnAttr()) {
3298  Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3299  return StmtError();
3300  }
3301  }
3302 
3303  // Otherwise, verify that this result type matches the previous one. We are
3304  // pickier with blocks than for normal functions because we don't have GCC
3305  // compatibility to worry about here.
3306  const VarDecl *NRVOCandidate = nullptr;
3307  if (FnRetType->isDependentType()) {
3308  // Delay processing for now. TODO: there are lots of dependent
3309  // types we can conclusively prove aren't void.
3310  } else if (FnRetType->isVoidType()) {
3311  if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3312  !(getLangOpts().CPlusPlus &&
3313  (RetValExp->isTypeDependent() ||
3314  RetValExp->getType()->isVoidType()))) {
3315  if (!getLangOpts().CPlusPlus &&
3316  RetValExp->getType()->isVoidType())
3317  Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3318  else {
3319  Diag(ReturnLoc, diag::err_return_block_has_expr);
3320  RetValExp = nullptr;
3321  }
3322  }
3323  } else if (!RetValExp) {
3324  return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3325  } else if (!RetValExp->isTypeDependent()) {
3326  // we have a non-void block with an expression, continue checking
3327 
3328  // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3329  // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3330  // function return.
3331 
3332  // In C++ the return statement is handled via a copy initialization.
3333  // the C version of which boils down to CheckSingleAssignmentConstraints.
3334  NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3336  FnRetType,
3337  NRVOCandidate != nullptr);
3338  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3339  FnRetType, RetValExp);
3340  if (Res.isInvalid()) {
3341  // FIXME: Cleanup temporaries here, anyway?
3342  return StmtError();
3343  }
3344  RetValExp = Res.get();
3345  CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3346  } else {
3347  NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3348  }
3349 
3350  if (RetValExp) {
3351  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3352  if (ER.isInvalid())
3353  return StmtError();
3354  RetValExp = ER.get();
3355  }
3356  auto *Result =
3357  ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3358 
3359  // If we need to check for the named return value optimization,
3360  // or if we need to infer the return type,
3361  // save the return statement in our scope for later processing.
3362  if (CurCap->HasImplicitReturnType || NRVOCandidate)
3363  FunctionScopes.back()->Returns.push_back(Result);
3364 
3365  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3366  FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3367 
3368  return Result;
3369 }
3370 
3371 namespace {
3372 /// Marks all typedefs in all local classes in a type referenced.
3373 ///
3374 /// In a function like
3375 /// auto f() {
3376 /// struct S { typedef int a; };
3377 /// return S();
3378 /// }
3379 ///
3380 /// the local type escapes and could be referenced in some TUs but not in
3381 /// others. Pretend that all local typedefs are always referenced, to not warn
3382 /// on this. This isn't necessary if f has internal linkage, or the typedef
3383 /// is private.
3384 class LocalTypedefNameReferencer
3385  : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
3386 public:
3387  LocalTypedefNameReferencer(Sema &S) : S(S) {}
3388  bool VisitRecordType(const RecordType *RT);
3389 private:
3390  Sema &S;
3391 };
3392 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
3393  auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3394  if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3395  R->isDependentType())
3396  return true;
3397  for (auto *TmpD : R->decls())
3398  if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3399  if (T->getAccess() != AS_private || R->hasFriends())
3400  S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3401  return true;
3402 }
3403 }
3404 
3407  while (auto ATL = TL.getAs<AttributedTypeLoc>())
3408  TL = ATL.getModifiedLoc().IgnoreParens();
3409  return TL.castAs<FunctionProtoTypeLoc>().getReturnLoc();
3410 }
3411 
3412 /// Deduce the return type for a function from a returned expression, per
3413 /// C++1y [dcl.spec.auto]p6.
3415  SourceLocation ReturnLoc,
3416  Expr *&RetExpr,
3417  AutoType *AT) {
3418  // If this is the conversion function for a lambda, we choose to deduce it
3419  // type from the corresponding call operator, not from the synthesized return
3420  // statement within it. See Sema::DeduceReturnType.
3422  return false;
3423 
3424  TypeLoc OrigResultType = getReturnTypeLoc(FD);
3425  QualType Deduced;
3426 
3427  if (RetExpr && isa<InitListExpr>(RetExpr)) {
3428  // If the deduction is for a return statement and the initializer is
3429  // a braced-init-list, the program is ill-formed.
3430  Diag(RetExpr->getExprLoc(),
3431  getCurLambda() ? diag::err_lambda_return_init_list
3432  : diag::err_auto_fn_return_init_list)
3433  << RetExpr->getSourceRange();
3434  return true;
3435  }
3436 
3437  if (FD->isDependentContext()) {
3438  // C++1y [dcl.spec.auto]p12:
3439  // Return type deduction [...] occurs when the definition is
3440  // instantiated even if the function body contains a return
3441  // statement with a non-type-dependent operand.
3442  assert(AT->isDeduced() && "should have deduced to dependent type");
3443  return false;
3444  }
3445 
3446  if (RetExpr) {
3447  // Otherwise, [...] deduce a value for U using the rules of template
3448  // argument deduction.
3449  DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
3450 
3451  if (DAR == DAR_Failed && !FD->isInvalidDecl())
3452  Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3453  << OrigResultType.getType() << RetExpr->getType();
3454 
3455  if (DAR != DAR_Succeeded)
3456  return true;
3457 
3458  // If a local type is part of the returned type, mark its fields as
3459  // referenced.
3460  LocalTypedefNameReferencer Referencer(*this);
3461  Referencer.TraverseType(RetExpr->getType());
3462  } else {
3463  // In the case of a return with no operand, the initializer is considered
3464  // to be void().
3465  //
3466  // Deduction here can only succeed if the return type is exactly 'cv auto'
3467  // or 'decltype(auto)', so just check for that case directly.
3468  if (!OrigResultType.getType()->getAs<AutoType>()) {
3469  Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3470  << OrigResultType.getType();
3471  return true;
3472  }
3473  // We always deduce U = void in this case.
3474  Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
3475  if (Deduced.isNull())
3476  return true;
3477  }
3478 
3479  // If a function with a declared return type that contains a placeholder type
3480  // has multiple return statements, the return type is deduced for each return
3481  // statement. [...] if the type deduced is not the same in each deduction,
3482  // the program is ill-formed.
3483  QualType DeducedT = AT->getDeducedType();
3484  if (!DeducedT.isNull() && !FD->isInvalidDecl()) {
3485  AutoType *NewAT = Deduced->getContainedAutoType();
3486  // It is possible that NewAT->getDeducedType() is null. When that happens,
3487  // we should not crash, instead we ignore this deduction.
3488  if (NewAT->getDeducedType().isNull())
3489  return false;
3490 
3491  CanQualType OldDeducedType = Context.getCanonicalFunctionResultType(
3492  DeducedT);
3493  CanQualType NewDeducedType = Context.getCanonicalFunctionResultType(
3494  NewAT->getDeducedType());
3495  if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) {
3496  const LambdaScopeInfo *LambdaSI = getCurLambda();
3497  if (LambdaSI && LambdaSI->HasImplicitReturnType) {
3498  Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3499  << NewAT->getDeducedType() << DeducedT
3500  << true /*IsLambda*/;
3501  } else {
3502  Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3503  << (AT->isDecltypeAuto() ? 1 : 0)
3504  << NewAT->getDeducedType() << DeducedT;
3505  }
3506  return true;
3507  }
3508  } else if (!FD->isInvalidDecl()) {
3509  // Update all declarations of the function to have the deduced return type.
3510  Context.adjustDeducedFunctionResultType(FD, Deduced);
3511  }
3512 
3513  return false;
3514 }
3515 
3516 StmtResult
3518  Scope *CurScope) {
3519  StmtResult R = BuildReturnStmt(ReturnLoc, RetValExp);
3520  if (R.isInvalid() || ExprEvalContexts.back().Context ==
3521  ExpressionEvaluationContext::DiscardedStatement)
3522  return R;
3523 
3524  if (VarDecl *VD =
3525  const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
3526  CurScope->addNRVOCandidate(VD);
3527  } else {
3528  CurScope->setNoNRVO();
3529  }
3530 
3531  CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3532 
3533  return R;
3534 }
3535 
3537  // Check for unexpanded parameter packs.
3538  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3539  return StmtError();
3540 
3541  if (isa<CapturingScopeInfo>(getCurFunction()))
3542  return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
3543 
3544  QualType FnRetType;
3545  QualType RelatedRetType;
3546  const AttrVec *Attrs = nullptr;
3547  bool isObjCMethod = false;
3548 
3549  if (const FunctionDecl *FD = getCurFunctionDecl()) {
3550  FnRetType = FD->getReturnType();
3551  if (FD->hasAttrs())
3552  Attrs = &FD->getAttrs();
3553  if (FD->isNoReturn())
3554  Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
3555  << FD->getDeclName();
3556  if (FD->isMain() && RetValExp)
3557  if (isa<CXXBoolLiteralExpr>(RetValExp))
3558  Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3559  << RetValExp->getSourceRange();
3560  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3561  FnRetType = MD->getReturnType();
3562  isObjCMethod = true;
3563  if (MD->hasAttrs())
3564  Attrs = &MD->getAttrs();
3565  if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3566  // In the implementation of a method with a related return type, the
3567  // type used to type-check the validity of return statements within the
3568  // method body is a pointer to the type of the class being implemented.
3569  RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3570  RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3571  }
3572  } else // If we don't have a function/method context, bail.
3573  return StmtError();
3574 
3575  // C++1z: discarded return statements are not considered when deducing a
3576  // return type.
3577  if (ExprEvalContexts.back().Context ==
3578  ExpressionEvaluationContext::DiscardedStatement &&
3579  FnRetType->getContainedAutoType()) {
3580  if (RetValExp) {
3581  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3582  if (ER.isInvalid())
3583  return StmtError();
3584  RetValExp = ER.get();
3585  }
3586  return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3587  /* NRVOCandidate=*/nullptr);
3588  }
3589 
3590  // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3591  // deduction.
3592  if (getLangOpts().CPlusPlus14) {
3593  if (AutoType *AT = FnRetType->getContainedAutoType()) {
3594  FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3595  if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3596  FD->setInvalidDecl();
3597  return StmtError();
3598  } else {
3599  FnRetType = FD->getReturnType();
3600  }
3601  }
3602  }
3603 
3604  bool HasDependentReturnType = FnRetType->isDependentType();
3605 
3606  ReturnStmt *Result = nullptr;
3607  if (FnRetType->isVoidType()) {
3608  if (RetValExp) {
3609  if (isa<InitListExpr>(RetValExp)) {
3610  // We simply never allow init lists as the return value of void
3611  // functions. This is compatible because this was never allowed before,
3612  // so there's no legacy code to deal with.
3613  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3614  int FunctionKind = 0;
3615  if (isa<ObjCMethodDecl>(CurDecl))
3616  FunctionKind = 1;
3617  else if (isa<CXXConstructorDecl>(CurDecl))
3618  FunctionKind = 2;
3619  else if (isa<CXXDestructorDecl>(CurDecl))
3620  FunctionKind = 3;
3621 
3622  Diag(ReturnLoc, diag::err_return_init_list)
3623  << CurDecl->getDeclName() << FunctionKind
3624  << RetValExp->getSourceRange();
3625 
3626  // Drop the expression.
3627  RetValExp = nullptr;
3628  } else if (!RetValExp->isTypeDependent()) {
3629  // C99 6.8.6.4p1 (ext_ since GCC warns)
3630  unsigned D = diag::ext_return_has_expr;
3631  if (RetValExp->getType()->isVoidType()) {
3632  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3633  if (isa<CXXConstructorDecl>(CurDecl) ||
3634  isa<CXXDestructorDecl>(CurDecl))
3635  D = diag::err_ctor_dtor_returns_void;
3636  else
3637  D = diag::ext_return_has_void_expr;
3638  }
3639  else {
3640  ExprResult Result = RetValExp;
3641  Result = IgnoredValueConversions(Result.get());
3642  if (Result.isInvalid())
3643  return StmtError();
3644  RetValExp = Result.get();
3645  RetValExp = ImpCastExprToType(RetValExp,
3646  Context.VoidTy, CK_ToVoid).get();
3647  }
3648  // return of void in constructor/destructor is illegal in C++.
3649  if (D == diag::err_ctor_dtor_returns_void) {
3650  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3651  Diag(ReturnLoc, D)
3652  << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
3653  << RetValExp->getSourceRange();
3654  }
3655  // return (some void expression); is legal in C++.
3656  else if (D != diag::ext_return_has_void_expr ||
3657  !getLangOpts().CPlusPlus) {
3658  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3659 
3660  int FunctionKind = 0;
3661  if (isa<ObjCMethodDecl>(CurDecl))
3662  FunctionKind = 1;
3663  else if (isa<CXXConstructorDecl>(CurDecl))
3664  FunctionKind = 2;
3665  else if (isa<CXXDestructorDecl>(CurDecl))
3666  FunctionKind = 3;
3667 
3668  Diag(ReturnLoc, D)
3669  << CurDecl->getDeclName() << FunctionKind
3670  << RetValExp->getSourceRange();
3671  }
3672  }
3673 
3674  if (RetValExp) {
3675  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3676  if (ER.isInvalid())
3677  return StmtError();
3678  RetValExp = ER.get();
3679  }
3680  }
3681 
3682  Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3683  /* NRVOCandidate=*/nullptr);
3684  } else if (!RetValExp && !HasDependentReturnType) {
3685  FunctionDecl *FD = getCurFunctionDecl();
3686 
3687  unsigned DiagID;
3688  if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
3689  // C++11 [stmt.return]p2
3690  DiagID = diag::err_constexpr_return_missing_expr;
3691  FD->setInvalidDecl();
3692  } else if (getLangOpts().C99) {
3693  // C99 6.8.6.4p1 (ext_ since GCC warns)
3694  DiagID = diag::ext_return_missing_expr;
3695  } else {
3696  // C90 6.6.6.4p4
3697  DiagID = diag::warn_return_missing_expr;
3698  }
3699 
3700  if (FD)
3701  Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
3702  else
3703  Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
3704 
3705  Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
3706  /* NRVOCandidate=*/nullptr);
3707  } else {
3708  assert(RetValExp || HasDependentReturnType);
3709  const VarDecl *NRVOCandidate = nullptr;
3710 
3711  QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
3712 
3713  // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3714  // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3715  // function return.
3716 
3717  // In C++ the return statement is handled via a copy initialization,
3718  // the C version of which boils down to CheckSingleAssignmentConstraints.
3719  if (RetValExp)
3720  NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3721  if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
3722  // we have a non-void function with an expression, continue checking
3724  RetType,
3725  NRVOCandidate != nullptr);
3726  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3727  RetType, RetValExp);
3728  if (Res.isInvalid()) {
3729  // FIXME: Clean up temporaries here anyway?
3730  return StmtError();
3731  }
3732  RetValExp = Res.getAs<Expr>();
3733 
3734  // If we have a related result type, we need to implicitly
3735  // convert back to the formal result type. We can't pretend to
3736  // initialize the result again --- we might end double-retaining
3737  // --- so instead we initialize a notional temporary.
3738  if (!RelatedRetType.isNull()) {
3739  Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
3740  FnRetType);
3741  Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
3742  if (Res.isInvalid()) {
3743  // FIXME: Clean up temporaries here anyway?
3744  return StmtError();
3745  }
3746  RetValExp = Res.getAs<Expr>();
3747  }
3748 
3749  CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
3750  getCurFunctionDecl());
3751  }
3752 
3753  if (RetValExp) {
3754  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3755  if (ER.isInvalid())
3756  return StmtError();
3757  RetValExp = ER.get();
3758  }
3759  Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3760  }
3761 
3762  // If we need to check for the named return value optimization, save the
3763  // return statement in our scope for later processing.
3764  if (Result->getNRVOCandidate())
3765  FunctionScopes.back()->Returns.push_back(Result);
3766 
3767  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3768  FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3769 
3770  return Result;
3771 }
3772 
3773 StmtResult
3775  SourceLocation RParen, Decl *Parm,
3776  Stmt *Body) {
3777  VarDecl *Var = cast_or_null<VarDecl>(Parm);
3778  if (Var && Var->isInvalidDecl())
3779  return StmtError();
3780 
3781  return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
3782 }
3783 
3784 StmtResult
3786  return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
3787 }
3788 
3789 StmtResult
3791  MultiStmtArg CatchStmts, Stmt *Finally) {
3792  if (!getLangOpts().ObjCExceptions)
3793  Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
3794 
3795  setFunctionHasBranchProtectedScope();
3796  unsigned NumCatchStmts = CatchStmts.size();
3797  return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
3798  NumCatchStmts, Finally);
3799 }
3800 
3802  if (Throw) {
3803  ExprResult Result = DefaultLvalueConversion(Throw);
3804  if (Result.isInvalid())
3805  return StmtError();
3806 
3807  Result = ActOnFinishFullExpr(Result.get());
3808  if (Result.isInvalid())
3809  return StmtError();
3810  Throw = Result.get();
3811 
3812  QualType ThrowType = Throw->getType();
3813  // Make sure the expression type is an ObjC pointer or "void *".
3814  if (!ThrowType->isDependentType() &&
3815  !ThrowType->isObjCObjectPointerType()) {
3816  const PointerType *PT = ThrowType->getAs<PointerType>();
3817  if (!PT || !PT->getPointeeType()->isVoidType())
3818  return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
3819  << Throw->getType() << Throw->getSourceRange());
3820  }
3821  }
3822 
3823  return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
3824 }
3825 
3826 StmtResult
3828  Scope *CurScope) {
3829  if (!getLangOpts().ObjCExceptions)
3830  Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
3831 
3832  if (!Throw) {
3833  // @throw without an expression designates a rethrow (which must occur
3834  // in the context of an @catch clause).
3835  Scope *AtCatchParent = CurScope;
3836  while (AtCatchParent && !AtCatchParent->isAtCatchScope())
3837  AtCatchParent = AtCatchParent->getParent();
3838  if (!AtCatchParent)
3839  return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
3840  }
3841  return BuildObjCAtThrowStmt(AtLoc, Throw);
3842 }
3843 
3844 ExprResult
3846  ExprResult result = DefaultLvalueConversion(operand);
3847  if (result.isInvalid())
3848  return ExprError();
3849  operand = result.get();
3850 
3851  // Make sure the expression type is an ObjC pointer or "void *".
3852  QualType type = operand->getType();
3853  if (!type->isDependentType() &&
3854  !type->isObjCObjectPointerType()) {
3855  const PointerType *pointerType = type->getAs<PointerType>();
3856  if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
3857  if (getLangOpts().CPlusPlus) {
3858  if (RequireCompleteType(atLoc, type,
3859  diag::err_incomplete_receiver_type))
3860  return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3861  << type << operand->getSourceRange();
3862 
3863  ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
3864  if (result.isInvalid())
3865  return ExprError();
3866  if (!result.isUsable())
3867  return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3868  << type << operand->getSourceRange();
3869 
3870  operand = result.get();
3871  } else {
3872  return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3873  << type << operand->getSourceRange();
3874  }
3875  }
3876  }
3877 
3878  // The operand to @synchronized is a full-expression.
3879  return ActOnFinishFullExpr(operand);
3880 }
3881 
3882 StmtResult
3884  Stmt *SyncBody) {
3885  // We can't jump into or indirect-jump out of a @synchronized block.
3886  setFunctionHasBranchProtectedScope();
3887  return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
3888 }
3889 
3890 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
3891 /// and creates a proper catch handler from them.
3892 StmtResult
3894  Stmt *HandlerBlock) {
3895  // There's nothing to test that ActOnExceptionDecl didn't already test.
3896  return new (Context)
3897  CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
3898 }
3899 
3900 StmtResult
3902  setFunctionHasBranchProtectedScope();
3903  return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
3904 }
3905 
3906 namespace {
3907 class CatchHandlerType {
3908  QualType QT;
3909  unsigned IsPointer : 1;
3910 
3911  // This is a special constructor to be used only with DenseMapInfo's
3912  // getEmptyKey() and getTombstoneKey() functions.
3913  friend struct llvm::DenseMapInfo<CatchHandlerType>;
3914  enum Unique { ForDenseMap };
3915  CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
3916 
3917 public:
3918  /// Used when creating a CatchHandlerType from a handler type; will determine
3919  /// whether the type is a pointer or reference and will strip off the top
3920  /// level pointer and cv-qualifiers.
3921  CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
3922  if (QT->isPointerType())
3923  IsPointer = true;
3924 
3925  if (IsPointer || QT->isReferenceType())
3926  QT = QT->getPointeeType();
3927  QT = QT.getUnqualifiedType();
3928  }
3929 
3930  /// Used when creating a CatchHandlerType from a base class type; pretends the
3931  /// type passed in had the pointer qualifier, does not need to get an
3932  /// unqualified type.
3933  CatchHandlerType(QualType QT, bool IsPointer)
3934  : QT(QT), IsPointer(IsPointer) {}
3935 
3936  QualType underlying() const { return QT; }
3937  bool isPointer() const { return IsPointer; }
3938 
3939  friend bool operator==(const CatchHandlerType &LHS,
3940  const CatchHandlerType &RHS) {
3941  // If the pointer qualification does not match, we can return early.
3942  if (LHS.IsPointer != RHS.IsPointer)
3943  return false;
3944  // Otherwise, check the underlying type without cv-qualifiers.
3945  return LHS.QT == RHS.QT;
3946  }
3947 };
3948 } // namespace
3949 
3950 namespace llvm {
3951 template <> struct DenseMapInfo<CatchHandlerType> {
3952  static CatchHandlerType getEmptyKey() {
3953  return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
3954  CatchHandlerType::ForDenseMap);
3955  }
3956 
3957  static CatchHandlerType getTombstoneKey() {
3958  return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
3959  CatchHandlerType::ForDenseMap);
3960  }
3961 
3962  static unsigned getHashValue(const CatchHandlerType &Base) {
3963  return DenseMapInfo<QualType>::getHashValue(Base.underlying());
3964  }
3965 
3966  static bool isEqual(const CatchHandlerType &LHS,
3967  const CatchHandlerType &RHS) {
3968  return LHS == RHS;
3969  }
3970 };
3971 }
3972 
3973 namespace {
3974 class CatchTypePublicBases {
3975  ASTContext &Ctx;
3976  const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
3977  const bool CheckAgainstPointer;
3978 
3979  CXXCatchStmt *FoundHandler;
3980  CanQualType FoundHandlerType;
3981 
3982 public:
3983  CatchTypePublicBases(
3984  ASTContext &Ctx,
3985  const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
3986  : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
3987  FoundHandler(nullptr) {}
3988 
3989  CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
3990  CanQualType getFoundHandlerType() const { return FoundHandlerType; }
3991 
3992  bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
3994  CatchHandlerType Check(S->getType(), CheckAgainstPointer);
3995  const auto &M = TypesToCheck;
3996  auto I = M.find(Check);
3997  if (I != M.end()) {
3998  FoundHandler = I->second;
3999  FoundHandlerType = Ctx.getCanonicalType(S->getType());
4000  return true;
4001  }
4002  }
4003  return false;
4004  }
4005 };
4006 }
4007 
4008 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
4009 /// handlers and creates a try statement from them.
4011  ArrayRef<Stmt *> Handlers) {
4012  // Don't report an error if 'try' is used in system headers.
4013  if (!getLangOpts().CXXExceptions &&
4014  !getSourceManager().isInSystemHeader(TryLoc) &&
4015  (!getLangOpts().OpenMPIsDevice ||
4016  !getLangOpts().OpenMPHostCXXExceptions ||
4017  isInOpenMPTargetExecutionDirective() ||
4018  isInOpenMPDeclareTargetContext()))
4019  Diag(TryLoc, diag::err_exceptions_disabled) << "try";
4020 
4021  // Exceptions aren't allowed in CUDA device code.
4022  if (getLangOpts().CUDA)
4023  CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
4024  << "try" << CurrentCUDATarget();
4025 
4026  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
4027  Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
4028 
4029  sema::FunctionScopeInfo *FSI = getCurFunction();
4030 
4031  // C++ try is incompatible with SEH __try.
4032  if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
4033  Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
4034  Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4035  }
4036 
4037  const unsigned NumHandlers = Handlers.size();
4038  assert(!Handlers.empty() &&
4039  "The parser shouldn't call this if there are no handlers.");
4040 
4041  llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
4042  for (unsigned i = 0; i < NumHandlers; ++i) {
4043  CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
4044 
4045  // Diagnose when the handler is a catch-all handler, but it isn't the last
4046  // handler for the try block. [except.handle]p5. Also, skip exception
4047  // declarations that are invalid, since we can't usefully report on them.
4048  if (!H->getExceptionDecl()) {
4049  if (i < NumHandlers - 1)
4050  return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
4051  continue;
4052  } else if (H->getExceptionDecl()->isInvalidDecl())
4053  continue;
4054 
4055  // Walk the type hierarchy to diagnose when this type has already been
4056  // handled (duplication), or cannot be handled (derivation inversion). We
4057  // ignore top-level cv-qualifiers, per [except.handle]p3
4058  CatchHandlerType HandlerCHT =
4059  (QualType)Context.getCanonicalType(H->getCaughtType());
4060 
4061  // We can ignore whether the type is a reference or a pointer; we need the
4062  // underlying declaration type in order to get at the underlying record
4063  // decl, if there is one.
4064  QualType Underlying = HandlerCHT.underlying();
4065  if (auto *RD = Underlying->getAsCXXRecordDecl()) {
4066  if (!RD->hasDefinition())
4067  continue;
4068  // Check that none of the public, unambiguous base classes are in the
4069  // map ([except.handle]p1). Give the base classes the same pointer
4070  // qualification as the original type we are basing off of. This allows
4071  // comparison against the handler type using the same top-level pointer
4072  // as the original type.
4073  CXXBasePaths Paths;
4074  Paths.setOrigin(RD);
4075  CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
4076  if (RD->lookupInBases(CTPB, Paths)) {
4077  const CXXCatchStmt *Problem = CTPB.getFoundHandler();
4078  if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
4080  diag::warn_exception_caught_by_earlier_handler)
4081  << H->getCaughtType();
4083  diag::note_previous_exception_handler)
4084  << Problem->getCaughtType();
4085  }
4086  }
4087  }
4088 
4089  // Add the type the list of ones we have handled; diagnose if we've already
4090  // handled it.
4091  auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
4092  if (!R.second) {
4093  const CXXCatchStmt *Problem = R.first->second;
4095  diag::warn_exception_caught_by_earlier_handler)
4096  << H->getCaughtType();
4098  diag::note_previous_exception_handler)
4099  << Problem->getCaughtType();
4100  }
4101  }
4102 
4103  FSI->setHasCXXTry(TryLoc);
4104 
4105  return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
4106 }
4107 
4109  Stmt *TryBlock, Stmt *Handler) {
4110  assert(TryBlock && Handler);
4111 
4112  sema::FunctionScopeInfo *FSI = getCurFunction();
4113 
4114  // SEH __try is incompatible with C++ try. Borland appears to support this,
4115  // however.
4116  if (!getLangOpts().Borland) {
4117  if (FSI->FirstCXXTryLoc.isValid()) {
4118  Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
4119  Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
4120  }
4121  }
4122 
4123  FSI->setHasSEHTry(TryLoc);
4124 
4125  // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
4126  // track if they use SEH.
4127  DeclContext *DC = CurContext;
4128  while (DC && !DC->isFunctionOrMethod())
4129  DC = DC->getParent();
4130  FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
4131  if (FD)
4132  FD->setUsesSEHTry(true);
4133  else
4134  Diag(TryLoc, diag::err_seh_try_outside_functions);
4135 
4136  // Reject __try on unsupported targets.
4137  if (!Context.getTargetInfo().isSEHTrySupported())
4138  Diag(TryLoc, diag::err_seh_try_unsupported);
4139 
4140  return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
4141 }
4142 
4143 StmtResult
4145  Expr *FilterExpr,
4146  Stmt *Block) {
4147  assert(FilterExpr && Block);
4148 
4149  if(!FilterExpr->getType()->isIntegerType()) {
4150  return StmtError(Diag(FilterExpr->getExprLoc(),
4151  diag::err_filter_expression_integral)
4152  << FilterExpr->getType());
4153  }
4154 
4155  return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block);
4156 }
4157 
4159  CurrentSEHFinally.push_back(CurScope);
4160 }
4161 
4163  CurrentSEHFinally.pop_back();
4164 }
4165 
4167  assert(Block);
4168  CurrentSEHFinally.pop_back();
4169  return SEHFinallyStmt::Create(Context, Loc, Block);
4170 }
4171 
4172 StmtResult
4174  Scope *SEHTryParent = CurScope;
4175  while (SEHTryParent && !SEHTryParent->isSEHTryScope())
4176  SEHTryParent = SEHTryParent->getParent();
4177  if (!SEHTryParent)
4178  return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
4179  CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
4180 
4181  return new (Context) SEHLeaveStmt(Loc);
4182 }
4183 
4185  bool IsIfExists,
4186  NestedNameSpecifierLoc QualifierLoc,
4187  DeclarationNameInfo NameInfo,
4188  Stmt *Nested)
4189 {
4190  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
4191  QualifierLoc, NameInfo,
4192  cast<CompoundStmt>(Nested));
4193 }
4194 
4195 
4197  bool IsIfExists,
4198  CXXScopeSpec &SS,
4199  UnqualifiedId &Name,
4200  Stmt *Nested) {
4201  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
4202  SS.getWithLocInContext(Context),
4203  GetNameFromUnqualifiedId(Name),
4204  Nested);
4205 }
4206 
4207 RecordDecl*
4209  unsigned NumParams) {
4210  DeclContext *DC = CurContext;
4211  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
4212  DC = DC->getParent();
4213 
4214  RecordDecl *RD = nullptr;
4215  if (getLangOpts().CPlusPlus)
4216  RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
4217  /*Id=*/nullptr);
4218  else
4219  RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
4220 
4221  RD->setCapturedRecord();
4222  DC->addDecl(RD);
4223  RD->setImplicit();
4224  RD->startDefinition();
4225 
4226  assert(NumParams > 0 && "CapturedStmt requires context parameter");
4227  CD = CapturedDecl::Create(Context, CurContext, NumParams);
4228  DC->addDecl(CD);
4229  return RD;
4230 }
4231 
4232 static void
4234  SmallVectorImpl<Expr *> &CaptureInits,
4235  ArrayRef<sema::Capture> Candidates) {
4236  for (const sema::Capture &Cap : Candidates) {
4237  if (Cap.isThisCapture()) {
4238  Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4240  CaptureInits.push_back(Cap.getInitExpr());
4241  continue;
4242  } else if (Cap.isVLATypeCapture()) {
4243  Captures.push_back(
4244  CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
4245  CaptureInits.push_back(nullptr);
4246  continue;
4247  }
4248 
4249  Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4250  Cap.isReferenceCapture()
4253  Cap.getVariable()));
4254  CaptureInits.push_back(Cap.getInitExpr());
4255  }
4256 }
4257 
4260  unsigned NumParams) {
4261  CapturedDecl *CD = nullptr;
4262  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4263 
4264  // Build the context parameter
4266  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4267  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4268  auto *Param =
4269  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4271  DC->addDecl(Param);
4272 
4273  CD->setContextParam(0, Param);
4274 
4275  // Enter the capturing scope for this captured region.
4276  PushCapturedRegionScope(CurScope, CD, RD, Kind);
4277 
4278  if (CurScope)
4279  PushDeclContext(CurScope, CD);
4280  else
4281  CurContext = CD;
4282 
4283  PushExpressionEvaluationContext(
4284  ExpressionEvaluationContext::PotentiallyEvaluated);
4285 }
4286 
4290  CapturedDecl *CD = nullptr;
4291  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4292 
4293  // Build the context parameter
4295  bool ContextIsFound = false;
4296  unsigned ParamNum = 0;
4297  for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4298  E = Params.end();
4299  I != E; ++I, ++ParamNum) {
4300  if (I->second.isNull()) {
4301  assert(!ContextIsFound &&
4302  "null type has been found already for '__context' parameter");
4303  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4304  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
4305  .withConst()
4306  .withRestrict();
4307  auto *Param =
4308  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4310  DC->addDecl(Param);
4311  CD->setContextParam(ParamNum, Param);
4312  ContextIsFound = true;
4313  } else {
4314  IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4315  auto *Param =
4316  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4318  DC->addDecl(Param);
4319  CD->setParam(ParamNum, Param);
4320  }
4321  }
4322  assert(ContextIsFound && "no null type for '__context' parameter");
4323  if (!ContextIsFound) {
4324  // Add __context implicitly if it is not specified.
4325  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4326  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4327  auto *Param =
4328  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4330  DC->addDecl(Param);
4331  CD->setContextParam(ParamNum, Param);
4332  }
4333  // Enter the capturing scope for this captured region.
4334  PushCapturedRegionScope(CurScope, CD, RD, Kind);
4335 
4336  if (CurScope)
4337  PushDeclContext(CurScope, CD);
4338  else
4339  CurContext = CD;
4340 
4341  PushExpressionEvaluationContext(
4342  ExpressionEvaluationContext::PotentiallyEvaluated);
4343 }
4344 
4346  DiscardCleanupsInEvaluationContext();
4347  PopExpressionEvaluationContext();
4348 
4349  CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
4350  RecordDecl *Record = RSI->TheRecordDecl;
4351  Record->setInvalidDecl();
4352 
4353  SmallVector<Decl*, 4> Fields(Record->fields());
4354  ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4356 
4357  PopDeclContext();
4358  PopFunctionScopeInfo();
4359 }
4360 
4362  CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
4363 
4365  SmallVector<Expr *, 4> CaptureInits;
4366  buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
4367 
4368  CapturedDecl *CD = RSI->TheCapturedDecl;
4369  RecordDecl *RD = RSI->TheRecordDecl;
4370 
4372  getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4373  Captures, CaptureInits, CD, RD);
4374 
4375  CD->setBody(Res->getCapturedStmt());
4376  RD->completeDefinition();
4377 
4378  DiscardCleanupsInEvaluationContext();
4379  PopExpressionEvaluationContext();
4380 
4381  PopDeclContext();
4382  PopFunctionScopeInfo();
4383 
4384  return Res;
4385 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
Defines the clang::ASTContext interface.
QualType getDeducedType() const
Get the type deduced for this placeholder type, or null if it&#39;s either not been deduced or was deduce...
Definition: Type.h:4735
QualType withConst() const
Retrieves a version of this type with const applied.
void setImplicit(bool I=true)
Definition: DeclBase.h:548
Represents a function declaration or definition.
Definition: Decl.h:1738
Stmt * body_back()
Definition: Stmt.h:1279
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
void setOrigin(CXXRecordDecl *Rec)
bool isClosedNonFlag() const
Returns true if this enum is annotated with neither flag_enum nor enum_extensibility(open).
Definition: Decl.cpp:4024
Smart pointer class that efficiently represents Objective-C method names.
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:1849
PtrTy get() const
Definition: Ownership.h:81
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2537
EvaluatedExprVisitor - This class visits &#39;Expr *&#39;s.
QualType getPointeeType() const
Definition: Type.h:2550
CanQualType VoidPtrTy
Definition: ASTContext.h:1044
A (possibly-)qualified type.
Definition: Type.h:638
bool isBlockPointerType() const
Definition: Type.h:6304
static void TryMoveInitialization(Sema &S, const InitializedEntity &Entity, const VarDecl *NRVOCandidate, QualType ResultType, Expr *&Value, bool ConvertingConstructorsOnly, ExprResult &Res)
Try to perform the initialization of a potentially-movable value, which is the operand to a return or...
Definition: SemaStmt.cpp:3015
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2101
bool isArrayType() const
Definition: Type.h:6345
bool isLambdaConversionOperator(CXXConversionDecl *C)
Definition: ASTLambda.h:48
bool isOverloadedOperator() const
Whether this function declaration represents an C++ overloaded operator, e.g., "operator+".
Definition: Decl.h:2376
Instantiation or recovery rebuild of a for-range statement.
Definition: Sema.h:3799
SourceLocation getExprLoc() const
Definition: Expr.h:3323
static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned)
Definition: SemaStmt.cpp:733
void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, CapturedRegionKind Kind, unsigned NumParams)
Definition: SemaStmt.cpp:4258
StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, Stmt *HandlerBlock)
ActOnCXXCatchBlock - Takes an exception declaration and a handler block and creates a proper catch ha...
Definition: SemaStmt.cpp:3893
bool operator==(CanQual< T > x, CanQual< U > y)
__SIZE_TYPE__ size_t
The unsigned integer type of the result of the sizeof operator.
Definition: opencl-c.h:68
static unsigned getHashValue(const CatchHandlerType &Base)
Definition: SemaStmt.cpp:3962
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:30
QualType getPointerDiffType() const
Return the unique type for "ptrdiff_t" (C99 7.17) defined in <stddef.h>.
bool EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
Stmt - This represents one statement.
Definition: Stmt.h:66
static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, Stmt *LoopVarDecl, SourceLocation ColonLoc, Expr *Range, SourceLocation RangeLoc, SourceLocation RParenLoc)
Speculatively attempt to dereference an invalid range expression.
Definition: SemaStmt.cpp:2285
VarDecl * getCopyElisionCandidate(QualType ReturnType, Expr *E, CopyElisionSemanticsKind CESK)
Determine whether the given expression is a candidate for copy elision in either a return statement o...
Definition: SemaStmt.cpp:2938
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3355
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R, ArrayRef< Stmt *> Elts, bool isStmtExpr)
Definition: SemaStmt.cpp:351
QualType ReturnType
ReturnType - The target type of return statements in this context, or null if unknown.
Definition: ScopeInfo.h:650
StmtResult ActOnExprStmt(ExprResult Arg)
Definition: SemaStmt.cpp:45
void setParam(unsigned i, ImplicitParamDecl *P)
Definition: Decl.h:4095
StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc, Stmt *First, Expr *collection, SourceLocation RParenLoc)
Definition: SemaStmt.cpp:1887
bool isConstexpr() const
Whether this is a (C++11) constexpr function or constexpr constructor.
Definition: Decl.h:2094
bool isRecordType() const
Definition: Type.h:6369
StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Stmt *InitStmt, ConditionResult Cond)
Definition: SemaStmt.cpp:704
Expr * getBase() const
Definition: Expr.h:2772
SmallVector< Scope *, 2 > CurrentSEHFinally
Stack of active SEH __finally scopes. Can be empty.
Definition: Sema.h:353
std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgumentList &Args)
Produces a formatted string that describes the binding of template parameters to template arguments...
bool isDecltypeAuto() const
Definition: Type.h:4760
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue=true) const
Return the uniqued reference to the type for an lvalue reference to the specified type...
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
Definition: Sema.h:1308
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:87
void setType(QualType t)
Definition: Expr.h:129
AssignConvertType
AssignConvertType - All of the &#39;assignment&#39; semantic checks return this enum to indicate whether the ...
Definition: Sema.h:9521
CanQualType getCanonicalFunctionResultType(QualType ResultType) const
Adjust the given function result type.
Opcode getOpcode() const
Definition: Expr.h:3327
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:4749
Represents an attribute applied to a statement.
Definition: Stmt.h:1633
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1844
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:6245
The base class of the type hierarchy.
Definition: Type.h:1407
Represents Objective-C&#39;s @throw statement.
Definition: StmtObjC.h:313
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2812
ForRangeStatus
Definition: Sema.h:2953
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1262
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.h:1169
StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, Decl *Parm, Stmt *Body)
Definition: SemaStmt.cpp:3774
virtual void completeDefinition()
Note that the definition of this type is now complete.
Definition: Decl.cpp:4154
QualType withConst() const
Definition: Type.h:810
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:690
bool getNoReturnAttr() const
Determine whether this function type includes the GNU noreturn attribute.
Definition: Type.h:3621
A container of type source information.
Definition: Decl.h:87
Wrapper for void* pointer.
Definition: Ownership.h:51
static AttributedStmt * Create(const ASTContext &C, SourceLocation Loc, ArrayRef< const Attr *> Attrs, Stmt *SubStmt)
Definition: Stmt.cpp:352
StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope)
Definition: SemaStmt.cpp:2893
Scope * getContinueParent()
getContinueParent - Return the closest scope that a continue statement would be affected by...
Definition: Scope.h:240
unsigned getDepth() const
Returns the depth of this scope. The translation-unit has scope depth 0.
Definition: Scope.h:264
Represents a path from a specific derived class (which is not represented as part of the path) to a p...
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4156
Determining whether a for-range statement could be built.
Definition: Sema.h:3802
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3169
ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val)
Definition: SemaStmt.cpp:395
Retains information about a function, method, or block that is currently being parsed.
Definition: ScopeInfo.h:97
StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, SourceLocation WhileLoc, SourceLocation CondLParen, Expr *Cond, SourceLocation CondRParen)
Definition: SemaStmt.cpp:1314
This file provides some common utility functions for processing Lambda related AST Constructs...
enumerator_range enumerators() const
Definition: Decl.h:3453
Represents a variable declaration or definition.
Definition: Decl.h:813
ActionResult< Stmt * > StmtResult
Definition: Ownership.h:268
PartialDiagnostic PDiag(unsigned DiagID=0)
Build a partial diagnostic.
Definition: SemaInternal.h:25
const VarDecl * getNRVOCandidate() const
Retrieve the variable that might be used for the named return value optimization. ...
Definition: Stmt.h:2485
StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, MultiStmtArg Catch, Stmt *Finally)
Definition: SemaStmt.cpp:3790
QualType getReturnType() const
Definition: Decl.h:2302
DiagnosticsEngine & Diags
Definition: Sema.h:326
bool isEnumeralType() const
Definition: Type.h:6373
const AstTypeMatcher< PointerType > pointerType
Matches pointer types, but does not match Objective-C object pointer types.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6748
void ActOnForEachDeclStmt(DeclGroupPtrTy Decl)
Definition: SemaStmt.cpp:83
static bool ObjCEnumerationCollection(Expr *Collection)
Definition: SemaStmt.cpp:2054
SourceLocation getStarLoc() const
Definition: TypeLoc.h:1205
RAII class that determines when any errors have occurred between the time the instance was created an...
Definition: Diagnostic.h:999
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
bool isAmbiguous() const
Definition: Lookup.h:290
bool isInvalidDecl() const
Definition: DeclBase.h:542
static InitializedEntity InitializeResult(SourceLocation ReturnLoc, QualType Type, bool NRVO)
Create the initialization entity for the result of a function.
Defines the Objective-C statement AST node classes.
EntityKind getKind() const
Determine the kind of initialization.
StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body)
FinishObjCForCollectionStmt - Attach the body to a objective-C foreach statement. ...
Definition: SemaStmt.cpp:2664
ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *Input)
Definition: SemaExpr.cpp:13125
llvm::PointerIntPair< SwitchStmt *, 1, bool > SwitchInfo
A SwitchStmt, along with a flag indicating if its list of case statements is incomplete (because we d...
Definition: ScopeInfo.h:181
Represents a parameter to a function.
Definition: Decl.h:1550
Defines the clang::Expr interface and subclasses for C++ expressions.
bool isUnset() const
Definition: Ownership.h:172
CapturedDecl * TheCapturedDecl
The CapturedDecl for this statement.
Definition: ScopeInfo.h:740
static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val, unsigned UnpromotedWidth, bool UnpromotedSign)
Check the specified case value is in range for the given unpromoted switch type.
Definition: SemaStmt.cpp:740
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:270
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:57
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:1593
Expr * IgnoreImpCasts() LLVM_READONLY
IgnoreImpCasts - Skip past any implicit casts which might surround this expression.
Definition: Expr.h:3167
Represents a struct/union/class.
Definition: Decl.h:3593
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:298
StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS, SourceLocation DotDotDotLoc, ExprResult RHS, SourceLocation ColonLoc)
Definition: SemaStmt.cpp:446
One of these records is kept for each identifier that is lexed.
bool isAtCatchScope() const
isAtCatchScope - Return true if this scope is @catch.
Definition: Scope.h:387
Expr * GetTemporaryExpr() const
Retrieve the temporary-generating subexpression whose value will be materialized into a glvalue...
Definition: ExprCXX.h:4197
Expr * getFalseExpr() const
Definition: Expr.h:3630
Step
Definition: OpenMPClause.h:152
void DiagnoseUnusedExprResult(const Stmt *S)
DiagnoseUnusedExprResult - If the statement passed in is an expression whose result is unused...
Definition: SemaStmt.cpp:200
Represents a class type in Objective C.
Definition: Type.h:5538
static RecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl=nullptr)
Definition: Decl.cpp:4107
DeclStmt * getConditionVariableDeclStmt()
If this SwitchStmt has a condition variable, return the faux DeclStmt associated with the creation of...
Definition: Stmt.h:2003
ObjCMethodDecl * lookupInstanceMethod(Selector Sel) const
Lookup an instance method for a given selector.
Definition: DeclObjC.h:1847
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:155
A C++ nested-name-specifier augmented with source location information.
QualType getCaughtType() const
Definition: StmtCXX.cpp:20
FullExpr - Represents a "full-expression" node.
Definition: Expr.h:877
field_range fields() const
Definition: Decl.h:3784
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:288
StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, Stmt *LoopVar, SourceLocation ColonLoc, Expr *Collection, SourceLocation RParenLoc, BuildForRangeKind Kind)
ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
Definition: SemaStmt.cpp:2077
void setLocStart(SourceLocation L)
Definition: Decl.h:497
ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection)
Definition: SemaStmt.cpp:1812
void startDefinition()
Starts the definition of this tag declaration.
Definition: Decl.cpp:3877
GNUNullExpr - Implements the GNU __null extension, which is a name for a null pointer constant that h...
Definition: Expr.h:4062
bool isReferenceType() const
Definition: Type.h:6308
StmtResult BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt, ConditionResult Cond, Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal)
Definition: SemaStmt.cpp:564
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:1003
bool isInvalid() const
Definition: Sema.h:9907
void setNoNRVO()
Definition: Scope.h:481
std::pair< VarDecl *, Expr * > get() const
Definition: Sema.h:9908
Expr * getSubExpr()
Definition: Expr.h:3055
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:739
bool isGnuLocal() const
Definition: Decl.h:496
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:6644
Scope * getBreakParent()
getBreakParent - Return the closest scope that a break statement would be affected by...
Definition: Scope.h:250
IdentifierTable & Idents
Definition: ASTContext.h:566
SourceLocation FirstSEHTryLoc
First SEH &#39;__try&#39; statement in the current function.
Definition: ScopeInfo.h:174
void ActOnAbortSEHFinallyBlock()
Definition: SemaStmt.cpp:4162
Qualifiers getLocalQualifiers() const
Retrieve the set of qualifiers local to this particular QualType instance, not including any qualifie...
Definition: Type.h:6091
void setARCPseudoStrong(bool PS)
Definition: Decl.h:1361
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:110
StmtResult ActOnAttributedStmt(SourceLocation AttrLoc, ArrayRef< const Attr *> Attrs, Stmt *SubStmt)
Definition: SemaStmt.cpp:515
Represents Objective-C&#39;s @catch statement.
Definition: StmtObjC.h:74
StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, NestedNameSpecifierLoc QualifierLoc, DeclarationNameInfo NameInfo, Stmt *Nested)
Definition: SemaStmt.cpp:4184
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:2339
static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange, QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar, SourceLocation ColonLoc, SourceLocation CoawaitLoc, OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr, ExprResult *EndExpr, BeginEndFunction *BEF)
Create the initialization, compare, and increment steps for the range-based for loop expression...
Definition: SemaStmt.cpp:2153
static CapturedStmt * Create(const ASTContext &Context, Stmt *S, CapturedRegionKind Kind, ArrayRef< Capture > Captures, ArrayRef< Expr *> CaptureInits, CapturedDecl *CD, RecordDecl *RD)
Definition: Stmt.cpp:1219
Represents a C++ unqualified-id that has been parsed.
Definition: DeclSpec.h:934
An rvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2738
static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, QualType T, APValue &Value, Sema::CCEKind CCE, bool RequireInt)
CheckConvertedConstantExpression - Check that the expression From is a converted constant expression ...
ForStmt - This represents a &#39;for (init;cond;inc)&#39; stmt.
Definition: Stmt.h:2237
Represents the results of name lookup.
Definition: Lookup.h:47
PtrTy get() const
Definition: Ownership.h:174
static IfStmt * Create(const ASTContext &Ctx, SourceLocation IL, bool IsConstexpr, Stmt *Init, VarDecl *Var, Expr *Cond, Stmt *Then, SourceLocation EL=SourceLocation(), Stmt *Else=nullptr)
Create an IfStmt.
Definition: Stmt.cpp:841
Decl * getSingleDecl()
Definition: DeclGroup.h:84
This is a scope that corresponds to a switch statement.
Definition: Scope.h:99
APValue Val
Val - This is the value the expression can be folded to.
Definition: Expr.h:573
void ActOnStartSEHFinallyBlock()
Definition: SemaStmt.cpp:4158
AccessSpecifier getAccessSpecifier() const
Returns the access specifier for this base specifier.
Definition: DeclCXX.h:272
bool isTriviallyCopyableType(const ASTContext &Context) const
Return true if this is a trivially copyable type (C++0x [basic.types]p9)
Definition: Type.cpp:2205
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6797
Parameter for captured context.
Definition: Decl.h:1507
SourceLocation getRParenLoc() const
Definition: StmtCXX.h:197
An x-value expression is a reference to an object with independent storage but which can be "moved"...
Definition: Specifiers.h:119
static CaseStmt * Create(const ASTContext &Ctx, Expr *lhs, Expr *rhs, SourceLocation caseLoc, SourceLocation ellipsisLoc, SourceLocation colonLoc)
Build a case statement.
Definition: Stmt.cpp:1080
ExprResult CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl=nullptr, llvm::function_ref< ExprResult(Expr *)> Filter=[](Expr *E) -> ExprResult { return E;})
Process any TypoExprs in the given Expr and its children, generating diagnostics as appropriate and r...
RecordDecl * CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, unsigned NumParams)
Definition: SemaStmt.cpp:4208
StmtResult StmtError()
Definition: Ownership.h:284
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3292
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6142
Stmt * getInit()
Definition: Stmt.h:2250
static CompoundStmt * Create(const ASTContext &C, ArrayRef< Stmt *> Stmts, SourceLocation LB, SourceLocation RB)
Definition: Stmt.cpp:332
StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope)
Definition: SemaStmt.cpp:2905
CXXForRangeStmt - This represents C++0x [stmt.ranged]&#39;s ranged for statement, represented as &#39;for (ra...
Definition: StmtCXX.h:127
SmallVector< std::pair< llvm::APSInt, EnumConstantDecl * >, 64 > EnumValsTy
Definition: SemaStmt.cpp:762
StmtResult ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, LabelDecl *TheDecl)
Definition: SemaStmt.cpp:2849
CharUnits getDeclAlign(const Decl *D, bool ForAlignof=false) const
Return a conservative estimate of the alignment of the specified decl D.
Expr * IgnoreParenCasts() LLVM_READONLY
IgnoreParenCasts - Ignore parentheses and casts.
Definition: Expr.cpp:2595
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:41
static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond, const Expr *Case)
Definition: SemaStmt.cpp:798
bool isNull() const
Definition: DeclGroup.h:80
CaseStmt - Represent a case statement.
Definition: Stmt.h:1394
SourceLocation getContinueLoc() const
Definition: Stmt.h:2393
bool isInt() const
Definition: APValue.h:234
bool isMacroBodyExpansion(SourceLocation Loc) const
Tests whether the given source location represents the expansion of a macro body. ...
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3003
bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, bool AllowMask) const
IsValueInFlagEnum - Determine if a value is allowed as part of a flag enum.
Definition: SemaDecl.cpp:16633
ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond)
Definition: SemaStmt.cpp:640
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1217
Preprocessor & PP
Definition: Sema.h:323
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:1918
const LangOptions & getLangOpts() const
Definition: Sema.h:1231
static IntegerLiteral * Create(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l)
Returns a new integer literal with value &#39;V&#39; and type &#39;type&#39;.
Definition: Expr.cpp:792
bool isTypeDependent() const
isTypeDependent - Determines whether this expression is type-dependent (C++ [temp.dep.expr]), which means that its type could change from one template instantiation to the next.
Definition: Expr.h:167
static CatchHandlerType getTombstoneKey()
Definition: SemaStmt.cpp:3957
StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block)
Definition: SemaStmt.cpp:4166
StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope)
Definition: SemaStmt.cpp:4173
Perform initialization via a constructor.
Perform a user-defined conversion, either via a conversion function or via a constructor.
A class that does preorder or postorder depth-first traversal on the entire Clang AST and visits each...
ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc, SourceLocation RangeLoc, const DeclarationNameInfo &NameInfo, LookupResult &MemberLookup, OverloadCandidateSet *CandidateSet, Expr *Range, ExprResult *CallExpr)
Build a call to &#39;begin&#39; or &#39;end&#39; for a C++11 for-range statement.
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4044
Represents an ObjC class declaration.
Definition: DeclObjC.h:1172
Member name lookup, which finds the names of class/struct/union members.
Definition: Sema.h:3062
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface...
Definition: Type.h:5773
SourceLocation getTypeSpecStartLoc() const
Definition: Decl.cpp:1765
NestedNameSpecifierLoc getWithLocInContext(ASTContext &Context) const
Retrieve a nested-name-specifier with location information, copied into the given AST context...
Definition: DeclSpec.cpp:143
Stmt * getBody()
Definition: Stmt.h:1958
StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, Scope *CurScope)
Definition: SemaStmt.cpp:3827
void setStmt(LabelStmt *T)
Definition: Decl.h:494
static SEHTryStmt * Create(const ASTContext &C, bool isCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler)
Definition: Stmt.cpp:1107
bool isSEHTrySupported() const
Whether the target supports SEH __try.
Definition: TargetInfo.h:1159
Contains information about the compound statement currently being parsed.
Definition: ScopeInfo.h:67
SourceLocation FirstCXXTryLoc
First C++ &#39;try&#39; statement in the current function.
Definition: ScopeInfo.h:171
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3455
RAII class used to determine whether SFINAE has trapped any errors that occur during template argumen...
Definition: Sema.h:7557
static ImplicitParamDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, ImplicitParamKind ParamKind)
Create implicit parameter.
Definition: Decl.cpp:4404
unsigned getFlags() const
getFlags - Return the flags for this scope.
Definition: Scope.h:218
void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType)
Change the result type of a function type once it is deduced.
bool hasAttr() const
Definition: DeclBase.h:531
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3587
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:278
A little helper class used to produce diagnostics.
Definition: Diagnostic.h:1043
StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl, SourceLocation StartLoc, SourceLocation EndLoc)
Definition: SemaStmt.cpp:73
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1241
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1613
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3687
void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse)
Perform marking for a reference to an arbitrary declaration.
Definition: SemaExpr.cpp:15788
Describes the capture of either a variable, or &#39;this&#39;, or variable-length array type.
Definition: Stmt.h:3118
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any...
Definition: Decl.cpp:3300
Retains information about a captured region.
Definition: ScopeInfo.h:737
bool inferObjCARCLifetime(ValueDecl *decl)
Definition: SemaDecl.cpp:5872
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat)
Definition: Expr.cpp:1844
StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp)
Definition: SemaStmt.cpp:3536
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: StmtCXX.h:44
SourceLocation getLocation() const
Definition: Expr.h:1122
void ActOnFinishOfCompoundStmt()
Definition: SemaStmt.cpp:343
bool isClosed() const
Returns true if this enum is either annotated with enum_extensibility(closed) or isn&#39;t annotated with...
Definition: Decl.cpp:4014
QualType getAutoRRefDeductType() const
C++11 deduction pattern for &#39;auto &&&#39; type.
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location, which defaults to the empty location.
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body)
Definition: SemaStmt.cpp:3785
Scope * getCurScope() const
Retrieve the parser&#39;s current scope.
Definition: Sema.h:10728
SourceLocation getBeginLoc() const
Get the begin source location.
Definition: TypeLoc.cpp:190
Allows QualTypes to be sorted and hence used in maps and sets.
Retains information about a block that is currently being parsed.
Definition: ScopeInfo.h:711
CXXMethodDecl * CallOperator
The lambda&#39;s compiler-generated operator().
Definition: ScopeInfo.h:791
Expr * getCond() const
Definition: Expr.h:3621
Type source information for an attributed type.
Definition: TypeLoc.h:849
This represents one expression.
Definition: Expr.h:106
QualType getPointeeType() const
Definition: Type.h:2694
DeclStmt * getEndStmt()
Definition: StmtCXX.h:158
SourceLocation End
Allow any unmodeled side effect.
Definition: Expr.h:599
std::string Label
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1036
SourceLocation getDefaultLoc() const
Definition: Stmt.h:1559
TypeLoc getReturnTypeLoc(FunctionDecl *FD) const
Definition: SemaStmt.cpp:3405
StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, Stmt *SubStmt, Scope *CurScope)
Definition: SemaStmt.cpp:477
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6811
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:87
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
void setInit(Expr *I)
Definition: Decl.cpp:2205
VarDecl * getExceptionDecl() const
Definition: StmtCXX.h:50
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition: DeclBase.cpp:132
std::string getAsString() const
Retrieve the human-readable string for this name.
static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef, const VarDecl *VD)
Definition: SemaStmt.cpp:2754
bool isExceptionVariable() const
Determine whether this variable is the exception variable in a C++ catch statememt or an Objective-C ...
Definition: Decl.h:1307
void setContextParam(unsigned i, ImplicitParamDecl *P)
Definition: Decl.h:4113
bool isSEHTryScope() const
Determine whether this scope is a SEH &#39;__try&#39; block.
Definition: Scope.h:438
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition: Decl.cpp:3475
QualType getTagDeclType(const TagDecl *Decl) const
Return the unique reference to the type for the specified TagDecl (struct/union/class/enum) decl...
Defines the clang::Preprocessor interface.
ObjCLifetime getObjCLifetime() const
Definition: Type.h:326
bool isFileContext() const
Definition: DeclBase.h:1818
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
Expr * getRHS()
Definition: Stmt.h:1495
void setBody(Stmt *Body)
Definition: Stmt.h:1963
The entity being initialized is an exception object that is being thrown.
Represents Objective-C&#39;s @synchronized statement.
Definition: StmtObjC.h:262
SourceLocation Begin
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return null.
Definition: Expr.h:2532
bool refersToEnclosingVariableOrCapture() const
Does this DeclRefExpr refer to an enclosing local or a captured variable?
Definition: Expr.h:1239
void removeLocalConst()
Definition: Type.h:6166
Defines the clang::TypeLoc interface and its subclasses.
static DeclContext * castToDeclContext(const CapturedDecl *D)
Definition: Decl.h:4131
AutoType * getContainedAutoType() const
Get the AutoType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.h:2180
QualType getType() const
Definition: Expr.h:128
bool isFunctionOrMethod() const
Definition: DeclBase.h:1800
static CapturedDecl * Create(ASTContext &C, DeclContext *DC, unsigned NumParams)
Definition: Decl.cpp:4454
static bool isEqual(const CatchHandlerType &LHS, const CatchHandlerType &RHS)
Definition: SemaStmt.cpp:3966
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1752
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:2443
StmtResult ActOnNullStmt(SourceLocation SemiLoc, bool HasLeadingEmptyMacro=false)
Definition: SemaStmt.cpp:68
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:904
SwitchCase * getSwitchCaseList()
Definition: Stmt.h:2015
bool isInvalid() const
Definition: Ownership.h:170
QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl, ObjCInterfaceDecl *PrevDecl=nullptr) const
getObjCInterfaceType - Return the unique reference to the type for the specified ObjC interface decl...
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1896
void setLocation(SourceLocation L)
Definition: DeclBase.h:419
static WhileStmt * Create(const ASTContext &Ctx, VarDecl *Var, Expr *Cond, Stmt *Body, SourceLocation WL)
Create a while statement.
Definition: Stmt.cpp:1005
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:1078
void setHasCXXTry(SourceLocation TryLoc)
Definition: ScopeInfo.h:420
ValueDecl * getDecl()
Definition: Expr.h:1114
bool isUsable() const
Definition: Ownership.h:171
Represents a C++ conversion function within a class.
Definition: DeclCXX.h:2768
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1396
const Expr * getSubExpr() const
Definition: Expr.h:1860
unsigned short CapRegionKind
The kind of captured region.
Definition: ScopeInfo.h:752
CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style cast in C++ (C++ [expr.cast]), which uses the syntax (Type)expr.
Definition: Expr.h:3229
llvm::iterator_range< semantics_iterator > semantics()
Definition: Expr.h:5385
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:703
bool Contains(const Scope &rhs) const
Returns if rhs has a higher scope depth than this.
Definition: Scope.h:452
ImaginaryLiteral - We support imaginary integer and floating point literals, like "1...
Definition: Expr.h:1517
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:301
static InitializationKind CreateCopy(SourceLocation InitLoc, SourceLocation EqualLoc, bool AllowExplicitConvs=false)
Create a copy initialization.
static CXXRecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl *PrevDecl=nullptr, bool DelayTypeCreation=false)
Definition: DeclCXX.cpp:124
static SEHFinallyStmt * Create(const ASTContext &C, SourceLocation FinallyLoc, Stmt *Block)
Definition: Stmt.cpp:1135
DoStmt - This represents a &#39;do/while&#39; stmt.
Definition: Stmt.h:2185
void setBody(Stmt *S)
Definition: StmtCXX.h:192
BuildForRangeKind
Definition: Sema.h:3794
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:6131
RecordDecl * getDecl() const
Definition: Type.h:4380
static void buildCapturedStmtCaptureList(SmallVectorImpl< CapturedStmt::Capture > &Captures, SmallVectorImpl< Expr *> &CaptureInits, ArrayRef< sema::Capture > Candidates)
Definition: SemaStmt.cpp:4233
static CatchHandlerType getEmptyKey()
Definition: SemaStmt.cpp:3952
static SwitchStmt * Create(const ASTContext &Ctx, Stmt *Init, VarDecl *Var, Expr *Cond)
Create a switch statement.
Definition: Stmt.cpp:947
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:945
The "struct" keyword.
Definition: Type.h:5033
SelectorTable & Selectors
Definition: ASTContext.h:567
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:169
Kind
This captures a statement into a function.
Definition: Stmt.h:3105
static bool EqEnumVals(const std::pair< llvm::APSInt, EnumConstantDecl *> &lhs, const std::pair< llvm::APSInt, EnumConstantDecl *> &rhs)
EqEnumVals - Comparison preficate for uniqing enumeration values.
Definition: SemaStmt.cpp:622
ActionResult - This structure is used while parsing/acting on expressions, stmts, etc...
Definition: Ownership.h:157
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5304
TypeLoc IgnoreParens() const
Definition: TypeLoc.h:1127
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: StmtCXX.h:199
void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt)
ActOnCaseStmtBody - This installs a statement as the body of a case.
Definition: SemaStmt.cpp:471
void setHasSEHTry(SourceLocation TryLoc)
Definition: ScopeInfo.h:425
bool isOpenMPLoopScope() const
Determine whether this scope is a loop having OpenMP loop directive attached.
Definition: Scope.h:429
DeduceAutoResult
Result type of DeduceAutoType.
Definition: Sema.h:7073
Encodes a location in the source.
QualType getReturnType() const
Definition: Type.h:3613
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4396
Expr * getSubExpr() const
Definition: Expr.h:1926
void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, Expr *SrcExpr)
DiagnoseAssignmentEnum - Warn if assignment to enum is a constant integer not in the range of enum va...
Definition: SemaStmt.cpp:1236
CastKind getCastKind() const
Definition: Expr.h:3049
void FinalizeDeclaration(Decl *D)
FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform any semantic actions neces...
Definition: SemaDecl.cpp:12009
StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, Scope *CurScope)
Definition: SemaStmt.cpp:3517
Expr * getLHS()
Definition: Stmt.h:1483
StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, SourceLocation ColonLoc, Stmt *SubStmt)
Definition: SemaStmt.cpp:492
StmtResult ActOnForEachLValueExpr(Expr *E)
In an Objective C collection iteration statement: for (x in y) x can be an arbitrary l-value expressi...
Definition: SemaStmt.cpp:1798
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:171
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:1143
IdentifierTable & getIdentifierTable()
Definition: Preprocessor.h:823
Represents the declaration of a label.
Definition: Decl.h:469
StmtResult ActOnCapturedRegionEnd(Stmt *S)
Definition: SemaStmt.cpp:4361
Expr * getCond()
Definition: Stmt.h:1946
void setAllEnumCasesCovered()
Set a flag in the SwitchStmt indicating that if the &#39;switch (X)&#39; is a switch over an enum value then ...
Definition: Stmt.h:2036
bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, SourceLocation ReturnLoc, Expr *&RetExpr, AutoType *AT)
Deduce the return type for a function from a returned expression, per C++1y [dcl.spec.auto]p6.
Definition: SemaStmt.cpp:3414
static QualType GetTypeBeforeIntegralPromotion(const Expr *&E)
GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of potentially integral-promoted expr...
Definition: SemaStmt.cpp:630
StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw)
Definition: SemaStmt.cpp:3801
StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, ArrayRef< Stmt *> Handlers)
ActOnCXXTryBlock - Takes a try compound-statement and a number of handlers and creates a try statemen...
Definition: SemaStmt.cpp:4010
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2285
StmtResult ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, Stmt *Block)
Definition: SemaStmt.cpp:4144
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1860
CanQualType VoidTy
Definition: ASTContext.h:1016
Describes the kind of initialization being performed, along with location information for tokens rela...
bool isValueDependent() const
isValueDependent - Determines whether this expression is value-dependent (C++ [temp.dep.constexpr]).
Definition: Expr.h:149
bool isKnownToHaveBooleanValue() const
isKnownToHaveBooleanValue - Return true if this is an integer expression that is known to return 0 or...
Definition: Expr.cpp:134
bool isObjCObjectPointerType() const
Definition: Type.h:6393
SmallVector< Capture, 4 > Captures
Captures - The captures.
Definition: ScopeInfo.h:642
StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, Stmt *Body)
Definition: SemaStmt.cpp:825
bool isMSAsmLabel() const
Definition: Decl.h:503
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3120
Stmt * getCapturedStmt()
Retrieve the statement being captured.
Definition: Stmt.h:3206
bool isLValue() const
isLValue - True if this expression is an "l-value" according to the rules of the current language...
Definition: Expr.h:249
sema::CompoundScopeInfo & getCurCompoundScope() const
Definition: SemaStmt.cpp:347
Requests that all candidates be shown.
Definition: Overload.h:69
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:1958
StmtResult ActOnWhileStmt(SourceLocation WhileLoc, ConditionResult Cond, Stmt *Body)
Definition: SemaStmt.cpp:1292
EnumDecl * getDecl() const
Definition: Type.h:4403
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1366
OverloadCandidateSet - A set of overload candidates, used in C++ overload resolution (C++ 13...
Definition: Overload.h:837
StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SynchExpr, Stmt *SynchBody)
Definition: SemaStmt.cpp:3883
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2293
Representation of a Microsoft __if_exists or __if_not_exists statement with a dependent name...
Definition: StmtCXX.h:241
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:215
static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef, const VarDecl *VD, QualType RangeInitType)
Definition: SemaStmt.cpp:2680
Expr * getLHS() const
Definition: Expr.h:3332
OpaqueValueExpr * getOpaqueValue() const
getOpaqueValue - Return the opaque value placeholder.
Definition: Expr.h:3703
LabelStmt * getStmt() const
Definition: Decl.h:493
void setCapturedRecord()
Mark the record as a record for captured variables in CapturedStmt construct.
Definition: Decl.cpp:4141
bool isDeduced() const
Definition: Type.h:4738
QualType withRestrict() const
Definition: Type.h:826
Expr * getFalseExpr() const
getFalseExpr - Return the subexpression which will be evaluated if the condnition evaluates to false;...
Definition: Expr.h:3719
NullStmt - This is the null statement ";": C99 6.8.3p3.
Definition: Stmt.h:1210
Dataflow Directional Tag Classes.
StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body)
Definition: SemaStmt.cpp:3901
bool isValid() const
Return true if this is a valid SourceLocation object.
ObjCMethodDecl * lookupPrivateMethod(const Selector &Sel, bool Instance=true) const
Lookup a method in the classes implementation hierarchy.
Definition: DeclObjC.cpp:740
A single step in the initialization sequence.
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1262
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:571
const Scope * getParent() const
getParent - Return the scope that this is nested in.
Definition: Scope.h:226
QualType getType() const
Get the type for which this source info wrapper provides information.
Definition: TypeLoc.h:131
StmtResult ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, Stmt *First, ConditionResult Second, FullExprArg Third, SourceLocation RParenLoc, Stmt *Body)
Definition: SemaStmt.cpp:1743
void ActOnCapturedRegionError()
Definition: SemaStmt.cpp:4345
bool isRecord() const
Definition: DeclBase.h:1827
void addNRVOCandidate(VarDecl *VD)
Definition: Scope.h:470
static ReturnStmt * Create(const ASTContext &Ctx, SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate)
Create a return statement.
Definition: Stmt.cpp:1064
StmtResult ActOnExprStmtError()
Definition: SemaStmt.cpp:63
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:118
const Expr * getInit() const
Definition: Decl.h:1220
StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, Expr *DestExp)
Definition: SemaStmt.cpp:2858
Kind getKind() const
Definition: DeclBase.h:421
bool isSingleDecl() const
Definition: DeclGroup.h:81
static void DiagnoseForRangeVariableCopies(Sema &SemaRef, const CXXForRangeStmt *ForStmt)
DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
Definition: SemaStmt.cpp:2795
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5835
Represents an enum.
Definition: Decl.h:3326
const Decl * getSingleDecl() const
Definition: Stmt.h:1158
bool isAmbiguous(CanQualType BaseType)
Determine whether the path from the most-derived type to the given base type is ambiguous (i...
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
Expr * get() const
Definition: Sema.h:3672
ConstEvaluatedExprVisitor - This class visits &#39;const Expr *&#39;s.
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
bool isSingleDecl() const
isSingleDecl - This method returns true if this DeclStmt refers to a single Decl. ...
Definition: Stmt.h:1156
void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit)
AddInitializerToDecl - Adds the initializer Init to the declaration dcl.
Definition: SemaDecl.cpp:10977
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 &#39;auto&#39; typ...
Definition: Type.h:6663
Expr * IgnoreParenImpCasts() LLVM_READONLY
IgnoreParenImpCasts - Ignore parentheses and implicit casts.
Definition: Expr.cpp:2693
Represents a __leave statement.
Definition: Stmt.h:3070
Represents a pointer to an Objective C object.
Definition: Type.h:5794
SwitchStmt - This represents a &#39;switch&#39; stmt.
Definition: Stmt.h:1886
StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, CXXScopeSpec &SS, UnqualifiedId &Name, Stmt *Nested)
Definition: SemaStmt.cpp:4196
unsigned getIntWidth(QualType T) const
RecordDecl * TheRecordDecl
The captured record type.
Definition: ScopeInfo.h:743
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4370
StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *Begin, Stmt *End, Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc, BuildForRangeKind Kind)
BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
Definition: SemaStmt.cpp:2338
bool body_empty() const
Definition: Stmt.h:1268
Represents Objective-C&#39;s collection statement.
Definition: StmtObjC.h:24
ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E)
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6578
T * getAttr() const
Definition: DeclBase.h:527
Selector getSelector(unsigned NumArgs, IdentifierInfo **IIV)
Can create any sort of selector.
CanQualType DependentTy
Definition: ASTContext.h:1045
static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S, const EnumDecl *ED, const Expr *CaseExpr, EnumValsTy::iterator &EI, EnumValsTy::iterator &EIEnd, const llvm::APSInt &Val)
Returns true if we should emit a diagnostic about this case expression not being a part of the enum u...
Definition: SemaStmt.cpp:766
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:716
Stmt * getInit()
Definition: Stmt.h:1967
void setUsesSEHTry(bool UST)
Definition: Decl.h:2115
static bool CmpEnumVals(const std::pair< llvm::APSInt, EnumConstantDecl *> &lhs, const std::pair< llvm::APSInt, EnumConstantDecl *> &rhs)
CmpEnumVals - Comparison predicate for sorting enumeration values.
Definition: SemaStmt.cpp:614
Opcode getOpcode() const
Definition: Expr.h:1921
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:2269
QualType getAutoDeductType() const
C++11 deduction pattern for &#39;auto&#39; type.
DeduceAutoResult DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result, Optional< unsigned > DependentDeductionDepth=None)
Represents Objective-C&#39;s @finally statement.
Definition: StmtObjC.h:120
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:92
void addDecl(Decl *D)
Add the declaration D into this context.
Definition: DeclBase.cpp:1507
Represents a base class of a C++ class.
Definition: DeclCXX.h:192
static bool DiagnoseUnusedComparison(Sema &S, const Expr *E)
Diagnose unused comparisons, both builtin and overloaded operators.
Definition: SemaStmt.cpp:129
void ActOnStartOfCompoundStmt(bool IsStmtExpr)
Definition: SemaStmt.cpp:339
void markUsed(ASTContext &C)
Mark the declaration used, in the sense of odr-use.
Definition: DeclBase.cpp:412
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types...
Definition: Type.cpp:2031
DeclStmt * getRangeStmt()
Definition: StmtCXX.h:154
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, bool InUnqualifiedLookup=false)
Perform qualified name lookup into a given context.
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2253
GotoStmt - This represents a direct goto.
Definition: Stmt.h:2304
bool isLValueReferenceType() const
Definition: Type.h:6312
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:238
static bool CmpCaseVals(const std::pair< llvm::APSInt, CaseStmt *> &lhs, const std::pair< llvm::APSInt, CaseStmt *> &rhs)
CmpCaseVals - Comparison predicate for sorting case values.
Definition: SemaStmt.cpp:600
const SwitchCase * getNextSwitchCase() const
Definition: Stmt.h:1369
ExprResult PerformMoveOrCopyInitialization(const InitializedEntity &Entity, const VarDecl *NRVOCandidate, QualType ResultType, Expr *Value, bool AllowNRVO=true)
Perform the initialization of a potentially-movable value, which is the result of return value...
Definition: SemaStmt.cpp:3094
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2687
static InitializedEntity InitializeRelatedResult(ObjCMethodDecl *MD, QualType Type)
Create the initialization entity for a related result.
Describes the sequence of initializations required to initialize a given object or reference with a s...
ActionResult< Expr * > ExprResult
Definition: Ownership.h:267
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:6152
TypedefNameDecl * getTypedefNameForAnonDecl() const
Definition: Decl.h:3274
StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp)
ActOnCapScopeReturnStmt - Utility routine to type-check return statements for capturing scopes...
Definition: SemaStmt.cpp:3211
Represents a C++ struct/union/class.
Definition: DeclCXX.h:300
ContinueStmt - This represents a continue.
Definition: Stmt.h:2384
Expr * getTrueExpr() const
Definition: Expr.h:3625
bool isVoidType() const
Definition: Type.h:6544
static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init, SourceLocation Loc, int DiagID)
Finish building a variable declaration for a for-range statement.
Definition: SemaStmt.cpp:1969
static CXXTryStmt * Create(const ASTContext &C, SourceLocation tryLoc, Stmt *tryBlock, ArrayRef< Stmt *> handlers)
Definition: StmtCXX.cpp:26
BinaryConditionalOperator - The GNU extension to the conditional operator which allows the middle ope...
Definition: Expr.h:3660
CXXCatchStmt - This represents a C++ catch block.
Definition: StmtCXX.h:29
VarDecl * getLoopVariable()
Definition: StmtCXX.cpp:77
Represents an explicit C++ type conversion that uses "functional" notation (C++ [expr.type.conv]).
Definition: ExprCXX.h:1519
void addHiddenDecl(Decl *D)
Add the declaration D to this context without modifying any lookup tables.
Definition: DeclBase.cpp:1481
WhileStmt - This represents a &#39;while&#39; stmt.
Definition: Stmt.h:2063
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:336
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string...
Definition: Diagnostic.h:129
SourceLocation getBreakLoc() const
Definition: Stmt.h:2419
bool qual_empty() const
Definition: Type.h:5442
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:276
void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc)
Definition: SemaExpr.cpp:11494
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2396
StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body)
FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
Definition: SemaStmt.cpp:2831
ExprResult ExprError()
Definition: Ownership.h:283
ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand)
Definition: SemaStmt.cpp:3845
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2079
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1041
const Scope * getFnParent() const
getFnParent - Return the closest scope that is a function body.
Definition: Scope.h:230
bool isIgnored(unsigned DiagID, SourceLocation Loc) const
Determine whether the diagnostic is known to be ignored.
Definition: Diagnostic.h:819
Expr * getRHS() const
Definition: Expr.h:3334
bool isPointerType() const
Definition: Type.h:6296
BreakStmt - This represents a break.
Definition: Stmt.h:2410
__DEVICE__ int min(int __a, int __b)
SourceManager & SourceMgr
Definition: Sema.h:327
CapturedRegionKind
The different kinds of captured statement.
Definition: CapturedStmt.h:17
BasePaths - Represents the set of paths from a derived class to one of its (direct or indirect) bases...
bool isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD, CopyElisionSemanticsKind CESK)
Definition: SemaStmt.cpp:2954
bool isLocalVarDecl() const
Returns true for local variable declarations other than parameters.
Definition: Decl.h:1105
QualType getType() const
Definition: Decl.h:648
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:114
bool empty() const
Return true if no decls were found.
Definition: Lookup.h:328
static bool hasDeducedReturnType(FunctionDecl *FD)
Determine whether the declared return type of the specified function contains &#39;auto&#39;.
Definition: SemaStmt.cpp:3201
A trivial tuple used to represent a source range.
ASTContext & Context
Definition: Sema.h:324
This represents a decl that may have a name.
Definition: Decl.h:249
QualType getObjCObjectPointerType(QualType OIT) const
Return a ObjCObjectPointerType type for the given ObjCObjectType.
A boolean literal, per ([C++ lex.bool] Boolean literals).
Definition: ExprCXX.h:562
T castAs() const
Convert to the specified TypeLoc type, asserting that this TypeLoc is of the desired type...
Definition: TypeLoc.h:76
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2971
CanQualType BoolTy
Definition: ASTContext.h:1017
APSInt & getInt()
Definition: APValue.h:252
DeclStmt * getBeginStmt()
Definition: StmtCXX.h:155
Describes an entity that is being initialized.
BeginEndFunction
Definition: SemaStmt.cpp:2009
ExprResult release()
Definition: Sema.h:3668
Decl * getCalleeDecl()
Definition: Expr.h:2526
void setType(QualType newType)
Definition: Decl.h:649
Wrapper for source info for pointers.
Definition: TypeLoc.h:1202
StmtResult ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt, ConditionResult Cond, Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal)
Definition: SemaStmt.cpp:538
SourceLocation ColonLoc
Location of &#39;:&#39;.
Definition: OpenMPClause.h:108
Represents Objective-C&#39;s @autoreleasepool Statement.
Definition: StmtObjC.h:345
CopyElisionSemanticsKind
Definition: Sema.h:3844
static SEHExceptStmt * Create(const ASTContext &C, SourceLocation ExceptLoc, Expr *FilterExpr, Stmt *Block)
Definition: Stmt.cpp:1127
void NoteCandidates(Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef< Expr *> Args, StringRef Opc="", SourceLocation Loc=SourceLocation(), llvm::function_ref< bool(OverloadCandidate &)> Filter=[](OverloadCandidate &) { return true;})
When overload resolution fails, prints diagnostic messages containing the candidates in the candidate...
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2872
Declaration of a template function.
Definition: DeclTemplate.h:969
static ObjCAtTryStmt * Create(const ASTContext &Context, SourceLocation atTryLoc, Stmt *atTryStmt, Stmt **CatchStmts, unsigned NumCatchStmts, Stmt *atFinallyStmt)
Definition: StmtObjC.cpp:46
void setBody(Stmt *B)
Definition: Decl.cpp:4467
Attr - This represents one attribute.
Definition: Attr.h:44
SourceLocation getLocation() const
Definition: DeclBase.h:418
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:98
StmtResult ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler)
Definition: SemaStmt.cpp:4108
static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc, const Scope &DestScope)
Definition: SemaStmt.cpp:2884
Helper class that creates diagnostics with optional template instantiation stacks.
Definition: Sema.h:1261
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2560
QualType getType() const
Retrieves the type of the base class.
Definition: DeclCXX.h:291